
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 543–571

December 20-24, 2025 ©2025 Association for Computational Linguistics

Multilingual Iterative Model Pruning: What Matters?

Haryo Akbarianto Wibowo1,2*, Haiyue Song1,
Hideki Tanaka1, Masao Utiyama1, Alham Fikri Aji2, Raj Dabre1

1NICT 2MBZUAI
{haryo.wibowo,alham.fikri}@mbzuai.ac.ae, {haiyue.song,hideki.tanaka,mutiyama,raj.dabre}@nict.go.jp

Abstract

Pruning techniques have been studied to con-
struct small models for efficiency, yet the ef-
fect of cross-lingual, which shows language
performance transferability, is understudied in
this field. In this work, we investigate cross-
lingual effects in multilingual large language
model compression using iterative pruning and
recovery. We employ structured layer prun-
ing with LoRA-based recovery and knowl-
edge distillation, testing whether calibration
languages different from target evaluation lan-
guages can preserve multilingual performance.
Experiments on Qwen2.5-7B and Llama3.1-
8B demonstrate that any recovery language
consistently outperforms no-recovery baselines,
with even low-resource languages like Swahili
providing 5% improvements. In contrast to
expectations, dominant pretraining languages
do not always yield the best results, where In-
donesian achieves the highest performance in
Llama3.1-8B, while Japanese performs the best
in Qwen2.5-7B. Our findings reveal that cross-
lingual calibration effectively maintains multi-
lingual capabilities in the iterative pruning.

1 Introduction

Multilingual Large Language Models (LLMs) have
proliferated rapidly, creating a need to compress
them due to deployment costs. While recent
works (Kim et al., 2024; Ushio et al., 2023;
Choenni and Titov, 2025) have begun examining
multilingual compression, the language in the data
used to do the compression process needs further
investigation. The impact of the language selec-
tion in aiding the process needs further investiga-
tion. Specifically, the cross-lingual effects, how the
language choice impacts the performance of other
languages, remain underexplored. Investigating

*This work was done during an internship of the first au-
thor at National Institute of Information and Communications
Technology.

Figure 1: Example iterative pruning using zh (Chinese)
as the calibration and recovery dataset where we test the
crosslingual capability on different datasets

this behavior would help in reducing both com-
putational and data complexity for compression,
for instance, by effectively selecting a language
calibration dataset that has better preservation in
multilingual performance transfer, particularly in
cross-lingual transfer scenarios.

Recent works use an iterative approach to com-
press LLMs (Muralidharan et al., 2024; Zhang
et al., 2024; Li et al., 2022). For instance, Mu-
ralidharan et al. (2024) successfully reduced a 15B
model to smaller 8B and 4B versions while achiev-
ing competitive results compared to other LLMs of
similar size. Yet the process remains data-intensive,
and the impact of data size is unclear. Moreover,
it is unexplored whether the cross-lingual setting
can effectively guide recovery in multilingual tasks,
specifically in cross-lingual effect.

This leads us to ask: How is the cross-lingual
capability preserved in iterative pruning and
recovery phases under resource-constrained sce-
narios?1 To investigate this, we adapt the iterative
compression methodology to a more practical set-
ting: we focus on structured pruning through layer
removal and employ parameter-efficient recovery

1Our Repository: https://github.com/haryoa/
multilingual-iterprune
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using LoRA (Hu et al., 2021) with knowledge dis-
tillation using a small data size. Specifically, we ex-
amine whether using a language different from the
target task for calibration and recovery can retain
performance in the tested language while inducing
cross-lingual performance preservation.

This study finds that cross-linguality exists in
recovery that consistently outperforms the prun-
ing process without recovery even language that
has different script than the tested language. For
instance, using Swahili, a low-resource language,
provides better results than without recovery. In-
terestingly, we observe that language-dominant re-
covery performs better in iterative pruning; for in-
stance, Chinese (zh) shows superior performance
even when the script differs significantly from the
target language. Additionally, different multilin-
gual models exhibit distinct cross-lingual behav-
iors during compression. Our experiments on
Qwen2.5-7B (Yang et al., 2024a) and Llama3.1-
8B (Grattafiori et al., 2024) reveal varying cross-
lingual transfer patterns. Each iteration has a differ-
ent language that performs the best, which is differ-
ent for each task. In approximately 25% compres-
sion rate, we observed that Chinese and Japanese
achieve the top-2 highest average performance
in Qwen2.5-7B, while in Llama3.1-8B, these are
achieved by Indonesian and Chinese, respectively.
Surprisingly, in Llama3.1-8B, English ranks only
sixth in our experimental results, challenging our
assumptions about English’s dominance in multi-
lingual compression.

2 Background: Structured Prunning

The increasing scale of LLMs has driven efforts to
reduce their computational and memory footprint
for deployment. A common approach is struc-
tured pruning (Wang et al., 2020), where some
components (e.g., layers, attention heads) are re-
moved from a large model ML to derive a smaller
model MS . However, pruning often causes perfor-
mance degradation, making a careful selection of
components and recovery strategies after pruning
necessary (Sun et al., 2024; Yin et al., 2024; Ma
et al., 2023). The following are the explanations of
these phases:

Pruning Phase Formally, let ML consist of N
transformer component blocks {B1, B2, ..., BN}.
Pruning involves ranking blocks by importance and
retaining the top-k blocks (k < N ) to form MS .
The importance of a block Bi is determined by a

scoring function f(Bi), which can be defined as:

f(Bi) = Importance(Bi;Deval)

Here, Deval is a validation dataset (calibration
dataset) used to compute metrics to determine the
blocks’ importance. Blocks are then sorted by
f(Bi), and the least important N − k are pruned
or dropped:

MS = Prune(ML, k)

Recovery Phase To alleviate performance degra-
dation due to pruning, this phase fine-tunes MS

on a recovery dataset Dr on the respective tasks,
such as Causal Language Modeling. The recovery
process is useful to adapt to its new structure and
reallocate its internal knowledge to its remaining
capacity.

The recovery process optimizes:

θ∗S = argmin
θS

L(MS(θS ;Dr), y)

where θS , y denotes the parameters of MS and
ground truth, respectively.2

3 Methodology

We do an iterative compression framework for
large language models that alternates between prun-
ing and recovery phases until a target model size,
which is the number of layers, is reached. This pro-
cess continues until the desired number of layers in
Ms. Although iterative compression has been ex-
plored previously (Muralidharan et al., 2024), the
approach in this paper does the simplified version:
(1) Pruning Phase: a direct layer-wise pruning
strategy and (2) Recovery Phase: knowledge
distillation using LoRA . We make the iterative
pruning more efficient to run with lower resource
requirements. Our approach is illustrated in Fig-
ure 1.

3.1 Our Pruning Phase

We define Bi as transformer blocks, where each
block consists of self-attention and feed-forward
components. To minimize performance degrada-
tion during pruning, we evaluate the importance of
each layer Bi by measuring its contribution to the
model’s output quality. Specifically, we compute
the cosine similarity between the last hidden state

2These variables declared in this section will be used
throughout this paper.
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Language #Tokens

ar 8.5m
en 2.5m
es 6.0m
hi 9.0m
id 6.2m
ja 8.3m
ru 7.2m
sw 3.3m
vi 6.2m
zh 7.6m

Table 1: Recovery dataset size in token size computed
using Llama3.1 tokenizer.

of the original model ML and the last hidden state
of the candidate pruned models M (i)

cs , where M
(i)
cs

is obtained by removing one layer of self-attention
from ML. The importance score f(Bi) for a block
Bi is defined as:

f(Bi) =
1

|Deval|

|Deval|∑

d=1

sim
(
h(ML)d, h(M

(i)
cs )d

)

where h(ML)d is the last hidden state of the orig-
inal model ML with N layers for the d-th input
sequence in Deval, h(M

(i)
cs )d is the last hidden state

of the pruned model M (i)
cs with N−1 layers for the

same input sequence. sim(·, ·) denotes the cosine
similarity function.

After computing f(Bi) for all blocks, we sort
the blocks by their similarity scores. The highest
similarity block will be selected for removal, as it
indicates the least impact on model performance.
This process yields our final pruned model Mcs

with the selected blocks removed. Mcs, then will
be processed in the Recovery Phase.

For better clarity in the following sections, we
also denote M

[j]
cs as the final pruned model chosen

in iteration j.

3.2 Our Recovery Phase

To further preserve the degradation quality of the
model, we employ knowledge distillation, where
we put the original model, ML as the teacher T
and the pruned model from the previous phase in
the same iteration j as its student M [j]

cs , which we
denote here as S. We follow the TinyBERT de-
sign (Jiao et al., 2020), where we compute the mean
square error (MSE) between all hidden states, at-
tention, and output logits. We use MSE for the
output logits as it shows better performance than
KL Divergence (Kim et al., 2021). Formally, it is

defined as follows:

LKD =
L∑

l=1

(
MSE(Hmap(l)

T ,Hl
S)+

MSE(Amap(l)
T ,Al

S)
)
+

MSE(zT , zS)

Here, Hmap(l)
T and Hl

S represent the hidden states
in layers l and map(l) for the teacher and student
models, respectively, while A

map(l)
T and Al

S de-
note their corresponding attention matrices. The
output logits of the teacher and student models are
represented by zT and zS , respectively. map(l)
is defined as the mapping of a student’s layer to
the teacher’s layer which aligns the student’s layer
index l with the corresponding original index in the
teacher model.3

After this phase, we produce a recovered pruned
model M [j]

cs−rec as the final chosen in iteration j.
M

[j]
cs−rec is then processed to the next iteration j+1

4 Experiment Setup

Languages We choose 10 languages as cali-
bration and recovery languages: zh (Mandarin
Chinese), ru (Russian), id (Indonesian), en (En-
glish), es (Spanish), ar (Arabic), hi (Hindi), ja
(Japanese), vi (Vietnamese), and sw (Swahili). We
selected these languages as they represent diverse
language families and writing systems, while cov-
ering both high-resource and lower-resource (sw
and vi), thereby allowing us to examine how lin-
guistic similarity and resource availability affect
cross-lingual pruning performance.

Pruning Calibration For the pruning phase, we
use 10 instances as the calibration dataset for
each language sampled randomly uniform from
wikipedia4 following the Yang et al., 2024b cali-
bration dataset used. We tried increasing the cali-
bration datasets to 1,000 in §6 and found that it has
minimal impact on increasing performance.

Recovery Dataset For the recovery dataset, we
target the general data domain, where we used
wikitext-2-raw-v15 for en and we created other
languages’ data by following the number of rows to

3See Appendix A for more explanation
4We sample uniformly from

https://huggingface.co/datasets/wikimedia/wikipedia/
5https://huggingface.co/datasets/Salesforce/

wikitext/
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lang #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

- 0 63.16 45.46 61.69 63.58 81.41 38.78 59.02 59.81 43.44 61.64 62.07 81.52 66.78 62.54

ar 8 52.04 40.78 55.75 55.36 68.04 6.50 46.41 46.99 38.68 55.58 55.43 68.06 11.09 45.97
en 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 48.10 37.26 55.67 54.50 68.69 5.09 44.88
es 8 51.43 41.05 55.71 55.21 70.40 8.39 47.03 47.14 39.06 55.40 54.86 68.44 12.36 46.31
hi 8 53.46 41.06 56.35 55.40 70.47 8.08 47.47 47.28 38.55 55.58 54.50 67.59 10.12 45.60
id 8 53.10 40.36 55.44 55.18 74.15 13.27 48.58 47.17 38.54 55.02 55.27 68.08 12.62 46.12
ja 8 51.63 40.82 56.15 55.48 71.12 9.43 47.44 48.78 38.62 55.33 54.57 67.77 13.36 46.40
ru 8 54.75 40.82 55.31 55.14 72.33 11.54 48.31 47.48 38.62 55.60 54.71 68.55 12.16 46.19
sw 8 51.97 41.00 55.62 55.04 70.17 8.23 47.00 47.54 38.44 55.44 54.30 66.22 6.75 44.78
vi 8 51.38 39.67 54.91 53.84 71.21 5.42 46.07 48.19 38.50 55.13 54.22 68.35 12.28 46.11
zh 8 52.50 40.67 56.55 55.66 73.01 12.95 48.56 47.24 38.73 55.85 55.48 68.98 12.07 46.39

nr 8 48.91 37.33 54.44 51.57 66.22 3.19 43.61 47.49 37.10 55.25 53.53 65.90 5.01 44.05

Table 2: Results in prunning the model using iterative pruning approach. #-L denotes number of pruned layers.
These scores for each task are the average across all available tested language in the benchmark. Bold denotes
the highest performing score or close (less than 0.05% difference) for each task and average. nr denotes iterative
pruning without recovery phase. Higher score is better.

Figure 2: Best performance in each iteration heatmap in Llama3.1-8B (left) and Qwen2.5-7B across iterations.
The language code in each box represents the language that achieves the highest score while below them show the
performance score. Higher score is better.

approximately make the size close to the en dataset.
The number of tokens used in our experiments can
be seen in Table 1.

Models We used two widely used LLM
families which have multilingual capability,
Qwen2.5-7B (Yang et al., 2024a) and Llama3.1-
8B (Grattafiori et al., 2024). We use these models
to observe their differences in their multilingual
behaviors, as they are pre-trained differently, espe-
cially in terms of data size.

Evaluation We use common multilingual
benchmarks used widely: pawsx, xnli, xcopa,
xstorycloze, xwinograd, and xquad.6 To
evaluate our model, we use off-the-shelf

6we also denote xstorycloze and xwinograd as xstory and
xwino respectively.

lm-eval-harness (Gao et al., 2024) library,
using their pre-defined metric for each task (F1
or accuracy score). We use the context length of
2,048 tokens and employ the zero-shot setting to
obtain the output. Across various setting, results
are obtained in a single run.

Pruning Setup We do the recovery by doing
Knowledge Distillation (Hinton et al., 2015) fol-
lowing the TinyBERT approach (Jiao et al., 2020).
To accommodate our computational constraints, we
implement LoRA (Hu et al., 2021) with a rank of
32. Our training configuration includes a batch
size of 4 with gradient accumulation of 8 (effec-
tive batch size of 32), learning rate of 1 × 10−4.
For efficient recovery training, we conduct a sin-
gle epoch on the recovery dataset. The trainings
were performed on 1xH200. In §5, we show the
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Figure 3: xquad performance on xquad using zh and en calibration and recovery dataset across iterations. The
boxplot distribution is the performance across languages. x.5 and x.0 demonstrates the pruning phase and recovery
phase performance respectively in each iteration. Higher score is better.

8th pruned iteration as it is approximately 25% the
size of Llama layer size, following other works in
structure pruning commonly presents (Yang et al.,
2024b; Men et al., 2024; Ashkboos et al., 2024;
Lin et al., 2024) .

5 Experiment Results

Recovery with any language consistently outper-
forms non-recovery across all tasks. In Table 2,
we observe that recovery using any language other
than the target language maintains better perfor-
mance than without recovery, even with the low-
resource languages (e.g., sw and vi). The perfor-
mance gap between the best recovery method and
no-recovery is moderate (2-3%) for most tasks,
with the most substantial improvements observed
in xwinograd and xquad, where recovery provides
8-10% gains in Llama3.1-8B. These results sug-
gest that recovery with any language, including
low-resource languages like sw, yields better re-
sults than discarding the recovery phase entirely.

Dominant pretraining languages do not guar-
antee optimal recovery performance. Contrary
to our initial guess that dominant pretraining lan-
guages (en for Llama3.1-8B and zh for Qwen2.5-
8B) would achieve superior cross-lingual recov-
ery, Table 2 reveals an intriguing patterns. While

Qwen2.5-8B shows zh achieving closely (~0.01)
to the best average score as predicted, surprisingly,
id achieves the best results in Llama3.1-8B, with
English ranking only sixth. Notably, zh performs
second-best in Llama3.1-8B despite its different
script from en. Task-specific patterns further vary
between models: ru performs best on pawsx in
Llama3.1-8B, while ja excels in Qwen2.5-7B, sug-
gesting model-dependent sensitivity to language-
task combinations during pruning.

The best recovery languages vary across prun-
ing iterations. Analysis of performance across
the 8-layer pruning process reveals that the best-
performing recovery language changes between
iterations. Figure 2 illustrates this behavior. For
pawsx in Llama, id consistently outperforms other
languages in early iterations, while ru performs the
best in later stages. Qwen exhibits even more varia-
tion, alternating between en, vi, ru, and ja across
iterations. Interestingly, xquad shows more stable
patterns: en dominates middle iterations (3-7) in
Llama, while zh maintains superiority in Qwen,
though this consistency does not extend to other
tasks.

Language-specific performance patterns emerge
across pruning iterations. Having examined ag-
gregated results across languages, we now analyze
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Figure 4: Results in xquad on different language using each of language as pruning and recovery dataset tested in
language available in xquad for Llama3.1-8B and Qwen2.5-7B. nr denotes pruning without recovery. Red border
cells depict performance that has less performance than non-recovery. ’-’ denotes performance of the unpruned
models. Higher score is better.

#Calibration
Rows #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

10 4 59.04 43.32 58.75 59.85 78.92 33.34 55.53 49.83 41.98 59.13 58.88 77.55 32.45 53.30
100 4 59.60 43.35 58.82 59.82 78.89 33.80 55.71 50.09 41.98 59.05 58.89 77.61 32.45 53.35
1000 4 59.50 43.37 58.69 59.81 78.92 33.81 55.68 50.83 40.27 58.96 58.97 78.58 30.43 53.01

10 8 50.51 40.47 55.75 55.47 71.63 10.18 47.34 50.00 37.42 55.60 53.35 68.33 5.29 45.00
100 8 50.34 40.40 55.82 55.48 71.99 9.81 47.31 50.55 37.40 55.69 53.38 67.88 4.70 44.93
1000 8 50.36 40.46 55.75 55.58 71.63 9.98 47.29 47.29 37.44 55.98 54.37 67.81 2.88 44.30

Table 3: Performance comparison across different calibration pruning data sizes and number of layer pruning
configurations for each model, showing the respective scores. Results are shown for pruning sizes of 10, 100, and
1000 with both 4 and 8 pruned layers. #-L denotes number of pruned layers. Higher score is better.

individual language performance within a single
dataset. We focus on xquad as it exhibits the high-
est variance across languages in both Llama3.1-8B
and Qwen2.5-7B models.

In Figure 3, the observation of the performance
across iterations for en and zh on xquad in both
models shows consistent performance degradation
during the pruning phase. The recovery phase
demonstrates clear improvements, as shown by up-
ward shifts in the box plot distributions after the
pruning phase, indicating that recovery benefits
most languages, though performance still declines
with subsequent pruning iterations.

The performance gap between languages widens
during the pruning phase, particularly by the third
iteration where en-zh performance differs by ap-
proximately 20% in Llama3.1-8B and 10% in
Qwen on xquad. This suggests that layer impor-
tance rankings derived from calibration datasets are
language-dependent, where the choice of calibra-
tion language influences both task performance and
cross-lingual results, with some languages provid-
ing better preservation during performance degra-
dation.

Cross-lingual recovery benefits vary signifi-
cantly across target languages and models. We
extend the analysis from Table 2 by examining indi-
vidual language performance on xquad, as shown
in Figure 4.

Most recovery languages outperform the non-
recovery baseline, with several exceptions: in
Llama, ar, ro, and th underperform when recover-
ing vi performance, and ar fails when recovering
Arabic performance. In Qwen, seven languages
(de, el, en, es, ru, th, and tr) perform worse
than non-recovery when recovering English perfor-
mance. The fact that en recovery is detrimental
for English tasks in Qwen presents an interesting
pattern.

We observe that optimal recovery languages
do not correspond to the target evaluation lan-
guage. For instance, id achieves the best results
for xquad_ar rather than using ar for recovery.
Additionally, zh effectively maintains English per-
formance despite having a different script system.
Consistent with Table 2, id and ja exhibit top
performers across multiple target language bench-
marks in the cross-lingual recovery setting.
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Recovery
#tokens #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwino xquad avg

2.5M 4 59.51 43.33 58.71 59.85 78.98 33.80 55.70 52.00 41.38 59.05 58.78 77.55 31.11 53.31
8M 4 59.63 43.30 59.02 59.85 78.89 33.68 55.73 49.94 41.96 58.93 58.87 77.39 31.99 53.18
23.8M 4 59.32 43.43 58.87 59.79 78.92 33.54 55.65 50.31 41.73 59.15 58.75 77.55 29.83 52.88

2.5M 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 48.10 37.26 55.67 54.50 68.69 5.09 44.88
8M 8 50.21 40.43 55.56 55.53 71.79 9.90 47.24 46.86 37.62 55.44 54.28 68.35 5.86 44.73
23.8M 8 50.33 40.44 55.67 55.44 71.54 9.90 47.22 47.10 37.53 55.60 54.44 68.55 5.56 44.80

Table 4: Performance comparison across different recovery data sizes configurations for Llama3.1-8B and Qwen2.5-
7B models, showing accuracy scores (%). #-L denotes number of pruned layers. Higher score is better.

Training
Data Type #-L Llama3.1-8B Qwen2.5-7B

pawsx xnli xcopa xstory xwino xquad avg pawsx xnli xcopa xstory xwinogr xquad avg

Mixed 4 59.26 44.06 59.78 60.44 77.64 20.94 53.68 52.27 41.33 58.60 58.55 77.55 27.51 52.63
En 4 59.51 43.33 58.71 59.85 78.98 33.80 55.70 52.00 41.38 59.05 58.78 77.55 31.11 53.31

Mixed 8 53.48 41.16 55.93 55.95 71.59 6.59 47.45 47.21 38.82 55.64 54.70 68.96 9.83 45.86
En 8 50.74 40.54 55.67 55.62 71.86 10.06 47.41 49.83 39.23 56.47 55.82 72.51 16.42 48.38

Table 5: Performance comparison across different training data types that mixes all language (mixed) and english
only (en). Results are shown for both 4 and 8 pruned layers with different training data compositions. #-L denotes
number of pruned layers. Higher score is better.

6 Analysis in Calibration and Recovery
Dataset Setup

To ascertain our experiment setup, we check the
impact of the sizes of calibration and recovery
datasets, with the addition of using all languages
instead of a language in pruning and recovering the
model in the general domain.

Calibration and recovery dataset size shows
minimal impact on performance. We examine
whether dataset size affects model performance dur-
ing the pruning. Table 4 shows that, on average,
different data sizes yield similar results across iter-
ations, indicating that dataset size does not impact
much under our experimental setups.

We also investigate calibration dataset size for
the pruning phase, given models’ sensitivity to
layer removal decisions. Table 3 demonstrates min-
imal differences across dataset sizes, with the ex-
ception of xquad tasks in both Llama and Qwen at
the 8th iteration, where slight performance degra-
dation occurs. To conclude, larger pruning datasets
do not consistently correspond to improved perfor-
mance.

Mixed-language data shows model-dependent
results but generally underperforms monolin-
gual English on some xquad and xwinograd.
Previous experiments used single languages for
recovery and pruning. We investigate whether com-
bining all languages into mixed datasets affects

performance, maintaining dataset sizes comparable
to the English monolingual condition. Results are
presented in Table 5.

For Llama, mixed-language data shows slightly
better average results than English on pawsx, xnli,
and xcopa tasks. Qwen exhibits the opposite pat-
tern on these same tasks. For xwinograd and
xquad, both models show that English outperforms
mixed-language data on average. Overall, results
indicate that monolingual English is either com-
parable to or better than mixed-language datasets
across most experimental setups.

7 Comparison to Non-Iterative
Approaches

So far, we have shown the multilingual capability.
However, to ascertain the iterative pruning method
effectiveness, we need to compare it to other non-
iterative methods. To do so, we compare it with
two baseline layer pruning methods: LaCO (Yang
et al., 2024b) and ShortGPT (Men et al., 2024). We
check the performance only in English tasks using
English calibration and recovery dataset.

While our approach adopts LaCO’s layer impor-
tance assessment methodology, ShortGPT employs
Block Influence (BI). Our method extends these
approaches by incorporating recovery and itera-
tive pruning. For ShortGPT, we implemented the
method ourselves to obtain results, while for LaCO,
we utilized their publicly available code. Since
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Model Approach #L Wiki↓ Reasoning Language Comprehension Knowledge

ARC-C ARC-E HellaSwag COPA PIQA BLiMP RACE Winogrande BoolQ MMLU

Llama3.1 8B

Not Pruned 32 8.65 51.28 81.48 60.03 87.0 80.14 81.93 39.14 73.56 82.08 63.59
LaCO 24 23.55 30.29 63.01 43.22 81.0 71.76 79.34 30.91 55.72 61.99 23.96
ShortGPT 24 6636.72 27.47 42.68 28.28 63.0 60.55 66.84 25.07 53.91 37.58 32.21
Ours 24 16.89 33.02 67.85 47.49 80.0 74.27 84.10 35.69 60.93 62.26 23.80

Qwen2.5-7B

Not Pruned 28 10.35 47.78 80.39 60.03 91.0 78.67 82.24 41.63 72.93 84.65 71.91
LaCO 22* 48.38 29.52 50.80 39.32 71.0 67.14 75.60 27.18 55.88 47.19 31.83
ShortGPT 21 18.57 33.79 70.88 44.32 76.0 74.27 81.93 33.01 53.51 45.84 26.52
Ours 21 16.40 35.58 71.13 45.59 77.0 74.32 83.48 36.08 57.70 53.73 30.94

Table 6: Performance comparison across model scales and tasks, showing perplexity (Wiki↓, where lower is better)
and accuracy scores (%, where higher is better). Bold indicates the best performance among other approaches
(LaCO, ShortGPT, ours) for each metric. *: Due to the dependency on hyperparameter in LaCO, some of its results
may have incomparable compression with others. #L denotes number of layers.

LaCO’s compression rate varies with hyperparame-
ters, we conducted a grid search and selected the
model with the closest compression rate and high-
est perplexity score on wikitext-v2-raw-v1. We
then used the experiment setup as defined in §4.
To have a better assessment, we categorize the
benchmark dataset into three categories: reasoning
(arc-challenge,arc-easy (Clark et al., 2018),
hellaswag (Zellers et al., 2019), COPA (Roemmele
et al., 2011), PIQA (Bisk et al., 2020)), language
comprehension (BLiMP (Warstadt et al., 2020),
RACE (Lai et al., 2017), and Winogrande (Sak-
aguchi et al., 2021)), and knowledge ( BoolQ (Clark
et al., 2019) and MMLU (Hendrycks et al., 2021)).

Iterative approach outperforms other baselines
overall Table 6 presents the experimental re-
sults. The iterative pruning outperforms other
methods (LaCO and ShortGPT) across all model
scales. Specifically, it maintains a lower perplexity
on Wikitext compared to the baselines, avoiding
the sharp increases observed with ShortGPT on
Llama3.1-8B (6636.72) and LaCO on Qwen2.5-7B
(48.38). The iterative pruning also achieves the
highest performance in the reasoning domain.

In the language category, our approach main-
tains performance better than the other methods,
particularly on BLIMP, where these models even
outperform their non-pruned counterparts. We at-
tribute this to the recovery phase, where training
on wikitext helps to preserve linguistic capabil-
ities. On the other hand, RACE and Winogrande
show moderate performance gaps (2-5%). These
results suggest that our method offers particular
advantages for language comprehension in large
models.

In the knowledge domain, iterative pruning
achieves strong BoolQ performance. The improved

Model Method L XW XSc XNLI

Llama3.1-8B Non-pruned 32 81.43 63.61 45.65
LaCO 24 67.39 52.05 37.78
S-GPT 24 56.37 48.80 34.25
Ours-P 24 66.40 51.65 37.45
Ours-P+R 24 71.68 55.53 39.77

Qwen2.5-7B Non-pruned 28 81.48 62.04 43.37
LaCO 22 64.71 51.66 36.49
S-GPT 21 66.33 55.28 37.32
Ours-P 21 65.54 53.48 36.99
Ours-P+R 21 72.26 55.76 39.46

Table 7: Performance Comparison in Multilingual Data.
XW denotes XWinograd and XSc denotes XStoryCloze.
Ours denotes the prunning algorithm in this paper, with
R and P denotes running it with recovery and pruning
phases, respectively. Higher score is better.

accuracy for this model is likely due to the use of
wikitext as a recovery training dataset. However,
MMLU results lag behind the other methods by ap-
proximately 9% compared to the highest performer
on Llama3.1-8B, and by 1-2% for the others.

The recovery phase improves multilingual per-
formance, but the effect of improvement varies
significantly across languages and tasks. We
investigated how much multilingual capacity is
retained and whether the multilingual iterative
pruning induces zero-shot cross-lingual generaliza-
tion during recovery. We evaluated our approach
on three multilingual benchmarks: XWinograd,
XStoryCloze, and XNLI, using the English cali-
bration and recovery dataset.

Table 7 compares the iterative approach to base-
line models without recovery. The results demon-
strate that the recovery stage improves performance
by 5-6% on XWinograd across both models, with
2-5% improvements on XStoryCloze and XNLI.
These findings suggest effective generalization to
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multilingual data from English-based recovery.

8 Related Works

Model pruning has gained significant attention re-
cently due to the emergence of Large Language
Models (LLMs). One of the approaches is to per-
form unit size reduction, where several methods
leverage dimensionality reduction techniques (Lin
et al., 2024; Ashkboos et al., 2024) to compress
weight matrices, thereby reducing hidden unit di-
mensions. Various metrics have been explored to
identify prunable weights, including Hessian in-
formation (Frantar and Alistarh, 2023; Ling et al.,
2024), Kronecker-factored curvature (van der Oud-
eraa et al., 2024), and magnitude information (Sun
et al., 2024; Guo et al., 2024).

On the other hand, block pruning is done by
employing some metrics, such as Hessian infor-
mation (Ma et al., 2023), output similarity (Yang
et al., 2024b; Men et al., 2024), and learnable pa-
rameters to determine block significance (Liu et al.,
2024; Xia et al., 2024). Some approaches opt to
merge blocks instead of removing them (Yang et al.,
2024b; Chen et al., 2024). Muralidharan et al.,
2024 combines iterative pruning with Neural Archi-
tecture Search (Elsken et al., 2019), utilizing multi-
ple metrics for model compression. Many of these
techniques incorporate a recovery phase (Ling et al.,
2024; Sun et al., 2024; Yin et al., 2024; Ma et al.,
2023; Muralidharan et al., 2024). In our work, we
adopt an iterative approach based on output simi-
larity, followed by recovery, which is critical to our
study of whether multilingual capabilities can be
retained or not.

9 Conclusion

This work analyzes the cross-lingual performance
in iterative pruning in a multilingual model. We
found that iterative pruning induces cross-linguality
even using a different language than the original
compared to without recovery. Additionally, each
iteration has different language that performs the
best. Our findings demonstrate an intriguing aspect
related to cross-linguality in iterative pruning.

Limitations

We acknowledge the limitations in our experimen-
tal setup, as we only tested ten languages due to
resource constraints. More languages may have
enriched the analysis performed in this research.
Additionally, we only observe the Qwen2.5 and

Llama3 models, where other models may exhibit
different patterns, as we have pointed out in our
results that each model exhibits different behav-
ior. Finally, we only test the data in general data
for each language. Having specific task-oriented
data or language, along with additional sampling
techniques, may be worth pursuing for future work.
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This work has no ethical issues, as we propose to
perform a compression technique. The data used do
not contain personally identifiable information or
offensive content. The artifacts we utilize are con-
sistent with intended use and adhere to the license
usage (research purpose). We use AI Assistants
(LLMs, Grammarly, and Overleaf’s AI) to assist
our writing in correcting grammatical errors.
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A Layer Mapping in Recovery Phase

To define the mapping function map(l) in itera-
tion j, we aim to align the student’s layer index l
with the corresponding original index in the teacher
model. However, if any layers in the teacher model
with indices lower than l were dropped before itera-
tion j, the mapping must account for these dropped
layers. Specifically, map(l) is adjusted by increas-
ing it by the number of dropped layers with indices
less than map(l). For example, if the dropped layer
indices are [3, 4] and l = 10, then map(10) = 12,
as the two dropped layers shift the mapping while
map(1) = 1. Formally, let D be the set of dropped
layer indices in the teacher model before iteration
j, sorted in ascending order. The function map(l)
maps the student’s layer index l to the teacher’s
original index m, where m is the unique solution
to the equation m = l + |{d ∈ D | d < m}|.

B Additional Monolingual Performance
Analysis

Iterative Prunning’s recovery phase boosts per-
formance, notably for larger models on reason-
ing and language tasks. We investigated the im-
pact of each phase of Iterative Prunning. The re-
sults are shown in Figure 15. In summary, the itera-
tive recovery phase helps preserve performance on
reasoning and language tasks, particularly in later
iterations. For example, with Llama3.1-8B, the
performance difference between the first and third
iterations is approximately 1-3%, while it widens
to 5-10% between the fourth and sixth iterations.
This pattern is also observed on Winogrande. For
BLIMP, the performance gap similarly increases
in later iterations (6th-10th). QWEN exhibits the
same trend, albeit with smaller gaps.

For knowledge tasks, MMLU shows a clear per-
formance difference in both the 7B and 8B mod-
els. However, BoolQ exhibits an irregular trend
with Qwen2.5-7B, with fluctuating performance
(sometimes higher, sometimes lower) and ~1% dif-
ferences in the Llama3 model. This behavior is
also observed in smaller models (0.5B and 3B) for
both tasks. Overall, the recovery phase provides
a considerable performance improvement, except
in the knowledge domain, especially for smaller
models.
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C Iterative Prunning Preservation
Analysis

Iterative Prunning effectively preserves lan-
guage and reasoning abilities across iterations,
though knowledge retention presents a chal-
lenge. Figure 17 shows the average performance
trend across iterations for each task category. While
Qwen2.5-7B exhibits a slight, steady decrease (av-
eraging ~1% per iteration) in reasoning and lan-
guage task performance, Llama3.1-8B plateaus in
language but shows a steady decline in reasoning.
Both models experience sharp performance drops
in specific iterations (e.g., M [2]

cs for Llama and M
[3]
cs

for Qwen). This affirms Iterative Pruning’s effec-
tiveness in preserving language and reasoning abil-
ities, though it suggests challenges in maintaining
knowledge-based performance across iterations.

D Performance Trend for Each Iteration

The fine-grained performance trend on monolin-
gual performance can be seen in Figure 5.

The recovery phase generally improves perfor-
mance, though its impact is task and model de-
pendent. The recovery phase generally improves
performance by approximately 1% for both mod-
els (Figure 17). However, its impact varies; for
example, M [5]

cs−rec on Llama3.1-8B shows a slight
decrease in reasoning performance after recovery,
while language task performance increases. This
indicates that the recovery process’s effectiveness
depends on the model family and the specific task.

Iterative Prunning Preserves and May Improves
Linguistic Capabilites We evaluated the preser-
vation of linguistic capacity across iterations using
BLIMP, a benchmark consisting of 67 fine-grained
linguistic problems. We tested on Llama-3.1-8B
and Qwen2.5-7B, categorizing the BLIMP subtasks
into 13 groups for clearer visualization (see Ap-
pendix D for the groupings).

Overall, both models maintain or even improve
scores across most categories in later iterations,
surpassing the performance of the non-compressed
models. Furthermore, Iterative Pruning with re-
covery consistently outperforms the pruned model
without recovery, with the exception of the "bind-
ing theory" category. In this category, we observe a
slight performance decay (~2%) starting from the
seventh iteration for Llama3.1-8B and the eighth it-
eration for Qwen2.5-7B. The "coordinate structure"

and "wh-that" categories exhibit differing trends be-
tween these family models. Llama3.1-8B shows an
opposing trend at iteration 7 and beyond, with one
subcategory plateauing while the other increases in
performance.

MMLU performance is sensitive to pruning,
with recovery offering moderate gains across
MMLU task categories Figure 16 provides the
MMLU performance across MMLU groupings. 7

It shows that the pruning phase induces signifi-
cant performance drops in some cases, notably in
the early layer dropping of Llama3.1-8B (around
10%) and from the third layer onward in Qwen2.5-
7B. This suggests greater sensitivity of knowledge-
based tasks to pruning. The subsequent recovery
phase provides moderate improvements (about 2-
3%) for both models. Interestingly, Llama3.1-8B
at M2

cs−rec shows a moderate performance gain,
sustained across the next four iterations. This sus-
tained improvement is not exhibited in Qwen2.5-
7B, which instead exhibits a steady performance
decline. Performance trends across iterations are
similar across MMLU categories within the same
model, yet differ between models. These differ-
ences highlight model-specific variations in knowl-
edge retention, potentially due to the distinct pre-
training strategies of Llama3.1-8B and Qwen2.5-
7B.

Our approach exhibits task-specific layer sensi-
tivities that vary between models. We investi-
gated which layer drops correlate with significant
performance declines, indicating layer importance.
Figure 6 shows performance differences across
tasks and categories for Qwen2.5-7B and Llama-
3.1-8B, revealing distinct drop patterns for each
model. Llama3.1-8B’s performance drops tend to
occur in the lower half of its layers, while Qwen’s
are concentrated in the upper half. Specifically,
Llama3.1-8B shows significant drops on arc-easy
and arc-challenge in iterations 1, 6, and 7, and
on winogrande in iterations 1, 6, and 8. MMLU
on Llama3.1-8B shows steep declines in iterations
10 and 11 during early iterations, followed by im-
provement and stagnation. Qwen2.5-7B exhibits
different trends, with notable (>5%) decreases on
MMLU in iterations 3, 4, 6, and 7.

7using groupings defined in lm-eval-harness
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Figure 5: The performance across pruning and recovery phase for 10 iterations in Qwen2.5-7B and Llama3.1-8B.
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Figure 6: The performance differences between before and after two phases done for each iteration (iter) on
LLAMA 3-1-8B and Qwen 2.5-7B. idx denoted the index of the dropped layer (starts from 0).

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 61.99 45.12 60.76 62.82 80.31 39.79 58.47
en 62.19 45.13 60.95 62.72 80.53 40.35 58.64
es 62.01 45.18 60.74 62.87 80.62 38.86 58.38
hi 61.30 45.45 61.38 62.58 79.79 33.16 57.28
id 62.39 45.17 60.96 63.06 80.69 39.64 58.65
ja 62.08 45.13 60.93 62.84 80.53 40.00 58.58
ru 61.79 45.07 60.76 62.98 80.56 38.84 58.33
sw 61.85 45.03 60.80 62.87 80.56 39.36 58.41
vi 61.79 45.12 60.85 62.95 80.62 40.03 58.56
zh 62.04 45.22 60.85 62.91 80.85 40.99 58.81

Table 8: Llama-3.1-8B results at iteration 1.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 58.78 43.31 61.33 61.15 80.67 62.40 61.27
en 59.25 43.28 61.18 61.19 81.14 60.70 61.12
es 59.12 43.22 61.05 61.15 80.65 62.30 61.25
hi 58.56 43.21 61.18 61.16 80.60 62.45 61.19
id 58.03 43.52 61.40 61.46 81.43 61.06 61.15
ja 58.67 43.30 61.26 61.09 80.72 61.67 61.12
ru 58.62 43.15 61.27 61.10 80.72 61.89 61.13
sw 58.64 43.18 61.26 60.99 80.76 60.62 60.91
vi 58.73 43.24 60.91 61.03 80.81 62.62 61.22
zh 58.88 43.19 61.15 61.17 81.23 61.58 61.20

Table 9: Qwen2.5-7B results at iteration 1.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 59.82 44.63 60.73 61.64 78.24 33.88 56.49
en 61.24 44.73 61.16 61.65 80.24 36.07 57.51
es 61.20 44.78 61.15 61.77 80.17 34.89 57.33
hi 59.73 44.23 60.76 61.31 77.95 28.73 55.45
id 61.56 44.77 61.20 61.85 80.04 35.44 57.48
ja 60.27 45.15 60.55 61.84 79.14 32.08 56.50
ru 61.21 44.59 61.15 61.77 79.88 34.42 57.17
sw 60.23 44.51 61.13 61.92 80.40 35.22 57.24
vi 61.42 44.64 60.98 61.97 80.06 34.67 57.29
zh 59.78 44.79 60.80 61.66 78.49 35.85 56.89

Table 10: Llama-3.1-8B results at iteration 2.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 57.61 42.99 60.93 60.41 78.67 57.83 59.74
en 56.24 43.07 60.53 60.56 80.11 50.58 58.51
es 56.36 43.19 60.60 60.74 79.97 52.05 58.82
hi 58.14 42.38 60.76 60.57 79.61 50.52 58.66
id 57.36 43.28 60.40 60.54 80.27 57.90 59.96
ja 58.17 42.81 60.38 59.78 79.82 56.98 59.66
ru 58.03 42.01 60.74 60.38 79.79 46.82 57.96
sw 54.86 43.06 60.78 60.31 78.87 49.34 57.87
vi 58.56 43.01 60.18 60.02 80.06 57.97 59.97
zh 55.46 42.92 60.93 60.57 80.56 52.36 58.80

Table 11: Qwen2.5-7B results at iteration 2.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 58.16 44.10 59.74 60.28 76.65 24.21 53.86
en 58.98 43.94 60.20 60.92 79.21 34.89 56.35
es 59.14 43.96 60.31 61.00 78.74 33.49 56.11
hi 58.27 44.20 60.34 60.67 76.78 24.97 54.21
id 62.56 44.48 60.13 60.78 79.59 35.09 57.11
ja 57.79 44.25 59.80 60.31 77.14 24.93 54.04
ru 60.98 43.99 60.04 60.65 79.77 33.23 56.44
sw 61.04 44.45 60.00 60.91 79.86 34.72 56.83
vi 59.46 44.27 60.34 60.76 77.72 23.86 54.40
zh 57.87 44.42 59.87 60.51 76.89 24.88 54.07

Table 12: Llama-3.1-8B results at iteration 3.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 57.16 41.77 60.29 59.92 77.88 39.54 56.09
en 54.49 42.86 60.02 59.60 78.78 44.29 56.67
es 52.94 42.21 59.76 59.70 79.39 38.55 55.43
hi 56.57 41.02 59.89 59.60 78.44 41.07 56.10
id 54.82 42.25 59.66 59.73 79.43 45.09 56.83
ja 55.79 42.32 59.51 59.28 79.73 46.49 57.19
ru 57.49 41.60 59.58 59.05 78.74 41.56 56.34
sw 50.23 41.39 59.49 59.36 78.22 33.82 53.75
vi 56.79 42.23 59.45 59.23 79.48 47.27 57.41
zh 54.61 42.69 59.82 59.63 79.19 48.46 57.40

Table 13: Qwen2.5-7B results at iteration 3.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.57 43.87 59.64 59.44 75.25 16.61 51.73
en 59.51 43.33 58.71 59.85 78.98 33.80 55.70
es 56.59 43.50 59.78 59.65 76.67 23.30 53.25
hi 58.21 44.13 59.05 59.75 76.40 23.99 53.59
id 59.89 44.10 59.74 59.88 77.41 25.02 54.34
ja 56.35 43.33 59.09 59.53 76.98 23.48 53.13
ru 61.02 43.05 58.07 59.47 78.78 31.93 55.39
sw 58.63 43.66 59.73 59.56 77.55 24.40 53.92
vi 57.43 43.55 59.31 59.70 77.25 21.39 53.10
zh 56.64 43.68 59.11 59.92 76.26 23.21 53.14

Table 14: Llama-3.1-8B results at iteration 4.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.51 40.60 59.34 58.47 76.24 28.81 53.16
en 52.00 41.38 59.05 58.77 77.55 31.11 53.31
es 53.25 41.38 59.04 58.83 77.55 31.04 53.51
hi 54.94 40.74 58.78 58.72 77.14 31.87 53.70
id 54.69 41.16 58.82 58.53 78.62 35.52 54.56
ja 55.31 41.04 59.05 58.34 77.86 31.23 53.81
ru 55.69 40.71 58.82 58.28 77.64 32.07 53.87
sw 49.41 41.49 58.47 58.16 76.62 30.44 52.43
vi 55.94 40.80 58.58 58.30 77.32 31.61 53.76
zh 51.34 41.75 59.15 58.84 78.51 36.33 54.32

Table 15: Qwen2.5-7B results at iteration 4.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 55.81 43.36 58.60 58.89 74.69 16.80 51.36
en 57.06 42.83 58.29 58.79 76.49 23.91 52.90
es 55.80 42.67 58.07 58.49 75.70 22.81 52.26
hi 55.01 43.73 58.67 58.70 73.97 15.82 50.99
id 59.41 43.46 58.45 58.61 76.87 23.52 53.39
ja 56.68 42.78 58.56 58.84 76.40 23.24 52.75
ru 59.12 42.77 57.67 58.76 76.58 22.27 52.86
sw 58.16 43.09 58.93 58.62 77.12 23.13 53.18
vi 56.84 41.69 58.09 58.23 76.69 18.93 51.75
zh 57.06 43.12 58.58 58.96 75.84 23.26 52.80

Table 16: Llama-3.1-8B results at iteration 5.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 49.20 40.27 58.76 57.90 74.80 16.57 49.58
en 51.41 40.05 58.44 57.88 76.17 24.07 51.34
es 51.66 41.05 58.24 57.65 75.93 26.28 51.80
hi 49.50 40.83 58.20 57.85 75.45 26.02 51.31
id 50.51 40.90 57.95 57.72 75.77 28.11 51.83
ja 50.67 41.13 58.09 57.32 75.95 27.44 51.77
ru 54.44 41.02 57.56 57.27 75.12 33.24 53.11
sw 48.47 40.38 57.71 56.85 74.17 21.73 49.89
vi 51.36 40.71 58.27 57.34 76.02 25.95 51.61
zh 50.74 40.97 57.80 57.52 76.29 26.91 51.70

Table 17: Qwen2.5-7B results at iteration 5.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 54.16 42.30 57.36 57.20 71.66 10.80 48.91
en 55.75 41.83 57.09 57.48 75.79 23.41 51.89
es 52.48 42.46 57.66 57.56 73.68 16.19 50.00
hi 55.23 43.64 57.76 57.72 73.88 14.81 50.51
id 56.17 42.37 57.18 57.53 76.24 20.75 51.71
ja 53.16 42.01 58.04 57.90 74.85 18.61 50.76
ru 59.16 41.92 56.40 57.42 76.13 20.37 51.90
sw 56.25 41.95 57.31 57.19 74.31 13.73 50.12
vi 53.40 41.74 57.60 57.30 74.69 12.42 49.53
zh 55.77 42.37 57.67 57.76 75.12 19.73 51.40

Table 18: Llama-3.1-8B results at iteration 6.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 48.53 40.26 57.84 56.91 72.38 16.62 48.75
en 51.64 39.37 57.33 56.57 74.67 16.91 49.41
es 51.77 39.75 57.51 56.72 74.56 18.88 49.87
hi 49.16 40.59 57.02 56.68 73.05 24.98 50.25
id 49.53 40.68 57.24 57.01 73.90 27.05 50.90
ja 49.83 40.66 57.22 56.65 73.64 27.90 50.98
ru 53.02 40.22 56.13 56.11 72.33 19.50 49.55
sw 48.94 39.48 56.89 55.98 70.60 12.64 47.42
vi 50.89 40.20 56.74 56.58 73.90 24.90 50.54
zh 49.53 40.82 56.91 56.73 74.67 26.63 50.88

Table 19: Qwen2.5-7B results at iteration 6.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 54.39 41.68 56.47 56.19 71.00 10.22 48.32
en 52.99 41.05 56.05 56.37 74.26 15.33 49.34
es 52.50 41.83 56.74 56.35 73.19 14.94 49.26
hi 53.20 42.11 56.56 56.44 70.80 8.93 48.01
id 54.05 41.38 55.66 56.36 74.58 13.89 49.32
ja 52.22 41.27 57.07 56.43 71.79 11.44 48.37
ru 55.31 41.82 55.89 56.49 73.81 14.07 49.57
sw 51.33 42.19 56.16 55.95 70.69 8.96 47.55
vi 52.04 40.64 56.66 55.83 71.79 6.79 47.29
zh 55.28 41.49 56.82 56.42 74.56 18.46 50.50

Table 20: Llama-3.1-8B results at iteration 7.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 47.47 39.11 56.53 55.81 71.00 14.22 47.36
en 49.83 39.23 56.47 55.82 72.51 16.42 48.38
es 49.52 39.76 56.47 55.95 71.84 17.32 48.48
hi 48.76 39.54 56.45 55.91 71.54 15.52 47.95
id 48.71 39.37 56.47 56.29 72.20 17.56 48.43
ja 50.71 39.52 56.49 55.70 71.70 18.91 48.84
ru 48.86 39.39 55.98 55.50 69.59 16.86 47.70
sw 47.73 38.24 56.00 55.15 68.91 7.47 45.59
vi 49.99 39.12 55.66 55.16 72.58 15.76 48.04
zh 49.59 39.44 56.18 55.99 72.78 19.91 48.98

Table 21: Qwen2.5-7B results at iteration 7.

lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 52.04 40.78 55.74 55.36 68.04 6.50 46.41
en 50.74 40.54 55.67 55.62 71.86 10.06 47.41
es 51.43 41.05 55.71 55.21 70.40 8.39 47.03
hi 53.46 41.06 56.34 55.40 70.47 8.08 47.47
id 53.10 40.36 55.44 55.18 74.15 13.27 48.58
ja 51.63 40.82 56.15 55.48 71.12 9.43 47.44
ru 54.75 40.82 55.31 55.13 72.33 11.54 48.31
sw 51.97 41.00 55.62 55.04 70.17 8.23 47.00
vi 51.38 39.67 54.91 53.84 71.21 5.42 46.07
zh 52.50 40.67 56.55 55.66 73.00 12.95 48.56

Table 22: Llama-3.1-8B results at iteration 8.
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lang pawsx xnli xcopa xstorycloze xwinograd xquad avg

ar 46.99 38.68 55.58 55.43 68.06 11.09 45.97
en 48.10 37.26 55.67 54.50 68.69 5.09 44.88
en-nr 47.49 37.10 55.26 53.53 65.90 5.01 44.05
es 47.74 39.06 55.40 54.86 68.44 12.36 46.31
hi 47.28 38.55 55.58 54.50 67.59 10.12 45.60
id 47.17 38.53 55.02 55.27 68.08 12.62 46.12
ja 48.78 38.62 55.33 54.57 67.77 13.36 46.40
ru 47.48 38.62 55.60 54.71 68.56 12.16 46.19
sw 47.54 38.44 55.44 54.30 66.22 6.75 44.78
vi 48.19 38.50 55.13 54.22 68.35 12.28 46.11
zh 47.24 38.73 55.85 55.48 68.98 12.07 46.39

Table 23: Qwen2.5-7B results at iteration 8.

Figure 7: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 8: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 9: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 10: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 11: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 12: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 13: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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Figure 14: Boxplots showing the distribution of scores across iterations for different models and tasks. Each boxplot
represents the score distribution for a specific task and model combination, with the best language annotated for
each iteration. Note that the min and max values in y-axis are adjusted and different for each task.
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E Scores across iterations

Table 8 and 9 to Table 22 and 23 show the per-
formance of multilingual iterative pruning across
tasks in Llama3.1-8B and Qwen2.5-7B, respec-
tively. Additionally, each iteration performance
across multilingual tasks can be seen in Fig-
ure 7,8,9,10,11,11,12,13, and 14.
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Figure 15: performance on six different subtasks. dotted line denoted implementing Iterative Prunning without
recovery phase while solid line denoted layer prunning and recovery phase are done in Iterative Prunning
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Figure 16: Line charts depicts MMLU groupings performance on Llama-3.1-8B and Qwen2.5-7B in 10 iterations.
"+" markers indicate the recovery phase; all other markers represent the pruning phase.
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Figure 17: The average performance across pruning and recovery phase for 10 iterations on Llama 3.1-8B and
Qwen2.5-7B on an average aggregation of reasoning, language, and knowledge tasks.
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Group Tests
blimp_agreement

• blimp_regular_plural_subject_verb_agreement_1
• blimp_regular_plural_subject_verb_agreement_2
• blimp_irregular_plural_subject_verb_agreement_1
• blimp_irregular_plural_subject_verb_agreement_2
• blimp_determiner_noun_agreement_1
• blimp_determiner_noun_agreement_2
• blimp_determiner_noun_agreement_irregular_1
• blimp_determiner_noun_agreement_irregular_2
• blimp_determiner_noun_agreement_with_adj_2
• blimp_determiner_noun_agreement_with_adj_irregular_1
• blimp_determiner_noun_agreement_with_adj_irregular_2
• blimp_determiner_noun_agreement_with_adjective_1
• blimp_anaphor_gender_agreement
• blimp_anaphor_number_agreement

blimp_distractor_agreement

• blimp_distractor_agreement_relational_noun
• blimp_distractor_agreement_relative_clause

Table 24: BLiMP Agreement Tests

Group Tests
blimp_island_constraints

• blimp_wh_island
• blimp_complex_NP_island
• blimp_adjunct_island
• blimp_sentential_subject_island
• blimp_left_branch_island_echo_question
• blimp_left_branch_island_simple_question

blimp_movement_extraction

• blimp_wh_questions_object_gap
• blimp_wh_questions_subject_gap
• blimp_wh_questions_subject_gap_long_distance
• blimp_coordinate_structure_constraint_object_extraction
• blimp_existential_there_subject_raising
• blimp_existential_there_object_raising
• blimp_expletive_it_object_raising

blimp_wh_that

• blimp_wh_vs_that_no_gap
• blimp_wh_vs_that_no_gap_long_distance
• blimp_wh_vs_that_with_gap
• blimp_wh_vs_that_with_gap_long_distance

Table 25: BLiMP Syntax and Movement Tests
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Group Tests
blimp_passive_causative

• blimp_passive_1
• blimp_passive_2
• blimp_animate_subject_passive
• blimp_causative

blimp_transitivity

• blimp_transitive
• blimp_intransitive
• blimp_inchoative
• blimp_animate_subject_trans

blimp_irregular_forms

• blimp_irregular_past_participle_adjectives
• blimp_irregular_past_participle_verbs

Table 26: BLiMP Argument Structure and Form Tests

Group Tests
blimp_negation_npi

• blimp_npi_present_1
• blimp_npi_present_2
• blimp_only_npi_licensor_present
• blimp_only_npi_scope
• blimp_sentential_negation_npi_licensor_present
• blimp_sentential_negation_npi_scope
• blimp_matrix_question_npi_licensor_present

blimp_quantifiers

• blimp_superlative_quantifiers_1
• blimp_superlative_quantifiers_2
• blimp_existential_there_quantifiers_1
• blimp_existential_there_quantifiers_2

blimp_binding_theory

• blimp_principle_A_c_command
• blimp_principle_A_case_1
• blimp_principle_A_case_2
• blimp_principle_A_domain_1
• blimp_principle_A_domain_2
• blimp_principle_A_domain_3
• blimp_principle_A_reconstruction

blimp_ellipsis_argument

• blimp_ellipsis_n_bar_1
• blimp_ellipsis_n_bar_2
• blimp_drop_argument

blimp_coordinate_structures

• blimp_coordinate_structure_constraint_complex_left_branch

Table 27: BLiMP Specialized Construction Tests
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