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Abstract
Recent work in Differential Privacy with Nat-
ural Language Processing (DP NLP) has pro-
posed numerous promising techniques in the
form of text rewriting mechanisms. In the eval-
uation of these mechanisms, an often-ignored
aspect is that of dataset size, or rather, the effect
of dataset size on a mechanism’s efficacy for
utility and privacy preservation. In this work,
we are the first to introduce this factor in the
evaluation of DP text privatization, where we
design utility and privacy tests on large-scale
datasets with dynamic split sizes. We run these
tests on datasets of varying size with up to one
million texts, and we focus on quantifying the
effect of increasing dataset size on the privacy-
utility trade-off. Our findings reveal that dataset
size plays an integral part in evaluating DP text
rewriting mechanisms; additionally, these find-
ings call for more rigorous evaluation proce-
dures in DP NLP, as well as shed light on the
future of DP NLP in practice and at scale.

1 Introduction

In the study of Differential Privacy in Natural Lan-
guage Processing (DP NLP), a multitude of ap-
proaches have been proposed, ranging from word-
level obfuscation mechanisms to document-level
rewriting techniques (Klymenko et al., 2022; Hu
et al., 2024). To evaluate the efficacy of a pro-
posed DP rewriting mechanism, researchers often
perform privacy evaluations, where a defined at-
tack vector is shown to be mitigated through the
privatization of textual data (Feyisetan et al., 2020;
Mattern et al., 2022; Meisenbacher et al., 2024b).
In addition, researchers may opt to demonstrate
that a mechanism also preserves data utility, or use-
fulness in a downstream task (Weggenmann et al.,
2022; Igamberdiev et al., 2022). These evaluations
are based on a chosen set of datasets, which ideally
simulate some plausibly “sensitive” scenario.

The primary factor in testing DP rewriting is the
ε parameter, also known as the privacy budget in

DP (Dwork, 2006). Evaluating a given mechanism
over a range of ε values is useful in investigating its
behavior over various privacy regimes, and it is gen-
erally true that lower ε values lead to higher privacy
and lower utility, and vice versa (Abadi et al., 2016).
A secondary factor that is highly important, yet of-
ten not considered, is that of dataset size, namely,
how a mechanism behaves when run on datasets of
varying size. While it is generally believed in DP
that as dataset size grows, the effect of the injected
random noise becomes less adverse (Ponomareva
et al., 2023), there is little empirical evidence of
this in the DP NLP literature. Above all, previous
experiments do not consider differently sized splits
of a dataset, therefore only presenting a static view
of the performance of DP rewriting mechanisms.

We address this gap by investigating the impact
of dataset size on the privacy and utility preser-
vation capabilities of DP text rewriting methods,
quantifying the shift in the privacy-utility trade-
off as dataset size grows. We are guided by the
following research question:

What observations can be made regarding
privacy and utility as dataset size grows
in local DP text rewriting scenarios?

To answer this, we design a comprehensive eval-
uation consisting of four large-scale datasets, with
which utility and privacy experiments are con-
ducted using five differently sized subsamples of
each dataset. By doing so, we empirically demon-
strate the observable effects of DP text rewriting as
dataset size grows. We critically analyze these re-
sults, which give way to an outlook on the benefits
and challenges of DP text privatization at scale, a
point which is often not addressed in the literature.

Our findings reveal that dataset size does indeed
matter with DP text rewriting, as mechanisms be-
have differently at various dataset splits and privacy
budgets. In addition, we learn that as dataset size
increases, trade-offs from privatization generally

37



become more favorable, making a case for DP text
privatization at scale. Concretely, we make the
following contributions to the field of DP NLP:

1. We are the first to conduct experiments in DP
text rewriting in a variable dataset size setting.

2. We empirically demonstrate and highlight the
importance of dataset size in DP rewriting.

3. We provide an outlook on future DP NLP
work, focused on making it practical at scale.

2 Related Work

Work in DP NLP primarily investigates address-
ing the challenges of meaningful and effective text
privatization while also finding a balance with pre-
served utility (Weggenmann et al., 2022). Several
recent works propose novel DP mechanisms for
NLP (Hu et al., 2024), often leveraging the local
model of DP (Kasiviswanathan et al., 2008) for
text rewriting, and others have focused on investi-
gating the challenges of DP NLP (Feyisetan et al.,
2021; Mattern et al., 2022; Klymenko et al., 2022;
Meisenbacher et al., 2025), as well as highlight-
ing important points for moving the field forward
(Meisenbacher and Matthes, 2024; Vu et al., 2024).
In particular, the evaluation and benchmarking of
DP NLP is seen as crucial yet challenging (Igam-
berdiev et al., 2022; Meisenbacher et al., 2024b;
Arnold, 2025), and recent works have proposed
techniques for benchmarking DP text rewriting.

In previous works, evaluations often use publicly
available datasets to mirror sensitive data scenar-
ios. For example, datasets such as IMDb (Maas
et al., 2011), Trustpilot (Hovy et al., 2015), or Yelp
(Zhang et al., 2015), which contain some sensitive
attributes (e.g., author ID or gender), are frequent
choices for empirical privacy experiments. For util-
ity evaluations, the choice of datasets is often varied
(Meisenbacher et al., 2024b). In many recent local
DP text rewriting works, the size of the evaluation
datasets is quite small, particularly in privacy eval-
uations (Mattern et al., 2022; Meehan et al., 2022;
Utpala et al., 2023). One notable exception is DP-
BART (Igamberdiev and Habernal, 2023), which
uses extensive datasets, yet without empirical pri-
vacy evaluations. Furthermore, in these works, the
datasets are fixed in size, and the effect of privati-
zation is not tested for different splits.

We view this to be a considerable gap, namely
that DP text rewriting evaluations predominantly
(1) do not generally test on larger-scale datasets,

thus leaving it unclear whether proposed methods
are effective at scale, and (2) do not vary the size of
a given evaluation dataset, thus leaving the impact
of dataset size on DP text rewriting unexplored. As
such, we address these two shortcomings in this
work, with the goal of showing the merit of ex-
tended evaluation setups in future DP NLP works.

3 Experimental Setup and Results

To investigate the effect of dataset size in DP text
rewriting, we design utility and privacy experi-
ments where performance is measured on large
datasets with various split sizes, described next.

3.1 Datasets and Tasks

In our initial experiments, we utilize four datasets
with associated utility and privacy tasks.

AG News. The AG News dataset is a corpus pre-
pared by Zhang et al. (2015) from a larger corpus
of more than one million news articles. This sub-
set contains 120k articles from four news domains,
with 30k samples per class. The articles are shorter
in nature, with an average word length of 43.95.
We use this large-scale dataset to test the effect of
DP text rewriting in a four-class classification task.

MNLI. The Multi-Genre Natural Language In-
ference Corpus (MNLI) is a dataset part of the
GLUE benchmark (Wang et al., 2018), where
MNLI contains premise and hypothesis pairs. The
corresponding task is to classify whether the
premise text entails, contradicts, or is neutral to
the hypothesis text. We utilize the entire dataset of
392,702 samples, with an average premise length
of 22.28 words. For DP rewriting, we only privatize
the premise text, leaving the hypothesis intact.

Trustpilot Reviews. The Trustpilot corpus is a
large-scale collection of user reviews. The corpus
prepared by Hovy et al. (2015) tags each review
with the stars provided (1-5), as well as the gender
of the review writer. We utilize the en-US split,
taking all reviews with gender information (male
/ female), and filtering by negative reviews (1-2
stars) and positive reviews (5 stars). This results
in a dataset of 366,210 reviews with an average of
52.39 words per review. We use this dataset for a
utility task (binary sentiment analysis), as well as
an adversarial privacy task (gender inference).

Yelp Reviews. The Yelp Open Dataset is a mas-
sive corpus of nearly seven million user reviews
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from Yelp. We take a smaller subset of the top-
50 most frequently occurring users in the dataset1,
which results in a dataset of 22,043 reviews with
an average length of 196.29 words. This was done
to facilitate a reasonable adversarial privacy task
for authorship identification, which is paired with
a utility task of binary sentiment analysis.

3.2 DP Rewriting Methods

For private rewriting of the chosen datasets, we
choose three local DP rewriting mechanisms from
the recent literature, which operate on three differ-
ent levels of the syntactic hierarchy, i.e., yielding
word-, token-, and document-level DP.

1-DIFFRACTOR (Meisenbacher et al., 2024a).
The 1-DIFFRACTOR mechanism leverages metric
local DP (MLDP) to obfuscate texts word-by-word
in an efficient manner. We utilize the geometric
version of the mechanism to rewrite texts with a
word-level privacy budget of ε ∈ {0.5, 1, 3}, fol-
lowing values chosen in the original work.

DP-PROMPT (Utpala et al., 2023). The DP-
PROMPT mechanism uses a temperature sampling
mechanism during token sampling in text gener-
ation. We choose the FLAN-T5-LARGE model
(Chung et al., 2022) as the underlying LM, and
clip the logits to the range of (-95, 8)2, which are
then normalized to the range of [0, 1]. Choos-
ing temperature values of T ∈ {1.75, 1.5, 1.25},
thus resulting in per-token privacy budgets of ε ∈
{1.14, 1.3, 1.6}3, respectively.

DP-BART (Igamberdiev and Habernal, 2023).
The DP-BART mechanism rewrites texts on the
document-level by adding DP noise to encoder
representations in a BART model (Lewis et al.,
2020). We use the base version of the mecha-
nism (DP-BART-CLV) with a BART-BASE model
and clipping range (-0.1, 0.1). For document-
level privatization, we choose the budgets of ε ∈
{500, 1000, 1500}, following the original work.

A note on comparability. We caution that the
main focus of our experiments is to measure the
effect of dataset size on privacy and utility metrics,
and not to draw conclusions on the comparative
effectiveness of the selected DP mechanisms. The
latter would require a careful selection of privacy

1
https://business.yelp.com/data/resources/open-dataset/

2Based on an empirical measurement of 100 randomly selected dataset
texts, taking (logit_mean, logit_mean + 4 · logit_std).

3Following ε = 2∆
T , where the sensitivity (∆) here is 1.

budget parameters to ensure proper comparability
between the three mechanisms operating on differ-
ent linguistic levels and therefore offering differing
privacy guarantees. Instead, we follow the ε values
chosen by the original works, allowing for an anal-
ysis on the observable effects within a mechanism
across dataset sizes and privacy budgets.

3.3 Experimental Procedure
First, each dataset is DP rewritten using the
three chosen mechanisms and their privacy bud-
gets, yielding nine private counterparts per dataset.
These are then used to create five splits of various
sizes: 10%, 25%, 50%, 75%, and 100%. This re-
sults in a total of 45 private “datasets” per original
dataset, or 180 datasets in total.

Using these datasets, we first perform training
and evaluation for the associated utility task for
each dataset. To do this, we train a DEBERTA-V3-
BASE (He et al., 2021) model on a 90% training
split, and evaluate the trained model’s performance
on the 10% val split. For utility tasks, we report
the micro-F1 score from this evaluation.

The privacy experiments are conducted in a sim-
ilar manner, where a DEBERTA-V3-BASE model is
now trained as an adversarial classification model
(2-class gender inference or 50-class author identi-
fication). Following previous work, we perform the
privacy tests in both the static and adaptive settings
(Weggenmann et al., 2022; Mattern et al., 2022; Ut-
pala et al., 2023), where the static adversary trains
on the original (non-privatized) texts and is eval-
uated on the private val split, while the adaptive
adversary trains on the private train split.

In addition to reporting the micro-F1 of these
evaluations, we also calculate the relative gain (γ),
which represents the trade-off between the paired
utility and privacy tasks. For the calculation of γ),
we define Po, Uo to represent the baseline (non-
rewritten) privacy and utility scores, respectively,
and Pr, Ur be the scores observed on the priva-
tized datasets. With this, relative gain is defined
as γ = (Ur/Uo) − (Pr/Po), where higher scores
are better. Note that we calculate the change in
micro-F1 over majority-class guessing on the vali-
dation set for utility tasks, denoted MGu (utility),
as the Trustpilot and Yelp datasets sentiment analy-
sis tasks are imbalanced (positive negative); thus
RG = Ur−MGu

Uo−MGu
− Pr

Po
. The exact procedure for

calculating γ values is outlined in Appendix A.
We also design a indistinguishability test to mea-

sure the effect of dataset size on lending plausible
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AG News MNLI
1-DIFFRACTOR DP-PROMPT DP-BART 1-DIFFRACTOR DP-PROMPT DP-BART

Split % Baseline 0.5 1 3 1.14 1.3 1.6 500 1000 1500 Baseline 0.5 1 3 1.14 1.3 1.6 500 1000 1500
0.1 92.3 88.8 90.3 91.1 91.2 91.0 91.0 53.0 81.0 87.1 87.1 75.9 80.1 85.0 81.7 81.9 82.4 60.9 67.6 69.4
0.25 92.4 88.5 89.8 91.2 90.3 90.6 90.8 55.6 81.4 86.0 88.0 79.1 82.0 86.7 83.4 83.6 84.0 63.2 70.0 71.4
0.5 93.6 90.2 91.3 92.9 91.3 91.5 91.2 56.8 83.0 86.6 89.0 80.0 82.9 87.5 84.3 84.4 84.7 64.9 71.3 73.1
0.75 93.9 91.5 92.4 93.2 91.9 92.1 92.2 57.0 83.9 87.6 89.4 81.2 83.8 87.6 84.6 85.0 85.2 66.5 72.6 74.1

1 94.5 91.8 92.8 93.9 92.3 92.5 92.6 57.7 84.1 87.6 89.4 81.6 83.9 87.8 84.9 85.2 85.3 66.4 72.9 74.4

Table 1: Utility Results for AG News and MNLI. The scores represent the average micro-F1 score of the respective
experiment over three runs. For readability, the standard deviations are not reported; however, any average with a
standard deviation in the range (0.3, 0.8] is italicized (the highest recorded deviation was 0.8).

Trustpilot Yelp
1-DIFFRACTOR DP-PROMPT DP-BART 1-DIFFRACTOR DP-PROMPT DP-BART

Split % Baseline 0.5 1 3 1.14 1.3 1.6 500 1000 1500 Baseline 0.5 1 3 1.14 1.3 1.6 500 1000 1500
Util ↑ 99.3 97.0 98.4 98.5 98.1 98.5 98.5 94.0 97.8 98.6 97.4 94.6 94.7 96.8 85.1 89.4 91.7 82.1 89.1 91.6

Priv (s) ↓ 72.8 65.1 69.1 72.1 69.5 68.8 69.5 59.1 60.7 62.4 8.1 7.7 7.7 7.2 4.1 3.2 3.6 6.3 7.7 6.8
0.1 Priv (a) ↓ 72.8 64.5 62.4 67.9 68.1 68.3 67.3 59.5 62.0 64.5 8.1 5.0 6.2 6.6 3.5 3.6 4.4 4.7 5.7 7.7

γ (s) ↑ - -0.68 -0.26 -0.26 -0.36 0.28 -0.22 -1.61 -0.34 -0.10 - -0.33 -0.32 0.03 -1.18 -0.26 -0.22 -1.86 -1.08 -0.63
γ (a) ↑ - -0.67 -0.16 -0.20 -0.34 -0.21 -0.20 -1.62 -0.36 -0.12 - 0.00 -0.13 0.10 -1.11 -0.53 -0.32 -1.66 -0.83 -0.74
NN ↑ - 204 33 1 521 474 401 5229 1068 520 - 1 1 1 53 59 49 590 121 55
Util ↑ 99.7 98.3 99.1 99.6 98.4 96.8 98.7 94.9 96.5 98.8 97.5 92.8 94.2 96.7 90.2 93.4 90.8 80.3 90.8 93.1

Priv (s) ↓ 73.9 67.2 70.0 73.5 69.7 69.5 70.6 61.0 62.1 62.5 22.5 12.7 14.5 18.5 8.5 7.1 7.6 6.9 5.8 8.2
0.25 Priv (a) ↓ 73.9 65.5 67.8 73.6 70.1 70.6 69.4 60.0 63.2 63.6 22.5 6.5 7.0 11.1 6.2 5.9 6.4 4.7 5.7 6.3

γ (s) ↑ - -0.33 -0.13 -0.02 -0.33 -0.73 -0.26 -1.27 -0.80 -0.12 - -0.09 -0.02 0.09 -0.20 2.68 -0.09 -1.24 -0.01 0.14
γ (a) ↑ - -0.31 -0.10 -0.03 -0.34 -0.83 -0.24 -1.26 -0.82 -0.13 - 0.18 0.32 0.42 -0.10 0.28 -0.04 -1.14 -0.01 0.23
NN ↑ - 347 58 2 744 658 577 6546 1662 855 - 2 1 1 147 138 129 1446 316 130
Util ↑ 99.7 98.0 97.1 99.6 98.7 98.7 98.8 94.2 98.3 98.7 98.8 95.8 97.7 98.6 92.5 92.3 92.2 81.3 92.1 94.1

Priv (s) ↓ 74.7 66.9 69.7 73.5 70.6 71.2 71.1 60.9 60.7 60.9 45.6 14.3 16.7 29.6 14.1 15.5 15.7 7.3 9.6 8.2
0.5 Priv (a) ↓ 74.7 63.7 68.3 73.3 63.4 65.7 70.0 60.4 60.1 63.4 45.6 14.7 19.2 20.8 8.1 9.2 8.9 6.3 9.4 12.6

γ (s) ↑ - -0.42 -0.74 -0.01 -0.25 0.05 -0.23 -1.52 -0.25 -0.12 - 0.40 0.53 0.33 0.09 0.61 0.03 -0.82 0.15 0.37
γ (a) ↑ - -0.38 -0.72 -0.01 -0.16 -0.19 -0.22 -1.51 -0.24 -0.16 - 0.39 0.47 0.52 0.22 0.18 0.18 -0.80 0.16 0.28
NN ↑ - 478 84 2 893 801 710 7309 2122 1156 - 3 1 1 309 270 257 2916 621 272
Util ↑ 99.7 98.2 99.0 98.8 98.7 98.7 98.8 93.4 98.3 98.8 98.4 96.5 97.3 98.4 92.9 93.2 92.6 83.7 92.7 95.2

Priv (s) ↓ 74.4 66.8 69.8 73.8 70.6 70.9 71.0 61.4 61.9 62.2 43.7 8.8 11.8 22.6 12.5 12.4 13.2 6.4 7.4 7.6
0.75 Priv (a) ↓ 74.4 63.8 71.0 69.6 66.4 69.2 71.9 59.8 59.8 66.3 43.7 21.9 27.1 35.1 12.9 15.9 16.8 7.2 8.3 13.7

γ (s) ↑ - -0.37 -0.16 -0.28 -0.27 0.05 -0.24 -1.82 -0.28 -0.12 - 0.60 0.62 0.48 0.15 0.79 0.10 -0.66 0.25 0.50
γ (a) ↑ - -0.33 -0.18 -0.22 -0.21 -0.25 -0.25 -1.80 -0.25 -0.18 - 0.30 0.27 0.20 0.14 0.10 0.02 -0.67 0.22 0.36
NN ↑ - 572 106 3 983 881 791 7660 2405 1358 - 4 1 1 407 364 348 3989 911 398
Util ↑ 99.7 96.1 99.2 99.6 98.7 98.8 98.7 94.4 98.4 98.7 98.5 96.6 97.6 98.4 92.7 92.6 93.1 83.2 92.7 94.9

Priv (s) ↓ 75.2 67.0 70.3 74.0 71.0 71.1 71.1 61.1 62.0 62.5 63.5 12.0 14.6 24.5 21.0 21.5 21.3 7.2 10.7 11.5
1 Priv (a) ↓ 75.2 63.5 63.7 69.3 69.4 69.9 70.4 60.1 62.1 70.4 63.5 29.3 44.9 52.8 19.6 20.7 21.4 8.6 17.1 21.9

γ (s) ↑ - -0.99 -0.09 -0.01 -0.25 0.10 -0.25 -1.42 -0.22 -0.14 - 0.62 0.68 0.60 0.08 0.64 0.11 -0.67 0.24 0.45
γ (a) ↑ - -0.94 0.00 0.05 -0.23 -0.20 -0.24 -1.41 -0.22 -0.24 - 0.34 0.20 0.16 0.10 0.07 0.11 -0.70 0.14 0.29
NN ↑ - 641 123 3 1045 937 845 7881 2607 1508 - 5 1 1 486 441 418 4695 1143 516

Table 2: Utility and Privacy Results for Trustpilot and Yelp. The best relative gains (γ) for each (mechanism, ε) pair
are bolded, for both the static (s) and adaptive (a) settings. Italicized results denote standard deviations above 0.3.

deniability via nearest neighbors (NN). For each
private dataset, we iteratively swap a private text
with its original counterpart, then run a nearest-
neighbor search to measure at which k the original
text is the k-th nearest neighbor to the private text.
A higher average k value would thus imply that the
private counterparts are relatively indistinguishable
from the originals. For performance reasons, we
limit the top-k search to 10,000; thus, a score of
10,000 would represent the best privacy.

All results are found in Table 1 for AG News
and MNLI, and Table 2 for Trustpilot and Yelp. We
also plot the average trade-off (γ) value over all
datasets, for each dataset split % in Figure 1.

Reproducibility. We note that for all experi-
ments, a single-GPU server equipped with a 48GB
Nvidia RTX A6000 GPU was utilized, along with
128GB of main memory. The entirety of the work
required to complete the experiments described
took approximately 2.5 months of GPU time on this

system. All training procedures use HuggingFace
Trainer default parameters, and they are repeated
three times for each dataset on different shuffles of
the train split. For all sampling procedures through-
out this work, namely dataset split preparation and
train/val splitting, a random seed of 42 was used.

3.4 Scaling Up with Twitter

Beyond the Trustpilot and Yelp datasets, we sought
to validate our findings on a larger-scale dataset,
as the largest size dataset (Trustpilot) is limited to
360k reviews. To the best of the authors’ knowl-
edge, there does not exist a publicly available
dataset that allows for the two-sided experiments
we conduct in this work, namely with an associated
utility and privacy task. Therefore, we constructed
a new dataset based on an existing very large-scale
corpus of Tweets (Enryu, 2023).

We decided to focus on the authorship identi-
fication adversarial task, as with the Yelp dataset.
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Figure 1: A visualization of average privacy-utility
trade-offs (γ) per split percentage. For each mechanism-
ε pair, we average all trade-offs (both static and adaptive,
over all three utilized privacy evaluation datasets).

To construct a fitting dataset from the Twitter cor-
pus, which contains around 88 million tweets, we
first iterated through the corpus and enumerated
the number of tweets authored by each unique user
(by ID). Before this, however, we removed tweets
detected not to be in English4. Then, we kept only
the tweets from the top 1000 users, each of whom
has 1001 tweets attributed to them (the maximum
of any author in the dataset). This resulted in a
dataset of just over one million tweets, which we
give the title Twitter_1Kx1K5.

To connect this dataset with a utility task, we
assign a sentiment score to each tweet. We use the
simple Vader SENTIMENTINTENSITYANALYZER

from NLTK (Bird et al., 2009) to assign one of
positive (1), neutral (0), or negative (-1) to a
tweet. We use the compound score calculated
by Vader, given on the scale of -1 to 1, and fol-
low the guidelines of the original implementation6,
namely scores above 0.5 as positive, below -0.5
as negative, and neutral for the rest. The resulting
sentiments were distributed in roughly a 50/33/17
positive/neutral/negative split. Thus, we allow for
a three-class sentiment classification task. The
dataset is released with a CC-BY-4.0 license, mir-
roring the original corpus from Enryu (2023).

Following the dataset creation step, we followed
the same privatization procedure with the Twitter
data as was performed for Trustpilot and Yelp, us-
ing the three chosen DP mechanisms. Note that

4Using LINGUA-PY (https://github.com/pemistahl/lingua-py)
5The dataset is publicly available at https://huggingface.co/

datasets/sjmeis/Twitter_1Kx1K
6
https://github.com/cjhutto/vaderSentiment

in the case of DP-BART, we limit the dataset to
only the top 100 authors (i.e., a 10% split), due
to the considerable computation hours required to
run DP-BART. We call this the Twitter_100x1K
subset. Following privatization, we followed the
same training and metric calculation procedures as
with Trustpilot and Yelp. The results are found in
Table 3. Additionally, the detailed calculations for
the γ metric is included as part of Appendix A.

4 Regression Analysis

Building on the results in Tables 2 and 3, we con-
duct a regression analysis to quantify the effect of
dataset size on the DP text rewriting, along with
other associated variables. As a target variable, i.e.,
the dependent variable, we choose to predict rela-
tive gain (γ), as this gives an overall perspective on
the effectiveness of DP text rewriting. In particular,
we set the target to be the average γ, namely the
average between the static and adaptive γ scores.

To predict the γ score, we define a number of
dependent variables, which are based on our exper-
imental setup and results:

• Dataset size: we use the size of the corre-
sponding datasets in all of our experimental
runs, considering the split size based on the
split % of the overall dataset. Due to the very
disparate range of dataset sizes, we take the
natural logarithm of this value.

• Average number of words: we assume that
an important quantity in the prediction of rel-
ative gains is not only the size of the dataset,
but also the average text length within the
dataset. As such, we calculate the average
word length of each dataset split, using the
NLTK.WORD_TOKENIZE function.

• Mechanism type: we convert our three se-
lected mechanisms into a categorical vari-
able, specifically 1-DIFFRACTOR=1, DP-
PROMPT=2, and DP-BART=3. While we re-
alize that the intricacies of different DP mech-
anisms are much more complex, we justify
this decision by considering the lexical level
on which these mechanisms operate, i.e., rang-
ing 1=word-level to 3=document-level.

• ε: as with mechanism, we also convert the
three tested ε values per mechanism into a cat-
egorical (1, 2, 3) variable, as the precise values
are mechanism-specific and not directly com-
parable. As such, we interpret this categorical
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Twitter
1-DIFFRACTOR DP-PROMPT

Split % Baseline 0.5 1 3 1.14 1.3 1.6
Util ↑ 91.2 80.9 84.1 89.4 49.8 51.1 52.1

Priv (s) ↓ 2.8 2.0 2.1 2.5 0.2 0.1 0.5
0.1 Priv (a) ↓ 2.8 2.3 2.3 2.3 0.1 0.1 0.2

γ (s) ↑ - 0.19 0.17 0.11 0.49 0.51 0.40
γ (a) ↑ - 0.07 0.12 0.18 0.51 0.52 0.51
NN ↑ - 4983 4986 4991 4970 4992 5002
Util ↑ 95.1 84.2 87.4 93.4 50.4 50.7 51.8

Priv (s) ↓ 10.6 6.6 7.4 8.3 0.2 0.4 1.0
0.25 Priv (a) ↓ 10.6 8.7 8.6 9.8 0.1 0.1 0.3

γ (s) ↑ - 0.26 0.22 0.20 0.51 0.49 0.45
γ (a) ↑ - 0.06 0.11 0.06 0.52 0.52 0.51
NN ↑ - 7989 7988 8009 7968 8010 7994
Util ↑ 96.3 85.3 88.5 94.4 49.9 50.4 52.4

Priv (s) ↓ 26.8 15.4 16.5 18.4 0.3 0.5 1.4
0.5 Priv (a) ↓ 26.8 18.6 22.6 24.1 0.1 0.1 0.5

γ (s) ↑ - 0.31 0.30 0.29 0.51 0.50 0.49
γ (a) ↑ - 0.19 0.08 0.08 0.51 0.52 0.52
NN ↑ - 8994 9000 9003 8987 9013 9003
Util ↑ 96.9 85.7 89.1 95.0 50.2 50.5 52.2

Priv (s) ↓ 40.1 21.8 23.8 26.8 0.3 0.6 1.7
0.75 Priv (a) ↓ 40.1 29.8 30.5 32.2 0.1 0.1 0.6

γ (s) ↑ - 0.34 0.32 0.31 0.51 0.50 0.49
γ (a) ↑ - 0.14 0.16 0.18 0.51 0.51 0.52
NN ↑ - 9330 9334 9338 9322 9341 9332
Util ↑ 97.3 86.3 89.5 95.4 50.0 50.6 52.3

Priv (s) ↓ 45.8 23.9 26.0 29.2 0.3 0.6 1.8
1 Priv (a) ↓ 45.8 36.0 34.8 38.0 0.1 0.1 0.7

γ (s) ↑ - 0.36 0.35 0.34 0.51 0.50 0.50
γ (a) ↑ - 0.10 0.16 0.15 0.51 0.51 0.52
NN ↑ - 9498 9502 9504 9495 9502 9502

Twitter
DP-BART

Split % Baseline 500 1000 1500
Util ↑ 59.5 49.8 50.9 54.8

Priv (s) ↓ 2.8 1.1 1.1 2.0
0.1 Priv (a) ↓ 2.8 1.2 2.3 1.7

γ (s) ↑ - 0.44 0.46 0.20
γ (a) ↑ - 0.42 0.05 0.33
NN ↑ - 0.42 0.05 0.33
Util ↑ 77.0 54.2 54.8 53.8

Priv (s) ↓ 10.6 1.7 1.2 1.9
0.25 Priv (a) ↓ 10.6 2.2 2.3 2.9

γ (s) ↑ - 0.54 0.59 0.52
γ (a) ↑ - 0.49 0.49 0.43
NN ↑ - 7997 8012 8003
Util ↑ 84.8 55.1 51.8 54.2

Priv (s) ↓ 26.8 1.5 1.5 1.5
0.5 Priv (a) ↓ 26.8 2.7 2.9 3.5

γ (s) ↑ - 0.59 0.55 0.58
γ (a) ↑ - 0.55 0.50 0.51
NN ↑ - 8986 9003 8993
Util ↑ 88.7 54.3 53.5 53.3

Priv (s) ↓ 40.1 1.5 1.3 1.2
0.75 Priv (a) ↓ 40.1 3.5 3.4 3.5

γ (s) ↑ - 0.57 0.57 0.57
γ (a) ↑ - 0.52 0.52 0.51
NN ↑ - 9326 9327 9333
Util ↑ 90.6 53.5 53.6 53.4

Priv (s) ↓ 45.8 1.3 1.4 1.7
1 Priv (a) ↓ 45.8 4.0 3.9 4.0

γ (s) ↑ - 0.56 0.56 0.55
γ (a) ↑ - 0.50 0.50 0.50
NN ↑ - 9493 9496 9501

Table 3: Utility and Privacy Results for Twitter. On the left-hand side are presented the results from 1-DIFFRACTOR
and DP-PROMPT on the Twitter_1Kx1K dataset, whereas the right-hand side presents the results from DP-BART
on the smaller Twitter_100x1K subset. The best relative gains (γ) for each (mechanism, ε) pair are bolded, for both
the static (s) and adaptive (a) settings. Italicized results denote standard deviations above 0.3.

variable as low, medium, and high privacy bud-
gets, or, from strictest to least strict privacy.

• Utility labels: this represents a simple count
of the support of the label set of the associ-
ated utility task, as we presume this has some
impact on the relative gain.

• Privacy labels: similarly, we include the sup-
port of the privacy labels for the associated
(adversarial) privacy task. We take the natural
logarithm of this value.

With these, we run a multivariate Ordinary Least
Squares regression using the STATSMODELS li-
brary, with all default settings. Summary statistics
of the fitted OLS model are provided in Table 4.

4.1 Post-hoc Tests

Following the OLS regression, we conduct a deeper
analysis of the results, asking the question of
whether there exists any significant differences be-
tween dataset sizes, beyond the previous finding

R2 = 0.546 coef. std err t P>|t|

constant -8.2040 1.282 -6.399 0.000
size (log) 0.1359 0.039 3.497 0.001

avg. # words 0.0126 0.002 5.775 0.000
mechanism -0.1827 0.045 -4.039 0.000

ε 0.1743 0.039 4.449 0.000
# util. labels 2.8812 0.454 6.350 0.000

# priv. labels (log) -0.3209 0.072 -4.465 0.000

Table 4: MLR to predict the average γ score. In general,
R2 measures the goodness of the fit, ranging from 0 to
1. All predictors are statistically significant.

that there exists some significant relationship be-
tween dataset size and relative gains.

To prepare this test, we first bin the (log) size
variable into five equal bins calculated from the
min and max observed values (using PANDAS.CUT),
resulting in the following bins:
{1: (7.698, 8.922] < 2: (8.922, 10.145] < 3: (10.145, 11.369]

< 4: (11.369, 12.593] < 5: (12.593, 13.817]}

We convert these bins into a categorical variable,
namely 1 for the lowest bin and 5 for the highest.
Following this, we run a Kruskal-Wallis analysis
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of variance (using SCIPY.STATS), which results in
a p-value of 0.00087, thus allowing us to reject the
null hypothesis that the population medians of all
size groups are equal. Since we do not make any
assumption of normality, we then proceed to run a
Dunn’s post-hoc test (Dunn, 1964), which informs
us of any significant differences between the cate-
gorical size variables. The results of this test are
given in Table 5, which finds several significant
pairwise relations between binned dataset sizes.

1 2 3 4 5
1 1.0000 0.0000 0.1338 0.3060 0.0148
2 0.0000 1.0000 0.0231 0.0001 0.0593
3 0.1338 0.0231 1.0000 0.4332 0.4987
4 0.3060 0.0001 0.4332 1.0000 0.0660
5 0.0148 0.0593 0.4988 0.0660 1.0000

Table 5: Dunn’s post-hoc test results. Bolded p-values
indicate statistically significant results (p < 0.05).

5 Discussion

We reflect on the main findings of our experiments
and discuss their implications for DP NLP.

Dataset size is important. Studying the results
of our experiments, we find that dataset size is a
very important factor when judging the efficacy of
DP text rewriting, both from a utility and privacy
standpoint. Looking to Table 2, one can see that
given a single mechanism, the “best-performing”
configuration, i.e., in terms of relative gains, can
vary depending on dataset size and task. As an
example, in the Yelp task, DP-BART only begins
to exhibit positive relative gains at larger dataset
split sizes, and generally speaking, all three tested
mechanisms only begin to demonstrate positive
relative gains at or above the 50% split mark.

Looking to the regression results, we find that
dataset size is indeed a significant factor in predict-
ing the expected relative gain for DP text rewriting.
In particular, our fitted model suggests a relatively
strong positive relationship between dataset size
and relative gain, namely that with higher dataset
sizes, we can expect average relative gains to rise.
The post-hoc tests provide a deeper view into this
significant relationship, highlighting further evi-
dence of differences in observed trade-offs when
the size of the data to be privatized varies.

Beyond this, an important finding lies in the fact
that given different privacy budgets with the same
mechanism, the most favorable trade-offs may not
always be with the same dataset size. This sup-

ports the idea that more dynamic testing in terms
of dataset size should be performed to provide a
more holistic evaluation picture. Such testing is
especially needed considering the task-specific dif-
ferences that may be present (e.g., Trustpilot vs.
Yelp), where the factors of adversarial task, dataset
size, and mechanism effects can all interplay in a
complex way. This is discussed next.

What factors matter for favorable privacy-
utility trade-offs? Our regression analysis sheds
light on this matter, as well as highlights remaining
gaps in understanding. Importantly, we find that
all included independent variables in our analysis
prove to be significant to some degree in predict-
ing relative gains from DP text rewriting. This not
only includes dataset size, as discussed above, but
also the makeup of the dataset, including average
text length, the associated utility task, and even the
nature of adversarial risk related to the dataset.

Beyond this, we find that the choice of DP mech-
anism is also a significant factor, yet the coeffi-
cient of mechanism implies that as we approach
document-level methods (e.g., DP-BART), we
might expect average relative gains to decrease.
On the other hand, we observe from the empiri-
cal results that DP-BART on average experiences
the largest absolute improvements as dataset size
increases; however this comes with the caveat of of-
ten starting at a much lower point. We therefore ob-
serve the effect of document-level methods, where
significant noise leads to a poor starting point, but
with more data, may still exhibit utility. These
are important findings, as the results suggest that
mechanism specifics are significant in influencing
expected trade-offs, providing motivation for novel
methods that operate on diverse linguistic units.

An interesting insight comes with the regression
results related to ε, as the coefficient suggests that
as ε increases (i.e., the privacy guarantees become
weaker), the average relative gains tend to increase.
This may initially seem like a discouraging result
for the field of DP text rewriting, yet one must con-
sider that along this line, there exists some balance
between chosen ε and (reasonably) positive relative
gain. Nevertheless, the true relationship between
ε and the privacy-utility trade-off most likely runs
much deeper, and also is certainly intertwined with
that of mechanism and other variables.

Despite the rich insights provided by conduct-
ing a regression analysis on the experiment results,
we learn that there still exist gaps in understand-
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ing what exactly influences the expected outcomes
from DP text rewriting. This is signified by the R2

score of our fitted model (0.546), which suggests a
good fit, yet one with a relatively high amount of
variance still unexplained. Therefore, this implies
that there still exist potentially numerous other fac-
tors important to the picture, which we simply did
not include as variables in fitting the model. Ad-
ditionally, some correlations (such as increasing ε
leading to increasing γ) must be tested more rig-
orously at scale. Finally, the effect of task setup,
i.e., the number of utility and privacy “labels”, is
only surfaced but merits further investigation. Such
results provides motivation for future research into
achieving a better understanding of the factors in-
fluencing local DP text rewriting outcomes.

There is utility in DP. A promising result, which
can be extracted from both Tables 1 and 2, is that
as dataset size grows larger, downstream utility of
DP privatized text also generally increases. While
this would generally be assumed outside of the
DP context, these findings show promise that there
is indeed utility to be gained from privatized text,
and that these gains can become more apparent
with larger dataset sizes. In particular, Table 1
demonstrates that as more data is available, DP text
outpaces non-private text in “closing the gap” to the
highest attainable utility. Albeit, this is due in part
to the lower starting point of privatized data, yet
the findings here show that using smaller dataset
sizes may in fact be showing a lower bound of
downstream utility for DP rewritten text.

DP rewriting at scale? An outlook. The above
considerations lead to a very important question:
can DP text rewriting, or more generally DP text
privatization, make sense at scale? Such a discus-
sion is crucial in weighing the potential benefits of
DP text privatization in practical settings.

In favor of the affirmative answer to this ques-
tion are several findings from this work. Firstly,
we can observe that (significant) positive relative
gains are possible in certain scenarios, particularly
in those with larger dataset sizes. Beyond this, the
NN metric clearly shows the indistinguishability in
a crowd effect – the larger the dataset, the better
protected a text becomes from its original. Finally,
as dataset size grows, the typical DP utility hit be-
comes less apparent, and in some (mechanism, ε)
scenarios, one can achieve utility quite close to the
non-private baselines (see AG News or Trustpilot,
for example). This result is supported by the signifi-

cance found in our regression model for increasing
dataset size as a factor for higher relative gains.
These findings shed light on the promise of DP text
rewriting in practice and at scale.

However, there also come a few important con-
siderations to this question. The first is a practical
caveat: since the mechanisms tested in this work
operate with local DP, having larger dataset sizes
would imply a data processor who is capable of
(and trusted to) process larger data volumes, as it is
unlikely that single users would possess such data.
Secondly, it is still unclear what is the upper bound
of the effects observed in this work, and even larger-
scale tests are required to continue investigating the
effect of dataset size. For this, however, massive
datasets would be needed, and furthermore, ones
that can be reasonably attributed to some sensitive
or adversarial scenario. This becomes crucial going
forward, i.e., establishing high-quality and practi-
cal benchmarks for testing DP text privatization.

On this note, our findings point to an important
consideration in the design of privacy benchmark-
ing DP text rewriting. In our regression analysis,
we find that the nature of both the utility and pri-
vacy tasks (as proxied by the number of associated
labels) significantly impacts the quantification of
relative gain. While further tests on a wider variety
of downstream tasks would be needed to validate
the regression coefficients, we nevertheless learn of
the influence that evaluation setup decisions may
have on the measurement (and eventual perception)
of the effectiveness of DP text rewriting.

6 Conclusion

We investigate the effect of dataset size in DP text
rewriting, using five datasets to evaluate both util-
ity and privacy in various rewriting scenarios. Our
results suggest that while larger dataset sizes are
not a silver bullet for effective text privatization,
they generally lead to more favorable trade-offs.
This, however, is mechanism- and task-specific,
showcasing the complexity of local DP text rewrit-
ing, and of DP NLP in general. Furthermore, we
empirically demonstrate the importance of varying
dataset size in evaluation procedures, showing that
measured trade-offs may differ based on the size of
the utilized datasets. In this, we provide an outlook
for DP text privatization and evaluation at scale,
proposing that with further (large-scale) testing,
proposed techniques from the literature may begin
to realize their potential in practice.
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Limitations

A primary limitation with our work comes with
the definition of “large-scale” datasets. While we
utilized datasets that were known to us, publicly
available, and reasonable to use within the con-
fines of our resources, we are aware that the cho-
sen datasets may still be considered small in the
light of “big data”. However, we posit that the
findings resulting from our experiments provide a
starting point for even larger-scale experiments, es-
pecially in comparison to previous DP NLP works
on smaller dataset samples.

Another limitation is one common to many re-
lated works: the evaluation of privacy. We chose
a combination of attribute-based empirical privacy
(mitigation of inference attacks), as well as a de-
signed indistinguishability test. We choose these in
order to follow the evaluation procedure of previ-
ous works, especially in light of no standard bench-
mark for DP text rewriting. As such, the results we
provide are a proxy for privacy. Our relative gain
(γ) calculations are therefore based on this proxy.

Finally, as showcased by our results, the effect
of DP rewriting at scale can be significantly differ-
ent from one mechanism to another. Our choice of
inherently different rewriting mechanisms is a tes-
tament to that fact, yet we do not analyze in detail
the potential technical origins of these differences,
for example, in light of word- versus document-
level rewriting. Future works could supplement
our findings with such an analysis, particularly by
including more than our chosen three mechanisms.

Ethics Statement

As our work is focused in the field of privacy-
preserving NLP, it places itself directly parallel to
ethical and responsible NLP and AI. We hope that
with the findings of our work, we may contribute
to the body of knowledge of how to conduct (and
evaluate) NLP in a privacy-preserving manner.

One ethical consideration comes with the simula-
tion of adversaries in our privacy experiments. This
is performed using publicly available datasets not
originally intended for these adversarial purposes.
Nevertheless, such considerations are mitigated

since the datasets used (1) are long-standing in the
research sphere, (2) contain no PII, and (3) have
been used similarly by previous DP NLP works.
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A Relative Gain Calculation

For the Trustpilot dataset, the complete dataset
is heavily imbalanced towards positive reviews
(93.07%), yielding an overall MGu of 96.41%.
Accordingly, for the val set on all dataset splits, we
calculate:

• 10%: MGu = 96.36%

• 25%: MGu = 96.38%

• 50%: MGu = 96.47%

• 75%: MGu = 96.54%

• 100%: MGu = 96.41%

Similarly, for the Yelp dataset, the reviews are
primarily positive (78.74%), for an overall MGu

of 88.11%. This yields the following values, calcu-
lated from the 10% val split:

• 10%: MGu = 90.05%

• 25%: MGu = 88.60%

• 50%: MGu = 88.30%

• 75%: MGu = 88.66%

• 100%: MGu = 88.69%

Finally, for the Twitter dataset, the tweets are
primarily positive (49.48%), for an overall MGu

of 66.20%. This yields the following values, calcu-
lated from the 10% val split:

• 10%: MGu = 67.07%

• 25%: MGu = 67.06%

• 50%: MGu = 66.95%

• 75%: MGu = 66.86%

• 100%: MGu = 67.14%

We also calculate the values for the smaller sam-
ple used for DP-BART:

• 10%: MGu = 65.99%

• 25%: MGu = 68.17%

• 50%: MGu = 67.16%

• 75%: MGu = 67.42%

• 100%: MGu = 67.27%

These values are used for their respective dataset
splits in the γ calculations for Tables 2 and 3.
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