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Abstract

Clinical trials are designed in natural language
and the task of matching them to patients, repre-
sented via both structured and unstructured tex-
tual data, benefits from knowledge aggregation
and reasoning abilities of LLMs. LLMs with
their ability to consolidate distributed knowl-
edge hold the potential to build a more gen-
eral solution than classical approaches that em-
ploy trial-specific heuristics. Yet, adoption of
LLMs in critical domains, such as clinical re-
search, comes with many challenges, such as,
the availability of public benchmarks, the di-
mensions of evaluation and data sensitivity. In
this survey, we contextualize emerging LLM-
based approaches in clinical trial recruitment.
We examine the main components of the clin-
ical trial recruitment process, discuss existing
challenges in adopting LLM technologies in
clinical research and exciting future directions.

1 Introduction

Clinical trials evaluate the effects of an interven-
tion on human health. Selecting the precise and
required size of patient population is crucial for
trial completion. According to various estimates,
more than 50% of aborted clinical trials fail due
to low accrual rates, and 80% of all clinical trials
do not manage to recruit the required patient co-
horts within the allotted time (Clinical Trials Arena,
2012; Williams et al., 2015; Pharmaceutical Tech-
nology, 2019). Although this trend has steadily
declined over the past decade with the intensive
use of technology-aided solutions, efficient patient
recruitment remains the most crucial bottleneck in
clinical trial research (Clinical Trials Arena, 2022).
As electronic health records (EHRs) of patients be-
come more accessible, clinical researchers adopt
machine intelligence and develop explainable sys-
tems to correctly interpret model predictions (Mur-
doch and Detsky, 2013; Payrovnaziri et al., 2020;
von Itzstein et al., 2021).

There has been a rapid development of meth-
ods leveraging LLMs for cohort retrieval and mod-
eling (Fang et al., 2022; Tian et al., 2023; Park
et al., 2024; Liu et al., 2025a; Wang et al., 2025),
trial design (Reinisch et al., 2024; Curran et al.,
2024; Bornet et al., 2025; Neehal et al., 2025),
trial search (White et al., 2023; Rybinski et al.,
2020), trial matching (Jin et al., 2024; Nievas et al.,
2024; Wornow et al., 2025), trial outcomes and du-
ration prediction (Reinisch et al., 2024; Yue et al.,
2024a,b; Liu et al., 2025c), risk of bias assessment
(Lai et al., 2024; Ji et al., 2025), and clinical trial
results extraction (Lee et al., 2024), while the com-
munity catches up with recommended practices for
responsible use of AI throughout the drug develop-
ment process (Geraci et al., 2025).

Figure 1 shows the components in clinical trial
recruitment, namely, data sourcing, information
extraction, matching, and evaluation. An expert
reviews several hundred patients per trial and can
end up spending hours on one patient, hence in-
curring significant costs (Penberthy et al., 2012;
Ni et al., 2015). Even simple automation using
table queries and lexical searches saves between
165 hours to 1,329 hours of reviewing time when
compared to manual evaluation (Penberthy et al.,
2010). In the past, the patient recruitment pro-
cess has seen relatively low adoption of the pre-
trained language models (He et al., 2020; Harrer,
2023; Lu et al., 2024). Generative LLMs serve
as knowledge aggregators, and through their rea-
soning and instruction-following capabilities, they
have revived research in the task of trial and pa-
tient matching (Jin et al., 2024; Nievas et al., 2024;
Rybinski et al., 2024; Wornow et al., 2025).

Difference to Prior Work. Despite the rapidly
evolving landscape of LLM technology, there is
no prior work surveying this area. Gueguen et al.
(2025) evaluate public trial matching tools and
Layne et al. (2025) compare the efficacy of open
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Figure 1: Components in a patient recruitment process: conventional linear flow (in orange) vs. our proposed
LLM-assisted interactive flow (in purple).

and proprietary LLM-assisted trial and patient
matching in oncology. Systematic reviews on this
topic, bound by strict selection criteria and highly
specific research question, do not capture the broad
perspectives related to dataset challenges and eval-
uation beyond accuracy (Kim and Quintana, 2022;
Idnay et al., 2022; Kantor and Morzy, 2024b; Chen
et al., 2025) (See Appendix A). Although it pro-
vides an overview of LLM approaches used in clin-
ical trial matching, Chen et al. (2025) only briefly
discusses associated challenges and future work.

Our Contribution. We examine the main compo-
nents of a trial recruitment process, presented in
Figure 1. We formalize the problem of trial and
patient matching. We analyze existing approaches
via the tasks (classification vs. ranking), the di-
rectionality (trial-centric and patient-centric), the
benchmarks used (longitudinal vs. short patient de-
scriptions, single vs. multi-trial) and the evaluation
metrics reported. We present a taxonomy of er-
rors for a consistent evaluation of LLM-generated
responses. We discuss the critical challenges as-
sociated with the use of LLMs in trial recruitment
research. Finally, we present actionable steps to-
wards interactive patient recruitment (illustrated in
purple in Figure 1).

2 Background

Clinical Trial Recruitment. Also known as pa-
tient recruitment/enrollment/(pre-)screening, it is
the process of matching patients (or a cohort) to a
clinical trial via its eligibility criteria. Clinical trials

have a dual nature, consisting of universal and trial-
specific requirements, making it challenging to de-
sign generalized approaches (Idnay et al., 2023).
This has traditionally resulted in linear trial-centric
matching processes (illustrated in orange in Figure
1) with limited scope for interaction and feedback.
Standard approaches have an initial data filter on
structured EHRs followed by keyword matches and
concept identification (Penberthy et al., 2010; Tun
et al., 2023) or cohort-specific classifiers (Zhang
and Demner-Fushman, 2017). Ni et al. (2015) rep-
resented both trials and patients as feature vectors
supporting both trial and patient retrieval.

Biomedical NLP and LLMs. The biomedical
NLP landscape is shifting from specialized pre-
trained language models, such as, BioBERT (Lee
et al., 2020), BioLM (Lewis et al., 2020), Pubmed-
BERT (Gu et al., 2021), BioGPT (Luo et al., 2022),
MedCPT (Jin et al., 2023), among many others
(Wang et al., 2023), towards instruction-following
and chat-enabled LLMs (commonly termed gener-
ative AI), used as is (Nori et al., 2023; Kung et al.,
2023) or fine-tuned for domain alignment, such
as, Med-PaLM (Singhal et al., 2023), Med-Alpaca
(Han et al., 2023) and LLaVA-Med (Li et al.,
2023a). We point our reader to Thirunavukarasu
et al. (2023) and Liu et al. (2025b) for further read-
ing. The Journal of American Medical Informatics
Association (JAMIA), which published 41 articles
on biomedical health and LLMs in a focus issue,
also observed this shift towards generative AI (Lu
et al., 2024). They additionally report that the Ope-
nAI (Achiam et al., 2023) family of proprietary
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Search period 2019 - May 2025
Initial search pool (135 SERPS, 9.8 results/SERP on average) 1332
Excluded (not related to trial and patient matching/duplicates) 1207
Excluded (full text not available / not a methodology, dataset, evaluation) 98
Included 27
Included (via citation network of Jin et al. (2024) and Wornow et al. (2025)) 25

Total included 52
Publication venues covered 27

Table 1: Survey Selection Protocol

models (GPT3.5/4 being the most common) is used
much more often than open-sourced models (Tou-
vron et al., 2023; Bai et al., 2023; Jiang et al., 2023).
Dorfner et al. (2024) show that fine-tuning genera-
tive LLMs on the biomedical domain offers limited
performance gain. Another study by Alber et al.
(2025) shows that models are more prone to prop-
agate medical misinformation encountered during
fine-tuning despite performing well on benchmarks.
Bedi et al. (2025) report that real patient data is
used in less than 5% of the 519 biomedical studies
using LLMs, and fairness, bias, uncertainty and
deployment considerations are rarely assessed.

State of Adoption of NLP Advancements. Kan-
tor and Morzy (2024b)’s study on adoption of AI
for parsing eligibility criteria reports low adoption
rates of generative AI, with BERT-based models
being the most popular and generative models be-
ing used only since 2024. A systematic review of
the role of NLP systems in patient recruitment in
2022 identified only 11 studies (Idnay et al., 2022).
Heterogeneous outcomes, diverse results, a depen-
dence on small retrospective data and a lack of com-
mon standardized benchmarks drive the gap in NLP
research and their adoption in real-world settings
(Idnay et al., 2024; Kantor and Morzy, 2024b). A
study by Idnay et al. (2023), investigating how clin-
ical researchers screened patients, highlights the
challenges of universal and domain-specific nature
of the eligibility criteria and makes recommenda-
tions to build interactive, flexible and transparent
recruitment strategies. Interestingly, when Corbaux
et al. (2024) categorize tools for oncological trial
matching, they indicate that the automatic methods
still fall in the research and development phase, yet
to be commercially available.

3 Methodology

Given the interdisciplinary nature of the task and
to reduce confirmation bias of known venues, we
opted for a broad-scope search via Google Scholar.

We queried with the keywords “clinical trial”, “co-
hort discovery”, “patient recruitment”, “trial re-
cruitment”, “trial matching” in conjunction with
“llm”, “language model”, “gpt” and inspected the
first ten results pages, between the years 2019 and
2025 (both inclusive). We additionally used Jin
et al. (2024) and Wornow et al. (2025) as seeds
and recursively traced their citations to efficiently
capture the evolution of predictive methods in this
task. We finally included 52 papers in our survey
of which 6 are from the arXiv and the rest span 27
venues in medical (e.g., JAMIA, Cureus, AMIA),
computer science (r.g., TREC, SIGIR) and interdis-
ciplinary (e.g., NEJM AI, Nature Communiations)
publications. Table 1 provides details of the search
protocol. We organized the papers into data sourc-
ing (Section 4), information extraction and pars-
ing (Section 5), trial and patient matching (Section
6) and evaluation (Section 7). Via our discussion
on critical limitations in Section 8 and on promis-
ing directions towards interactive patient recruit-
ment in Section 9, we provide a holistic discussion
of the challenges of LLM-based trial recruitment
pipelines and exciting future directions.

4 Data Sourcing: Public Benchmarks

We start with data sourcing, the first component
of the recruitment pipeline (Figure 1). We analyze
five trial and patient matching benchmarks.
• 2018 N2C2 Cohort Selection (Stubbs et al.,

2019) for criterion-level eligibility prediction.1

• Koopman and Zuccon (2016) for ranking trials.
• Text REtrieval Conference Clinical Trial (TREC

CT)2 tracks 2021, 2022, 2023 for ranking trials.
Table 2 provides an overview of the benchmarks.

4.1 Trial Data
The TREC CT benchmarks and Koopman and Zuc-
con (2016) source the ClinicalTrials.gov reg-

1Currently unavailable as of 2024 Nov 6.
2Available at https://www.trec-cds.org/.
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Task Benchmark Size Eval. Metrics Best Score #P LLM Usage (#P)

Cohort
selection

2018 N2C2
(Stubbs et al.,
2019)

#patients = 288
#records per patient = 2-5
#tokens/patient = 2711
#trials = 1
#criteria = 13

Micro-averaged:
P, R, F1

0.91 micro F1 47 (not applicable)

Trial
ranking

Koopman and
Zuccon (2016)

#patient summaries (22 words avg) = 60
#patient description (78 words avg) = 60
#keywords (4.4 words avg) = 489
#trials = 204,855
#relevant matches = 685
#relevance judgments = 4000

MRR,
P@5,
adaptive precision

0.3 MRR
< 0.2 P@5

- † (not applicable)

TREC CT 2021
(Soboroff,
2021)∗

#patient descriptions = 75
#trials = 375,580
#relevant matches = 5,570
#relevance judgments = 35,832

NDCG@10,
P@10,
MRR,
R-Precision

0.71 NDCG@10
0.59 P@10
0.82 MRR
0.26 R-Precision

26 BERT-based keyword
extraction (9) / query
summarization (1),
Transformer-based
rankers (10)

TREC CT 2022
(Roberts et al.,
2022)

#patient descriptions = 50
trials = 375,580
#relevant matches = 3,949
#relevance judgments = 35,394

NDCG@10,
P@10,
MRR,
R-Precision

0.61 NDCG@10
0.50 P@10
0.72 MRR
0.32 R-Precision

12 Query reformulation
using BERT / sequence-
to-sequence models (3),
Transformer-based
rankers (3)

TREC CT 2023
(Rybinski et al.,
2024)∗∗

#patient tables = 40
#disease templates = 8
#trials = 451,538
#relevant matches = 11,963
#relevance judgments = 34,931

NDCG@10,
P@10,
MRR

0.81 NDCG@10
0.73 P@10
0.78 MRR

11 Query reformulation
using LLMs (5),
Transformer-based
rankers (6),
LLM prompt-based
relevance prediction (4)

∗Best scores are aggregated from the Appendix of the runs in the TREC Browser. †No participants, since this was not a challenge.
∗∗Borrowed from (Rybinski et al., 2024) as TREC CT 2023 does not have a published track overview.

Table 2: Overview of the public trial and patient matching benchmarks. #P is the number of participating teams.
LLM usage (#P) tracks the number of participants using LLMs that we could verify from the proceedings.

istry. Meanwhile, the N2C2 benchmark focuses
on a single trial. ClinicalTrials.gov is one of
the largest online databases of clinical studies sub-
mitted by investigators from over 200 countries.
As of June 2025, it lists more than 400,000 clin-
ical trials, thousands of which are active. The
euclinicaltrials.eu is another public online
registry comprising over 50,000 trials from the
European Union of which, 7000 are active. Ev-
ery trial comprises a study description, eligibil-
ity criteria and study plan among other details.
All the LLM-based methods we analyze use the
ClinicalTrials.gov registry and one addition-
ally uses EudraCT, the internal database a subset
of which is publicly available via the EU Clinical
Trials Registry (refer Table 5 in Appendix).

4.2 Patient Data
The N2C2 benchmark contains 288 de-identified
longitudinal records of patients. The trial rank-
ing benchmarks use up to 75 synthetic patient
profiles, comprising keywords defining cohorts in
(Koopman and Zuccon, 2016), short textual pa-
tient descriptions: 75 in TREC CT 2021 and 50 in
TREC CT 2022, and 40 questionnaire templates in
TREC CT 2023. The MIMIC database (Johnson
et al., 2016, 2020) is the largest anonymized pub-

lic database of structured and unstructured data of
299,712 patients. While this dataset is popular for
training biomedical LLMs (as mentioned in Sec-
tion 2), it is not used in any of the five benchmarks,
possibly due to significant challenges in obtaining
eligibility labels on this scale. Of the 20 LLM-
based methods reported in Table 5, 15 used one
of the benchmarks from Table 2, 2 used synthetic
patient profiles (EHR) made publicly available, 3
used private patient data: 2 clinical notes and 1
structured patient data.

4.3 Annotated Labels
Two medical experts annotated 3,744 criterion-
level labels in the N2C2 benchmark. The TREC CT
annotations were created by pooling the top-k re-
sults from all participating teams. Medical experts
manually annotated this pool of trial and patient
matches (Koopman and Zuccon, 2016; Soboroff,
2021; Roberts et al., 2022). Out of a total of 35,394
pooled trial and patient matches in the 2022 edi-
tion, 11% were judged as eligible, 9% as ineligible
and 80% as not relevant with an average of 700
trials judged per patient (Roberts et al., 2022). The
relevance judgments were more balanced between
the three labels (Rybinski et al., 2024) in TREC
CT 2023. All benchmarks depend on manual anno-
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tation from experts, which is time-consuming and
challenging to scale (Kim and Quintana, 2022).

5 Information Extraction and Parsing

Extraction of medical entities evolved from a com-
bination of rule-based heuristics and feature-based
supervised sequence labeling models (Kang et al.,
2017; Yuan et al., 2019) via embedding-based neu-
ral models (Khan et al., 2019; Tseo et al., 2020) to
transformer-based pretrained models and genera-
tive AI (Liu et al., 2021c; Zeng et al., 2020; Tian
et al., 2021; Li et al., 2022; Murcia et al., 2024;
Kantor and Morzy, 2024a). Datta et al. (2024) use
disease-specific prompting to extract structured in-
formation about entities and its attributes from cri-
teria text. Gao et al. (2020); Zhang et al. (2020) and
Theodorou et al. (2023) use BERT-based embed-
dings to encode eligibility criteria and patient data.
Patient data converted to search queries, via refor-
mulation and expansion using LLMs, are particu-
larly effective in trial retrieval (Peikos et al., 2023;
Rybinski et al., 2024; Peikos et al., 2024; Jin et al.,
2024). Yuan et al. (2019); Tian et al. (2023); Park
et al. (2024); Mugambi et al. (2024) and Ziletti and
D’Ambrosi (2025) use semantic parsing to trans-
late eligibility criteria into logical forms ready for
querying structured patient databases.

6 Trial and Patient Matching

6.1 Formalization

Given sets of inclusion and exclusion criteria
(Cinc, Cexc) from a trial and a set of patient data, P ,
we formalize the trial and patient matching prob-
lem, M , to predict one of the labels Ineligible
(Inel.), Irrelevant (Irr.) or Eligible (Eli.) by ag-
gregating criterion-level binary matches M ′(c, P ).

M(Cinc, Cexc, P )=





Inel., ∃c ∈ Cexc,M
′(c, P )

Irr., ∃c ∈ Cinc,¬M ′(c, P )
Eli., ¬(Inel. ∨ Irr.)

(1)

This induces a priority, such that, a patient sat-
isfying any exclusion criteria becomes ineligible,
regardless of inclusion criteria matches. Section
6.2 explores the task at varying levels of granu-
larity, starting from criterion-level via trial-level
predictions to trial ranking. Criterion-level binary
decisions become too restrictive, such that one un-
met criterion M ′ due to lack of data can render the
entire match M as ineligible. In such cases, where
missing information is expected, ranking trials is

Classical LLM-based

! Direction-specific ap-
proaches, applicable to
a set of trials or a cohort

* Direction-agnostic
criteria- & trial-level
prediction

! Trial-specific heuris-
tics: filters and features

* Generalizable across
trials

! Evaluated on private
patient data

* Public benchmarks
more common

Table 3: Differences between classical and LLM-based
trial matching approaches.

a feasible first step. Just ranking trials is insuffi-
cient as it does not provide the degree of criteria
coverage. In Section 8, we elaborate on the impor-
tance of formalization and its effects on trial-level
aggregation.

Despite the task in Equation 1 being direction-
agnostic, there exist two directional approaches to
tackle the matching problem, mainly due to data
availability. First is the trial-centric approach,
taken by a trial investigator, that matches longi-
tudinal patient records to a specific trial. The 2018
N2C2 cohort selection is a trial-centric benchmark
with criterion-level predictions. Alternatively, a
patient-centric approach, taken by a patient or
their healthcare provider, matches relevant trials
from a trial registry to a short description of the pa-
tient. Koopman and Zuccon (2016) and the TREC
CT 2021, 2022, and 2023 are patient-centric bench-
marks for ranking trials.

6.2 LLM-based Approaches

Unlike classical approaches (Penberthy et al., 2010;
Ni et al., 2015; Zhang and Demner-Fushman, 2017;
Yuan et al., 2019; Tun et al., 2023), LLM-based ap-
proaches do not rely on trial-specific heuristics. Ta-
ble 3 lists the primary differences between the clas-
sical and LLM-based approaches (see Appendix C
for a full comparison). We group the LLM-based
approaches by the granularity of the matches, start-
ing with criterion-level prediction via trial-level pre-
diction to trial ranking. While criterion- and trial-
level predictions are direction-agnostic, trial rank-
ing is a patient-centric task. With enough patients,
we could evaluate patient ranking, similar to the
bidirectional implementation in Ni et al. (2015)’s
work, though this has not yet been addressed.

Criterion-Level Prediction. Here, methods utilize
the reasoning capability of LLMs to obtain ratio-
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nale and other context data in addition to the eligi-
bility label. Hamer et al. (2023) use 1-shot prompt,
where given the patient profile and the eligibility
criteria, the LLM first labels each criterion as either
being applicable to the patient or not, followed by
a list of rationales and finally, the eligibility labels
for the applicable criteria. Unlu et al. (2024); Beat-
tie et al. (2024) and Wornow et al. (2025) chunk
longitudinal patient data and store them as vector
embeddings. They prompt LLMs with criteria and
relevant patient data chunks under zero-shot set-
ting, with Beattie et al. (2024) providing expert
criterion-level strategy and Wornow et al. (2025)
providing criteria modifications in the prompts.

Unlu et al. (2024) generate only the decision
label from GPT4 and Beattie et al. (2024) and
(Wornow et al., 2025) generate criterion-level
JSON objects, comprising the criteria label, the eli-
gibility label and a rationale among other context.
Both work with proprietary OpenAI models (GPT-
3.5 and GPT-4) and Wornow et al. (2025) addition-
ally used open-sourced Llama (Jiang et al., 2023)
and Mixtral models (Jiang et al., 2024). Ferber et al.
(2024) prompt GPT-4o to generate criterion-level
boolean predictions to be reviewed by experts.

Trial-Level Prediction. Wong et al. (2023) used
GPT3.5 and GPT4 to extract and structure eligibil-
ity criteria into logical expression to be matched
locally with structured patient information. Yuan
et al. (2023) use LLMs to augment eligibility crite-
ria and pass the BERT-based embeddings of these
criteria and patient data through a fully connected
classification layer to predict patient-criterion el-
igibility. The classifier and embedding models
are trained jointly on classification loss and a con-
trastive loss function derived from Equation 1.

Trial Ranking. These methods formulate effective
queries, retrieve trials and re-rank them. Query pro-
cessing involve generating sentence queries from
patient descriptions using a fine-tuned T5 model
(Pradeep et al., 2022) or zero-shot LLM prompts
(Saeidi et al., 2023; Kusa et al., 2023b), generat-
ing patient descriptions from trial data via 1-shot
LLM prompts (Zhuang et al., 2023), generating no-
SQL queries via LLMs (Ferber et al., 2024), using
LLMs to reformulate and expand queries (Rybinski
et al., 2024; Peikos et al., 2024; Datta et al., 2025),
and using LLMs to extract keywords (Jullien et al.,
2024; Jin et al., 2024; Nievas et al., 2024).

Next comes retrieval, using embeddings simi-
larity (Lahiri et al., 2023; Richmond and Desh-

pande, 2023; Saeidi et al., 2023; Ferber et al., 2024;
Saeidi, 2025) or a multi-stage retrieval with neu-
ral re-rankers (Zhuang et al., 2023; Rybinski and
Karimi, 2023; Rybinski et al., 2024; Jin et al., 2024;
Datta et al., 2025). Some re-rank the top trials using
GPT models (Zhuang et al., 2023; Rybinski et al.,
2024; Datta et al., 2025), some prompt LLMs for
relevance labels (Pradeep et al., 2022), while others
prompt LLMs to generate trial- or criterion-level el-
igibility labels (Rybinski et al., 2024; Peikos, 2023;
Jin et al., 2024; Nievas et al., 2024; Jullien et al.,
2024). Criterion-level labels are then aggregated us-
ing set-based reasoning mechanisms (Jullien et al.,
2024), variations of the matching Equation 1 (Jin
et al., 2024; Nievas et al., 2024; Saeidi, 2025), and
by prompting LLMs (Jin et al., 2024).

7 Evaluation

Standard metrics, such as, precision, recall, F1, nor-
malized discounted cumulative gains (NDCG@k)
and mean reciprocal rank (MRR) are popular met-
rics used by the benchmarks (Table 2). When we
compare the different systems side by side (see Ta-
ble 5 in Appendix) the lack of standardized report-
ing becomes apparent. Five of the eight (62.5%)
methods that tackle criterion-level and trial-level
eligibility prediction introduce their own datasets
of which three use private patient data.

In the criterion-level prediction task, 3 of the
six reported methods use the N2C2 benchmark,
namely, Beattie et al. (2024); Wornow et al. (2025)
and Saeidi (2025). Even between these three meth-
ods, comparison is difficult, since Beattie et al.
(2024) report their best results on a subset of the
benchmark, and Saeidi (2025) report the perfor-
mance averaged on N2C2 and TREC CT 2023.

13 of the 14 methods for trial ranking use the
TREC CT benchmarks of which 9 evaluate their
performance on the 2023 edition, 5 on the 2022
edition and 5 on the 2021 edition. The remaining
method ran evaluations on their own dataset of 51
synthetic EHR profiles and 15 trials. 2 methods
for trial ranking ran additional evaluations on the
SIGIR benchmark.

7.1 Evaluation Beyond Accuracy

Some methods evaluate justification quality of the
LLMs via manual evaluation, but differ in the sub-
sets evaluated and the metrics used (Jin et al., 2024;
Nievas et al., 2024; Wornow et al., 2025). Notably,
researchers in the medical domain have stressed the
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Figure 2: Taxonomy of errors in LLM-generations.

lack of consistent benchmark data, primarily, due
to the dependence on manual review which also
restricts the size of the data (Kim and Quintana,
2022; Kantor and Morzy, 2024b).

Rybinski et al. (2024) report query latency, with
GPT models having 15 times higher latency (47.8s)
compared to smaller pre-trained models for a 12%
increase in NDCG@10. Wornow et al. (2025) re-
port the cost per patient in terms of money (up to
11.88$), API calls (up to 57) and token used (up to
103,000). Both Hamer et al. (2023) and Jin et al.
(2024) report a workload reduction, from a 90%
reduction in the criteria to be screened by Harrer
(2023) to a 42.6% reduction in screening time by
Jin et al. (2024), when using LLM-generated pre-
dictions and explanations.

A broader audit on faithfulness of the explana-
tions, logical completeness of the explanations with
respect to the criteria, handling missing informa-
tion, robustness to counterfactuals, uncertainty and
bias is lacking in the current methods.

7.2 Taxonomy of LLM Errors

Since there is no one accepted taxonomy of errors,
we often come across inconsistent and semantically
overlapping categories of errors in LLM generated
explanations. For e.g., incorrect reasoning and
lack of knowledge are recognized as independent
error types by Jin et al. (2024); Hamer et al. (2023);
Nievas et al. (2024), even though the latter often
leads to the former (full list in Appendix B). In the
proposal by Liévin et al. (2024), reasoning errors
are separate from reading comprehension, even
though the instances of incorrect reading compre-
hension occur when the model ignores contextual

information and “reasons” using its learned knowl-
edge. Here, we identify where errors occur and
break them down further by an identifiable source
of the error (see Figure 2).
Information Isolation Errors. These are errors
in information extraction from patient data or trial
criteria falls. This includes missed or incorrect
NER, measurements (numeric or unit), temporal
scopes and negations. LLMs are good at recog-
nizing entities and measurements, but still struggle
with negations (Nievas et al., 2024).
Reasoning Errors. An error in the explanations
provided by LLMs falls into this category. The
most common source is insufficient explicit data,
which occurs when LLMs fail to draw logical con-
clusions from given data, while a human expert can.
This stems from previously unseen data (“lack of
knowledge”) or the inability to recall prior infor-
mation (“lack of implicit reasoning”) or the in-
ability to infer from context (“insufficient data”).
The second source of reasoning errors is lack of
self-assessment. The LLM contradicts explicit in-
formation in the prompt. The error occurs when
knowledge is wrongly recalled or knowledge is cor-
rectly recalled, but contextual information is not
applied, resulting in wrong reasoning. This is often
referred to as “incorrect knowledge”. The third
source are premature decisions made by an LLM
when the criterion or patient data is ambiguous and
it is necessary to defer to an expert opinion.
Inconsistency Errors. Generating explanations to
arrive at final answers unlock LLM’s reasoning ca-
pacities (Wei et al., 2022). Even so, the explanation
and the prediction can be inconsistent. LLMs may
predict incorrectly despite correct explanation (re-
ported as explanation-output mismatch in Nievas
et al. (2024)). The opposite situation, when a pre-
diction is correct despite an incorrect explanation,
is more difficult to identify without human evalu-
ation of automated verification checks. Wornow
et al. (2025) report between 3%-8% of incorrect
or partially correct justifications despite the LLM
making a correct eligibility prediction. This short-
cut, similar to cognitive biases in humans, hints
towards a bias that the model picked up during
training. Both cases negatively impact transparency
and accountability of the matching system.

8 Discussion

Annotated Corpora and their Size. Despite
attempts to structure clinical trials (Chen et al.,
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2022), finding similar trials and analyzing system-
atic failure cases is notoriously difficult (Rybinski
et al., 2020; White et al., 2023). Criterion-level
annotations require significant manual annotations,
thereby limiting the size of the corpus. For in-
stance, Chia Kury et al. (2020) and LCT (Dobbins
et al., 2022), are manually annotated corpora of
1000 trials each, while supervised annotators such
as, EliIE (Kang et al., 2017) and Criteria2Query
(Yuan et al., 2019), require expensive manual la-
bels (230 disease-specific clinical trials in this case).
Eligibility labels on real patient data from real en-
rollment status, necessary to discount reviewer bias,
are only available on a small-scale, if at all, due to
the trade-off between scale and privacy (Kim and
Quintana, 2022). The systems thus evaluated on
private retrospective data (Wong et al., 2023; Yuan
et al., 2023; Unlu et al., 2024) cannot be transpar-
ently compared. Kantor and Morzy (2024b) stress
on standardized benchmarks as the dependence on
manual evaluation hinders meta-analyses and com-
parison between different studies. Public annota-
tions, such as the TREC CT tracks have an average
of 700 trial annotations per patient for less than 100
patients, while the N2C2 has only a few thousands
of criterion-level annotations. Jointly, the major
public corpora, e.g., ClinicalTrials.gov and MIMIC
datasets, present an opportunity to build on the
proposal by Kim and Quintana (2022) to generate
large-scale data using automated methods.

Dimensions of Evaluation. In Section 7 we see
that the majority of methods focus on model ac-
curacy, corroborating the result from Bedi et al.
(2025), which reports that more than 95% of stud-
ies use accuracy as the primary dimension of evalu-
ation, while fairness, bias and uncertainty are mea-
sured less frequently. Omar et al. (2024) reviewed
27 clinical trials evaluating LLMs in healthcare
also found the accuracy and reliability standards
for LLM use to be undefined. Further results from
Nemati et al. (2025), who benchmarked the annota-
tion ability of LLMs across 9 performance metrics,
show that while LLMs consistently score high on
precision, recall and F1 (lowest being 0.8), their
scores highly vary on semantic similarity, factual
consistency, relevance, fluency, consistency and co-
herence (ranging from 0.1 to 0.9) highlighting the
need for multiple dimensions of evaluation.

Formalization. Equation 1 highlights the impor-
tance of aggregation and priority. Surprisingly, very
few works explicitly formalize the matching task.

This lack of formalization coincides with an ab-
sence of aggregation strategies for trial-level pre-
dictions (Hamer et al., 2023; Wornow et al., 2025;
Unlu et al., 2024) and others. Formalization guides
Yuan et al. (2023) to design a loss function that ac-
counts for the contrastive requirements of inclusion
and exclusion criteria, and Jullien et al. (2024) and
Saeidi (2025) to define re-ranking scores.

Societal Impact. Recent research measured dis-
tinct bias in disease diagnosis across gender, age
and disease in popular LLM models (GPT4, Chat-
GPT and Qwen) (Zhao et al., 2024b) and found
that GPT4 tends to stereotype demographic pre-
sentations when generating diagnoses (Zack et al.,
2024). Alber et al. (2025) show that LLMs are
prone to making medical misjudgments by replac-
ing just 0.001% of the training data with medical
misinformation. All LLM-based systems, except
the trial ranking models, are evaluated on a few
disease-specific trials (see Table 5 in Appendix C),
the largest being 146 trials, covering 10 cancer
types, evaluated by Hamer et al. (2023), making
the generalizability of LLMs across diseases un-
clear. In addition to generalizability tests across
diseases, we recommend risk and bias assessments
on demographic slices (Benkirane et al., 2025).

Data Sensitivity. Several methods deploy GPT
models on Azure AI to comply with privacy regula-
tions (Unlu et al., 2024; Wong et al., 2023; Wornow
et al., 2025). Yet, processing patient data with
LLMs raises serious ethical challenges due to lack
of HIPAA compliance (Edemekong et al., 2024).
As already discussed, creating large-scale realis-
tic patient records while protecting their privacy is
particularly challenging. We recommend locally
deploying open-sourced models or set up a Busi-
ness Associate Agreement (BAA) with cloud API
providers for HIPAA compliance. There is inter-
est in generating synthetic data, as digital twins of
patients, with limited access to real patient data as
a viable privacy protected alternative (Das et al.,
2023; Wang et al., 2024).

Core Limitations of LLMs. According to Harrer
(2023) the core limitations affecting LLM adoption
are unfiltered pre-training, which does not differ-
entiate between facts, opinions, or misinformation;
lack of self-assessment, where a model generates
invalid but syntactically and semantically coherent
sentences; non-determinism: where surface-form
prompt variations lead to drastic changes in the
output and repeatability is not guaranteed under
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consistent input conditions; and, knowledge recall:
where updating outdated data or injecting new in-
formation requires expensive retraining since the
mechanisms of memory in LLMs are not well un-
derstood. These limitations pose a direct challenge
to the transparency and accountability principles
of AI for health laid down by the World Health
Organization (Guidance, 2021).

In Section 7, we discuss how knowledge recall
and lack of self-assessment surface through rea-
soning errors. Ways to mitigate non-determinism
could include model robustness evaluations to
prompt modifications and model settings like tem-
perature and decoding strategies. Using domain-
specific LLMs (Singhal et al., 2023), grounding
LLMs with external knowledge (Alber et al., 2025),
and verifying LLM reasoning could be useful in
handling unfiltered pre-training from affecting in-
ference time decision-making

9 Future Directions

As interest in LLMs orchestrating an end-to-end
pipeline and incorporating human interactions is
gaining more attention (Gao et al., 2024; Qiu et al.,
2024), we focus on four promising directions.

Trial Search. Past trials that share a target popula-
tion are important for designing new trials, recruit-
ing patients, systematic reviews and meta-analyses.
This problem has seen little activity since cluster-
ing using lexical features (Hao et al., 2014). Newer
search methods include constructing a clinical trial
knowledge graph Chen et al. (2022), searching via
patient EHRs (Wu et al., 2018) and designing fea-
tures for similarity matchingSun et al. (2022). Jul-
lien et al. (2023) use textual entailment in LLMs to
find trials that match short descriptions. However,
these models falter on inferences that require nu-
merical reasoning and could not surpass a BM25
baseline for ranking evidence.

Interactive Trial Design. LLM agents have the
potential of bridging the semantic gap between eli-
gibility criteria and patient data by suggesting data
models underlying patient data for structuring eligi-
bility criteria early on. This collaborative idea is not
new (Luo et al., 2013), yet, designing eligibility cri-
teria is a big challenge and has been handled post-
hoc by optionally considering patient data models
(Kang et al., 2017; Sun and Loparo, 2019; Liu et al.,
2021a; Dasgupta et al., 2020). Small patient pools,
which ultimately affect the successful completion
of a trial, are often the result of restrictive criteria

(Clinical Trials Arena, 2022). LLMs can improve
trial design by identifying restrictive criteria for
trial investigators to relax them and create larger
patient pools, especially for trials tackling diseases
with a high mortality rate (Liu et al., 2021b).

Collaborative Trial Planning. Liu et al. (2025c)
propose an iterative feature discovery model using
LLM agents for interpretable trial outcome pre-
diction. Markey et al. (2025) showed promising
results on content relevance and suitability of trial
protocols generated using LLMs, with room for
improvement in logical reasoning and provenance.
Similar to Shi et al. (2024), who propose collabo-
ration of agents for knowledge-augmentation and
reasoning, LLM agents can identify and distribute
tasks and aggregate them to a final result. Another
important operation is learning to defer to experts
(Mozannar and Sontag, 2020), which can separate
operable criteria, such as those that require tabular
operations (e.g., via structured queries) or reason-
ing (temporal, numerical, negation), from criteria
that require expert feedback.

Explainable Matches. Explaining black-box LLM
predictions in human-understandable form is very
challenging (Zhao et al., 2024a) and in clinical
trial matches, this is limited to chain-of-thought
generations, which is only one of the many facets
of explainability (Nauta et al., 2023; Bodria et al.,
2023; Chen and Eickhoff, 2024). Consistency and
completeness checks, logical component matches,
robustness tests on negative, numeric and temporal
logic can greatly improve the reliability of guided
explanations. Wong et al. (2023), for instance,
could potentially explain eligibility via logical com-
ponent (mis)matches. We hope that the error taxon-
omy discussed in Section 7.2 assists in systematic
evaluation of explanations.

10 Conclusion

The task of clinical trial recruitment, that matches
patients to a clinical trial via its participation eligi-
bility criteria, benefits from knowledge aggregation
and reasoning abilities of LLMs. In this survey, we
critically examine the evolving role of LLM tech-
nologies in clinical research. We analyze the main
components in a clinical trial recruitment process
and provide a modern perspective on the challenges
in adopting LLMs to clinical research, such as the
benchmarks used, the dimensions of evaluation and
data sensitivity. We hope that this serves as a valu-
able resource for future research.
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11 Limitations

This survey focuses on the role of advances in NLP
in the critical domain of clinical trial recruitment.
Given that this is a rapidly evolving field, we have
made our best effort to include a comprehensive
view of available resources and methods. It is pos-
sible that more sophisticated methods using the
latest technology already exist (e.g., in the form of
proprietary products), but are not yet made public
or are only available as abstracts, as is common in
some medical communities, for example, the An-
nual Meeting of the American Society of Clinical
Oncology (ASCO). Clinical trial and patient match-
ing involves sensitive data, and is therefore vulner-
able to dual-use risk, which must be challenged
and debated by experts on ethics, governance, and
technology. Such extensive discussion is out of
the scope of this work, but we point our readers to
dedicated research on these topics (Braun, 2021;
Li et al., 2023b).
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A Systematic Reviews versus Surveys

A systematic review is a common practice in the
medical research community, with standardized
reporting guidelines (Moher et al., 2009; Page et al.,
2021). This guideline has a checklist of required
items in the title, abstract, introduction, methods,
results, discussion and other information that every
study needs to fulfil. These studies are bound by
strict inclusion and exclusion criteria applied to the
scientific literature considered for any assessment.
This rigor is necessary in evidence-based analysis
of a specific research question. A survey is more
flexible and provides a board coverage of the topic
being discussed. For instance, the guidelines for
writing surveys in our community as outlined by
ACM Computing Surveys, TACL and ARR aim to
draw perspectives on an evolving topic of interest.

ACM Computing Surveys (long paper). A pa-
per that summarizes and organizes recent research
results in a novel way that integrates and adds un-
derstanding to work in the field. A survey article
assumes a general knowledge of the area; it em-
phasizes the classification of the existing literature,
developing a perspective on the area, and evaluat-
ing trends.

TACL (excerpt). They should thus not simply be a
descriptive enumeration of the contents of papers,
but draw broad themes and (importantly) provide
new insights on the topic. These insights should be
major contributions of the submission.

ARR (note). all papers are expected to include
reviews of related literature. This category is meant
for the papers that go beyond that, e.g. in scope or
in establishing new interdisciplinary connections.

B Reported Error Types

In the following we illustrate the the error distribu-
tions by percentages as reported by previous stud-
ies.
Errors reported in (Jin et al., 2024) supplementary:
• Incorrect reasoning: 30.7%
• Lack of medical knowledge: 15.4%
• Ambiguous label definition: 26.9%
• other errors: 26.9% (self-conflicting)
Errors reported in (Hamer et al., 2023):
• Incorrect reading: 6.5%
• Insufficient knowledge: 2.2%
• Incorrect reasoning: 91.3%
Errors reported in (Nievas et al., 2024):
• Lack of knowledge 55%
• Implicit criteria 15%
• Wrong reasoning
• Accurate reasoning, wrong decision
• Lack of restraint when expert opinion is needed
• Negated criteria error

C Trial and Patient Matching Systems

Table 4 gives an overview of all the classical sys-
tems in covered in this survey by their direction of
approach, method, source data characteristics and
limitations. Table 5 covers all the LLM-based sys-
tems discussed in this survey by their task, method,
data source characteristics and limitations. We no-
tice the shift in the availability of patient sources
towards public data in the LLM-based approaches.
We also notice a shift towards trial ranking due to
publicly available data.
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Direction Method Patient Source Trial Source Metrics (Best) Limitations

Trial-centric Penberthy et al. (2010)
Discrete-data filter and
sub-word matching

Availability:
Private
Size 282-2,112
Mode: text, tables
Additional annota-
tion: expert review

Availability:
public (1); unknown
(4)
Size: 5
Type: Specific

Yield (% cross
trials): 17.2 to 73.8
Efficiency (ratio
manual to auto-
mated screening
time): 0.8 to 19.4

Manually coded eli-
gibility criteria.
String similarity for
keyword search.

Yuan et al. (2019) (Cri-
teria2Query)
NL to structured queries
Information extraction,
normalization
Mapping to pre-defined
cohort templates

No patient data Availability:
Public∗

Size: 10
Type: Varying
Additional annota-
tion: 125 criteria
sentence, 215 en-
tities, 34 relations,
137 negations, 20 at-
tributes

F1 (NER): 0.79
F1 (RE): 0.80
Accuracy (across
tasks): 0.51 to 0.98

Disease-specific
NER.
Query templates
cannot deal with
missing attributes.
Entity normaliza-
tion into a small set
of 2000 concepts.

Tun et al. (2023)
Rule-based filters
Similarity scores per cri-
teria as features to a
classifier

Availability:
Private
Size: 40,000
Mode: text, tables
Additional annota-
tion: 109 patients
labels

Availability:
Unknown
Size: 1
Type: Specific

Sensitivity (across
models): 0.4 to 1.0
Precision (across
models): 0.23 to
0.78

Limited to a single
trial
Rules-based models
have high sensitiv-
ity (1.0) and low
precision (0.23).
Hybrid classifier
makes a good sensi-
tivity and precision
trade-off, but is not
robust to criterion
changes.

Ni et al. (2015)
Discrete-data filter
Index trial and patient
bag-of-words vectors
Return top vector
matches for a trial

Availability:
Private
Size: 215
Mode: text, tables
Additional anno-
tation: historical
match, expert
review

Availability:
Public∗

Size: 55
Type: Specific

Workload reduction:
85%
Precision: 12.5%
Specificity: 89.9%

Majority of false
positives due to lack
of semantic knowl-
edge

Patient-centric Ni et al. (2015)
Return top vector
matches for a patient

(same as previous row) Workload reduction:
54.7% to 92.8%
Precision: 4% to
35.7&
Specificity: 65.5%
to 95.5%

Majority of false
positives due to lack
of semantic knowl-
edge

Zhang and Demner-
Fushman (2017)
Bag-of-words feature
vector
SVM classifier

No patient data Availability:
Public∗

Size: 2461
Type: 891 Specific;
1570 Varying
Additional annota-
tion: Trial labels

Precision: 0.90
Recall: 0.86
F2: 0.87

Cohort-specific
model
No real patient data
considered
Closest to keyword
search (trials to
cohort)

∗ Public source for clinical trials: https://clinicalTrials.gov

Table 4: Overview of classical systems covered in this survey: direction, methods, data sources and limitations.

642

https://clinicalTrials.gov


Task Method Patient Source Trial Source Metrics (Best) Limitations

Criterion-level
prediction

Hamer et al. (2023)
1-shot prompt to
LLM for criteria
level prediction
with explanation

Availability: Pub-
lic (synthetic pa-
tient profile)
Size: 10
Mode: Short text
Type: Specific

Availability:
Mixed (clinicalTri-
als.gov, EudraCT∗)
Size: 146 clinical
trials
Type: Specific
Additional An-
notation: Expert
review

Criterion-level
accuracy: 72%
Trial-level preci-
sion: 0.71
Trial-level recall:
0.5
Workload reduction:
90%
Stochasticity of
precision / recall
(10 runs): 0.03 /
0.02 SD

Majority of
criterion-level
errors due to in-
correct reasoning
(91%) which also
occur for true
positives

Unlu et al. (2024)
RAG approach

Availability: Pri-
vate
Size: 3,000
Mode: Textual clin-
ical notes

Availability:
Public∗∗

Size: 1
Type: Specific

Accuracy: 0.92
Correlation coeff:
0.81
Precision: 98.1%
Recall: 92.3%
Specificity: 93.9%

RAG pipeline eval-
uated on a single
trial.

Ferber et al. (2024)
Sequential GPT-4o
requests to create
structured query to
trial DB; remove ir-
relevant trials; and
make criterion-wise
boolean predictions

Availability: Pub-
lic
Size: 51
Mode: EHR

Availability:
Public∗∗

Size: 15
Type: Specific

Trial Recall: 93.3%
Accuracy: 92.7% to
97.8%

Refined evaluation
with updated hu-
man judgment risks
circular evaluation
via target leakage or
confirmation bias.

Beattie et al. (2024)
RAG approach with
criterion-specific
guidance prompts

Availability: Public (2018 N2C2: Co-
hort Selection)

Accuracy: 0.86
Sensitivity: 0.86
Specificity: 0.90
Precision: 0.87
Micro F1: 0.85

Best performance
metrics is obtained
on test subset (40 of
182).
Expert guidance re-
quires manual ex-
pertise for every cri-
terion.

Wornow et al.
(2025)
Zero-shot RAG ap-
proach with criteria
modifications

Availability: Public (2018 N2C2: Co-
hort Selection)

Precision: 0.91
Recall: 0.92
Overall macro-F1:
0.81
Overall micro-F1:
0.93
Cost / patient: 0.87
USD to 11.88 USD
API calls / patient: 1
to 57
Tokens (103) / pa-
tient: 8 to 103

67% of incorrect
decision had cor-
rect reasoning
indicating potential
shortcuts taken by
LLMs.
Best strategy ICAN
is 10 times more
expensive than the
least expensive
strategy ACAN.

Saeidi (2025)
Few-shot LLM
prompts with fine-
tuned BERT-based
concept embed-
dings of patient and
criteria to predict
binary eligibility
labels.

Availability: Public (2018 N2C2: Co-
hort Selection)

Precision: 0.92
Recall: 0.93
Macro-F1: 0.83
Micro-F1: 0.94

Reported metrics
are combined
across N2C2 and
TREC datasets
which tackle differ-
ent tasks.
No ablation on com-
ponents: concept
matching, prompt
design, fine-tuning
embedding models

Continues to the next page.
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Task Method Patient Source Trial Source Metrics (Best) Limitations

Trial-level
prediction

Wong et al. (2023)
Few-shot prompts
to LLM to gener-
ate structured forms
of eligibility criteria
using provided tem-
plates

Availability: Pri-
vate
Size: Unknown
Mode: Structured
Additional Anno-
tation: 523 trial
and patient histori-
cal labels; 68,485
trial and patient new
labels

Availability:
Public∗∗

Size: 53
Type: Specific

Recall (historical
data): 76.8%
Precision: 0.88
Recall: 67.3
F1: 76.1

Clinical Trial eligi-
bility limited to the
first 40 lines.
Trial-level per-
formance is very
low (F1 score
range:[29.6-48])

Yuan et al. (2023)
Prompt LLMs to re-
formulate eligibility
criteria
Train patient and
criterion encoders
contrastively on
inclusion and ex-
clusion criteria to
predict trial-level
match

Availability: Pri-
vate
Size: 825
Mode: Longitudi-
nal text records

Availability:
Public∗∗

Size: 6
Type: Specific
Additional Anno-
tation: 100,000
criterion-patient
labels

Criterion-level:
Precision: 0.96
Recall: 0.86
F1: 0.91
Trial-level:
Precision: 0.80
Recall: 0.83
F1: 0.81

Criterion-level per-
formance metrics
10 points higher
than trial-level
performance.
High variance
between different
trials: F1 range:
0.48 - 0.98, even
with trials con-
cerning the same
condition.
Data separation
methods for testing
generalizability is
unknown.

Trial ranking Pradeep et al.
(2022)
Synthesize queries
for initial trial
retrieval.
Fine-tune T5 to
generate relevance
label based on
patient description
and trial data

Availability: Public (TREC CT 2021) NDCG@10: 0.71
P@10: 0.59
RR: 0.81

Zero-shot relevance
ranking is only
slightly better
than BM25 with
synthetic queries.
Model prediction is
difficult to interpret
as signals come
from trial condition,
description and
criteria.

Zhuang et al.
(2023)
Hybrid sparse-
dense retriever for
top-1000.
Cross-encoder
re-ranker
GPT4 for top-20
re-rank

Availability: Public (TREC CT 2023) TREC CT 2022:
P@10: 0.56
R@1000: 0.65
NDCG@10: 0.65
TREC CT 2023:
P@10: 0.51
R@1000: 0.38
NDCG@10: 0.73

Precision (0.51)
and recall (0.38) on
TREC CT is very
low.
Validation on tex-
tual patient note
does not transfer
well to testing on
structured patient
note

Embedding co-
sine similarity
of patient and
trial embeddings
obtained using
GPT Richmond and
Deshpande (2023).

Availability: Public (TREC CT 2023) MAP: 0.02 Direct embeddings
of entire patient and
trial documents are
ineffective.

Embedding cosine
similarity of patient
and trial embed-
dings obtained
using Sentence
Transformer by
Lahiri et al. (2023).

Availability: Public (TREC CT 2023) NDCG@10: 0.03
P@10: 0.09
MAP@10 and
R@10 < 0.01

Direct embeddings
of entire patient and
trial documents are
ineffective.

Continues to the next page.
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Task Method Patient Source Trial Source Metrics (Best) Limitations

Kusa et al. (2023b)
Sentence query
formulation using
GPT-3.5. Query
enrichment us-
ing Kusa et al.
(2023a). Trial-level
prediction of re-
ranked pairs using
GPT-3.5.

Availability: Public (TREC CT 2023) NDCG@10: 0.68
P@10: 0.58
RR: 0.65

Zero-shot LLM
prompts provide
marginal improve-
ment over neural
rerankers

Peikos (2023)
Utilize GPT3.5 to
obtain trial-level la-
bels for final re-
ranking on top of
lexical and neural
re-rankers

Availability: Public (TREC CT 2023) NDCG@10: 0.65
P@10: 0.44
RR: 0.58

Query processing is
template-based and
excludes negative
information.

Ferber et al. (2024)
No-SQL query for-
mulation from pa-
tient EHR using
GPT-4o for initial
retrieval, followed
by vector embed-
ding re-ranking.

Availability: Pub-
lic
Size: 51
Mode: EHR

Availability:
Public∗∗

Size: 15
Type: Specific
The authors con-
sider an initial pool
of 105,600 trials of
which only 15 are
annotated at trial-
and criterion-level

%age of trials
recalled at top-10:
93.3%

Refined evaluation
with updated hu-
man judgment risks
circular evaluation
via target leakage or
confirmation bias.
Performance met-
rics used is very
different to standard
accuracy, precision
and recall metrics.

Rybinski and
Karimi (2023)
Multi-stage re-
triever with
fine-tuned GPT3.5-
turbo

Availability: Public (TREC CT 2021,
2022, 2023)

TREC CT 2023:
NDCG@10: 0.73
P@10: 0.52
RR: 0.66

Rybinski et al.
(2024)
Multi-stage re-
triever using
GPT3.5/GPT4
LLM-based rele-
vance scoring and
filtering
Chain-of-thought
(CoT) prompts with
GPT4

Availability: Public (TREC CT 2021,
2022, 2023)

TREC CT 2023:
NDCG@10: 0.78
P@10: 0.69
RR: 0.84

High latency of
GPT4 trade-off for
the performance
boost
Gains over (Ry-
binski and Karimi,
2023) is mainly due
to reranker used
(TCRR)
Additional marginal
gains via CoT of
the larger GPT4
model.

Jullien et al. (2024)
LLM-guided basic
attribute extraction
for trial retrieval
and filtering.
Criterion-level
LLM predictions
fed to set-reasoning-
based re-rank
scoring functions.

Availability: Public (TREC CT 2022) NDCG@10: 0.69
P@10: 0.73
P@25: 0.63
MRR: 0.86

LLMs underper-
form in exclusion
criteria labeling.

Continues to the next page.

645



Task Method Patient Source Trial Source Metrics (Best) Limitations

Jin et al. (2024)
(TrialGPT)
Hybrid trial filter-
ing with BM25 and
MedCPT (Jin et al.,
2023)
Criterion-level
LLM prediction
aggregated to trial
scores

Availability: Public (Koopman and
Zuccon (2016), TREC CT 2021, 2022)
Additional annotation:
1,015 criterion-patient labels

NDCG@10: 0.72
P@10: 0.66
AUROC (Exclud-
ing): 0.79
Time savings:
42.6%
Reasoning cor-
rectness: 87.8%
correct, 9.7% par-
tially correct, 2.6%
incorrect

The overall metric
that averages over
NDCG, P@10
and AUROC is
meaningless
Retrieval on pre-
filtered could bias
results to be more
favorable
Longitudinal pa-
tient data not tested
LLM aggregation
assumes LLMs per-
form mathematical
reasoning

Nievas et al. (2024)
Extends (Jin
et al., 2024) to
open-source LLMs

(same as Jin et al. (2024))
Additional annotation:
Patient sentence supporting eligibility
label
500 criteria labels on: eligibility and
difficulty.

NDCG@10: 66.3
P@10: 58.8
AUROC: 65.2
AURPC: 65.15
Implicit criterion-
level accuracy
(CLA): 68.7
Explicit CLA: 59.9
Win-rate: 68.9%
Faithfulness
(P/R/F1): Exact
scores not reported.

Significantly high
fine-tuning costs
Reported aggre-
gated score over
metrics that span
precision, recall,
accuracy and AUC
is meaningless.

Datta et al. (2025)
(Patient2Trial)
Lexical retrievers
use LLM generated
query expansion.
LLM predicts
trial-level label and
a criterion-level
rationale with a
matching score.
Final ranking based
on matching score.

Availability: Public (TREC CT 2023) NDCG@10: 0.81
NDCG@30: 0.82
P@10: 0.73
P@30: 0.73
MRR: 0.78
Bpref: 0.30
P-precision: 0.24

Trials prefiltered by
disorder-specific
keywords.
Manually curated
disorder-specific
instructions.
Model predicted
trial-level label is
not evaluated

Saeidi et al. (2023);
Saeidi (2025) Em-
bed patients and tri-
als to concept vec-
tor space. Use vari-
ations of Equation
1 to compute rele-
vance scores.

Availability: Public (TREC CT 2023) Precision: 0.92
Recall: 0.93
Macro-F1: 0.83
Micro-F1: 0.94

Reported metrics
are combined
across N2C2 and
TREC datasets.
No direct con-
nection between
criterion-level
LLM predictions
and trial-level
embeddings-based
relevance score
computations

∗ EudraCT (European Union Drug Regulating Authorities Clinical Trials) is the European clinical trials database (EudraCT).
∗∗ Public source for clinical trials: clinicalTrials.gov.

Table 5: Overview of LLM-based systems covered in this survey: tasks, methods, data sources used and limitations.

646

clinicalTrials.gov

