
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 417–442

December 20-24, 2025 ©2025 Association for Computational Linguistics

ASAudio: A Survey of Advanced Spatial Audio Research

Zhiyuan Zhu* Yu Zhang* Wenxiang Guo* Changhao Pan* Zhou Zhao†

Zhejiang University
{schmittzhu, zhaozhou}@zju.edu.cn

Abstract

With the rapid development of spatial audio
technologies today, applications in AR, VR and
other scenarios have garnered extensive atten-
tion. Unlike traditional mono sound, spatial
audio offers a more realistic and immersive au-
ditory experience. Despite notable progress in
the field, there remains a lack of comprehensive
surveys that systematically organize and ana-
lyze these methods and their underlying tech-
nologies. In this paper, we provide a compre-
hensive overview of spatial audio and system-
atically review recent literature in the area. To
address this, we chronologically outline exist-
ing work related to spatial audio and categorize
these studies based on input-output representa-
tions, as well as generation and understanding
tasks, thereby summarizing various research
aspects of spatial audio. In addition, we re-
view related datasets, evaluation metrics, and
benchmarks, offering insights from both train-
ing and evaluation perspectives. Related ma-
terials are available at https://github.com/
dieKarotte/ASAudio.

1 Introduction

Spatial audio delivers an immersive, three-
dimensional listening experience by simulating
how sound propagates and is perceived in space,
representing the culmination of audio’s evolution
from mono to surround sound (Poeschl et al., 2013).
Fueled by its adoption as a core feature in products
from Apple, Google, and Meta, the technology
has seen accelerated development and widespread
application in film, gaming, and the emerging meta-
verse (Chen et al., 2025; Wuolio and Moreira Kares,
2023; Lee et al., 2023a; Broderick et al., 2018; Mur-
phy and Neff, 2011), which in turn has sharpened
the focus of academic research.

As illustrated in Fig. 1, the research landscape
of spatial audio has undergone a significant evo-
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lution. Before 2021, efforts primarily center on
understanding tasks like sound event localization
and detection (SELD) and source separation, domi-
nated by foundational CNN-based models (Zhou
et al., 2020; Gao and Grauman, 2019; Wu et al.,
2021; Richard et al., 2021; Nguyen et al., 2022; Shi-
mada et al., 2021) and limited by the scale of early
datasets (Donley et al., 2021; Morgado et al., 2020).
Since 2022, the field has entered a new phase of
rapid, synergistic advancement in both understand-
ing and generation, fueled by breakthroughs in gen-
erative models and the proliferation of multimodal
datasets (Zheng et al., 2024; Zhang et al., 2025;
Kim et al., 2025; Sun et al., 2024). This period
sees the rise of powerful generation models like
ImmerseDiffusion (Heydari et al., 2025) and Diff-
SAGe (Kushwaha et al., 2025), which drastically
improves audio quality and realism. Crucially, the
underlying technologies, such as attention mech-
anisms and large language models, also revolu-
tionize understanding. This propels the task from
traditional signal-level analysis toward higher-level
semantic reasoning, as seen in advanced models
for attention-based separation (Ye et al., 2024) and
LLM-based spatial inference (Zheng et al., 2024).

To systematically review these advances in repre-
sentation, understanding, generation, datasets, and
evaluation protocols, this paper is organized as fol-
lows: Section 2 discusses input-output represen-
tations, Sections 3 and 4 analyze understanding
and generation tasks, and Section 5 summarizes
existing datasets and evaluation standards.

2 Representations of Spatial Audio

2.1 Inputs Representations

Input representations aim to capture semantic,
acoustic, and spatial information. They are pro-
vided alone or in combination as mono audio, text,
visual signals, or spatial coordinates. We provide
a detailed explanation of input representation and
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Figure 1: A timeline of spatial audio models & datasets in recent years. The timeline is established mainly according
to the release date of the technical paper for each model. We mark the understanding models in green and the
generation models in yellow, while datasets are marked in blue. Arrows indicate the evolution of models.

their primary processing method in Figure 2.

Natural Language Prompts Natural language
prompts specify semantic content and spatial at-
tributes in an intuitive way. They describe events
for generation (Kreuk et al., 2022; Liu et al., 2023)
or serve as queries in understanding tasks. For
example, BAT (Zheng et al., 2024) uses a large
language model to process question–answer pairs
about sound event detection, direction estimation,
and spatial reasoning, and it extracts spatial infor-
mation from natural language.

Spatial Position Explicit spatial position data,
such as Cartesian or spherical coordinates, provides
direct guidance to place sources in generation tasks
and serves as ground truth for localization models
in understanding tasks. Some studies (Liu et al.,
2022; Zhang et al., 2025) also include radial veloc-
ity and orientation. They simulate Doppler effects
to enhance dynamic properties.

Visual Information Visual information (images
or videos) strongly correlates with sound and pro-
vides valuable spatial and semantic context. It of-
fers key cues for audio–visual source separation
and localization (Zhao et al., 2018; Ye et al., 2024;
Zhou et al., 2018) and for audio–visual acoustic
matching (Chen et al., 2022). It also guides mono-

to-spatial generation (Gan et al., 2019; Gao and
Grauman, 2019) and video-to-spatial-audio genera-
tion (Liu et al., 2025a) tasks.

Monoaural Audio Mono audio serves as the
base acoustic content in many generation tasks.
It supplies core timbral and spectral cues. In two-
stage systems, the mono stream is first processed
and then “upmixed” into multichannel or binaural
formats under the guidance of spatial inputs such
as visuals or positions information.

2.2 Spatial Cues and Physical Modeling

A core aspect of spatial audio is the accurate mod-
eling of sound propagation and perception in three-
dimensional space. On the other hand, hardware
and human hearing background are important parts
in spatial audio. We will introduce two key con-
cepts including the room impulse response (RIR)
and the head-related transfer function (HRTF).
Also, recording hardware like multi-channel mi-
crophones and how humans perceive sound local-
ization are introduced.

Room Impulse Response (RIR) The room im-
pulse response (RIR) characterizes all acoustic
paths from a source to a receiver, bridging vir-
tual and real acoustics. As direct measurement is
costly, research has focused on alternatives. Some
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methods estimate RIRs from visual inputs to avoid
acoustic measurements (Kim et al., 2019; Ratnara-
jah et al., 2024; Majumder et al., 2022), while
others use simulation tools to generate data for
training and improving tasks like source separa-
tion (Roman et al., 2024; Ahn et al., 2023; Jeub
et al., 2009; Vacher et al., 2014; Mittag et al.,
2017; Di Carlo et al., 2021; Grondin et al., 2020;
Xu et al., 2021). To support complex applica-
tions, precise RIRs have been measured for spe-
cific scenarios like dense grids or dynamic sources
(Koyama et al., 2021; Ratnarajah et al., 2022; Poli-
tis et al., 2020; McKenzie et al., 2021b,a), and
perceptual evaluation often relies on measured bin-
aural RIRs (BRIRs) to assess synthesis authenticity
(Brinkmann et al., 2017).

Binaural hearing and spatial cues Humans per-
ceive three dimensional sound based on the binau-
ral hearing system. The brain compares and ana-
lyzes the signals at the two ears to estimate source
direction and distance. This process relies on a set
of acoustic cues. Among them, interaural time dif-
ference (ITD) and interaural level difference (ILD)
(Moore, 2012) are the two core physical quantities
for horizontal localization. The classic Duplex The-
ory states that ITD is the main cue at low frequen-
cies(roughly below 1.5 kHz) while ILD is more
important at higher frequencies.

ITD arises from the path length difference of
the wavefronts arriving at the two ears. When the
source is off the median plane, the wave reaches the
near ear first and then diffracts around the head to
the far ear. The small delay, up to about 0.6–0.8 ms,
is detected by the auditory system and encodes az-
imuth. ILD is caused by the head’s acoustic shadow.
For high frequencies with shorter wavelengths, the
head blocks sound so that the far ear receives a
weaker signal. The level difference becomes a key
cue for high frequency localization.

Spatial audio hardware Spatial audio needs a
capture-to-render hardware stack. Microphone ar-
rays (Blanco Galindo et al., 2020) sample the 3D
sound field by placing omnidirectional mics in de-
signed geometries; the signals carry spatial cues.
By source distance, arrays use near-field or far-
field models. By topology they are linear, planar,
or volumetric (Benesty et al., 2008).

As a special array, a dummy head microphone
(Lübeck et al., 2022) places microphones at the
ear canal entrances of a realistic head model. It
directly reproduces human binaural hearing and na-

tively records key cues such as ITD and ILD which
provides highly realistic immersion for headphone
playback.

Head-Related Transfer Function Head-related
transfer function (HRTF) is a subject-specific filter
describing how an individual’s anatomy alters in-
coming sound, encoding the binaural and monaural
cues essential for 3D perception. Because HRTFs
are highly individualized, personalization is crit-
ical to avoid perceptual artifacts like in-head lo-
calization and front-back confusion. To this end,
researchers have developed several methods. Some
predict HRTFs from anthropometric features like
ear shape using neural networks (Warnecke et al.,
2022; Arbel et al., 2024; Zhao et al., 2022). Others
select the best-matching HRTF from a database,
guided by perception-aligned metrics (Lee et al.,
2023b; Marggraf-Turley et al., 2024). The most
mainstream approach, however, is spatial upsam-
pling from sparse data, which uses deep models to
interpolate a full HRTF from a few measurements.
This includes using various deep architectures like
CNNs and Transformers for reconstruction (Jiang
et al., 2023; Ito et al., 2022; Hogg et al., 2024;
Ma et al., 2023; Zhang et al., 2023), incorporating
physical priors to improve performance (Chen et al.,
2023; Thuillier et al., 2024), and leveraging neural
fields to represent HRTFs as continuous functions
(Zhang et al., 2023; Masuyama et al., 2024). Future
work aims to fuse these methods and deploy them
on consumer devices (Warnecke et al., 2022; Jiang
et al., 2023).

2.3 Output Representations

Spatial audio is mainly represented in three formats.
Channel-based formats (e.g., 5.1 or 7.1 surround)
assign signals to predefined loudspeaker positions.
Scene-based formats (e.g., higher-order Ambison-
ics (HOA)) represent the full three-dimensional
sound field using spherical harmonic decomposi-
tion. Object-based formats, such as Dolby Atmos,
treat each source as an independent object with
positional metadata and render it dynamically at
playback. We analyze three output paradigms and
discuss binaural rendering separately.

Channel-Based Audio Channel-based audio
maps signals to predefined loudspeaker positions,
such as stereo, 5.1, or 7.1. Spatial position is im-
plied by level and time differences across channels.
The psychoacoustic basis is summing localization.
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Amplitude panning follows the sine law:

sin θI =
EL − ER

EL + ER
sin θ0. (1)

This paradigm is widely used but depends on stan-
dardized layouts. It has a small “sweet spot” and
limited flexibility and scalability.

Scene-Based Audio Scene-based audio aims to
capture and physically reproduce the entire sound
field within a region. Key methods include Am-
bisonics (Zotter and Frank, 2019) and wave field
synthesis (WFS). Ambisonics represents the 3D
field by spherical harmonic decomposition:

P (x, ω) =

N∑

n=0

n∑

m=−n

αm
n (ω) jn(kr)Y

m
n (x̂). (2)

This paradigm produces a wide and stable listening
area. However, it places high demands on the sys-
tem, which limits adoption in the consumer market.
It decomposes the field into spherical harmonics
(Malham and Myatt, 1995) for a device indepen-
dent description and offers a wide, stable listening
area as the listener moves. First order ambison-
ics (FOA) uses four B format channels. W is an
omnidirectional component that represents overall
sound pressure and ambient impression. X, Y, and
Z are figure of eight components aligned with the
Cartesian axes and encode front back, left right,
and up down sound energy. Higher order ambison-
ics (HOA) provide finer spatial resolution.

Object-Based Audio Object-based audio treats
each source as an independent audio object that
carries content and metadata, such as position and
trajectory. The final mix is rendered in real time
on the playback device. Dolby Atmos is a repre-
sentative system. By decoupling content from the
physical playback setup, this paradigm achieves
strong scalability and interactivity and becomes a
core of next-generation immersive media.

Binaural Audio Binaural audio is a key render-
ing method and the final form that delivers ad-
vanced spatial formats to the ears over headphones.
It uses HRTFs to reconstruct the ear-canal pres-
sure and thus tricks the brain into perceiving a 3D
scene. Convincing experiences require dynamic
head tracking and room acoustics (reverberation)
modeling. These components reduce front–back
confusion and promote externalization.

2.4 Representation Discussion

Input representations We observe three axes
that govern design choices: (i) Abstraction vs
Control precision. Natural language and vision
information are human-friendly and scalable for
high-level intent, but suffer from ambiguity and
lower precision; spatial coordinates deliver exact,
reproducible control but lack semantics and are
tedious to author. (ii) Semantics vs Geometry.
High-level intents require an interpretation layer
(often an LLM or structured parsers) to map se-
mantics to machine-executable spatial parameters;
geometric inputs bypass this layer but reduce ex-
pressivity. (iii) Content vs Spatialization. Monau-
ral audio supplies core acoustic content (timbre,
pitch), while other modalities guide spatial render-
ing; a two-stage pipeline (content generation, then
spatialization) yields modularity and controllability.
We make a concise comparison and discussion in
Appendix A.1, Table 1.

Output representations The three output forms
differ in device dependence, scalability, listening
freedom, and playback-side complexity. Channel-
based formats have high device dependence but
low playback complexity. Scene-based formats of-
fer high listening freedom but place strict demands
on the system. Object-based formats provide un-
matched flexibility and scalability and act as a core
driver of next-generation immersive media. These
paradigms are not mutually exclusive, and each
suits different applications best. A concise compar-
ison is deferred to Appendix A.2, Table 3. Most
works adopt a single format output so a direct quan-
titative comparisons across output formats are rare.
We will highlight this as an important direction in
future work.

3 Understanding Approaches

Spatial audio understanding aims to analyze com-
plex acoustic scenes by exploiting spatial cues.
Core tasks include sound event localization and
detection (SELD), spatial audio separation, and
joint learning with visual and language modalities.

3.1 SELD Tasks

Sound event localization and detection (SELD) an-
swers two questions at once: what sound occurs
(sound event detection, SED) and where it comes
from (direction of arrival estimation, DOAE). Tra-
ditional methods rely on signal processing while
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modern work increasingly adopts deep learning
models on SELD tasks.

Deep learning achieves strong progress on SELD
with diverse network architectures. Early work
(May et al., 2010) models binaural cues (ITD/ILD)
with Gaussian mixtures to estimate azimuth and
lays the foundation for later studies. SELDnet
(Adavanne et al., 2018a) uses a CRNN to process
SED and DOA in parallel and becomes a key base-
line. To further improve performance, researchers
explore alternative representations and mappings.
For example, (Pavlidi et al., 2015) estimates the
active intensity vector, while (Rana et al., 2019)
builds an automated pipeline for Ambisonics esti-
mation from audio–visual features. For binaural
devices such as hearing aids, DeepEar (Yang and
Zheng, 2022) designs a multi-sector network that
localizes multiple sources. To handle unknown
numbers of sources in the wild, (Kim et al., 2023)
proposes a YOLO-inspired, event-driven localizer
that is robust to concurrent events.

Jointly learning SED and DOA often degrades
performance. Several strategies address this is-
sue. (Cao et al., 2019) shows that two-stage train-
ing allows SED features to benefit DOAE. (Cao
et al., 2021) introduces a track-wise output for-
mat, permutation-invariant training (PIT), and soft
parameter sharing to avoid sacrificing subtask ac-
curacy. (Shimada et al., 2021, 2022) proposes
ACCDOA and its multi-target extension, which
unify SELD as a single-target regression prob-
lem and remove the need to balance multi-task
losses. SALSA (Nguyen et al., 2022) designs a
joint time–frequency feature that maps signal en-
ergy and directional cues with high precision.

To fuse complementary strengths, (Yasuda et al.,
2020) combines physics-based intensity vector (IV)
estimation with DNN denoising and source sepa-
ration to handle overlaps. With listener motion,
(Krause et al., 2023) confirms the benefit of motion
cues for localization, and (García-Barrios et al.,
2022) analyzes how head rotations affect accuracy.
In model design, self-supervised methods (Sun
et al., 2023; Santos et al., 2024) and audio–visual
learning (Gan et al., 2019; Tian et al., 2018) reduce
dependence on large labeled sets. Recent architec-
tures including CRNNs with SE modules (Naranjo-
Alcazar et al., 2020), Transformers (Kuang et al.,
2022), autoencoders (Huang et al., 2020; Wu et al.,
2021), and VAEs (Bianco et al., 2020, 2021) cap-
ture time–frequency structure and support unsuper-
vised or semi-supervised settings.

Recent works use diverse datasets and protocols,
which complicates uniform comparison. Appendix
B lists the datasets and metrics used in SELD tasks
and report comparable performance.

3.2 Spatial Audio Separation
Source separation aims to recover individual
sources from a mixture. With binaural or multi-
channel inputs, inter-channel spatial cues provide
strong leverage, especially for challenging “cock-
tail party” scenarios.

Binaural Audio Separation Binaural separation
uses ITD and ILD cues between the two ears to dis-
entangle overlapping sources. Early machine learn-
ing approaches, such as (Weiss et al., 2009), em-
ploy probabilistic models. To support human–robot
interaction, (Deleforge and Horaud, 2012) proposes
a generative model with active binaural hearing so
that a robot performs robust separation and localiza-
tion in cocktail-party conditions. To handle multi-
speaker separation under reverberation, (Zhang and
Wang, 2017) introduces a novel 2D ITD feature,
while (Wang and Wang, 2018) tightly integrates
spectral and spatial features in a deep framework.
To preserve spatial cues that matter to downstream
applications, (Han et al., 2020) proposes MIMO
TasNet for real-time speech separation with binau-
ral cue retention.

Audio–visual fusion is another major direction.
The pioneering 2.5D Visual Sound (Gao and Grau-
man, 2019) adopts a mix-and-separate strategy,
where visual cues guide binaural separation. To
go beyond systems that only model acoustics and
ignore spatial position, LAVSS (Ye et al., 2024)
introduces audio–visual spatial source separation
(AVSS). It encodes object locations explicitly to
steer the separation process.

Multichannel Audio Separation Multichannel
separation uses richer spatial information and ar-
ray geometry to address the underdetermined case
where sources outnumber channels. Traditional
methods such as spatial clustering (Wang et al.,
2018) cluster time–frequency bins with GMMs
using inter-channel cues (ITD, ILD, etc.). Early
DNN work (Nugraha et al., 2016) combines DNN-
modeled spectra with a classical multichannel
Gaussian model to exploit spatial structure. Recent
unsupervised methods, such as (Zmolikova et al.,
2021), adopt variational Bayes to unify spectral and
spatial cues and achieve end-to-end spatial separa-
tion. In addition, (Wang et al., 2018) proposes an
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efficient algorithm that extends two-channel deep
clustering to arbitrary microphone arrays. Simi-
larly, (Morgado et al., 2018) converts mono audio
to multichannel spatial audio via video analysis and
implicitly separates and localizes unknown sources.

3.3 Cross-Modal Scene Understanding
To reach comprehensive scene understanding, spa-
tial audio is increasingly learned together with
other modalities, such as vision and natural lan-
guage. The goal is to align and exploit the rich
cues present across modalities.

Alignment Between Audio & Visual Informa-
tion Aligning spatial audio with vision is key to
cross-modal reasoning. (Morgado et al., 2020) pro-
pose audio–visual spatial alignment (AVSA) and
use contrastive learning to capture correspondences
between 360° videos and their spatial audio. (Yang
et al., 2020) design a self-supervised task that asks
the model to detect whether left–right audio chan-
nels are swapped. This task forces the model to
learn spatial correspondence between audio modal-
ity and video modality.

Environment Information Understanding room
acoustics is essential for realistic reproduction.
(Liang et al., 2023) integrates propagation priors
into NeRF to synthesize spatial audio consistent
with novel views. (Luo et al., 2022) proposes neu-
ral acoustic fields (NAFs) that learn an implicit rep-
resentation of sound propagation directly from im-
pulse responses. Many studies (Savioja and Svens-
son, 2015; Ratnarajah et al., 2024; Bryan, 2020;
ISO, 2009; Coldenhoff et al., 2024; Majumder
et al., 2022; Srivastava et al., 2021) simulate or
measure room impulse responses to analyze indoor
acoustic parameters and capture geometry and ma-
terial properties.

Visual Segmentation & Depth Estimation
Depth and segmentation provide precise geomet-
ric supervision for spatial audio processing. (Liu
et al., 2025b) integrates YOLOv8(Varghese and
Sambath, 2024) detection with Depth Anything
to estimate depth. It then computes accurate 3D
source positions and supplies key cues for down-
stream spatialization.

Natural Language Guided Natural language
guidance is a new frontier for spatial audio un-
derstanding. Because existing audio foundation
models usually lack spatial awareness, ELSA (De-
vnani et al., 2024) uses contrastive learning and

spatial regression targets to align spatial audio with
text for the first time. BAT (Zheng et al., 2024)
builds a new dataset, SPATIALSOUNDQA, with
spatial question–answer pairs and fine-tunes a large
language model (LLaMA-2). It shows the strong
potential of LLMs for spatial audio reasoning.

3.4 Future Work

Spatial audio understanding may move from per-
ception to cognition by incorporating explicit
causal reasoning. Models may infer why events
occur and what is likely to follow, rather than only
identifying what and where. Spatial cues can serve
as evidence for learning event chains, for example
a glass falling that results in shattering. This re-
quires unified multimodal foundation models that
treat spatial audio as a first-class modality along-
side vision and language which perform end-to-end
reasoning instead of late fusion, enabling seam-
less cross-modal inference. The goal is joint out-
puts that capture 3D layout, event logic, and hu-
man dynamics in a single coherent representation.
Progress also depends on learning counterfactuals
and intervention effects grounded in basic physics.
Benchmarking must evolve to test causal compe-
tence and embodied understanding, not just asso-
ciative pattern matching.

4 Spatial Audio Generation Methods

Spatial audio generation evolves from traditional
digital signal processing to advanced deep learn-
ing methods. This progress is driven by rapid ad-
vances in generative models. This section reviews
recent developments, covering both cascade mod-
els and end-to-end models. A summary of recent
deep learning models is presented in the Appendix
C and Table 5 with their input/output format and
model framework.

4.1 Cascade Models

This part focuses on a core topic in spatial audio
generation: upmixing monaural audio into bin-
aural audio with three-dimensional spatial cues.
The “mono-to-binaural” process builds immersive
listening. It aims to reproduce the spatial cues
that humans perceive and traces the technical path
from structured physical models to deep, especially
vision-guided, frameworks.

Traditional Methods Humans localize sound
with binaural hearing. This mechanism involves
an ITD, an ILD, and spectral changes described by
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HRTF. Early work such as (Brown and Duda, 1998)
explicitly models wave propagation and diffraction
with a simplified time-domain description. The
model is interpretable and efficient. With deep
learning, (Richard et al., 2021) introduces a neural
rendering network that synthesizes binaural wave-
forms from a mono input and the listener position.
The work shows the limits of a plain L2 loss on
raw waveforms.

Visually Guided Audio Spatialization A mono
signal lacks spatial location information. Visually
guided spatialization uses synchronized video to
provide key context. The pioneering 2.5D Visual
Sound framework (Gao and Grauman, 2019) em-
ploys a deep convolutional network to recover spa-
tial cues and sets the basic paradigm. (Li et al.,
2024c) adds object-level visual cues and designs
a cyclic locate-and-upmix (CLUP) framework. It
jointly learns visual source localization and binau-
ral generation. To improve accuracy, researchers
add 3D geometry. (Parida et al., 2022) stresses
depth maps and designs an encoder–decoder with
hierarchical attention. (Garg et al., 2021) sep-
arates geometry cues with a multi-task network
and learns geometry-aware features. Efficient
cross-modal fusion becomes a focus. (Zhang and
Shao, 2021) proposes the multi-attention fusion
network (MAFNet). (Liu et al., 2024) adds a novel
audio–visual matching loss. (Zheng et al., 2022)
defines a “binaural ratio” linked to physical cues
to improve interpretability. (Li et al., 2024b) intro-
duces a GAN framework with shared visual guid-
ance and proposes a new spatial metric.

Audio Quality Enhancement After solving lo-
calization, another line improves audio fidelity and
physical realism. (Leng et al., 2022) first applies
diffusion. It generates shared and ear-specific in-
formation in two stages. (Liu et al., 2022) adds
a plug-and-play DopplerBAS module that uses ra-
dial velocity to handle Doppler effects. (Lee and
Lee, 2023) proposes the Neural Fourier Shift (NFS)
network, which renders in the Fourier domain and
predicts early reflections, cutting computation.

Weakly-Supervised/Self-Supervised Paradigms
To break data limits, researchers propose new learn-
ing paradigms. (Xu et al., 2021) creates PseudoBin-
aural. It uses physical priors to make pseudo la-
bels from many mono videos. (Rachavarapu et al.,
2021) uses source localization as a proxy task for
weak supervision. Multi-task and self-supervised

learning also help. Sep-Stereo (Zhou et al., 2020)
adds visual-guided separation as a second task.
(Lin and Wang, 2021) enforces left–right consis-
tency. (Li et al., 2021) adds a channel-flip classifi-
cation task for self-supervision.

4.2 End-to-End Models
End-to-end spatial audio generation no longer up-
mixes an existing mono track. It synthesizes a
complete sound field from high-dimensional, multi-
modal inputs such as silent video, natural language,
or 3D geometry. The rise of diffusion models,
large multimodal datasets, and cross-modal repre-
sentation learning (e.g., CLIP) drives this paradigm.
Early systems include the VQ-VAE framework in
(Huang et al., 2022) and the surround-to-binaural
network in (Yang et al., 2022).

Video-Driven Spatial Audio Generation The
video-driven generation paradigm turns AI from a
post-production tool into a creative engine. ViS-
AGe (Kim et al., 2025) generates first-order Am-
bisonics (FOA) from silent video and surpasses cas-
cade methods. With VR/AR, generating immersive
audio for 360◦ videos becomes important. Omni-
Audio (Liu et al., 2025a) tackles the 360V2SA task
with a dual-branch design that uses panoramic and
normal views. Other work (Rana et al., 2019; Liang
et al., 2023) estimates 3D source positions from
audio–visual cues and encodes them in panoramic
sound.

Text and Multimodal Conditioned Generation
Controlling spatial audio with natural language is a
cutting-edge direction. Diffusion models drive this
change. (Heydari et al., 2025) uses a latent diffu-
sion model to produce 3D immersive soundscapes
from text. It supports descriptive and parametric
control. (Sun et al., 2024) notes that plain text
embeddings blur spatial cues. It proposes Spatial-
Sonic, which adds a spatial encoder and an azimuth-
elevation matrix for explicit guidance. Architec-
tural innovation then improves controllability. Du-
alSpec (Zhao et al., 2025) introduces a pretrained
separator and a channel-shift loss to enhance spa-
tialization. Other studies, such as (Kushwaha et al.,
2025; Zang et al., 2024), generate FOA from class
labels and positions or directly from text. The
trend extends to complex dialog and music. IS-
Drama (Zhang et al., 2025) accepts scripts, video,
and pose and produces multi-speaker spatial dialog
with dramatic prosody. MusicGen (Copet et al.,
2023), Moûsai (Schneider et al., 2023), and (Evans
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et al., 2024b) generate high-quality stereo music
from text input.

Environmental Acoustic Modeling For higher
realism and interactivity, research splits into two
philosophies: holistic and compositional. Envi-
ronmental acoustic modeling represents the holis-
tic view. (Ratnarajah and Manocha, 2024) ren-
ders sound for a 3D scene with a graph neural
network that encodes material and geometry. (Kim
et al., 2019) estimates room geometry and acous-
tics from 360◦ images to synthesize scene-aware
audio. Modular and zero-shot generation illustrates
the compositional view. SEE-2-Sound (Dagli et al.,
2024) breaks the visual-to-audio task into region
recognition, 3D localization, mono generation, and
spatialization. The modular design lets the system
produce matching spatial audio for novel visual
content and shows strong generalization.

4.3 Future Work
Spatial audio generation has made strong progress.
The next challenge is to move beyond signal level
reconstruction toward semantics driven generation.
This also follows the from perception to cogni-
tion shift. Works such as ISDrama(Zhang et al.,
2025) show the potential to generate dialogue style
spatial audio from scripts and video that matches
context and emotion. This suggests a move from
simple spatialization to the creation of complex
soundscapes with narrative logic and affect. Future
research should deepen semantic control. A model
should not only generate audio for a text like birds
chirp on the left. It should also capture fine grained
emotion and ambience. This requires richer seman-
tics and better context understanding. It fits current
trends in multimodal generation.

A critical but under explored direction is diver-
sity and flexibility of output formats. Current mod-
els often support only a single output format and
lack conversion across spatial representations. Fu-
ture generators should be format agnostic and able
to produce multiple spatial representations accord-
ing to user instructions. Most works focus on input
side fusion. Output side diversity and semantic
generation remain open and challenging.

5 Dataset and Evaluation of Spatial Audio

5.1 Datasets
Spatial audio data exists in a variety of formats,
each reflecting different characteristics and tailored
to specific tasks. This section provides an in-depth

analysis of existing spatial audio datasets, illus-
trating the diverse methods of data collection and
processing, and explaining how these elements
contribute to the understanding of spatial audio.
Sources including real-world recordings, physics-
based simulations, and web-crawled material are
shown in Appendix E and Table 6.

5.1.1 Multi-Channel Audio Datasets
Multi-channel datasets are crucial for developing
far-field speech interaction and scene analysis sys-
tems. Early corpora like REVERB Challenge (Ki-
noshita et al., 2016), DIRHA (Ravanelli et al.,
2015), and Sweet-Home (Vacher et al., 2014) focus
on speech enhancement and ASR in reverberant
home environments. To support more precise spa-
tial hearing research, datasets such as Voice-Home
(Bertin et al., 2016), SECL-UMons (Brousmiche
et al., 2020), and AVRI (Qian et al., 2022) provide
detailed geometric annotations for localization and
speaker tracking. Recent efforts capture dynamic
and complex scenes, including pedestrian environ-
ments in the Wearable SELD dataset (Nagatomo
et al., 2022) and diverse indoor/outdoor settings in
the high-channel-count RealMAN dataset (Yang
et al., 2024).

5.1.2 First-Order Ambisonics Datasets
First-Order Ambisonics (FOA) is a standard format
for tasks requiring 3D acoustic information, with
datasets collected via crawling, simulation, and
real-world recording. Crawled datasets like YT-
ALL (Morgado et al., 2018) and YT-360 (Morgado
et al., 2020) provide large-scale, in-the-wild data
for pre-training, while YT-AMBIGEN (Kim et al.,
2025) improves alignment by filtering for camera
metadata. Simulated datasets, including the TUT
Sound Events series (Adavanne et al., 2018a) and
DCASE2021 Task 3 (Politis et al., 2021), offer
controlled benchmarks for SELD, whereas Spa-
tial LibriSpeech (Sarabia et al., 2023) and Sonic-
Set (Li et al., 2024a) spatialize large existing cor-
pora. Scarce but highly realistic recorded datasets
like REC-STREET (Morgado et al., 2018) and the
STARSS series (Politis et al., 2022; Shimada et al.,
2023) provide invaluable data for outdoor scenes
and high-resolution SELD benchmarks.

5.1.3 Binaural Datasets
Binaural audio offers a perceptually plausible for-
mat for headphone-based immersion by directly
mimicking human hearing. Real-world recordings
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capture naturalistic scenes, from musical perfor-
mances in FAIR-Play (Gao and Grauman, 2019)
to challenging noisy conversations in EasyCom
(Donley et al., 2021) and head-tracked dialogues
in the dataset by Richard et al. (Richard et al.,
2021). Simulated datasets like SimBinaural (Garg
et al., 2023) enable large-scale, controllable data
generation, while hybrid approaches like YouTube-
Binaural (Garg et al., 2023) convert existing sur-
round audio to a pseudo-binaural format. Recent
efforts integrate richer multimodal and semantic
information, with BEWO-1M (Sun et al., 2024)
enabling text-guided generation and MRSDrama
(Zhang et al., 2025) providing a unique corpus of
expressive spatial speech for narrative tasks.

5.2 Objective Evaluation Metrics

5.2.1 Evaluation Metrics for Understanding
SELD Evaluation covers SED and DOA estima-
tion. SED uses segment-based F-score and error
rate (ER) (Mesaros et al., 2016). DOA uses two
frame-wise metrics: DOA error, which measures
the angular deviation between estimates and refer-
ences, and frame recall, which measures the frac-
tion of frames with the correct number of detected
sources (Adavanne et al., 2018b). DOA error aver-
ages the assignment cost between reference DOAs
DOAt

R and estimated DOAs DOAt
E based on the

Hungarian algorithm.

Spatial Audio Separation Separation quality is
measured with mir_eval metrics such as signal-
to-distortion ratio (SDR) and signal-to-interference
ratio (SIR)(Ye et al., 2024).

Joint Learning For audio–visual tasks, evalua-
tion often uses binary classification metrics, such
as audio–visual correspondence (AVC-Bin) and
audio–visual spatial alignment (AVSA-Bin) (Mor-
gado et al., 2020). Downstream tasks, such as se-
mantic segmentation, use pixel accuracy and mean
Intersection over Union (mIoU).

5.2.2 Evaluation Metrics for Generation
Monaural-to-Binaural Audio Generation Fi-
delity is evaluated with objective measures in the
time domain (Wave L2), spectral domain (Ampli-
tude L2, Phase L2, multi-resolution STFT loss),
and perceptual scores (PESQ, MOS) (Leng et al.,
2022; Liu et al., 2022). The multi-resolution STFT
loss (MRSTFT) combines spectral convergence
LSC and log-magnitude loss Lmag.

End-to-End Binaural Audio Generation Evalu-
ation focuses on key spatial cues. Objective metrics
include mean absolute error (MAE) of interaural
phase difference (IPD) and interaural level differ-
ence (ILD) (Zhang et al., 2025). Perceptual evalua-
tion often measures cosine similarity between an-
gle/distance embeddings from a pretrained model
(e.g., SPATIAL-AST (Zheng et al., 2024)) and
those from generated audio.

End-to-End FOA Generation Evaluation com-
bines spatial accuracy, codec quality, and percep-
tual plausibility (Heydari et al., 2025). Spatial
accuracy reports errors of azimuth (θ), elevation
(ϕ), and distance (d), which are derived from the
intensity vector of FOA channels. The overall
spatial-angle error ∆Spatial-Angle is also reported
(Van Brummelen, 2012). Codec quality uses STFT
and Mel distances. Plausibility uses Fréchet Audio
Distance (FAD) and KL divergence. The CLAP
score measures consistency between text prompts
and generated audio.

Detailed formulas are presented in Appendix F.

5.3 Subjective Evaluation Metrics
Objective metrics give reproducible baselines, but
human perception is the final standard, especially
for immersion. Subjective tests collect listener feed-
back on timbre, spatial impression, realism, and
overall immersion. These aspects are hard for sig-
nal level metrics to capture. Rigorous subjective
evaluation is therefore essential. Spatial audio re-
lated subjective evaluation metrics including MOS
test, MUSHRA (Series, 2014)and A/B and ABX
(Boley and Lester, 2009).

6 Conclusion

This paper presents a comprehensive survey of the
rapidly advancing spatial audio field covering foun-
dational spatial audio input and output representa-
tions; the core research paradigms of understanding
and generation; and the landscape of datasets and
evaluation metrics.We hope this survey serves as a
valuable resource for researchers, further guiding
future work and fostering innovation in immersive
audio technology.
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Limitations

While this survey provides a broad overview of
the algorithmic and data-centric aspects of spatial
audio, its scope has certain limitations, leaving
several important areas underexplored.

First, our review is heavily centered on software,
models, and datasets, with only a cursory treat-
ment of the specialized hardware that underpins
the entire spatial audio pipeline. We do not offer
a detailed analysis of different microphone array
geometries (e.g., spherical, tetrahedral), the design
of dedicated audio processors (DSPs) for real-time
rendering, or the technologies behind head-tracking
sensors (e.g., IMUs) and their integration into con-
sumer devices. A deeper dive into these hardware
components would be necessary for a complete
picture of the field’s engineering challenges.

Second, while we touch upon perceptual con-
cepts like HRTF personalization and evaluation
metrics like MOS, the survey does not delve deeply
into the fundamentals of psychoacoustics and hu-
man spatial hearing. A dedicated discussion on the
perceptual mechanisms that enable sound localiza-
tion and immersion would provide crucial context
for the engineering solutions presented. Similarly,
our section on evaluation metrics focuses exten-
sively on objective, formula-based measures but
does not detail the methodologies of subjective lis-
tening tests (e.g., MUSHRA, A/B testing), which
remain the gold standard for assessing the percep-
tual quality of spatial audio systems.

Ethical Considerations

As spatial audio matures and spreads, its ethical
challenges grow and deserve careful study. The
first concern is privacy. As noted in our draft, de-
ploying multi-microphone arrays in private and
public spaces for high-fidelity capture increases
the risk of surveillance without consent. Spatial
audio can record content and also infer speaker
positions, movement paths, and even headcounts.
Reconstructing physical scenes from intercepted
audio becomes possible. This goes beyond tradi-
tional wiretapping and is a deeper privacy threat. It
is therefore crucial to develop strong protections,
such as on-device processing and differential pri-
vacy.

Rapid progress in spatial audio generation brings
new risks, especially audio forgery and misinfor-
mation. Advanced models can mimic a person’s
voice and place it in a plausible virtual space, creat-

ing highly deceptive "spatial audio deepfakes." For
example, an attacker could forge audio that sounds
like a public figure speaking in a specific room.
The spatial realism greatly boosts credibility and
can be used to manipulate opinion, commit fraud,
or harm reputations. This can erode trust in digital
media. Detection methods and clear accountability
frameworks are urgent needs.

We must also address bias and fairness. Core
technologies such as personalized HRTF often rely
on datasets measured on specific populations or on
standardized head models. Lack of diversity in an-
thropometric traits can lead to unequal experiences
across gender, ethnicity, or age. Some users may
have poorer immersion and localization accuracy.
Large models trained on web audio can also inherit
and amplify social biases. The community should
build inclusive datasets and perform fairness audits
to ensure access and to avoid a new digital divide.
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Appendix

A Extended Representation Discussions

A.1 Input Representationsn

Figure 2 shows the input modalities for spatial au-
dio tasks, natural language, spatial position, visual
information, and monaural audio, each offers a
unique perspective for the system to perceive, inter-
pret, or generate soundscapes. While they can be
used independently, their true potential is often real-
ized through synergistic multimodal combinations.
The choice of input representation is not merely a
technical decision but a fundamental architectural
one that dictates the system’s capabilities, complex-
ity, and the nature of its interaction with the user
or environment. This section will comparatively
analyze these input paradigms, examining their in-
trinsic properties, task suitability, and the emerging
trends in their combined application.

As shown in Table 1, these input representations
exhibit a core trade-off between the level of ab-
straction and control precision. Natural language
and visual information reside at the highest level
of abstraction. They are intuitive for humans and
well-suited for high-level scene description or con-
tent querying. However, this intuitiveness intro-
duces challenges of lower control precision and
semantic ambiguity, necessitating complex models
to bridge the gap between semantics and machine-
processable signals.

Conversely, spatial position coordinates offer the
highest control precision, making them ideal for
defining precise source trajectories or serving as
ground truth for evaluation. However, they lack se-
mantic context, and manually specifying complex
scenes is a tedious process. Monaural audio plays a
unique role. Positioned at a low level of abstraction,
it does not directly provide spatial control. Instead,
it serves as the foundational acoustic content for
generation tasks, providing core acoustic features
such as timbre and pitch. It acts as raw material
that other modalities spatialize.

We observed that some multimodal works com-
pare different input forms, for example the multi-
modal input in ISDrama(Zhang et al., 2025). As
shown in Table 2, it suggests that precise geomet-
ric coordinates give the best scores. Video inputs
are slightly worse. The model can learn relative
spatial cues from video but lacks the precision of
geometry. Text inputs perform the worst. They
provide only coarse spatial hints and lag behind in

ANG and DIS cosine similarity, which indicates
less accurate angle and distance estimation.

Therefore, the selection of an input representa-
tion is fundamentally a trade-off between the in-
tuitive, abstract control preferred by humans and
the precise, geometric data required by machines,
a choice contingent on the specific requirements of
the task.

Abstract intent vs. geometric precision A fun-
damental trade-off exists among the different input
representations: the opposition between the level
of abstraction in control and its precision. Natu-
ral language and visual information represent the
pinnacle of abstract, human-centric control. Natu-
ral language provides an intuitive way to specify
semantic content (e.g., "a bird is chirping") and re-
lational spatial attributes ("on the left"). Similarly,
visual information from images or videos offers
rich spatial and semantic context. These inputs
describe what exists in a scene and how its compo-
nents are related, which aligns closely with human
perception.

However, this intuitiveness comes at the cost
of reduced precision. The system must infer pre-
cise physical parameters from abstract descriptions.
The BAT model (Zheng et al., 2024) exemplifies
this challenge, utilizing a large language model to
interpret complex natural language queries regard-
ing "sound event detection, direction and distance
estimation, and spatial reasoning". This highlights
a critical point: high-level abstract inputs require
a sophisticated, AI-based interpretation layer to
translate human intent into machine-executable in-
structions.

In contrast, spatial position data provides the
highest degree of precision. Cartesian or spherical
coordinates offer direct and unambiguous guidance
for placing sound sources. This makes it indispens-
able for tasks requiring absolute accuracy, such
as providing ground truth for training and evaluat-
ing sound localization models, or simulating pre-
cise physical phenomena like the Doppler effect
by incorporating velocity vectors (Liu et al., 2022;
Zhang et al., 2025). The inherent trade-off is that
this representation lacks semantic context and is
non-intuitive and tedious for manually specifying
complex acoustic scenes.

Monaural audio as the acoustic substrate Un-
like other inputs that primarily define where a
sound is, monaural audio defines what the sound
itself is. It constitutes the "foundational acoustic
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Attribute Natural
Language

Spatial
Position

Visual
Information

Monaural
Audio

Primary Info Semantic, relational,
implicit spatial

Explicit spatial, dynamic Semantic, spatial,
dynamic

Acoustic (timbre, pitch,
content)

Control Precision Low Very high High N/A
Abstraction Level High Low High Low
Interpretability Indirect Direct Indirect Indirect
Key Challenges Ambiguity;

semantic–signal gap
No semantics; tedious

authoring
Ambiguity; occlusion;

compute cost
Lack of spatial cues

Table 1: Comparative analysis of spatial audio input representations.

Downstream Tasks
Mel Spectrogram

STFT Spectrogram

Q: In which direction and 
how far away is the source 
of drum sound?

A: Left, behind, 1.2m.

Speaker is walking slowly from left 
behind to right behind, facing right.

STFT

Textual
Encoder

Text
 Embeddings

Downstream Tasks

Spatial Prompt

QA Pair

(θ, φ, r)

(x, y, z)

Spherical Coordinates

Cartesian coordinates

Position
Encoder

Position
  Embeddings

Downstream Tasks

Speed

Orientation
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Image

Video
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Encoder
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Image
Embeddings

Video
Spatio-temporal

Embeddings

Downstream Tasks

Downstream Tasks

(a) Natural Language Prompt (b) Spatial Position

(c) Visual Information (d) Monaural Audio

Figure 2: An overview of input representations of spatial audio and their primary processing methods.

content" for many spatial audio tasks, providing
core acoustic characteristics such as timbre of a spe-
cific instrument or the phonetic features of speech.
Therefore, monaural audio plays a unique role in
the ecosystem of input representations.

Many advanced generative systems follow a two-
stage principle: first, a source model (such as Au-
dioGen (Kreuk et al., 2022) or AudioLDM (Liu
et al., 2023)) generates a monaural audio stream;
then, this stream is spatialized or upmixed into a
multichannel or binaural format under the guidance
of other input modalities, such as visual or posi-
tional data. This architecture clearly separates the
problem of content generation from that of spatial
rendering, enabling modular and flexible system
design. Consequently, monaural audio is not an
alternative option parallel to other input forms, but
rather the fundamental substrate upon which they
act.

Multimodal synergy The most powerful spa-
tial audio systems are increasingly moving to-
wards multimodality, creating comprehensive con-
trol schemes by combining the strengths of differ-
ent input types to overcome the limitations of any
single modality. The synergy between vision and
audio is particularly potent. In audio-visual source
separation tasks, the visual presence of an object
(e.g., a speaking person) provides a strong, albeit
implicit, cue for isolating its corresponding sound
from a noisy mixture. In generation tasks, visual in-
formation can guide the spatialization process; for
example, a U-Net architecture can take a monaural
input and, guided by a video, render a spatially
correct binaural or stereo output. The audio-visual
matching task is considered crucial, highlighting
the deeply learned correspondences between these
modalities.

Similarly, adding explicit spatial position data
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ISDrama Input Format IPD MAE (↓) ILD MAE (↓) ANG COS (↑) DIS COS (↑)

geometric 0.008 0.046 0.51 0.75
video 0.009 0.051 0.48 0.73
textual 0.011 0.055 0.43 0.68

Table 2: Quantitative Comparison of input modality, the data is from ISDrama(Zhang et al., 2025).

(such as source orientation and velocity) to a
monaural audio stream allows for the simulation of
highly realistic dynamic effects, like the Doppler
shift , elevating realism to a level unattainable with
static spatialization.

A.2 Output Representations

Table 3 presents a comparative analysis of the three
primary spatial audio output representations. Each
paradigm possesses unique advantages and limita-
tions, making it suitable for different application
scenarios and user requirements.

Playback system dependency and scalability are
key to understanding the evolution of these three
paradigms. Channel-based formats exhibit very
high system dependency but poor scalability. This
is because their audio mix is baked-in for a specific,
standardized loudspeaker layout (e.g., 5.1 surround
sound). Any playback system that deviates from
this layout will degrade the intended spatial effect.
In contrast, object-based formats feature low de-
pendency and excellent scalability. They achieve
this by decoupling the audio content from its meta-
data, which allows the playback device to render
the audio in real-time according to its own arbitrary
loudspeaker configuration. Consequently, a single
master file can be adapted to any system. Scene-
based formats occupy a middle ground. Their high
dependency stems from the requirement for numer-
ous loudspeakers and complex processing systems
to physically reconstruct the sound field. Their
moderate scalability is demonstrated by the ability
to improve performance by increasing the system
order (e.g., Higher-Order Ambisonics), though this
significantly increases system cost and complexity.

Freedom of listening position and playback-end
complexity are directly related to user experience
and implementation cost. Channel-based formats
confine the listener to a narrow sweet spot, but their
playback-end complexity is low, requiring only
simple channel-to-loudspeaker mapping. Scene-
based formats offer high freedom, allowing listen-
ers to move freely within a designated area. How-
ever, this comes at the cost of very high playback-

end complexity, which involves real-time decoding
and substantial signal processing. Object-based
formats provide moderate freedom of movement
(depending on the rendering system). Their mod-
erate to high playback-end complexity arises from
the need for a real-time rendering engine to process
metadata and dynamically generate the mix.

Overall, these three paradigms are not mutu-
ally exclusive; rather, each has its optimal applica-
tion domain. Channel-based technology retains its
place in traditional media due to its simplicity and
broad compatibility. Scene-based techniques offer
irreplaceable advantages in applications requiring
high physical fidelity and large-scale public experi-
ences. Meanwhile, object-based technology, with
its unparalleled flexibility and interactivity, has be-
come the core driver for next-generation immersive
media, such as VR/AR, gaming, and streaming.
Understanding their fundamental differences is cru-
cial for selecting and implementing the most appro-
priate spatial audio solution.

B Understanding Details

For SELD tasks, the metrics are relatively standard-
ized. Competitions and datasets like DCASE chal-
lenges and TAU-NIGENS datasets provide evalua-
tion metrics to evaluate the models’ performance.

The diversity of datasets itself in table 4 reflects
the lack of a unified benchmark which evaluate
both objective and subjective quality of spatial au-
dio.

C Generation Details

This section provides a detailed description of the
input and output formats for the generative models
summarized in Table 5. These formats represent
the diverse ways in which spatial audio systems are
controlled and the types of immersive experiences
they can produce.

Spatial audio generation has evolved from two-
stage upmixing approaches to fully end-to-end syn-
thesis, driven by increasingly powerful deep learn-
ing architectures. Early and still prevalent methods,
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Attribute Channel-Based Scene-Based Object-Based

Freedom of Listening Position Limited High Moderate
Playback System Dependency Very high High Low
Scalability Low Moderate Excellent
Playback-End Complexity Low High Moderate

Common Formats Stereo; 5.1/7.1 surround Ambisonics; wave-field
synthesis (WFS)

Dolby Atmos; DTS:X;
MPEG-H 3D Audio

Table 3: Comparative analysis of spatial audio output representations.

Model ER20 F20 LECD LRCD εSELD Dataset

CRNN-based SELD (Adavanne et al., 2018b) 0.04 97.7% 3.4◦ 99.4% – TUT Sound Events 2018
Naranjo-Alcazar et al. 2020 0.68 42.3% 22.5◦ 65.1% – DCASE2020
ACCDOA (Shimada et al., 2021) 0.43 74.2% 9.6◦ 77.5% – DCASE2020
Cao et al. 2021 0.233 83.2% 6.8◦ 86.1% – TAU Spatial Sound Events 2020
SALSA (Nguyen et al., 2022) 0.408 71.5% 12.6◦ 72.8% 0.259 TAU Spatial Sound Events 2019
Multi-ACCDOA (Shimada et al., 2022) 0.596 55.3% 18.4◦ 64.4% 0.375 DCASE2021
AD-YOLO (Kim et al., 2023) 0.4818 61.27% 8.48◦ 69.82% 0.3048 DCASE2022
w2v-SELD (Santos et al., 2024) 0.096 94.66% 4.67◦ 93.05% 0.061 TAU-2019

Table 4: Comparison of SELD models. ER20: error rate at a 20◦ collar; F20: F-score at a 20◦ collar; LECD:
localization error; LRCD: localization recall; εSELD: SELD score.

often based on CNNs like U-Net, focus on spa-
tializing existing audio. These models typically
take a monaural audio track and visual information
from an image or video as input, and output a corre-
sponding binaural or multi-channel audio signal, as
seen in pioneering works like 2.5D Visual-Sound
(Gao and Grauman, 2019). More recent research
has shifted towards direct, end-to-end synthesis
from more abstract or multimodal inputs. Diffu-
sion and flow-matching models are at the forefront
of this trend, capable of generating high-fidelity
FOA or binaural audio directly from text prompts,
images, class labels, and explicit spatial positions
(e.g., ImmerseDiffusion (Heydari et al., 2025), Son-
icMotion (Templin et al., 2025), OmniAudio (Liu
et al., 2025a)). Transformer-based models excel at
integrating complex, heterogeneous data streams;
for instance, ViSAGe (Kim et al., 2025) generates
FOA audio from video combined with camera posi-
tion metadata, while ISDrama (Zhang et al., 2025)
synthesizes expressive binaural speech from a rich
mix of video, audio, text, and positional data. Other
architectures serve specialized functions: VAEs are
often used to learn disentangled latent representa-
tions for flexible spatial manipulation or to generate
intermediate outputs like impulse responses (IRs)
from 360° images (Kim et al., 2019), while GANs
can incorporate detailed geometric data like 3D
meshes to generate physically accurate binaural

IRs, as demonstrated by Listen2Scene (Ratnarajah
and Manocha, 2024).

D Discussion on Generation
Architectures and Frameworks

The cascaded architecture is a postprocessing
pipeline that upmixes a mono signal to add spa-
tial dimensions. It is modular and controllable
because content creation is separate from spatial-
ization, letting researchers optimize rendering and
use any mono input. Its quality is capped by the
input, and the separation makes it hard to gener-
ate effects tightly tied to source physics, such as
motion or deformation. While the end to end ar-
chitecture synthesizes a full spatial sound field di-
rectly from high level inputs such as text, video,
or 3D geometry, without relying on an existing au-
dio signal. It offers strong creative potential and a
more natural fusion of spatial attributes with con-
tent, enabling novel immersive soundscapes. The
approach is more complex. Black box behavior
hinders precise control of attributes such as timbre,
and training usually needs large, well aligned mul-
timodal datasets. The shift from cascaded to end
to end marks a move from reprocessing to original
creation.

Framework choice sets performance and scope.
Early cascaded models for visual guided spatializa-
tion used CNNs such as U-Net(Ronneberger et al.,
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Model Input Format Output Format Framework

Xu et al. 2021 Mono; Image Binaural

Diffusion-based

Binauralgrad (Leng et al., 2022) Mono Binaural
Moûsai (Schneider et al., 2023) Text Binaural
See-2-Sound (Dagli et al., 2024) Image; (Text) Multi
Evans et al. 2024b Text; (Audio; Duration) Binaural
DualSpec (Zhao et al., 2025) Text Binaural
ImmerseDiffusion (Heydari et al., 2025) Text; (Position) FOA
SonicMotion (Templin et al., 2025) Text; Position FOA

Huang et al. 2022 Mono; Position Binaural LatentYang et al. 2022 Binaural/Multi Multi

Lee and Lee 2023 Mono; Position;
Orientation

Binaural

Transformer-based
MusicGen (Copet et al., 2023) Text Mono/Binaural
Ambisonizer (Zang et al., 2024) Mono/Binaural FOA
ViSAGe (Kim et al., 2025) Video; Camera Position FOA
ISDrama (Zhang et al., 2025) Video; Audio; Text;

Position
Binaural

OmniAudio (Liu et al., 2025a) 360◦ Video FOA Flow MatchingDiff-SAGe (Kushwaha et al., 2025) Class Label; Position FOA

Listen2Scene (Ratnarajah and Manocha, 2024) 3D Mesh; (Source &
Listener Position)

Binaural IRs
GANs

SAGM (Li et al., 2024b) Mono; Video Binaural

Table 5: Comparison of current spatial audio generative models. FOA denotes first-order ambisonics; Multi denotes
multi-channel audio. Inputs/outputs in parentheses are optional. CNN-based models are omitted.

2015). CNNs are efficient for spectrogram like in-
puts but their local receptive fields limit long range
temporal modeling. Transformers can handle long
sequences and multimodal fusion. ISDrama(Zhang
et al., 2025) integrates video, text, and position
to generate long duration multi party dialogue, but
quadratic complexity is costly so it adopts a Mamba
Transformer. Diffusion and flow matching now
lead on fidelity. ImmerseDiffusion(Heydari et al.,
2025) and SonicMotion(Templin et al., 2025) show
that iterative denoising yields highly realistic spa-
tial soundscapes, at the cost of slow multi step sam-
pling that is not ideal for real time. In short, CNNs
suit lightweight feature processing, Transformers
suit long sequence multimodal generation, and dif-
fusion models suit non real time applications that
aim for the highest perceptual quality.

E Dataset Details

Spatial audio data exists in a variety of formats,
each reflecting different characteristics and tailored
to specific tasks. Due to variations in recording
equipment and application scenarios, spatial audio
data comes in multiple formats, often accompanied
by annotations and auxiliary data from other modal-
ities. Moreover, because recording spatial audio is
typically costly and resource-intensive, many exist-
ing approaches resort to using simulation systems

to generate synthetic data from current monaural
audio datasets. Some datasets also include real-
world spatial audio crawled from the YouTube plat-
form. The section focus on the acquisition and
processing methods including both recorded and
simulated data associated with various spatial au-
dio formats, including multi-channel audio, First-
Order Ambisonics, and binaural audio. A summary
of commonly used datasets is presented in the Table
6.

F Objective Evaluation Metrics Details

F.1 Evaluation Metrics for Spatial Audio
Understanding

SELD. The SELD task is evaluated using sepa-
rate metrics for Sound Event Detection (SED) and
Direction-of-Arrival (DOA) estimation. For SED,
the one-second segment F-score and Error Rate
(ER) are commonly used (Mesaros et al., 2016).

For DOA estimation, two frame-wise metrics
are frequently employed (Adavanne et al., 2018b):
DOA Error and Frame Recall. Let T be the total
number of time frames. Denote by DOAt

R the set
of reference DOAs at frame t and by DOAt

E the
set of estimated DOAs. Define

Dt
R =

∣∣DOAt
R

∣∣, Dt
E =

∣∣DOAt
E

∣∣.
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Dataset Format Collect Hours Type Labels

Sweet-Home (Vacher et al., 2014) Multi Recorded 47.3 Speech Text
Voice-Home (Bertin et al., 2016) Multi Recorded 2.5 Speech Text, Geomrtric
YT-ALL (Morgado et al., 2018) FOA Crawled 113 Audio Video, Text
REC-STEEET (Morgado et al., 2018) FOA Recorded 3.5 Audio Video
FAIR-Play (Gao and Grauman, 2019) Binaural Recorded 5.2 Audio Video
SECL-UMons (Brousmiche et al., 2020) Multi Recorded 5 Audio Text, Geometric
YT-360 (Morgado et al., 2020) FOA Crawled 246 Audio Video
EasyCom (Donley et al., 2021) Binaural Recorded 5 Speech Geometric, Text
Binaural(Richard et al., 2021) Binaural Recorded 2 Speech Geometric
SimBinaural (Garg et al., 2023) Binaural Simulated 116 Audio Video, Geometric
YouTube-Binaural (Garg et al., 2023) Binaural Crawled 27 Audio Video
Spatial LibriSpeech (Sarabia et al., 2023) FOA Simulated 650 Speech Text, Geometric
STARSS23 (Shimada et al., 2023) FOA Recorded 7.5 Audio Video, Geometric
YT-Ambigen (Kim et al., 2025) FOA Crawled 142 Audio Video
BEWO-1M (Sun et al., 2024) Binaural Simulated 2.8k Audio Text/Image, Geometric
MRSDrama (Zhang et al., 2025) Binaural Recorded 98 Speech Text, Video, Geometric

Table 6: Comparison of current spatial audio datasets. FOA means first-order ambisonics, while Multi denotes
multi-channel audio.

The DOA Error is defined as

1
∑T

t=1D
t
E

T∑

t=1

Hungarian
(
DOAt

R,DOAt
E

)
,

(3)
where Hungarian(·, ·) denotes the optimal assign-
ment cost computed by the Hungarian algorithm,
using as the pairwise cost the central angle between
a reference DOA (ϕR, λR) and an estimated DOA
(ϕE , λE):

σ = arccos
(
sinλE sinλR

+ cosλE cosλR cos|ϕR − ϕE |
)
. (4)

Here ϕ ∈ [−π, π] is the azimuth and λ ∈
[−π

2 ,
π
2 ] is the elevation.

To account for frames where the number of esti-
mated DOAs does not match the number of refer-
ence DOAs, the Frame Recall is defined as

Frame Recall =
1

T

T∑

t=1

1
(
Dt

R = Dt
E

)
, (5)

where 1(·) is the indicator function, equal to 1 if
its argument is true and 0 otherwise.

An ideal SELD method achieves an error rate
of zero, an F-score of 1 (100%), a DOA Error of
0°, and a Frame Recall of 1 (100%). To compare
submitted methods, each method is ranked individ-
ually for all four metrics, and final positions are
determined by the cumulative minimum of these
ranks.

The four cross-validation folds are treated as
a single experiment: metrics are computed only

after training and testing all folds. Intermediate
measures (insertions, deletions, substitutions) are
aggregated across folds before calculating the final
metrics, rather than averaging per fold (Forman and
Scholz, 2010).

Spatial Audio Separation. Metrics to measure
the quality of separation, usually adopt the widely-
used mir eval library metrics: Signal-to-Distortion
Ratio (SDR) measures both interference and arti-
facts, Signal-to-Interference-Ratio (SIR) measures
interference. Higher values indicate a better degree
of separation (Ye et al., 2024).

Joint Learning. In joint learning, they typically
employ two binary-classification-based evaluation
metrics(Morgado et al., 2020). AVC-Bin (Au-
dio–Visual Correspondence) determines whether
an audio–video clip pair originates from the same
video instance. AVSA-Bin (Audio–Visual Spa-
tial Alignment) assesses the spatial consistency
between the audio and visual streams.

For semantic segmentation, the model’s dense-
prediction capability is evaluated using pixel accu-
racy and mean Intersection-over-Union (mean
IoU). Additionally, clip-level accuracy is em-
ployed for action recognition.

F.2 Evaluation Metrics for Spatial Audio
Generation

Monaural-to-Binaural Audio Generation. To
comprehensively assess the fidelity of the syn-
thesized binaural signal x̂ concerning the refer-
ence binaural recording x, previous works (Leng
et al., 2022; Liu et al., 2022) on monaural-to-
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binaural audio generation adopt both objective
and subjective criteria. Except for the perceptual
measures, PESQ, all metrics are lower-is-better.
Notation is unified as follows: n ∈ {1, . . . , T}
indicates time-domain samples; c ∈ {L,R} in-
dexes the two output channels; k ∈ {1, . . . ,K}
and m ∈ {1, . . . ,M} denote STFT frequency
and frame indices; STFT{·} yields the complex
time–frequency representation.

For Wave L2, The time-domain mean-squared
error (MSE) captures sample-by-sample devia-
tions:

Lwave
L2

=
1

T

T∑

n=1

∑

c∈{L,R}

(
x̂c[n]− xc[n]

)2
. (6)

Although it provides a well-behaved gradient and
is easy to implement, it ignores the non-uniform
frequency sensitivity of human hearing.

For Amplitude L2, after converting both signals
to their magnitude spectra,

X(k,m) = | STFT{x}(k,m)|,
X̂(k,m) = | STFT{x̂}(k,m)|.

(7)

The energy envelope mismatch is quantified as

Lamp
L2

=
1

KM

K∑

k=1

M∑

m=1

(
X̂(k,m)−X(k,m)

)2
.

(8)
For Phase L2, spatial cues rely strongly on in-

teraural phase differences. To prevent phase-wrap
artefacts, we minimize the wrapped phase distance:

Lphase
L2

=
1

KM

K∑

k=1

M∑

m=1

(
wrap

(
∠X̂(k,m)

− ∠X(k,m)
))2

,

(9)

where wrap(θ) ∈ [−π, π).
To align perceptual quality with spectral accu-

racy, we average three complementary losses over a
bank of M STFT configurations {·(i)}Mi=1 as Multi-
Resolution STFT Loss (MRSTFT):

L(i)
SC =

∥∥ |X(i)| − |X̂(i)|
∥∥
F∥∥ |X(i)|

∥∥
F

,

L(i)
mag =

1

N (i)

∥∥ |X(i)| − |X̂(i)|
∥∥
1
,

L(i)
log =

1

N (i)

∥∥ log
(
|X(i)|+ ε

)
− log

(
|X̂(i)|+ ε

) ∥∥
1
.

(10)

LMRSTFT =
1

M

M∑

i=1

(
L(i)

SC + λmagL(i)
mag + λlogL(i)

log

)
.

(11)
This compound objective balances global spec-

tral convergence with fine-grained magnitude fi-
delity across multiple time–frequency resolutions.

For Perceptual Evaluation of Speech Quality
(PESQ), the ITU-T P.862 standard maps symmet-
ric (dsym) and asymmetric (dasym) perceptual dis-
tortions onto a MOS-like scale:

PESQ = 4.5 − 0.1 dsym − 0.0309 dasym,
(12)

yielding scores in [−0.5, 4.5]. Higher values de-
note closer perceptual similarity.

Wave/Amplitude/Phase L2 losses provide
gradient-friendly objectives that capture comple-
mentary signal aspects. MRSTFT augments them
with multi-resolution spectral consistency. PESQ
offers a single-ended perceptual estimate that
correlates well with telecommunication speech
quality. Together, this metric suite affords a
balanced evaluation of both technical accuracy
and perceptual realism in mono-to-stereo binaural
conversion.

End-to-End Binaural Audio Generation. Eval-
uation metrics are highly varied for this task.
In the case of binaural spatial audio, metrics
can be computed based on interaural time dif-
ference (ITD), interaural level difference (ILD),
and embeddings from a pretrained spatial-audio-
understanding model(Zheng et al., 2024) to calcu-
late specific performance indicators(Zhang et al.,
2025). For the objective evaluation of IPD and
ILD, they first convert the time-domain signal x(n)
into the frequency-domain signal X(t, f) using the
short-time Fourier transform (STFT):

Xi(t, f) =
N−1∑

n=0

xi(n) · w(t− n) · e−j2πfn,

i ∈ {1, 2},
(13)

where w(t−n) is a window function, N is the win-
dow length, and i indicates the channel of the binau-
ral audio. Next, they calculate the mel-spectrogram,
IPD, and ILD based on the frequency-domain sig-
nals Xi(t, f). The mel-spectrogram for each chan-
nel is calculated as:

Si(t,m) = log
(
|Xi(t, f)|2 × melW

)
, (14)
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where melW is an M -bin mel filter bank. IPD is
derived from the phase spectrograms of the left and
right channels:

IPD(t, f) = ∠X2(t, f)

X1(t, f)
. (15)

Then, ILD is extracted from the loudness spectrum
of the left and right channels:

ILD(t, f) = 20 log10

( |X2(t, f)|+ ε

|X1(t, f)|+ ε

)
, ε = 1e−10.

(16)
They calculate Mean Absolute Error (MAE) met-
rics based on the IPD and ILD extracted from the
ground truth (GT) and the predicted speech. Since
the IPD here is in radians and the ILD uses log10,
the resulting values are quite small, especially af-
ter averaging the MAE over the time dimension.
So, they multiply by 100 to make the results more
intuitive.

Additionally, they analyze angular and distance
metrics using SPATIAL-AST (Zheng et al., 2024).
SPATIAL-AST encodes angle and distance em-
bedding for binaural audio. They compute and
average the cosine similarity for each 1-second seg-
ment based on the GT and predicted audio.

End-to-End FOA Generation. Current methods
usually assess spatial localization accuracy by mea-
suring azimuth error, elevation error, distance er-
ror, and spatial-angle difference (Heydari et al.,
2025). Codec quality is evaluated via STFT and
Mel distances between original and reconstructed
FOA audio on the test set, using AuraLoss with
default settings (Evans et al., 2024a,b). Plausibil-
ity of generated clips is quantified by the Fréchet
Audio Distance (FAD) between generated and ref-
erence embeddings, and by KL divergence com-
puted with a pretrained ELSA model. The CLAP
score, the cosine similarity between spatial text
embeddings and corresponding audio embeddings,
is also reported. For the parametric model, KL
divergence and CLAP are computed using spatial
captions from the test set, despite training on non-
spatial captions and parameters.

To measure spatial accuracy, they compare
ground-truth and estimated azimuth θ, elevation ϕ,
and distance d. Intensity vectors Ix, Iy, Iz are ob-
tained by multiplying the omnidirectional channel
W with the directional channels X,Y, Z:

Ix = W ·X, Iy = W · Y, Iz = W · Z (17)

θ = tan−1 Iy
Ix

, ϕ = tan−1 Iz√
I2x + I2y

, (18)

d =
√

I2x + I2y + I2z (19)

They report the L1 norm of the differences for
azimuth, elevation, and distance. For azimuth, they
use the circular difference:

L1θ = ||(|θ − θ̂|, 2π − |θ − θ̂|
)
||1 (20)

Spatial-angle error ∆Spatial−Angle is defined as
(Van Brummelen, 2012):

a = sin2
(∆ϕ

2

)
+ cos(ϕ) cos(ϕ̂) sin2

(
∆θ
2

)
(21)

∆Spatial−Angle = 2arctan 2
(√

a,
√
1− a

)
(22)

Here, ∆ϕ and ∆θ denote the linear and circular
differences for elevation and azimuth, respectively.

G Subjective Evaluation Metrics Details

Mean Opinion Score (MOS) MOS delivers the
gold-standard human judgment. It is obtained by
averaging listener ratings over a five-point Likert
scale:

MOS =
1

N

N∑

i=1

si, (23)

where si is the score from the i-th participant. MOS
serves as the definitive benchmark to which all
objective metrics are ultimately calibrated.

MUSHRA MUSHRA (Series, 2014) targets sys-
tems with medium impairments. Listeners hear a
visible reference, a hidden reference, one or more
low quality anchors, and system outputs, then rate
Basic Audio Quality on a 0–100 scale. The hidden
reference checks reliability and anchors calibrate
the scale. For spatial audio, dimensions can in-
clude spatial impression and stereophonic image
quality. Trained experts are more sensitive to spa-
tial artifacts, so MUSHRA is effective for assessing
localization and immersion.

A/B and ABX A/B and ABX test (Boley and
Lester, 2009) are also widely used. A/B asks listen-
ers to compare two samples by a chosen criterion,
such as realism or spatial impression. ABX asks
whether an unknown sample X matches A or B to
test perceptible differences. A/B is less fine grained
than MUSHRA but is efficient for pairwise com-
parisons, validating improvements, and assessing
specific perceptual dimensions.
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H Further Discussion on Dataset and
Evaluation Metrics

H.1 Training view: evolution and challenges
from real recordings to large scale
simulation

The evolution of spatial audio datasets shows the
tension between the need for scale in deep learning
and the high cost of real world recording. Early
key datasets, such as EasyCom(Donley et al., 2021)
for binaural separation and FAIR-Play(Gao and
Grauman, 2019) for visual guided spatialization,
provide valuable real recordings. They have high
fidelity and include complex crosstalk and environ-
mental noise in natural scenes. They are important
for testing robustness. Their scale is small, of-
ten only a few to a few dozen hours, and scene
diversity is limited. This is not enough for mod-
ern models that need hundreds of thousands of
samples. To break this bottleneck, the commu-
nity turned to large scale simulation. Spatial Lib-
riSpeech(Sarabia et al., 2023) is a representative
example. It convolves a mono corpus such as Lib-
riSpeech with synthetic room impulse responses
and produces more than 650 hours of training data
with precise spatial labels. This approach offers
unmatched scalability and precise control of acous-
tic parameters such as room size and reverbera-
tion time. It also introduces a core challenge, the
sim to real gap. Models trained only on simulated
data can drop in performance in real environments,
since simulation cannot fully capture real acous-
tic propagation. To bridge this gap, real recording
datasets such as RealMAN and RealImpact were
created. They provide benchmarks to assess the re-
alism of simulation and support a sim2real training
paradigm, pretrain on simulation and finetune on
real data. At the same time, web-crawled datasets
such as YT-360(Morgado et al., 2020) and YT-
AMBIGEN(Kim et al., 2025) offer another large
scale source. They are in the wild and cover very di-
verse scenes. The main challenge is quality control.
Audio quality varies and audio video spatial align-
ment is often not guaranteed. Effective cleaning,
filtering, and labeling are therefore crucial.

H.2 Evaluation view: balancing objective
metrics and subjective perception

The evaluation of spatial audio balances objective
metrics and subjective tests. Objective metrics
are repeatable and low cost. They are the main-
stream for comparing models in research. For un-

derstanding tasks, the SELD metrics in the DCASE
challenges(Mesaros et al., 2017) began with four
separate metrics: error rate, F1, DOA error, and
frame recall. On STARSS23(Shimada et al., 2023)
they evolved to more integrated measures, such
as location dependent F1 with angle and distance
thresholds and relative distance error. This shows a
move toward metrics that reflect overall task perfor-
mance. For generation tasks, in addition to signal
fidelity metrics such as SDR, researchers use spa-
tial cue errors such as MAE of IPD and ILD, and
proxy measures such as Fréchet Audio Distance
and CLAP score to estimate perceptual quality and
semantic consistency. Objective metrics have lim-
its. They often cannot fully predict human listening
experience. A system with a high SDR can still
sound unnatural or not immersive. Subjective tests
remain the gold standard for perceptual quality.
The mean opinion score and the ITU MUSHRA
test(Series, 2014) directly measure listener percep-
tion. MUSHRA uses a hidden reference and an-
chors and provides finer and more reliable scores
than MOS for systems with medium impairments.
Subjective tests are costly and hard to standardize.
They are essential to calibrate objective metrics and
to understand real perceptual strengths and weak-
nesses. An important future direction is to design
new automatic objective metrics that align better
with human perception. This can help close the
gap between objective computation and subjective
experience.

I Licenses and Availability

We respect the original licenses of all referenced
artifacts and do not redistribute them. This sur-
vey does not create new deployable systems or
redistribute data. Any consultation of third-party
artifacts is limited to research/read-only use and
complies with their intended-use statements and
access conditions.
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