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Abstract
Recently, Large Language Models (LLMs)
have dominated much of the artificial intelli-
gence scene with their ability to process and
generate natural languages. However, the ma-
jority of LLM research and development re-
mains English-centric, leaving low-resource
languages such as those in the Southeast Asian
(SEA) region underrepresented. To address
this representation gap, we introduce Llama-
SEA-LION-8B-IT and Gemma-SEA-LION-
9B-IT, two cutting-edge multilingual LLMs
designed for SEA languages. The SEA-LION
family of LLMs supports 11 SEA languages,
namely English, Chinese, Indonesian, Viet-
namese, Malay, Thai, Burmese, Lao, Filipino,
Tamil, and Khmer. Our work leverages large-
scale multilingual continued pre-training with a
comprehensive post-training regime involving
multiple stages of instruction fine-tuning, align-
ment, and model merging. Evaluation results
on multilingual benchmarks show that our mod-
els achieve state-of-the-art performance across
LLMs supporting SEA languages. We open-
source the models 1 to benefit the wider SEA
community.

1 Introduction

Large language models (LLMs) have significantly
transformed the field of natural language process-
ing, achieving remarkable performance in text
generation, summarization and sentiment analy-
sis (Brown et al., 2020; OpenAI, 2023; Dubey
et al., 2024; Rivière et al., 2024; Zhang et al.,
2024b; Yeo et al., 2024). Despite their impressive
capabilities, most LLMs remain heavily English-
centric (Wendler et al., 2024; Zhong et al., 2024).
Unfortunately, this situation has led LLMs in re-
gions with many under-represented languages such

1SEA-LION Models Collection

as Southeast Asia (SEA) to suffer. Languages with
lower resources, such as Filipino, Lao, Burmese
and Khmer in the SEA region, are not supported
by many open-source English-centric LLMs. This
underscores the need to bridge the resource and
representation gap between English and SEA lan-
guages.

Recently, there have been many attempts to cre-
ate multilingual LLMs in an open-source man-
ner, e.g., BLOOM (Scao et al., 2022), a project
aimed at increasing multilingual presence in open-
source LLMs by supporting 46 languages. Popular
LLM families such as Llama (Dubey et al., 2024),
Gemma (Rivière et al., 2024) and Qwen (Yang
et al., 2024a) have also introduced multilingual
LLMs for their latest iteration. During our evalua-
tions, we found that the performance of these mod-
els is acceptable in the general case, i.e., when con-
sidering evaluation benchmarks formulated from
English datasets. However, we observe that the per-
formance degrades on SEA-specific benchmarks.
Moreover, researchers have also introduced LLMs
such as SeaLLMs (Nguyen et al., 2024; Zhang
et al., 2024a) and Sailor (Dou et al., 2024) to specifi-
cally address the LLM gap in SEA languages. How-
ever, the performance of these models is less than
ideal for languages such as Thai or Tamil2 (10X
et al., 2024; AI Products Team, 2024).

In this paper, we address the issues by propos-
ing a robust open-source Southeast Asian model
with data transparency for reproducibility, namely
SEA-LION – a family of LLMs continued pre-
trained (CPT) and fine-tuned on Llama-3.1-8B-
Instruct for Llama-SEA-LION-8B-IT and Gemma-
2-9B for Gemma-SEA-LION-9B-IT with a focus

2Tamil is one of the official languages in Singapore. It is
also spoken in other areas in the SEA region, such as Malaysia.
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on SEA languages. To tackle the performance
problem, we utilize 200 billion English, code, and
SEA languages tokens as well as 16.8 million En-
glish and SEA languages instruction and answer
pairs for CPT and post-training steps, respectively,
to achieve a significant improvement in SEA lan-
guages. In order to allow our models to be used by
everyone without restrictions, we release our mod-
els under the fully open MIT license. We bench-
mark our models against the SEA-HELM(Susanto
et al., 2025) and Open LLM Leaderboard3 with
other LLMs of similar sizes in Southeast Asia like
Sailor 2 (Team, 2024) and SeaLLMs 3 (Zhang et al.,
2024a), where our models achieve state-of-the-art
performances.

We summarize the contribution of our paper as
follows.
• We released two LLMs, Llama-SEA-LION-8B-

IT and Gemma-SEA-LION-9B-IT, that are
meticulously trained to accurately represent the
unique linguistic diversity of SEA languages.

• We also provide in-depth insights in this paper
into our end-to-end training workflow to benefit
the community developing multilingual LLMs.

• We present a reproducible dataset development
process, covering sourcing and the model train-
ing process. We release our training arti-
facts, including the training dataset, training
scripts, training checkpoints, and fine-tuned
models, including Llama-SEA-LION-8B-IT
and Gemma-SEA-LION-9B-IT, to provide
strong baselines, promote reproducibility, and
enable future research on applications that re-
quire SEA-specific knowledge 4.

2 Continued pre-training (CPT)

2.1 Pre-training data

The CPT data consists of a curated set of En-
glish, multilingual, and code corpora from sev-
eral open source repositories like Dolma (Sol-
daini et al., 2024), FineWeb (Penedo et al.,
2024), the-stackv2 (Lozhkov et al., 2024), SEA-
LION-Pile (AI Singapore, 2023), SEA-LION-Pile-
v2 (AI Singapore, 2025), as well as documents
from CommonCrawl (CommonCrawl, 2024) and
from the public domain, such as Wikipedia (Foun-

3Open LLM Leaderboard
4Please visit https://huggingface.co/aisingapore

for all artifacts in this paper, including training data and other
versions of SEA-LION

dation, 2024). For SEA-LION-Pilev2, we filter
CommonCrawl WARC data for documents in SEA
languages (i.e., Burmese, Simplified Chinese, In-
donesian, Khmer, Lao, Malay, Filipino, Tamil,
Thai, and Vietnamese) using the pretrained fast-
text language classifier (Joulin et al., 2017).

A document is retained if the language code re-
ported in its metadata matches that of one of the
aforementioned SEA languages. Additionally, we
further clean up the data with Trafilatura (Barbaresi,
2021). To determine the optimal dataset ratio be-
tween SEA languages, code, and English for the
CPT process, we conduct a series of small-scale
CPT experiments, each with a training budget of
10 billion tokens and varying proportions of En-
glish, code, and SEA language data. We settled on
an optimal data mix ratio of 55% SEA languages,
25% English, and 20% code tokens for a budget of
200 billion tokens. For a detailed breakdown of the
token count by languages, please refer to Table 6.

2.2 CPT process

Model selection. For the models to CPT from, we
choose Llama-3.1-8B-Instruct (Dubey et al., 2024)
and Gemma-2-9B (Rivière et al., 2024).

Training setup. Following previous works (Dou
et al., 2024), we use BPE-Dropout (Provilkov
et al., 2020) to increase the performance and ro-
bustness of the training. We use a Warmup-Stable-
Decay (WSD) (Hu et al., 2024) scheduler with
warm-up and cooldown phases each representing
10% of the entire training budget. We use the
AdamW (Loshchilov and Hutter, 2019) optimizer
with the maximum learning rate (LR) set to 1e−5

and the final LR after cooldown is 1e−7. Fol-
lowing Wortsman et al. (2024), we set epsilon to
1e−15. We use Composer (Team, 2021) and LLM
Foundry (Team, 2022) for distributed training us-
ing Fully Sharded Data Parallel (Zhao et al., 2023)
on a cluster of eight nodes of the p5.48xlarge in-
stance from Amazon Web Services (AWS). The
total training duration was approximately 6 days
and 10 days for the Llama 3.1 and Gemma 2 mod-
els, respectively. In this paper, we refer to the post-
CPT models as Llama-SEA-LION-8B and Gemma-
SEA-LION-9B for the Llama 3.1 and Gemma 2
continued pre-trained models, respectively.
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3 Post-training

3.1 Post-training data

The post-training data consists of 3 subsets of data
for Stage 1 IFT, Stage 2 IFT, and the Preference
dataset for alignment, respectively. We describe the
training data information of each step as follows.

Stage 1 IFT. In this step, we employ Infinity-
Instruct [Foundation and Chat] (Beijing
Academy of Artificial Intelligence, 2024)
and OpenMath-Instruct 2 (Toshniwal et al., 2024)
to improve the mathematical, reasoning, and
coding skills of the instruction model. The
full details of the training data are shown in
Appendix 7.

Stage 2 IFT. Then, in this step, we use general-
ized large-scale instructions on the previous instruc-
tion model. In particular, we employ 22 existing
datasets (written in English, Thai, and Vietnamese)
and formulate new 22 synthetic datasets using vari-
ous models and techniques to create SEA instruc-
tion datasets (see Appendix A.3 for the full data
generation details). As shown in Appendix 9, we
use a total of 7,298,828 instruction samples that
cover 11 languages.

Helpfulness and preference alignment. We also
conduct an alignment learning on top of the instruc-
tion model using a feedback dataset called Ultra-
FeedBack (Cui et al., 2024). In addition, we also
synthesized the SEA version of the UltraFeedBack
using NemoTron-70b with Gemma2 as a reward
model, see Appendix A.4 for the full details.

Figure 1: Training process of Llama-SEA-LION-8B-
IT (Section 3.2.1). The post-training process consists of
2 stages of instruction fine-tuning, an alignment stage
and multiple merge stages. Dotted lines denote a merge
stage and solid lines denote an alignment stage.

3.2 Post-training process
We use LLaMaFactory (Zheng et al., 2024b) with
DeepSpeed (Rasley et al., 2020) for all Instruc-
tion Fine Tuning (IFT) and alignment steps. All
IFT stages are performed using full model fine-
tuning, where the models are from the previous
step (Section 2.2) and existing models. We use
MergeKit (Goddard et al., 2024) with a value of
1 for weight and density parameters for all merge
steps. Models selected for merging are selected em-
pirically, based on the openness of model licenses,
the suitability for merging and performance.

3.2.1 Llama-SEA-LION-8B-IT
Stage 1 IFT As shown in Figure 1, we started
off the post-training phase with IFT of Llama-
SEA-LION-8B with the Infinity Instruct (Founda-
tion) (Beijing Academy of Artificial Intelligence,
2024) and OpenMathInstruct2 (Toshniwal et al.,
2024) datasets. Both datasets contain approxi-
mately 9.5 million instruction pairs, primarily in
English and centered around reasoning, math, and
code. We refer to the model at this stage as Stage-
1-Llama.
Stage 2 IFT We performed a second round of
IFT using the SEA-Instruct dataset, which con-
sists of approximately 7.3 million instruction pairs,
of which 5 million instruction pairs are gener-
ated using the Gemma-2-27B-Instruct (Rivière
et al., 2024) model and the Qwen2.5-32B-Instruct
model (Yang et al., 2024a) in SEA languages.
The remaining are English language instruction
pairs from the Infinity-Instruct (Chat) (Beijing
Academy of Artificial Intelligence, 2024) dataset.
We refer to the model at this stage as Stage-2-
Llama.
First merge After finishing the IFT stages, we
performed the first of a series of merges by merging
Stage-1-Llama and Stage-2-Llama into the Llama-
SEA-LION-8B using the DARE TIES (Yu et al.,
2024; Ilharco et al., 2023) method. We refer to the
model at this stage as Merge-1-Llama.
Second merge In order to mitigate catastrophic
forgetting due to the fine-tuning process (Alexan-
drov et al., 2024), we performed the second round
of merging by merging top-performing instruction-
tuned models that share the Llama 3.1 lineage. We
merge the original Llama-3.1-8B-Instruct, Llama3-
8B-SEA-LION-v2.1-Instruct (SEA-LION Team,
2024), and SuperNova-Lite (Arcee-AI, 2024) into
Merge-1-Llama using the Consensus TA (Wang
et al., 2024b; Ilharco et al., 2023) merge method.
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We refer to the model at this stage as Merge-2-
Llama.
Helpfulness and preference alignment We per-
formed one round of alignment on Merge-2-Llama
using SimPO (Meng et al., 2024) with the SEA-
Preference dataset. We refer to the model at this
stage as Aligned-SimPO-Llama.
Final merge Lastly, we perform a merge using the
DELLA-Linear merge. With the original Llama-
3.1-8B-Instruct model as the base for merging,
we merge in Merge-2-Llama and Aligned-SimPO-
Llama to produce the final model, Llama-SEA-
LION-v3-9B-IT.

3.2.2 Gemma-SEA-LION-9B-IT

Figure 2: Training process of Gemma-SEA-LION-9B-
IT (Section 3.2.2). The post-training process comprises
two stages of instruction fine-tuning, an alignment stage,
and multiple merge stages. Dotted lines denote a merge
stage and solid lines denote an alignment stage.

Stage 1 and Stage 2 IFT Similar to the Llama-SEA-
LION-8B-IT, we started off the post-training phase
with both stages of IFT using the same datasets
on the Gemma-2-9B model (Rivière et al., 2024).
We refer to both models at stage 1 and stage 2 as
Stage-1-Gemma and Stage-2-Gemma, respectively.
First merge We merge the Gemma-2-9B-IT (Riv-
ière et al., 2024) and Stage-2-Gemma into Gemma-
2-9B using the DELLA Linear method. We refer
to the model at this stage as the Merge-1-Gemma.
Helpfulness and preference alignment Using the
Merge-1-Gemma as the base model, we performed
one round of alignment using SimPO with the SEA-
Preference dataset. We refer to the model at this
stage as the Aligned-SimPO-Gemma.
Final merge Finally, using the Gemma-2-9B
model as the base model, we merged Merge-1-
Gemma, FuseChat Gemma-2-9B-Instruct (Yang

et al., 2024b), Gemma-SEA-LION-9B, and Aligned-
SimPO-Gemma into it to produce the final model
Gemma-SEA-LION-9B-IT.

3.3 Discussion

This post-training workflow emphasizes the careful
balance between general capabilities, SEA-specific
linguistic fluency, and natural conversational abil-
ities. Each step in the workflow is designed to
progressively refine the model, ensuring it meets
the diverse needs of users in the Southeast Asian
region.

The entire post-training process for Gemma-
SEA-LION-9B-IT and Llama-SEA-LION-8B-IT
took approximately 1350 and 1024 GPU hours, re-
spectively, on eight H100 GPUs. To make the train-
ing efficient, all post-training steps utilize Liger
Kernel (Hsu et al., 2024) for substantial memory
savings of approximately 60%.

4 Experimental Setup

4.1 Competitive methods

For the evaluation, we compared our models
against well-known LLMs for multilingual and
SEA languages, such as SeaLLMsv3 (Zhang et al.,
2024a), Sailorv2 (Team, 2024), Qwen 2.5 (Yang
et al., 2024a), Gemma 2 (Rivière et al., 2024) and
Llama 3.1 (Dubey et al., 2024), where the parame-
ters of those models are less than 10 billion param-
eters, similar to our models.

4.2 Evaluation Benchmarks

To evaluate the robustness of our proposed models,
we compare our models to competitors in three
benchmarks.
SEA Benchmarks. We evaluated the multilin-
gual performance of each LLM using the SEA-
HELM Leaderboard (Leong et al., 2023; Susanto
et al., 2025) 5. We selected SEA-HELM be-
cause the design choice of this benchmark re-
flects the performance of SEA culture and knowl-
edge the most compared with other existing bench-
marks (DAMO-NLP-SG, 2024; Lovenia et al.,
2024; Wang et al., 2024a). We also evaluate on
a wide-range SEA coverage language benchmark
called SEACrowd (Lovenia et al., 2024). This
benchmark consists of all SEA languages for natu-
ral language understanding and generation datasets.

5Please visit https://leaderboard.sea-lion.ai/ for
live score update of SEA-LION.
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SEA-HELM
NLU, NLG, NLR, NLI Instruction Following

Models Average ID VI TH TA ID VI TH
Meta-Llama-3.1-8B 35.37 42.33 40.67 35.13 38.88 16.19 19.05 9.00
SeaLLMs-v3-7B 37.04 44.79 48.29 43.53 27.45 26.67 35.24 26.00
Gemma-2-9B 41.48 47.65 43.28 42.00 53.26 4.76 3.81 10.00
Qwen2.5-7B 41.98 51.63 52.17 46.55 36.60 31.43 36.19 30.00
Sailor2-8B 42.62 53.23 47.33 46.64 45.04 30.48 30.48 35.00
Llama-SEA-LION-8B 41.42 44.98 46.25 42.79 43.03 25.71 32.38 23.00
Gemma-SEA-LION-9B 48.67 57.16 49.39 47.16 60.56 25.71 20.00 27.00

Table 1: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI and instruction following on base and
continued pre-trained models of similar sizes.

Open LLM Leaderboard
Models Average MMLU-PRO BBH GPQA MATH Lvl 5 IFEval (EN) MUSR
Meta-Llama-3.1-8B 13.9 24.95 25.29 6.32 5.14 12.7 8.98
Sailor2-8B 17.71 25.74 27.62 4.87 7.02 21.95 19.03
Gemma-2-9B 21.15 34.48 34.1 10.51 13.14 20.4 14.3
SeaLLMs-v3-7B 24.00 35.71 34.57 9.28 18.81 32.94 12.68
Qwen2.5-7B 24.99 37.39 35.81 9.96 18.88 33.74 14.14
Llama-SEA-LION-8B 16.61 27.6 26.04 7.49 9.89 16.56 12.07
Gemma-SEA-LION-9B 22.41 32.78 37.24 10.29 9.89 30.12 14.11

Table 2: Open LLM Leaderboard benchmarks across different continued pre-trained models of similar sizes.

However, due to maintenance reasons, we can-
not reproduce the NLG benchmark of SEACrowd.
Therefore, we experiment only with the NLU
benchmark (zero-shot), which has 131 data sub-
sets, 7 tasks, and 31 SEA indigenous languages.
English performance. We also evaluated the En-
glish performance of the models using the Open
LLM Leaderboard (HuggingFace, 2024). This
is because English is also widely used in SEA
countries. Therefore, we need to evaluate the
understanding and knowledge of LLMs in the
English benchmark as well. The leaderboard
consists of six benchmarks, IFEval (Zhou et al.,
2023), Big Bench Hard (Suzgun et al., 2023),
MATH (Hendrycks et al., 2021), GPQA (Rein et al.,
2023), MuSR (Sprague et al., 2024) and MMLU-
PRO (Wang et al., 2024c). Moreover, we also eval-
uate the CPT models on SEA-HELM and the Open
LLM Leaderboard since these benchmarks support
the CPT evaluation.

5 Experimental Results

To understand the robustness and generalization of
our proposed models, we conduct three studies as
follows. Section 5.1 evaluates the robustness of
continual pre-training models using SEA-HELM

and the Open LLM leaderboard. In Section 5.2, we
compare our instruction fine-tuning models with
competitors in three benchmarks to demonstrate the
generalization of our models. Lastly, we discuss
the design choice of our models in Section 5.3.

5.1 Continued Pre-Training Results

SEA performance. The CPT stage is primarily
focused on gaining SEA language capabilities and
knowledge. For the purpose of comparison against
base and CPT models, as shown in Table 1, we
observed a 6.05 and 7.19 average SEA-HELM per-
formance increase over the Meta-Llama-3.1-8B
and Gemma-2-9B for Llama-SEA-LION-8B and
Gemma-SEA-LION-9B, respectively. We observed
a much larger average increase with instruction fol-
lowing capabilities in particular, which we attribute
to the fact that our CPT models are trained from
the instruction models rather than from the base
models. Moreover, in the average performance,
we found that our Gemma-SEA-LION-9B mod-
els perform the best compared to other models.
This emphasizes a strong reason to perform CPT
for improving the performance of SEA languages,
rather than skipping the CPT and performing SFT
directly.
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SEA-HELM
NLU, NLG, NLR, NLI Instruction Following MTBench

Models Average ID VI TH TA ID VI TH ID VI TH
SeaLLMs-v3-7B-Chat 39.19 42.72 48.50 42.59 12.06 57.14 53.33 47.00 59.81 65.24 56.59
Llama-3.1-8B-Instruct 41.48 51.50 51.31 45.32 15.40 77.14 75.24 63.00 56.38 57.59 54.34
Sailor2-8B-Chat 43.13 48.98 48.01 45.44 28.29 49.52 45.71 40.00 69.76 66.97 73.94
Qwen2.5-7B-Instruct 44.58 60.28 53.46 53.43 21.03 81.90 69.52 66.00 65.66 66.80 68.71
Gemma-2-9B-IT 55.33 64.04 59.86 57.22 52.28 88.57 78.10 71.00 68.78 68.37 73.51
Stage-1-Llama 50.76 51.84 51.83 46.23 27.53 69.52 73.33 59.00 42.74 46.41 46.46
Stage-2-Llama 59.49 53.87 55.18 50.92 44.80 77.14 76.19 67.00 50.90 53.72 46.97
Merge-1-Llama 59.36 56.73 56.82 51.71 46.63 81.90 82.86 67.00 57.04 54.01 50.28
Merge-2-Llama 58.01 59.19 52.63 51.89 35.40 87.62 80.95 78.00 56.38 59.32 58.86
Aligned-SimPO-Llama 51.30 54.86 51.69 46.77 26.40 82.86 80.00 68.00 68.20 64.68 64.92
Llama-SEA-LION-8B-IT 61.84 60.50 61.48 55.92 43.61 84.76 85.71 76.00 62.65 68.32 65.13
Stage-1-Gemma 56.56 55.06 54.51 51.96 42.74 66.67 74.29 61.00 47.35 47.26 55.05
Stage-2-Gemma 66.66 64.10 61.76 56.90 57.85 89.52 82.86 76.00 60.54 58.93 58.76
Merge-1-Gemma 69.26 66.25 64.95 59.74 60.41 89.52 91.43 82.00 66.45 64.47 65.00
Aligned-SimPO-Gemma 69.37 65.69 65.47 59.51 57.38 86.67 88.57 78.00 68.89 73.67 73.51
Gemma-SEA-LION-9B-IT 69.35 66.26 64.93 59.23 58.82 94.29 88.57 78.00 65.85 73.27 69.07

Table 3: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI, instruction following and multi-turn chat
on instruct models of similar sizes.
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Figure 3: Zero-shot model performance across NLU tasks in SEA languages.

Model NLU
Score

SeaLLMs-v3-7B-chat 52.68
Llama-3.1-8B-Instruct 49.94
Sailor2-8B-Chat 60.21
Qwen2.5-7B-Instruct 54.51
Gemma-2-9B-IT 60.21
Llama-SEA-LION-8B-IT 55.10
Gemma-SEA-LION-9B-IT 64.13

Table 4: The average NLU
performance across 131
data subsets and 31 indige-
nous languages.

English performance. For the English perfor-
mance, as shown in Table 2, both CPT models
also managed to perform competitively against the
Meta-Llama-3.1-8B and Gemma-2-9B base models
on the Open LLM Leaderboard benchmarks. This
indicates that our choice of retraining with a propor-
tion of 25% English tokens has been beneficial in
mitigating catastrophic forgetting, which has been
shown to stem from CPT (Zheng et al., 2024a). Al-
though our CPT models perform lower than Qwen
and SeaLLMs on this benchmark, we outperform
them on the SEA language instead, which is the
main focus of this work.

5.2 Instruction Fine-tuning Results

In this study, we compare our models with com-
petitors on SEA-HELM, SEACrowd, and the Open
LLM Leaderboard as follows.
SEA-HELM. As shown in Table 3, the SEA-
HELM benchmark performance demonstrates that

our instruct models, Llama-SEA-LION-8B-IT and
Gemma-SEA-LION-9B-IT, attain competitive per-
formance in SEA languages, with Gemma-SEA-
LION-9B-IT achieving one of the highest aver-
age performances. Moreover, we significantly im-
prove the performance of Llama-3.1-8B-Instruct
from 41.48 to 61.84 using Llama-SEA-LION-8B-
IT, while Gemma-SEA-LION-9B-IT achieves 14.02
improvement points compared to Gemma-2-9B-IT.
Both Llama-SEA-LION-8B-IT and Gemma-SEA-
LION-9B-IT outperform other SEA languages-
focused LLMs, such as Sailor2-8B-Chat and
SEALLMs-v3-7B-Chat, with an average score of
69.35 across all the languages covered by the SEA-
HELM benchmark, apart from the SEA-MTBench
tasks. This conforms with the previous results on
the CPT models (Section 5.1) that our CPT model
performs the best on SEA languages, resulting in
the best performer in this experiment.

SEACrowd. Other than evaluating on some SEA
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Open LLM Leaderboard
Models Average MMLU-PRO BBH GPQA MATH Lvl 5 IFEval (EN) MUSR
Sailor2-8B-Chat 16.37 27.93 27.15 3.47 0.00 37.49 2.19
SeaLLMs-v3-7B-Chat 22.49 33.93 24.37 7.27 15.86 44.10 9.38
Llama-3.1-8B-Instruct 27.88 29.36 26.10 10.63 17.45 77.03 6.75
Qwen2.5-7B-Instruct 27.93 37.00 34.72 10.18 0.00 76.34 9.34
Gemma-2-9B-IT 28.86 31.95 42.14 14.77 0.23 74.36 9.74
Stage-1-Llama 24.51 25.87 26.32 7.83 19.26 62.89 4.88
Stage-2-Llama 27.75 28.10 24.64 7.72 19.56 78.78 7.74
Merge-1-Llama 27.49 27.47 26.22 8.28 19.79 76.16 7.04
Merge-2-Llama 29.96 29.92 28.78 9.96 19.94 82.61 8.54
Aligned-SimPO-Llama 30.58 30.84 34.31 8.39 26.59 75.76 7.61
Llama-SEA-LION-8B-IT 30.39 31.01 29.47 10.40 22.58 80.35 8.54
Stage-1-Gemma 29.88 33.34 38.51 10.74 24.17 56.87 15.66
Stage-2-Gemma 33.48 34.67 36.06 11.74 20.77 83.00 14.61
Merge-1-Gemma 35.15 36.22 41.42 15.32 26.28 82.09 9.59
Aligned-SimPO-Gemma 35.31 37.65 42.38 14.99 27.79 80.23 8.82
Gemma-SEA-LION-9B-IT 35.43 36.94 43.39 15.10 24.24 81.85 11.07

Table 5: Open LLM Leaderboard benchmarks across different instruct models of similar sizes.

languages like SEA-HELM, we also evaluated our
model compared to competitors on 31 SEA indige-
nous languages using SEACrowd-NLU. Note that,
for this study, we use only the best settings of our
models from the previous experiment (Table 3). As
shown in Table 4, we observe a state-of-the-art re-
sult from Gemma-SEA-LION-9B-IT by achieving
64.13 points on the NLU benchmark, while Llama-
SEA-LION-8B-IT improves its baseline from 49.94
to 55.10 points. Moreover, the results from Fig-
ure 3 also emphasize the robustness of our model
by reaching more than 80 points on this bench-
mark, while SeaLLMs and Llama-3.1 have only a
few cases where the performance exceeds 80 points.
These results emphasize the robustness of our mod-
els by achieving the state-of-the-art with a model
parameter less than 10B on SEA benchmarks, in-
cluding both traditional classical NLP benchmark
(SEACrowd-NLU) and modern LLM benchmark
(SEA-HELM).
English performance. We also evaluate the perfor-
mance of a widely used language, English, to ob-
serve a difference between the results of SEA and
English. The Open LLM Leaderboard performance
is shown in Table 5. Both Llama-SEA-LION-8B-IT
and Gemma-SEA-LION-9B-IT performed compet-
itively in English language, math, and reasoning
tasks, with Gemma-SEA-LION-9B-IT achieving
the highest average score of 35.43. Moreover, we
notice that the SEA models (Sailor and SeaLLMs)
failed to perform on the English dataset. This might
be because these models are optimized for SEA lan-
guages during supervised fine-tuning, and English

performance decreased as a result. In contrast, our
models balance the performance between SEA and
English knowledge, resulting in a high score for all
benchmarks.

5.3 Performance Analysis

In this study, we discuss the performance improve-
ment in each design decision of our models (Ta-
bles 3 and 5) as follows.
Stage 1: English instruction fine tuning In Stage
1 IFT, the focus is predominantly on gaining gen-
eral capabilities in math, code and general instruc-
tion following in the English language. Although
our CPT models are based off of the instruct ver-
sions of Llama-3.1-8B, the CPT process has eroded
the instruction following capabilities (See Table 5).
We observe an increase of 3.86 and 9.72 for Stage-
1-Llama and Stage-1-Gemma respectively in En-
glish instruction following capabilities on the IFE-
val benchmark. We also observe an average in-
crease of 7.9 for Stage-1-Llama and 7.47 for Stage-
1-Gemma for the SEA-HELM benchmark.
Stage 2: Multilingual instruction fine tuning In
Stage 2 IFT, the focus is on multilingual and rea-
soning capabilities. By instruction fine tuning on
SEA languages and higher complexity English in-
struction pairs, the Stage 2 models saw an average
increase of 8.73 for Stage-2-Llama and 10.1 for
Stage-2-Gemma over Stage 1 models on the SEA-
HELM benchmark.
Merge 1: Combining Stage 1 and Stage 2 De-
spite the significant gains observed in Stage 1 and
2, we observed that the effects of catastrophic for-
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getting from earlier stages could still be observed
after Stage 2. In order to mitigate this, we merge
Stage 1 and Stage 2 models into the CPT model,
after which we we observed an average increase
of 2.6 for Merge-1-Gemma. We also observed an
increase across all SEA-HELM benchmark tasks
for Merge-1-Llama.
Merge 2: Incorporating instruct models To rein-
troduce helpfulness, relevance and informativeness
of responses observed in Llama 3.1 and Gemma
2 models, we perform further merges of open-
source instruct models. While we observed sig-
nificant increases in MT-Bench benchmark scores
for Vietnamese and Thai, we also observed a slight
degradation of average SEA-HELM performance
as well as a slight degradation of Indonesian MT-
Bench scores, which we view as acceptable trade-
offs for the significant performance increases in
Vietnamese and Thai.
Alignment steps In the alignment step to align the
models to human preference, we prioritize the SEA
MTBench performance over the other SEA-HELM
benchmark tasks. We observed a broad increase in
SEA MTBench performances across all languages
for both models. However, this comes with minor
degradation of instruction following capabilities
and overall Indonesian SEA-HELM performance.
The alignment step encourages longer, more help-
ful and sensitive responses but hurts performance
on task-specific benchmarks and instruction follow-
ing in some languages – an issue we address in the
next step.
Final merge: Combining aligned models To com-
pensate for the capability degradation in the previ-
ous steps, we merge Merge-2-Llama and Merge-1-
Gemma with Aligned-SimPO-Llama and Aligned-
SimPO-Gemma and various open sourced pre-
trained models describe in sections 3.2.1 and 3.2.2
for their respective model families. For Llama-SEA-
LION-8B-IT, we observed a significant increase in
average SEA-HELM performance (61.84) from the
alignment stage (51.30), mainly from the increase
in performance for the core tasks in SEA-HELM.
This performance increase demonstrates the value
of empirical selection of pre-trained models to be
merged in based on each model’s strengths and
weaknesses to produce a far superior model. For
Gemma-SEA-LION-9B-IT, it easily achieves higher
performance compared to the Llama-SEA-LION-
8B-IT with fewer post training steps. We attribute
this performance to the high performance of the
base Gemma 2 model and also to the larger vocab-

ulary size which have been demonstrated (Takase
et al., 2024) to produce better models.

6 Related Works

Recently, researchers have proposed large lan-
guage models that support multilingual settings.
Llama (Dubey et al., 2024) is the prior effort to re-
lease an open-source large language model for the
research community to develop their own models.
Then, Qwen (Yang et al., 2024a) and Gemma (Riv-
ière et al., 2024) introduced open-source LLMs that
perform comparably or better than Llama with a
larger amount of training data and many supported
languages for these recent models. Massively multi-
lingual open-source models like Bloom (Scao et al.,
2022) and Aya (Üstün et al., 2024) also support a
very wide range of languages, including some SEA
languages. Although these models demonstrate a
robust performance in English benchmarks, they
mostly underperformed on SEA benchmarks that
tested for SEA languages, SEA knowledge and cul-
tural understanding (Lovenia et al., 2024; Susanto
et al., 2025), presumably due to a lack of language
support for certain SEA languages or cultures.

In the SEA community, many works propose a
large language model that is designed specifically
for SEA languages by adding more SEA tokens in
the training process, such as SeaLLMs (Nguyen
et al., 2024) and Sailor (Sailor2 Team, 2024). How-
ever, the performance of these models is robust
only on in-domain datasets or favors only some
tasks (i.e., classical NLP datasets). This is because
the design choice in the pre-training or fine-tuning
of these models is not well studied, e.g., performing
a single SFT step with low-quality datasets writ-
ten in some SEA languages, resulting in a slight
improvement on SEA benchmarks. To create a
robust SEA LLM, we need to carefully balance lan-
guage representation and design both pre-training
and post-training (i.e., SFT, alignment, and model
merging) for SEA contexts.

7 Conclusion

Despite the sizable population and language diver-
sity in Southeast Asia, there remains a scarcity of
resources and accurate linguistic and cultural rep-
resentation with open-source LLMs. In this paper,
we introduce Llama-SEA-LION-8B-IT and Gemma-
SEA-LION-9B-IT, two multilingual LLMs compre-
hensively trained to achieve state-of-the-art perfor-
mances in SEA languages, based on the Llama and
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Gemma family of LLMs. SEA-LION represents
the next advancement in the development of LLMs
that explicitly supports SEA languages. Both mod-
els are fully open-source and available for com-
mercial use to increase accessibility and innovation
in multilingual LLMs in Southeast Asia. We will
make our resources publicly available — including
the dataset, training scripts, training checkpoints,
and all fine-tuned models, even those that achieve
state-of-the-art performance on the benchmarks —
to establish solid baselines, ensure reproducibility,
and support future research focused on culturally
and professionally relevant SEA applications.
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Limitation

Although we propose the state-of-the-art SEA
LLMs, we found that the benchmark might not
cover all the properties and languages we want to
evaluate. For example, SEA-HELM is a robust-
ness benchmark, but only covers four languages.
SEACrowd is a benchmark that covers all SEA
languages, but it is only classical NLP datasets
(no chat or instruction following datasets). We re-
quire a more holistic SEA benchmark that covers
LLM-specific tasks written in all SEA languages.
However, with the current evaluation design choice,
these benchmarks are the best design choice for cur-
rent SEA research works.

Moreover, we conduct experiments using only
8 and 9 billion parameter models. We argue that
this is the most commonly used model size in real-
world scenarios. In addition, our method can and
should also work with a higher or smaller model
size since our proposed technique does not rely on
the model size, as we demonstrated by applying
the SFT and alignment techniques on both Llama
and Gemma models.
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A Appendix

A.1 Continued pre-training (CPT) data
Existing data: We utilize existing datasets as shown in Table 6 (HuggingFace Datasets).
Other data: As shown in Table 6 (the other data section), the listed datasets contain data from a diverse
range of domains, including news, books, articles, poems, etc.

Continued Pre-training Data
Source (HuggingFace Datasets) Languages Size (Billions of Tokens)
bigcode/the-stack-v2-dedup CODE 40
allenai/dolma EN 37.5
HuggingFaceFW/fineweb-edu EN 7.5
aisingapore/SEA-PILE-v1 SEA 47.58
aisingapore/SEA-PILE-v2 ID 7
Source (Others) Languages Size (Billions of Tokens)
VinBigData VI 16
WangChanBERTa TH 8.5
Others - EN EN 5
Others - SEA SEA 30.92

Table 6: List of datasets for the continued pre-training stage.

A.2 Stage 1 IFT data

Stage 1 IFT Datasets
Source (HuggingFace Datasets) Languages Size
BAAI/Infinity-Instruct EN 7,449,106
nvidia/OpenMathInstruct-2 EN 2,000,000

Table 7: List of datasets for Stage-1-IFT. For BAAI/Infinity-Instruct dataset, any conversation that originally ended
with a user turn has had that last turn removed.

A.3 Stage 2 IFT data
Existing data: We utilize existing datasets as shown in Table 9 (HuggingFace Datasets).
Synthetic data: As shown in Table 9 (the generated part), we describe how to formulate synthetic data as
follows

• qwen_gemma_synthetic datasets are generated first in English with Qwen 32B, utilizing an approach
similar to Magpie. Instructions are then translated into the target language with Gemma 2 27B.

• llama_gemma_synthetic datasets are generated first in English with Llama 3.1 70B, utilizing an
approach similar to Magpie (Xu et al., 2024). Instructions are then translated into the target language
with Gemma 2 27B.

• gemma_synthetic datasets are generated directly with Gemma 2 27B using Magpie (Xu et al., 2024).
• sea_multilingual_systemchat is a synthetic dataset translated with Gemma 2 27B from the English

systemchat dataset.
• rewritten_oasst is a dataset rewritten with Gemma 2 27B based on the English OASST dataset.
• rewritten_helpsteer is a dataset rewritten with Gemma 2 27B based on the English Helpsteer dataset.

A.4 Helpfulness and preference alignment data
As shown in Table 8, we use the princeton-nlp/gemma2-ultrafeedback-armorm as the source of the
alignment data. We then further re-scored with the reward model, nvidia/Llama-3.1-Nemotron-70B-
Reward to create the SEA version. In particular, generated-gemma2-27b-seapref-nemotron-70b takes
prompts from seald, wangchan_thaiinstruct, and additional hand-written Southeast Asian cultural prompts
collected from native speakers and then generates responses (with a varying temperature) from them with
Gemma 2 27B. The responses are then scored with nvidia/Llama-3.1-Nemotron-70B-Reward, with the
top-scoring response selected as chosen and vice versa, similar to princeton-nlp/gemma2-ultrafeedback-
armorm.
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Preference Data
Source (HuggingFace Datasets) Languages Size
princeton-nlp/gemma2-ultrafeedback-armorm EN 61,510
Source (Generated) Languages Size
generated-gemma2-27b-seapref-nemotron-70b SEA 5,511

Table 8: List of preference datasets used for the alignment stage.

Stage 2 IFT Datasets
Source (HuggingFace Datasets) Languages Size
BAAI/Infinity-Instruct^* EN 1,456,927
HuggingFaceTB/smoltalk EN 409,537
allenai/tulu-3-sft-personas-math EN 149,960
parinzee/seed-free-synthetic-instruct-thai-v1 TH 118,898
HuggingFaceTB/smoltalk EN 96,356
HuggingFaceTB/smoltalk EN 83,144
arcee-ai/EvolKit-75K EN 74,174
AI-MO/NuminaMath-TIR EN 72,441
Post-training-Data-Flywheel/AutoIF-instruct-61k EN 61,492
argilla/ifeval-like-data EN 56,339
HuggingFaceTB/smoltalk EN 53,342
ai2-adapt-dev/tulu_v3.9_wildjailbreak_decontaminated_50k EN 50,000
ai2-adapt-dev/tulu_v3.9_synthetic_finalresp_wildguardmixtrain_decontaminated_50k EN 50,000
allenai/tulu-3-sft-personas-math-grade EN 49,980
allenai/tulu-3-sft-personas-code EN 34,999
HuggingFaceTB/smoltalk EN 34,424
allenai/tulu-3-sft-personas-instruction-following EN 29,980
airesearch/WangchanThaiInstruct TH 25,014
allenai/tulu-3-sft-personas-algebra EN 20,000
arcee-ai/EvolKit-20k-vi VI 15,378
allenai/coconot EN 10,983
ai2-adapt-dev/tulu_v3.9_sciriff_10k EN 10,000
Source (Generated) Languages Size
qwen_gemma_synthetic_tamil TA 480,000
qwen_gemma_synthetic_thai TH 480,000
qwen_gemma_synthetic_indonesian ID 465,019
qwen_gemma_synthetic_vietnamese VI 465,019
gemma_synthetic_indonesian ID 458,149
gemma_synthetic_filipino TL 455,093
gemma_synthetic_viet VI 291,576
gemma_synthetic_tamil TA 276,314
gemma_synthetic_thai TH 186,339
gemma_synthetic_javanese JV 110,000
gemma_synthetic_sudanese SU 110,000
llama_gemma_synthetic_thai TH 88,920
llama_gemma_synthetic_tamil TA 88,920
llama_gemma_synthetic_vietnamese VI 88,920
llama_gemma_synthetic_javanese JV 88,920
llama_gemma_synthetic_indonesian ID 88,920
llama_gemma_synthetic_filipino TL 80,000
enrich_27k SEA 27,463
sea_multilingual_systemchat SEA 1,903
rewritten_oasst SEA 841
rewritten_helpsteer SEA 838

Table 9: List of datasets for Stage-2-IFT.
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