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Abstract

Large language models (LLMs) have signifi-
cantly advanced generative applications in nat-
ural language processing (NLP). Recent trends
in model architectures revolve around efficient
variants of transformers or state-space/gated-
recurrent models (SSMs, GRMs). However,
prevailing SSM/GRM-based methods often
emulate only a single attention head, poten-
tially limiting their expressiveness. In this
work, we propose MossNet, a novel mixture-of-
state-space-experts architecture that emulates
a linear multi-head attention (MHA). MossNet
leverages a mixture-of-experts (MoE) imple-
mentation not only in channel-mixing multi-
layered perceptron (MLP) blocks but also in
the time-mixing SSM kernels to realize multi-
ple “attention heads.” Extensive experiments
on language modeling and downstream eval-
uations show that MossNet outperforms both
transformer- and SSM-based architectures of
similar model size and data budgets. Larger
variants of MossNet, trained on trillions of to-
kens, further confirm its scalability and superior
performance. In addition, real-device profil-
ing on a Samsung Galaxy S24 Ultra and an
Nvidia A100 GPU demonstrate favorable run-
time speed and resource usage compared to
similarly sized baselines. Our results suggest
that MossNet is a compelling new direction
for efficient, high-performing recurrent LLM
architectures.

1 Introduction

Rapid advancements in training and deployment
of foundation models have revolutionized various
generative applications, including the development
of sophisticated chatbots (OpenAl, 2024a), gen-
eration of video (OpenAl, 2024b), coding assis-
tance (Roziere et al., 2023), and robotic manip-
ulation (Brohan et al., 2023). With an increasing
number of LLM architectures being proposed, such
as transformers (Vaswani et al., 2017; Brown et al.,
2020), SSMs (Gu et al., 2021, 2022), and linear

GRMs (Katsch, 2023; Qin et al., 2024)!, the field of
NLP continues to evolve at a remarkable pace. The
continuous development of these models presents
both opportunities and challenges.

1.1 Challenges and Motivation

Transformers, introduced by Vaswani et al. (2017),
have been particularly influential in NLP due to
their success in language modeling. The trans-
former architecture relies on a stack of MHA and
MLP blocks. Despite their effectiveness, trans-
formers face several efficiency challenges, includ-
ing an inability to model outside the context win-
dow (although, recent works attempt to mitigate
this; Munkhdalai et al. 2024), quadratic scaling
of compute, and linear scaling of cache with re-
spect to context length. Efficient variants have
been proposed that attempt to overcome these draw-
backs (Tay et al., 2022). Other recent works aim
to improve efficiency by replacing the MLP block
with a mixture-of-expert (MLP-MoE) block (Fe-
dus et al., 2022; Jiang et al., 2024) or the MHA
block with a mixture-of-attention (MHA-MoA)
block (Zhang et al., 2022). However, these solu-
tions often trade trade performance for efficiency.

SSMs, along with recently proposed GRMs,
present a promising alternative to the transformer
architecture, offering better computational and
memory efficiency due to their inherent recurrent
design. Gu and Dao (2023) introduced Mamba, a
hardware-optimized selective SSM that achieves
high efficiency without sacrificing performance,
thanks to the work-efficient parallel scan algo-
rithm (Blelloch, 1990; Martin and Cundy, 2018).
Recently proposed extensions of the Mamba archi-
tecture, including BlackMamba/MoE-Mamba (An-
thony et al., 2024; Piéro et al., 2024) and
Jamba (Lieber et al., 2024), along with other

! Although SSMs can be considered a specific subset of
GRMs, we distinguish them due to their distinct terminology

in the literature and their basis in state-space theory, encom-
passing both continuous-time systems and their discretization.
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parallely-proposed GRMs (Peng et al., 2023; Sun
et al., 2023; Katsch, 2023; De et al., 2024) match
the performance of transformers while maintaining
the benefits of recurrent models. More importantly,
these works show that such models can emulate
the self-attention operation in their mathematical
parallel formulation, albeit only a single attention
head.

1.2 Our Contribution

Due to the single attention head modeling in ex-
isting SSMs and GRMs, they exhibit many per-
formance drawbacks (Jelassi et al., 2024; Lieber
et al., 2024; Patro and Agneeswaran, 2024). Hence,
in this work, we propose MossNet, a robust and
scalable alternative to current LLM architectures
based on a mixture of state-space experts, address-
ing key challenges, and pushing the boundaries of
what is achievable with SSMs. MossNet attempts
to model an MHA by extending an existing SSM
architecture. More concretely, we summarize the
contributions of this work next.

* We propose MossNet, a novel architecture that
models not just a single self-attention head but
an MHA (specifically, its linear mixture-of-
expert implementation, i.e., MHA-MoA), just
like state-of-the-art transformer models (with
linear attention). We mathematically show
how a mixture of state-space experts models
an MHA.

* We do a fair comparison of recently-proposed
LLM architectures based on perplexity (PPL)
and downstream benchmark performance for
small-scale models. Through rigorous experi-
mentation, we empirically show how MossNet
outperforms other popular transformer- and
SSM/GRM-based baselines.

* We train larger variants of MossNet mod-
els, namely MossNet-8x200M+, and com-
pare it against state-of-the-art baselines of
similar active and total parameter counts.
MossNet-8x200M+, in top-2 mode, outper-
forms Qwen2.5-0.5B by a significant margin,
despite being trained on a fraction of pre-
training tokens.

* We profile the prefill and generation speed of
the proposed MossNet models on a Samsung
Galaxy S24 Ultra smartphone and an Nvidia
A100 GPU. On resource-constrained devices,

MossNet-8x200M+ is significantly faster in
terms of prefill and generation speed along
with memory consumption when compared to
transformers- and SSM-based baselines with
similar active parameter counts.

The rest of the article is organized as follows.
Section 2 details the MossNet architecture along
with the proposed evaluation methods. Section 3
presents the experimental results. Finally, Section 4
concludes the article and Section 5 provides the
limitations.

2 Method

In this section, we discuss the implementation de-
tails of the MossNet model.

2.1 Preliminaries

We now discuss the required background on the
Mamba architecture and the traditional MoE im-
plementation in models like Mixtral-8x7B (Jiang
et al., 2024) and BlackMamba/MoE-Mamba (An-
thony et al., 2024; Pidro et al., 2024).

2.1.1 Mamba

SSMs are a class of sequence models with linear
complexity with respect to the sequence length.
This results in superior efficiency, especially for
long-context input. Multi-dimensional SSMs are
defined using four parameters A, A, B, and C,
and sequence-to-sequence transformations from
x; € RY to y; € RM through an implicit latent
state s; € RY as follows (Gu et al., 2022),

s; = As; + Bx; (D
yi =C's; (2)
where, A € RP*P B e RPXN C ¢ RM*xP

and s} is the derivative of s;. In its discrete param-
eterization,

St = Ast,l + th 3)
yi = Csq 4

where,
A =exp(AA),and 6)

B=(AA) '(exp(AA)-1I)-AB. (6)

One can efficiently compute a linear dynamical
system like this in parallel via a convolution (Gu
et al., 2022) or parallel associative scan (Blelloch,
1990). On the other hand, one can leverage the
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recurrent form presented above for rapid generation
at inference time. Mamba (Gu and Dao, 2023)
makes the discrete parameters input-dependent, i.e.,
At, Bt, and Ct.

Gu and Dao (2023) offer an intuitive interpreta-
tion of these parameters. A controls the transition
dynamics, while B and C control the selectivity
of the input z; into the hidden state h; and the
state into the output y;, respectively. Finally, A
controls the balance between how much to focus
or ignore the current input ;. However, in an
MHA, each head focuses on different aspects of
the relationships between words/tokens. An MHA
thus provides enhanced expressiveness, mitigates
information loss, and improves learning capability
compared to a single attention head. In the same
spirit, we hypothesize that in an SSM, there should
be multiple such parameters that focus on different
parts of the input sequence. For instance, multiple
A’s could focus on the selectivity of the current
input in the context of multiple dependencies in
data.

2.1.2 Mixture of Experts

Primarily, MoEs are synonymous with MLP lay-
ers within a transformer model (we call this the
MLP-MoE block; Fedus et al. 2022). Such mod-
els reduce the inference cost by routing tokens to
specific MLP experts. A router maps the token
representations to experts, where each expert is
simply a standard transformer MLP block. The
expert to whom the token is routed is chosen from
the top-k of the expert probabilities, where k is
a hyperparameter. Mathematically, an input x; is
mapped through the router to a probability distribu-
tion p; (x;), where 7 labels the experts. Upon select-
ing the top-k probabilities, the output of the MoE
layer at time-step t, i.e., y; is a linearly weighted
combination of each expert’s computation on the
input,

> pilxi) Ei(xy) (7
i€top-k
where E; is the i-th MLP expert.

Instead of applying MoE to the, channel-mixing,
MLP layers, Zhang et al. (2022) apply the MoE
to the, time-mixing, MHA blocks (we call this the
MHA-MoA block). This block performs as well as
the traditional MHA, while providing the benefits
of MoE (Fedus et al., 2022). We take inspiration
from the MHA-MOoA block in order to emulate
multiple attention heads in the proposed MossNet
architecture.

y: =

e e e

Sequence
Mixing Block

l:l Linear
Projection

Figure 1: Simplified working schematic of the Moss-
Net block. We implement MoE in channel mixing in-
put, gate, and output projections and time mixing input-
dependent SSM parameters B, C, and A.

2.2 MossNet Architecture

MossNet extends the Mamba architecture (Gu
and Dao, 2023) by implementing MoE in vari-
ous projection operations. Fig. 1 shows a work-
ing schematic of the MossNet block. Concretely,
we implement MoE for the channel-mixing linear
projections (I, G, and O) and the sequence trans-
formation input-dependent SSM parameters B, C,
and A. The input-independent parameter A, along
with B and A, are used to calculate the discrete
SSM parameters A and B. The combined con-
tribution of the mixture of state-space experts is
input to the hardware-optimized SSM parallel scan
kernel (Gu and Dao, 2023).

We follow Fedus et al. (2022) to implement the
router network for the MoE implementation. Con-
cretely, the router (implemented as a feed-forward
layer) calculates the score h(x;) € RVewers  where
Nexperts 1s the number of experts. We normalize the
scores using a softmax operation to obtain p;(x;)
in Eq. (7). For equiproportionate distribution of to-
kens to the experts, we employ the load balancing
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loss (Fedus et al., 2022) and add it to the training
objective with a weight a.

Theorem 1. A mixture-of-expert implementation of
A, B, and C' is equivalent to a mixture-of-expert
implementation of a linear multi-head attention.

Proof. Recall that the state evolution of a discretely
parameterized multi-dimensional selective SSM is

= A;si_1 + Bixy (8)
= C}st. 9

Expanding Eq. (9), we get

C&I]}Aj IIJajlfﬁ

On the other hand, the mixture-of-expert imple-
mentations of By, and C) can be written as,

Nexperts

Bi= Y pm(x)B", (11)
m=1
Nexperts

Ci= ) palx)CT, (12)
n=1

where the experts are functions of input x;. Now,
plugging in Egs. (11) and (12) into Eq. (10), we
obtain the output at time ¢,

Nexpens t
=D Z ()G [ [ Ay ) %
m,n=1 i=1 Jj=1
i —_
pa(xe) | [ A7 "B | %o (13)
j=1
If we define

i
A—1 o3
IIJAj E%,Vi::Xh

Jj=1

ki = pn(xt)

then we can put the expression of the output into a
form of a weighted, linear MHA-MoA:

N, experts N, experts
E g (q/*, k")v E Attention,, ,,
m,n=1 i=1 m,n=1

where we interpret ", k, and v as the m-th head’s
query vector, the n-th head’s key vector, and the
shared value vector for all heads, respectively. Fi-
nally, we remark that the above expression does
not use an output projection since the value vector
is shared and equal to x; for all heads. O

Remark 1 The above expression differs from
the traditional MHA in three aspects: 1) Each
head’s query interacts with the keys from all other
heads, contrasting with the standard approach
where queries interact only with their correspond-
ing keys. 2) The key and query are functions of the
router probabilities, making them non-linear func-
tions of the input. 3) The value vector is shared
among all heads, which eliminates the need for an
output projection.

Remark 2 The above expression differs from
the MHA-MoA implementation by Zhang et al.
(2022) in that the router leverages multiple query
and key experts, instead of multiple query experts
and common key/value experts.

Remark 3 In the above formulation, we neglect
the MoE implementation of A, a function of A and
A, for simplicity. In MossNet, we implement A as
an MoE as well. This would be equivalent to the
above formulation, however, at the cost of a more
complex set of equations.

2.3 Training and Evaluation Setup

To fairly compare different architectures, we train
a suite of models with varying number of pa-
rameters on the same language modeling dataset.
Concretely, we compare the performance of var-
ious architectures. These include three popular
transformer architectures: Pythia (Biderman et al.,
2023), Llama (Touvron et al., 2023), Mistral (Jiang
et al., 2023) and its MoE extension Mixtral (Jiang
et al., 2024), a recently-proposed GRM, i.e., Grif-
fin (De et al., 2024), along with Mamba (Gu and
Dao, 2023) and its extensions: Zamba (Glorioso
et al., 2024) and MoE-Mamba (Anthony et al.,
2024; Piéro et al., 2024). We also add recently-
proposed Mamba2 (Dao and Gu, 2024) to our com-
parisons. We use the same BPE tokenizer for all
models (Black et al., 2022). We train these models
on the Cosmopedia (Ben Allal et al., 2024a) dataset,
which has shown high model performance per pre-
training token. We present additional model hy-
perparameters along with other training details in
Appendix A.
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Figure 2: (a) Perplexity and (b) commonsense average accuracy scaling for fairly-trained models.

Following the fairly-trained setting, we train a
larger model, namely MossNet-8x200M+, on a cus-
tom dataset with 2.8T tokens comprised of a mix-
ture of existing open-source datasets. We describe
the hyperparameter choices and the training recipes
employed for this model in Appendix A. We pro-
vide details of the custom pre-training dataset in
Appendix B.

We compare the performance of the proposed
MossNetsuite of model against baselines on various
downstream benchmarks.

3 Experiments

In this section, we present experimental results
comparing the proposed MossNet suite of models
against fairly-trained and state-of-the-art baselines.

3.1 Downstream Language Modeling
Performance

First, we evaluate the MossNet architecture, along
with other baselines, based on language model-
ing perplexity on the Cosmopedia dataset and
consider eight standard commonsense reasoning
benchmarks: ARC challenge (ARC-c) and ARC
easy (ARC-e, Clark et al. 2018), BoolQ (Clark
et al., 2019), COPA (Roemmele et al., 2011),
HellaSwag (Zellers et al., 2019), OpenBookQA
(OBQA, Mihaylov et al. 2018), PIQA (Bisk et al.,
2020), and WinoGrande (Sakaguchi et al., 2021).
We perform evaluations in the zero-shot setting as
done in the language modeling community. We
fairly train all models on the same dataset and un-
der the same setting (more details in Appendix A).

Fig. 2 shows how the performance scales for
MossNet and other baselines, both dense and

sparse. MossNet achieves lower perplexity and
higher average commonsense accuracy, showing
superior scaling across model sizes. This shows
the advantages of multiple state-space “heads” in
language modeling performance.

We also evaluate MossNet and other baselines on
more benchmarks: infromation retrieval on SWDE
and FDA (Arora et al., 2024), closed-book question
answering on TriviaQA (Joshi et al., 2017), read-
ing comprehension on SQuADvV?2 (Rajpurkar et al.,
2018) and RACE (Lai et al., 2017), and general
knowledge and reasoning on MMLU (Hendrycks
et al., 2021). Table 1 shows the results. Moss-
Net outperforms baselines with similar number of
active parameters on most benchmarks.

Finally, we train MossNet-8x200M+ for 2.8T
tokens on a custom pretraining dataset and com-
pare it against state-of-the-art baselines. We trained
MossNet-8x200M+ to support both top-2 and top-
3 modes, resulting in 477M and 657M active pa-
rameters, respectively (more details in Section A).
This allows the same model to support low-power
and high-power models on-device. Table 2 shows
the results. In the top-2 mode, we compare
MossNet with Mamba-370M (Gu and Dao, 2023),
Mamba2-370M (Dao and Gu, 2024), BlackMamba-
1.5B (Anthony et al., 2024), Hymba-350M (Dong
et al., 2024), Qwen2.5-0.5B (Yang et al., 2024),
and SmolLM2-360M (Allal et al., 2024). MossNet-
8x200M+ outperforms Qwen2.5-0.5B by 5.8% av-
erage accuracy. In the top-3 mode, we compare
MossNet with Mamba-790M, Mamba2-790M, and
BlackMamba-2.8B. We also see notable improve-
ment going from top-2 to top-3 gating. Thanks
to the proposed MoE design and training strat-
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Table 1: Performance of MossNet and other baselines on SWDE (zero-shot accuracy), FDA (zero-shot accuracy),
TriviaQA (closed-book, zero-shot accuracy), SQuADvV2 (zero-shot F1), RACE (zero-shot accuracy) and MMLU

(five-shot accuracy) benchmarks.

‘ Recall

‘ Closed-book ‘ Reading Comprehension ‘

MMLU \ Avg

Model
| SWDE FDA | TriviaQA | SQuADv2  RACE | Hum. Social Sci. STEM Other |

Pythia-9M 09 00 0.0 111 23.1 247 22.8 232 234 | 144
Llama-8M 14 02 0.0 4.2 236 249 238 269 256 | 145
Mistral-8M 08 0.1 0.0 11.8 243 24.5 24.0 229 242 | 147
Mixtral-8x8M 01 00 0.1 155 234 239 21.7 224 254 | 147
Griffin-9M L1 00 0.0 20.6 225 242 21.7 213 240 | 150
Mamba-8M 06 00 0.0 9.8 24.0 245 22.0 227 236 | 141
Mamba2-9M 13 ol 0.1 6.8 25.4 24.1 224 223 248 | 141
Zamba-8M 20 01 0.1 311 232 239 24.6 269 252 | 175
MoE-Mamba-8x8M L1 00 0.0 37.8 228 24.4 23.1 230 245 | 174
MossNet-8x8M 14 02 0.0 347 244 25.1 25.0 249 258 | 179
Pythia-22M 08 03 0.0 21.6 254 254 234 274 241 | 165
Llama-20M 23 01 0.1 15.2 244 24.1 224 239 233 | 151
Mistral-20M 07 00 0.1 55 242 239 21.9 230 238 | 137
Mixtral-8x20M L1 00 03 5.5 23.6 24.8 238 250 244 | 143
Griffin-22M 09 01 0.0 255 212 242 21.9 225 236 | 155
Mamba-20M 09 0.1 02 6.1 227 242 225 220 238 | 136
Mamba2-20M 09 02 0.1 4.8 25.6 24.6 238 276 240 | 1438
Zamba-20M 47 05 0.1 9.2 243 24.0 233 258 278 | 155
MoE-Mamba-8x20M | 3.1 0.0 04 1.9 25.3 263 24.3 253 244 | 147
MossNet-8x20M 48 03 0.4 26.3 25.8 243 26.0 288 279 | 201
Pythia-64M 56 05 0.8 213 27.6 24.8 24.6 284 245 | 165
Llama-67M 78 04 0.8 133 258 24.1 24.6 262 258 | 165
Mistral-67M 03 00 0.6 5.0 24.0 24.1 232 264 227 | 140
Mixtral-8x67M 05 00 22 16.1 26.0 244 245 223 225 | 154
Griffin-61M 05 00 0.0 323 236 243 22.0 215 238 | 164
Mamba-66M 37 03 0.7 37 25.6 25.1 235 250 232 | 145
Mamba2-67M 33 02 0.5 25 25.6 254 244 259 255 | 14.8
Zamba-62M 83 04 1.2 33 257 247 238 269 255 | 155
MoE-Mamba-8x66M | 5.0 0.6 11 3.0 259 25.1 234 250 231 | 147
MossNet-8x66M 130 14 2.9 344 27.9 252 248 254 259 | 201
Pythia-330M 1.0 05 1.1 3.0 26.7 25.1 28.6 276 241 | 164
Llama-350M 93 07 1.4 43 26.8 24.8 30.5 28.1 244 | 167
Mistral-350M 79 00 2.1 32 27.6 26.6 25.0 268 239 | 159
Griffin-330M 3.5 0.1 0.2 13.8 234 254 24.6 27.1 249 15.9
Mamba-370M 48 04 1.7 44 27.1 25.8 25.2 282 241 | 157
Mamba2-370M 82 08 1.8 34 28.9 244 226 231 254 | 154
Zamba-330M 197 64 24 9.1 27.9 24.1 29.5 265 257 | 19.0

egy, MossNet exhibits flexibility in different active-
parameter-constrained settings, unlike static mod-
els. We also present the performance of state-of-
the-art models with active parameters around 1.5B.
MossNet not only outperforms baselines with simi-
lar active parameters, but also reaches the perfor-
mance of other models with 1.5B active parameters,
while achieving significant latency and memory
gains as we show next.

3.2 Speed and Memory Profiling

In this section we present the memory and speed
profiling results on server (Nvidia A100-80GB
GPU) and on mobile (Samsung Galazy S24 Ultra).

3.2.1 Server GPU Results

Fig. 3 presents (a) memory consumption, (b) pre-
fill speed, and (c) generation speed across increas-
ing context lengths for MossNet-8x200M+ com-
pared to several single-expert baselines of similar
active and total parameter scale. While all models
naturally require more GPU memory as context
length grows, MossNet’s MoE design contains that
growth more effectively, keeping memory usage
lower than monolithic baselines with comparable
or larger parameter counts. Particularly, for longer
contexts, e.g. 32K, MossNet-8x200M+ in top-2
mode achieves the lowest memory usage relative to
baselines. MossNet also demonstrates consistently
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Table 2: Performance of MossNet and state-of-the-art baselines on ARC-c (zero-shot accuracy), ARC-e (zero-
shot accuracy), HellaSwag (zero-shot accuracy), PIQA (zero-shot accuracy), WinoGrande (zero-shot accuracy),
SQuADvV2 (zero-shot F1 score), and MMLU (five-shot accuracy) benchmarks. We evaluate the instruction-
tuned models wherever available. *We evaluate all models except Hymba-350M (not publicly available) using
1Im-evaluation-harness (Gao et al., 2024). For Hymba-350M, we present the reported results (Dong et al., 2024).

Model | Train Tokens | ARC-c ARC-e HellaSwag PIQA WinoGrande SQuADv2 MMLU | Average

Mamba-370M 0.3T 28.0 55.1 46.5 69.5 55.3 5.8 23.1 40.5

Mamba2-370M 0.3T 26.9 54.9 46.9 70.5 55.7 5.9 23.6 40.6
Z  BlackMamba-1.5B 0.3T 24.1 56.1 36.5 69.0 52.6 4.7 19.4 37.5
& Hymba-350M* 1.5T - - 55.1 72.9 57.8 - 34.5 -
¢ Qwen2.5-0.5B 18T 34.2 59.8 53.0 70.9 56.5 12.3 474 477

SmolLM2-360M 11T 34.3 49.6 57.3 72.0 57.8 9.3 26.2 43.8

MossNet-8x200M+ (top-2) 2.8T 41.4 68.4 63.9 76.1 62.5 20.9 412 53.5
= Mamba-790M 0.3T 29.5 61.2 55.1 72.1 56.1 8.5 24.0 438
g Mamba2-790M 0.3T 28.5 61.0 54.9 72.0 60.2 8.7 24.4 44.2
S BlackMamba-2.8B 0.3T 24.5 60.3 39.7 712 52.1 6.8 22.7 39.6

MossNet-8x200M+ (top-3) 2.8T 40.2 69.8 65.9 76.3 64.2 28.1 43.6 55.4

Rene-1.3B 1.5T 34.4 61.7 69.4 71.5 62.9 17.4 32.6 50.8

Hymba-1.5B 1.5T 443 76.0 71.1 77.4 66.6 20.3 52.3 58.3
@ phils 0.15T 48.5 73.9 62.6 76.4 73.6 19.4 429 56.8
7 DCLM-1.4B 43T 475 75.7 73.2 78.5 67.5 28.9 51.6 60.4

Qwen2.5-1.5B 18T 47.0 76.7 69.0 76.8 63.5 25.2 60.9 59.9

SmolLM2-1.7B 11T 44.1 63.6 72.6 77.0 69.1 19.3 49.9 56.5

T— N 100 A — T 1604
=
—e— MossNet-8x200M+ (top-2) / /./o 140 4
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Figure 3: (a) Memory consumption, (b) prefill speed, and (c) generation speed with context length for MossNet-
8x200M+ and baselines on A100-80GB (FP16 precision, FlashAttention 2). Batch size set to 4.

high prefill throughput. Its prefill speed approaches
that of Llama3-500M/700M, being far superior to
other SMM/hybrid baselines. Further, as shown
in Fig 3(c), MossNet’s token-by-token generation
speed remains stable across large contexts, whereas
competing baselines often slow down significantly.
In short, these GPU-based results highlight the key
advantages of expert routing: more efficient mem-
ory usage and stronger large-context performance,
without sacrificing speed.

3.2.2 Mobile Results

Fig. 4 illustrates the same three metrics on a Sam-
sung Galaxy S24 Ultra (on CPU with Q8 preci-

sion) for a batch size of 1, further underscoring
MossNet’s benefits in resource-constrained edge
settings. Here, MossNet’s memory footprint stays
essentially flat at around 1.6 GB across all con-
text lengths, while the Llama3 models consume
increasingly large amounts of memory as the con-
text grows. Mamba too has a flat memory curve due
to serial operation of the scan operation on-device.
MossNet’s prefill and generation speeds remain
comfortably higher and more consistent than those
of baselines, which degrade more severely as con-
text length increases. The drop in prefill speed on
mobile device (unlike on server GPU) could be at-
tributed to the lower compute capacity for parallel
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€rror.

Table 3: Effect of architectural modifications to Moss-
Net. Perplexity reported on Cosmopedia evaluation set.

Model ‘ Tot. Param. (M) Act. Param. (M) PPL
MossNet-8x8M 19.7 9.9 13.1
w/o MHA 21.4 10.3 13.5
w/o MLP-MoE 19.1 9.8 13.4
w/ top-1, 8 experts 19.7 8.3 15.3
w/ top-4, 8 experts 19.7 13.2 12.6
w/ top-2, 4 experts 13.1 9.9 14.4
w/ top-2, 16 experts 32.7 9.9 12.0

processing. The stable performance and reduced
resource use make MossNet especially suitable for
on-device inference scenarios, where users often
demand responsiveness and must operate under
strict memory and compute constraints.

3.3 Architecture Modifications

We now test various modifications to the proposed
MossNet architecture. We study the relative effect
of removing MHA, MLP-MoE, and varying the
number of total and activated experts. Table 3 sum-
marizes the results. The proposed MossNet-8x8M
achieves a PPL of 13.1 with 19.7M total parame-
ters and 9.9M active parameters, demonstrating the
effective use of MHA and MLP-MoE. Removing
MHA increases parameters count and leads to mod-
est performance drop (PPL = 13.5), while removing
MLP-MoE yields fewer parameters but also worse
perplexity (13.4).

Next, we test the effect of varying the number
of total and activated experts. The table highlights
a trade-off: activating fewer experts (e.g., top-1)

can greatly hurt perplexity (up to 15.3), while ac-
tivating more experts (e.g., top-4 with 8 experts)
can reduce PPL to 12.6, at the cost of a higher ac-
tive parameter count (resulting in higher memory
and compute). Notably, employing 16 experts with
top-2 activation gives the best perplexity (12.0) but
increases the total parameter count to 32.7M, illus-
trating how scaling the MoE approach can yield
lower perplexity with more overall model capacity.

4 Conclusion

In this paper, we introduced MossNet, a mixture-
of-state-space-experts architecture designed to em-
ulate a linear MHA within an SSM. By integrat-
ing MoE in both channel-mixing (MLP) and time-
mixing (SSM) components, MossNet captures dif-
ferent temporal focus or scale of context, providing
a richer representation than a single set of SSM
parameters could. This is akin to the MHA mech-
anism in transformers. Our theoretical analysis
shows that this approach indeed recovers a lin-
earized form of MHA, and our empirical study on
language modeling and downstream tasks demon-
strates that MossNet outperforms both transformer-
based and prior SSM/GRM-based baselines. Large-
scale experiments further highlight its scalability
and practical runtime benefits. We believe Moss-
Net represents an important step toward fully har-
nessing recurrent models for language modeling
at scale, opening up new directions for efficient,
flexible, and high-performing LLM architectures.
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5 Limitations

Despite the several advantages of the proposed
MossNet architecture, there are several limitations.
First, the integration of the MoE framework within
both channel-mixing and time-mixing components
of state-space models introduces considerable ar-
chitectural complexity. This may present chal-
lenges for replication and broader adoption in the
research community without specialized knowl-
edge. MoEs do not effectively improve inference
performance on server, when the input is a batch
of user requests containing different tasks. Further,
we evaluate MossNet on MLP tasks. We leave
evaluation on more diverse downstream tasks such
as multi-modal understanding, real-time applica-
tions, and specialized domains to future work. Fi-
nally, although MossNet shows promising results
on mobile devices like the Samsung Galaxy S24
Ultra, performance across other hardware config-
urations, especially those with different architec-
tures or constraints, may vary. Future work could
explore adaptive optimizations tailored to specific
hardware platforms.
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A Model Hyperparameters and Training
Recipes

In this section, we provide details on the vari-
ous model architecture hyperparameters and corre-
sponding training recipes for the MossNet suite of
models and baselines at different parameter scales.

Table 4 summarizes the design choices. Each
row corresponds to a particular model variant,
sorted by approximate total parameter count. The
key columns indicate:

* Total and active parameters.

¢ Hidden and intermediate dimensions for the
MLP layers.
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Table 4: Key model architecture hyperparameters and training recipes for various baseline architectures (Pythia,
Llama, Mistral, Mixtral, Griffin, Mamba, Mamba2, Zamba, and MoE-Mamba) alongside the proposed MossNet
family of models. The table displays model sizes, dimensions, training tokens, context lengths, and learning rate
schedules, among other relevant settings. « corresponds to the weight factor for load balancing loss. *Unlike
MossNet-8x200M+ that was dynamically trained in top-2 and top-3 modes, smaller models were only trained in

top-2 mode.
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Pythia-9M 8.8 8.8 128 512 2 - - 12 T | 22 2048 20e3 Cosine 3% 0% -
Llama-8M 8.2 8.2 128 448 2 1 - 8 T | 22 2048 2.0e-3 Cosine 3% 0% -
Mistral-8M 8.2 8.2 128 448 2 1 256 8 T | 22 2048 2.0e-3 Cosine 3% 0% -
Mixtral-8x8M 17.8 9.6 128 448 2 1 256 8 T | 22 2048 2.0e-3 Cosine 3% 0% 0.001
Griffin-9M 8.7 8.7 128 384 2 1 - 16 T | 22 2048 1.0e2 Cosine 3% 0% -
Mamba-8M 8.3 8.3 128 448 - - - 16 T | 22 2048 1.0e2 Cosine 3% 0% -
Mamba2-9M 8.6 8.6 128 256 - - - 16 T | 22 2048 10e2 Cosine 3% 0% -
Zamba-8M 8.1 8.1 128 448 2 1 - 16 T | 22 2048 10e2 Cosine 3% 0% -
MoE-Mamba-8x8M 16.8 9.7 128 384 - - - 16 T | 22 2048 1.0e2 Cosine 3% 0% 0.001
MossNet-8x8M* 19.7 99 128 384 2 1 - 16 T | 22 2048 1.0e2 Cosine 3% 0% 0.001
Pythia-22M 22.3 22.3 256 1,024 4 - - 12 T | 22 2048 1.0e-3 Cosine 3% 0% -
Llama-20M 20 20 256 896 4 2 - 8 T | 22 2048 1.0e3 Cosine 3% 0% -
Mistral-20M 20 20 256 896 4 2 256 8 T | 22 2048 1.0e-3 Cosine 3% 0% -
Mixtral-8x20M 58.5 25.5 256 896 4 2 256 8 T | 22 2048 1.0e-3 Cosine 3% 0% 0.001
Griffin-22M 22 22 256 768 4 2 - 16 T | 22 2048 5.0e3 Cosine 3% 0% -
Mamba-20M 19.9 19.9 256 896 - - - 16 T | 22 2048 5.0e3 Cosine 3% 0% -
Mamba2-20M 20.4 204 | 256 512 - - - 16 T | 22 2048 5.0e3 Cosine 3% 0% -
Zamba-20M 19.5 19.5 256 896 4 2 - 16 T | 22 2048 5.0e3 Cosine 3% 0% -
MoE-Mamba-8x20M | 54.1 25.8 256 768 - - - 16 T | 22 2048 50e3 Cosine 3% 0% 0.001
MossNet-8x20M* 63.9 26.1 256 768 4 - 16 T | 22 2048 5.0e-3 Cosine 3% 0% 0.001
Pythia-64M 63.6 63.6 | 512 2048 8 - - 12 T 22 2048 10e3 Cosine 3% 0% -
Llama-67M 66.7 66.7 512 1792 8 2 - 12 T | 22 2048 1.0e3 Cosine 3% 0% -
Mistral-67M 66.7 66.7 512 1792 8 2 256 12 T | 22 2048 1.0e-3 Cosine 3% 0% -
Mixtral-8x67M 3206 1059 | 512 1792 8 2 256 12 T | 22 2048 1.0e3 Cosine 3% 0% 0.001
Griffin-61M 61.1 61.1 512 1792 8 2 - 16 T | 22 2048 50e3 Cosine 3% 0% -
Mamba-66M 66.4 664 | 512 1792 - - - 24 T | 22 2048 5.0e3 Cosine 3% 0% -
Mamba2-67M 67.2 67.2 512 1024 - - - 24 T 22 2048 5.0e-3 Cosine 3% 0% -
Zamba-62M 62.1 62.1 512 1792 8 2 - 24 T | 22 2048 5.0e3 Cosine 3% 0% -
MoE-Mamba-8x66M | 272.6 1028 | 512 1536 8 2 - 24 T | 22 2048 5.0e3 Cosine 3% 0% 0.001
MossNet-8x66M* 3259 1029 | 512 1536 8 2 - 24 T | 22 2048 5.0e3 Cosine 3% 0% 0.001
Pythia-330M 3286 3286 | 1024 409 16 - - 22 T| 22 2048 3.0e-4 Cosine 3% 0% -
Llama-350M 3514 3514 | 1024 3584 16 4 - 22 T | 22 2048 3.0e4 Cosine 3% 0% -
Mistral-350M 3514 3514 | 1024 3584 16 4 512 22 T | 22 2048 3.0e-4 Cosine 3% 0% -
Griffin-330M 3304 3304 | 1024 3584 16 4 - 32 T | 22 2048 15e-3 Cosine 3% 0% -
Mamba-370M 3715 3715 | 1024 3584 - - - 48 T | 22 2048 1.5e-3 Cosine 3% 0% -
Mamba2-370M 369.9 3699 | 1024 2048 - - - 48 T | 22 2048 1.5e-3 Cosine 3% 0% -
Zamba-330M 334.1 3341 | 1024 3584 16 4 - 48 T | 22 2048 15e3 Cosine 3% 0% -
MossNet-8x200M+ 15545 477/657 | 1024 3072 16 4 2048 30 F | 2800 4096 20e-4 WSD 1% 10% 0.001

¢ Total number of attention heads and K/V
heads (for grouped-query attention; Ainslie

et al. 2023).

* Sliding window size, if applied.

e Number of layers.

* Tie embeddings, i.e., whether input and output
embeddings are tied.

* Total number of training tokens.

* Context length used for training.

* Other training hyperparameters, including «,
i.e., the weight factor used for load balancing
loss in MoE architectures.

We group models by approximate size categories,
illustrating how scaling up parameters impacts the
choice of dimensionality and training regimes.
Note that we train MossNet-8x200M+ in a dy-
namic setting. We train the model in top-3 mode
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Table 5: Composition of pre-training data for MossNet-
8x200M+.

Dataset Num. Tok. (B) Train Tok. (B) Samp. Wgt.
DCLM-baseline 4000 2520 0.90
Starcoder 250 168 0.06
Proof-Pile-2 55 28 0.01
peS2o 47 28 0.01
Cosmopedia-2 28 56 0.02
Total 2800 1.00

for 900 steps and in top-2 mode for 100 steps and
repeat the cycle. All models are trained on the
Cosmopedia dataset (fair training setting), except
MossNet-8x200M+ that we train on a custom pre-
training dataset.

B Custom Pre-training Dataset

Table 5 shows the mixture of open datasets that
form the custom pre-training data mix for MossNet-
8x200M+. We combine DCLM-baseline (Li et al.,
2024), Starcoder (Li et al., 2023), Proof-Pile-
2 (Azerbayev et al., 2023), peS2o (Soldaini et al.,
2024), and Cosmopedia-2 (Ben Allal et al., 2024b)
with different sampling weights.

C Additional Results

In this section, we present additional results.

C.1 Commonsense Performance of
Fairly-trained Models

Fig. 2 summarizes the commonsense performance
of MossNet and baseline models. Table 6 presents
the detailed results. Again, MossNet outperforms
baseline architectures at different active parameter
scales. We scale parameter sizes up to 100M and
leave experiments on larger models to future work.

C.2 Speed and Memory Results

Figs. 3 and 4 summarize the speed and memory
performance of MossNet-8x200M+ and baseline
models at different active parameters scales. We
present the detailed results for GPU profiling in
Tables 7, 8, and 9 for memory consumption, prefill
speed, and generation speed, respectively. We also
present the detailed results for mobile profiling in
Tables 10, 11, and 12.

C.3 Long-context Performance

Table 13 presents the long context performance
of MossNet-8x200M+ and various baselines. We
observe that architectures using SSM and/or SWA

backbones do not lose perplexity as the context size
is increased. This confines with the observations
of Ren et al. (2024).

C.4 Choosing k

Table 3 varies the number of routed experts (k)
while keeping all other hyper-parameters fixed.
The main observations are:

* Large first step, then saturation. With eight
experts, increasing k from 1 to 2 reduces per-
plexity from 15.3 to 13.1 (—2.2), whereas a
further increase to k£ = 4 only improves per-
plexity to 12.6 (—0.5) while significantly in-
creasing active parameter count (+3.3).

* Pool size matters. Holding £ = 2 and shrink-
ing the pool from 8 to 4 experts worsens per-
plexity (13.1 to 14.4). Conversely, expanding
the pool to 16 experts (still routing k = 2)
attains the best perplexity (12.0) without in-
creasing active parameters, although the toral
model size grows, resulting in a larger disk
size.

We propose the following practical rule-of-
thumb:

ko= min(2, [ Negens/4] )

This caps compute at < 2x the dense baseline,
preserving MossNet’s on-device speed advantage.
It also maintains high router entropy; choose k = 1
only when Nexperts < 8. Finally, it secures > 80%
of the achievable perplexity gain while avoiding
the potential latency hit for k£ > 4.

C.5 Computational complexity of MoE blocks
(and MossNet)

MossNet replaces the dense channel-/time-mixing
layers in Mamba with standard top-k MoE blocks.
Because only k experts are executed per token,
its time complexity is O (L k d dgr) and its activa-
tion memory is ©(k d)—identical to other MoE
architectures for the same k. Thus MossNet of-
fers the usual “capacity without extra compute”
benefit of MoE while preserving the linear-time,
constant-cache profile of its dense counterpart.
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Table 6: Zero-shot performance of MossNet and fairly-trained baselines on commonsense tasks.

Model ‘ ARC-c ARC-e COPA HellaSwag OBQA PIQA WinoGrande ‘ Average
Pythia-9OM 18.3 32.6 57.0 26.5 14.6 56.2 50.8 36.6
Llama-8M 18.8 34.0 55.0 26.5 11.6 56.6 52.8 36.5
Mistral-8M 19.2 335 56.0 26.4 11.2 56.4 50.1 36.1
Mixtral-8x8M 19.5 35.0 53.0 27.1 13.0 56.8 50.3 36.4
Griffin-OM 19.1 322 48.0 26.0 14.6 56.2 50.8 35.3
Mamba-8M 19.3 34.0 51.0 26.4 13.2 58.0 51.5 36.2
Mamba2-9M 19.8 34.8 52.0 26.5 12.2 57.3 51.0 36.1
Zamba-8M 18.1 332 53.0 26.2 14.0 57.4 50.9 36.1
MoE-Mamba-8x8M 18.5 34.7 53.0 25.8 15.2 55.0 474 35.6
MossNet-8x8M 18.6 34.5 55.0 27.7 14.0 59.6 49.8 371
Pythia-22M 19.8 37.8 63.0 27.1 134 56.6 50.6 38.3
Llama-20M 17.9 354 56.0 26.9 11.2 58.2 52.1 36.8
Mistral-20M 20.0 359 54.0 26.8 13.8 58.8 50.4 37.1
Mixtral-8x20M 19.5 36.2 54.0 28.2 144 59.1 48.9 37.2
Griffin-22M 20.2 29.5 57.0 26.5 144 56.4 49.7 36.2
Mamba-20M 18.1 39.0 55.0 27.0 15.2 59.5 51.4 37.9
Mamba2-20M 18.3 36.2 55.0 27.3 144 57.9 50.8 37.1
Zamba-20M 20.3 38.5 55.0 27.2 14.4 58.6 52.3 38.0
MoE-Mamba-8x20M | 19.8 38.1 53.0 27.5 16.8 58.8 48.2 37.5
MossNet-8x20M 20.7 38.8 57.0 28.8 15.6 61.2 50.5 38.9
Pythia-64M 20.4 415 51.0 28.3 15.6 61.8 51.5 38.6
Llama-67M 21.1 41.8 56.0 28.8 17.2 60.3 51.3 39.5
Mistral-67M 20.6 40.7 57.0 28.2 17.4 61.8 49.7 39.4
Mixtral-8x67M 22.4 46.2 58.0 31.3 17.0 63.2 50.5 412
Griffin-61M 21.9 30.2 56.0 26.8 16.8 577 51.0 37.2
Mamba-66M 21.2 444 48.0 29.0 17.4 63.0 50.8 39.1
Mamba2-67M 21.2 442 56.0 29.2 16.8 62.3 45.6 39.3
Zamba-62M 21.3 40.8 54.0 28.8 15.6 61.1 49.6 38.7
MoE-Mamba-8x66M | 22.4 452 56.0 30.4 18.6 61.8 48.7 404
MossNet-8x66M 22.6 45.1 58.0 31.5 194 65.5 51.0 41.9
Pythia-330M 21.8 452 55.0 29.5 16.6 62.4 51.1 40.2
Llama-350M 232 452 58.0 30.6 16.2 63.2 50.1 40.9
Mistral-350M 20.9 46.1 55.0 30.4 19.2 61.6 50.1 40.5
Griffin-330M 20.3 36.7 58.0 29.4 194 61.0 49.1 39.1
Mamba-370M 239 55.8 59.0 33.0 20.2 66.5 51.6 44.3
Mamba2-370M 254 50.4 60.0 33.1 21.2 65.1 51.9 439
Zamba-330M 242 48.9 56.0 32.6 19.4 64.6 53.3 42.7

Table 7: Memory (GB) of various models on A100-80 GPU (F16 precision, FlashAttention 2) across varying prompt
lengths. Batch sizes are denoted as 1 and 4.

Model | Batch Size 1 | Batch Size 4
| 512 1024 2048 4096 8192 16384 32768 | 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 25 25 26 28 34 45 89 |27 28 32 41 60 106 328
S Llama3-500M 36 38 42 49 64 95 156 |42 49 64 95 156 280 525
¢ MossNet-8x200M+ (top-2) | 46 47 48 50 55 65 84 |48 51 55 65 84 122 199
S Mamba-700M 31 32 33 36 43 61 100 |33 36 42 56 84 156 335
S Llama3-700M 43 45 48 56 72 106 171 |48 56 72 106 171 296 566
¢ MossNet-8x200M+ (top-3) | 46 47 48 51 56 67 88 |48 51 56 67 88 130 239
Mamba-1.5B 46 46 48 52 61 83 126 [49 52 60 77 1Ll 187 372
@ Rene-1.3B 46 46 46 46 51 64 92 |46 48 53 64 92 138 233
< Hymba-15B 50 53 59 69 84 120 190 |61 72 85 122 192 333 615
Llama3-1.5B 43 45 48 56 72 106 171 |48 56 72 106 171 296 566
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Table 8: Prefill speed (x 102 tok/s) of various models on A100-80 GPU (F16 precision, FlashAttention 2) across
varying prompt lengths. Batch sizes are denoted as 1 and 4.

Model Batch Size 1 Batch Size 4
‘ 512 1024 2048 4096 8192 16384 32768 ‘ 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 86 17.8 293 356 410 444 46.5 | 28.0 345 38.8 434 4677 476 46.9
§ Llama3-500M 143 27.8 482 657 76.1 88.7 946 | 472 743 89.8 93.0 958 96.8 96.4
¢ MossNet-8x200M+ (top-2) 10.8 21.6 404 486 527 64.0 75.8 | 40.6 49.5 540 66.1 769 84.0 87.1
S Mamba-700M 11.8 236 293 339 369 400 40.8 | 28.1 31.8 362 392 41.0 41.0 40.1
§ Llama3-700M 18.7 346 552 677 726 764 783 | 56.8 718 765 780 78.6 789 78.4
2 MossNet-8x200M+ (top-3) 11.3  22.1 334 385 448 577 654 | 339 392 418 590 679 71.7 74.3
Mamba-1.5B 99 153 185 202 232 2438 252 | 179 197 222 234 243 242 23.8
F,Q? Rene-1.3B 77 154 310 420 442 46.6 47.0 | 31.0 50.1 483 487 481 476 474
7 Hymba-1.5B 69 135 162 19.1 219 226 223 | 154 179 199 226 237 234 224
Llama3-1.5B 10.8 188 26.8 306 351 36.5 37.1 | 298 347 375 371 374 372 36.8

Table 9: Generation speed (tok/s) of various models on A100-80 GPU (F16 precision, FlashAttention 2) across
varying prompt lengths. Batch sizes are denoted as 1 and 4.

Model | Batch Size 1 | Batch Size 4
512 1024 2048 4096 8192 16384 32768 | 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 179 183 177 180 181 178 179 | 683 705 718 698 70.1 704 706
S Llama3-500M 288 292 277 282 276 262 227 | 1104 1135 1083 1018 922 760 559
¢ MossNet-8x200M+ (top-2) | 27.5 286 27.0 281 279 279 277 | 912 925 9Ll 903 895 865 810
S Mamba-700M 245 247 250 248 247 246 252 | 980 951 957 974 966 9456 99.0
S Llama3-700M 371 401 390 389 374 338 296 | 1580 1510 1440 1335 1135 876 610
MossNet-8x200M+ (top-3) | 28.7 286 28.1 283 280 274 269 | 902 917 924 916 871 852 530
Mamba-1.5B 207 211 210 211 206 208 206 | 81.3 820 824 808 819 820 817
@ Rene-1.3B 273 270 273 270 270 266 267 |107.6 1055 1065 1069 107.6 1074 108.8
7 Hymba-1.5B 149 149 146 149 145 146 146 | 584 563 570 572 563 566 564
Llama3-1.5B 222 224 212 214 209 183 150 | 883 857 805 697 585 433 282

Table 10: Memory (MB) of various models on S24 Ultra (Q8 precision) across varying prompt lengths and active
parameters. Batch size set to 1. MossNet on-device results reported without SWA implemented.

Model ‘ 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 673.7 673.7 673.7 673.7 673.7 673.7 673.7
§ Llama3-500M 610.6 621.6 649.6 747.4 9954 14914 24834
¢ MossNet-8x200M+ (top-2) | 1666.9 1667.7 1670.7 1720.7 18727 2176.7 2784.7
S Mamba-700M 919.3 919.3 919.3 919.3 919.3 919.3 919.3
l% Llama3-700M 901.6 917.6 942.6 10464 13024 18144 28384
¢ MossNet-8x200M+ (top-3) | 1707.0 1709.9 17119 1761.8 1913.8 2217.8 28258
8 Mamba-1.5B 1748.0 1748.0 1748.0 1748.0 1748.0 1748.0 1748.0
'_Z: Llama3-1.5B 16572 16942 1760.2 1950.0 2374.0 32220 OOM

Table 11: Memory (MB) of various models on S24 Ultra (Q8 precision) across varying prompt lengths and active
parameters. Batch size set to 1. MossNet on-device results reported without SWA implemented.

Model ‘ 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 673.7 673.7 673.7 673.7 673.7 673.7 673.7
§ Llama3-500M 610.6 621.6 649.6 747.4 995.4 14914 24834
¢ MossNet-8x200M+ (top-2) | 1666.9 1667.7 1670.7 1720.7 18727 2176.7 2784.7
S Mamba-700M 919.3 919.3 919.3 919.3 919.3 919.3 919.3
§ Llama3-700M 901.6 917.6 942.6  1046.4 13024 18144 28384
¢ MossNet-8x200M+ (top-3) | 1707.0 1709.9 17119 1761.8 19138 2217.8 2825.8
A Mamba-1.5B 1748.0 1748.0 1748.0 1748.0 1748.0 1748.0 1748.0
‘7' Llama3-1.5B 1657.2 16942 1760.2 1950.0 2374.0 32220 OOM
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Table 12: Prefill speed (tok/s) of various models on S24 Ultra (Q8 precision) across varying prompt lengths and
active parameters. Batch size set to 1. MossNet on-device results reported without SWA implemented.

Model ‘ 512 1024 2048 4096 8192 16384 32768
S Mamba-500M 79 72 70 67 65 62 59
§ Llama3-500M 107 87 65 45 24 13 6
¢ MossNet-8x200M+ (top-2) | 120 107 101 92 74 57 36
S Mamba-700M 56 52 51 50 46 45 46
§ Llama3-700M 71 58 48 35 21 12 6
¢ MossNet-8x200M+ (top-3) | 74 73 67 62 59 42 31
A  Mamba-1.5B 26 24 23 22 22 21 21
7' Llama3-1.5B 31 26 21 15 9 5 OOM

Table 13: Long context performance of MossNet and various baselines. Training tokens and whether SWA is
implemented for corresponding models are also provided. *Perplexity should not be compared directly for different
models as they could be using different tokenizers; trend with context size should be observed instead.

Model ‘ Train Tok. SWA PPL*

2048 4096 8192 16384
Phil.5 0.15T F 11.8 70.6 441.1 OOM
SmolLM2-1.7B 11T F 9.8 836 590.8 OOM
Mamba-1.4B 0.3T - 6.9 6.7 72  OOM
MossNet-8x200M+ 2.8T T 8.6 8.2 8.0 8.7
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