

Synthetic Singers

A Review of Deep-Learning-based Singing Voice Synthesis Approaches

Changhao Pan^{1*}, Dongyu Yao^{1*}, Yu Zhang¹,
Wenxiang Guo¹, Jingyu Lu¹, Zhiyuan Zhu¹, Zhou Zhao^{1†}
¹Zhejiang University, Hangzhou, China
{panch,zhaozhou}@zju.edu.cn

Abstract

Recent advances in singing voice synthesis (SVS) have attracted substantial attention from both academia and industry. With the advent of large language models and novel generative paradigms, producing controllable, high-fidelity singing voices has become an attainable goal. Yet the field still lacks a comprehensive survey that systematically analyzes deep-learning-based singing voice synthesis systems and their enabling technologies. To address the aforementioned issue, this survey first categorizes existing systems by task type and then organizes current architectures into two major paradigms: cascaded and end-to-end approaches. Moreover, we provide an in-depth analysis of core technologies, covering singing modeling and control techniques. Finally, we review relevant datasets, annotation tools, and evaluation benchmarks that support training and assessment. In appendix, we introduce training strategies and further discussion of SVS. This survey provides an up-to-date review of the literature on SVS models, which would be a useful reference for both researchers and engineers. Related materials are available at <https://github.com/ David-Pigeon/SyntheticSingers>.

1 Introduction

Singing voice synthesis (SVS) seeks to generate high-fidelity singing from textual lyrics and symbolic musical scores, and has garnered sustained interest in both industry and academic communities. The field has evolved from early engines such as VOCALOID¹ and virtual singers like Hatsune Miku² to contemporary song-generation platforms, including Seed-Music (Bai et al., 2024b) and Suno³, which deliver immersive, realistic listening

experiences. Unlike conventional text-to-speech, SVS accepts richer inputs and imposes stricter constraints: synthesized vocals must articulate lyrics clearly while strictly following the prescribed melody. Moreover, modern SVS systems are expected to preserve fidelity, provide controllable stylistic variation, and convey expressive emotion.

Driven by the development of deep learning (Vaswani et al., 2017) and generative models (Ho et al., 2020), recent years have witnessed remarkable advances in SVS. Relative to traditional methods such as waveform concatenation (Kemochi and Ohshita, 2007) and statistical parametric synthesis (Saino et al., 2006), deep-learning approaches provide finer acoustic detail (Chen et al., 2020a) and markedly enhance the clarity and naturalness of the generated vocals (Zhang et al., 2022c). Benefiting from the strong extensibility of modern generative models, contemporary SVS systems further deliver superior controllability and generalization, enabling zero-shot singing generation while consistently maintaining high audio quality (Zhang et al., 2024c; Byun et al., 2024).

The evolution of singing-voice synthesis begins with the canonical goal of producing high-fidelity vocals. Early systems, largely inherited from text-to-speech frameworks (Wang et al., 2017; Ren et al., 2019), reach this objective by introducing music-specific modules such as score encoders (Lu et al., 2020) and pitch predictors (He et al., 2023). As generative AI matures and vision-domain applications proliferate (Rombach et al., 2022; Peebles and Xie, 2023), users grow to expect equally personalized and controllable audio experiences. Researchers and engineers have therefore advanced multi-speaker models capable of high-quality timbre generation (Cho et al., 2022; Huang et al., 2021), along with editing schemes that enable fine-grained control over emotion and singing style (Hong et al., 2023; Dai et al., 2024). The advent of multimodal large language models (Achiam

* Equal Contribution.

† Corresponding Author.

¹<https://www.vocaloid.com/en/>

²https://vocaloid.fandom.com/wiki/Hatsune_Miku

³<https://suno.com/home>

et al., 2023; Chu et al., 2024) has raised expectations for customized singing-voice generation. Zero-shot SVS systems endowed with style control and transfer (Zhang et al., 2024c), have therefore received considerable attention. Meanwhile, emerging tasks such as speech-to-singing conversion (Li et al., 2023) and text-to-song generation (Liu et al., 2025; Yuan et al., 2025) have gained momentum, markedly expanding the application landscape of SVS across the entertainment, education, and film.

On synthesis process, the continuity of audio signals and the inherently one-to-many mapping from score to waveform initially led researchers to adopt an “*acoustic-model + vocoder*” pipeline (Lu et al., 2020). In this cascaded approach, an acoustic model predicts intermediate acoustic features from the score, after which a vocoder converts these features into the waveform. To reduce error accumulation and utilize the prior knowledge in LLMs, recent works move toward vocoder-free frameworks that generate waveforms directly. We refer to these newer systems as end-to-end approaches. Building on prevailing SVS architectures, we identify three core technologies: singing-voice modeling, control mechanisms, and training strategies.

Considering the aforementioned factors, the organization of this survey is shown below. Section 2 introduces the mainstream tasks and scenarios of SVS. Section 3 examines the different architectures of SVS models. We discuss the method for modeling and control in Section 4. Finally, we present resources of SVS models in Section 5.

2 Tasks of SVS

Drawing on demonstrations and user interfaces from SVS systems such as DiffSinger (Liu et al., 2022a) and UTAU⁴, and referencing the historical progress of SVS, we divide the prevailing SVS tasks into four categories as shown in Figure 1.

Hi-Fidelity Synthesis High-fidelity vocal reproduction is the foundational goal in SVS research (Wagner and Watson, 2010). Early work pursued greater naturalness by embedding music-specific inductive biases. XiaoIceSing (Lu et al., 2020) extends the FastSpeech architecture (Ren et al., 2019) with constraints on note duration and pitch, while HiFiSinger (Chen et al., 2020a) replaces the conventional vocoder in XiaoIceSing with Parallel WaveGAN (Yamamoto et al., 2020), achieving superior audio fidelity. To counter

the over-smoothing typical of Transformer-based generators, DiffSinger (Liu et al., 2022a) introduces a shallow-diffusion DDPM, markedly improving spectral detail. The value of fundamental frequency (F0) for singing has also been highlighted: RMSSinger employs diffusion-based pitch modeling to enhance naturalness (He et al., 2023), and SiFiSinger (Cui et al., 2024) adds a source module that produces F0-controlled excitation signals for finer pitch control. Moreover, by consistency models (Song et al., 2023), researchers also propose high-efficiency and high-quality SVS solutions (Ye et al., 2023; Lu et al., 2024).

Controllable Synthesis Beyond high-fidelity audio, contemporary SVS systems are expected to afford fine-grained control over timbre, singing techniques, and singing style, trying to achieve a comprehensive improvement in quality and controllability. At the timbre level, MuSE-SVS (Kim et al., 2023) offers a multi-singer, emotion-aware synthesizer that enables timbre selection. To manipulate expressive prosody, (Song et al., 2022) introduces a DL-based SVS model that controls multiple aspects of vibrato. For technique controllability, SinTechSVS (Zhao et al., 2024) integrates an attention-based local-score module to model singing techniques. The emergence of LLM opens a new frontier in prompt-based conditioning. PromptSinger (Wang et al., 2024a) uses natural-language prompts to steer timbre, emotion, and loudness, while TechSinger (Guo et al., 2025b) extends this paradigm to precisely control techniques with classifier free guidance (Ho and Salimans, 2021). Notably, the expressive diversity of singing has motivated style-specific generation models. Examples include FreeStyler for rap generation (Ning et al., 2025b) and SongSong for classical art-song synthesis (Hu et al., 2025). Future work is poised to explore multi-modal prompt-driven, multi-dimensional control for richer user interaction.

Singing Style Transfer Audio prompt conveys richer acoustic detail and more distinctive stylistic cues than textual information. Consequently, singing-style transfer and voice-conversion techniques have become pivotal research directions. The pioneering work in this field (Shen et al., 2024; Zhang et al., 2024b) demonstrates that residual vector quantization(RVQ) effectively captures diverse stylistic attributes. While TCSinger replaces RVQ with clustering vector quantization(CVQ) for

⁴<https://utau-synth.com>

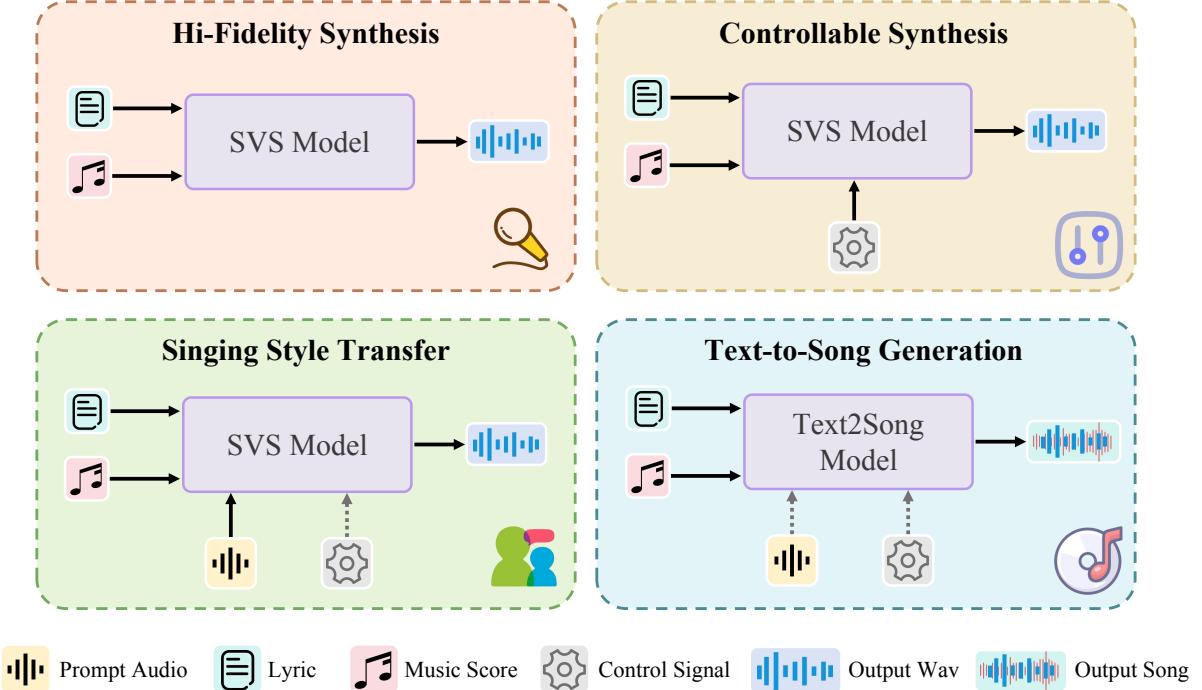


Figure 1: An overall demonstration of four prevailing tasks of SVS systems.

more stable style compression and augments the system with an LM to jointly model prosody and style (Zhang et al., 2024c). ExpressiveSinger (Dai et al., 2024) further enhances expressiveness by cascading diffusion-based control modules. Moreover, due to the scarcity of singing data and the high requirements for singers, speech-to-singing(STS) (Li et al., 2023) paradigm has emerged, aiming to improve both musicality and style fidelity (Dai et al., 2025). The request for broader personalization also spurs unified frameworks: TCSinger2 unifies controllable synthesis and style transfer via contrastive learning and a mixture of experts (MOE) architecture (Zhang et al., 2025b). Developing more customized and adaptable generation schemes remains a fruitful avenue for future research.

Text-to-Song Generation Song generation has also remained a sustained focus for audio researchers. One of the earliest works is Juke-Box (Dhariwal et al., 2020). With the advance of SVS and music generation (Donahue et al., 2023), a natural idea is to design cascaded frameworks. Prior works (Hong et al., 2024; Li et al., 2024a) decomposes song synthesis into two steps: (i) SVS and (ii) vocal-to-accompaniment generation. Versband (Zhang et al., 2025d) further enhances this pipeline by MOE to improve controllability and vocal-accompaniment alignment. Moreover, several studies have explored end-to-end generation.

SongGen (Liu et al., 2025) employs a single-stage auto-regressive Transformer for text-to-song generation. Meanwhile, built upon the LLaMA2 (Touvron et al., 2023), YuE (Yuan et al., 2025) introduces structural progressive conditioning, addressing the challenge of long-form music generation. In addition to the auto-regressive paradigm, DiffRhythm (Ning et al., 2025a) and MuDiT (Wang et al., 2024b) explore DiT (Peebles and Xie, 2023) backbones for non-autoregressive song generation, while Levo (Lei et al., 2025) further introduces a mixed-token strategy together with direct preference optimization (Wallace et al., 2024), achieving multi-preference alignment and improving musicality. These developments underscore the growing potential of end-to-end models in song generation.

3 Architecture

In singing synthesis, the fundamental challenge is delivering stable, high-quality outputs despite the one-to-many mapping from score to waveform. As shown in Figure 2, we therefore classify SVS models by whether they employ a vocoder in waveform generation: cascaded and end-to-end frameworks.

3.1 Cascaded SVS Systems

Acoustic Model In cascaded models, the acoustic model manages the "music score \rightarrow spectral feature" mapping. Great progress has been made in the network architecture for SVS. Inspired by

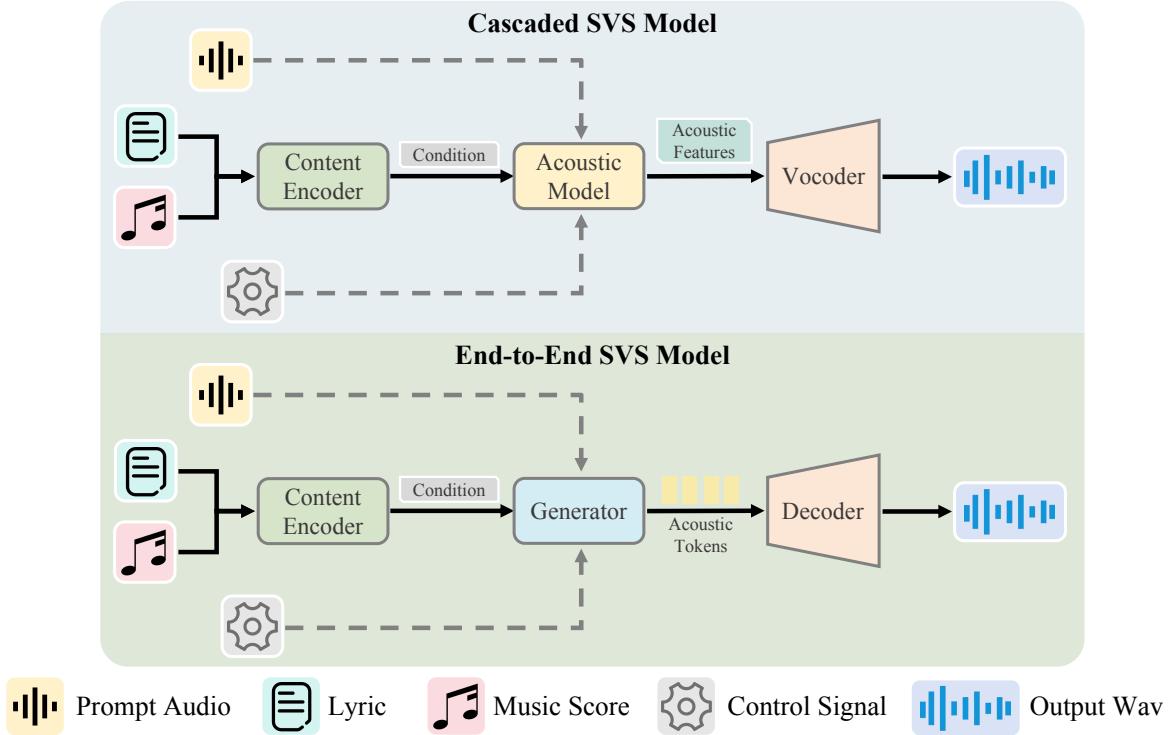


Figure 2: We categorize SVS models into two paradigms, cascaded and end-to-end approaches. A system is end-to-end if it outputs waveforms directly, without intermediate modules or hand-crafted interfaces. Thus **requiring a vocoder implies a cascaded design**. Dashed lines indicate optional process.

Transformer-based TTS models, early DL-based SVS frameworks such as HiFiSinger (Chen et al., 2020a) adopts non-autoregressive acoustic models, while ByteSing (Gu et al., 2021) is designed based on an autoregressive Tacotron-like (Wang et al., 2017) architecture. DeepSinger (Ren et al., 2020b) propose a feed-forward Transformer-based singing model while using a large amount of internet singing data for training. WeSinger (Zhang et al., 2022c) introduces data augmentation methods and replaces the commonly used mel-spectrogram features with LPC features to improve accuracy. An adversarial multi-task learning framework (Kim et al., 2022) is also novelly introduced to disentangle timbre and pitch features in singing. Furthermore, diffusion models (Ho et al., 2020), as a flexible and interpretable generative framework, are also emerging in the audio modality. DiffSinger (Liu et al., 2022a) employs a conditional diffusion process that, guided by score information, reconstructs target Mel-spectrograms from Gaussian noise with high fidelity. RMSSinger (He et al., 2023) further introduces a diffusion-based pitch predictor to yield more accurate and controllable F0 trajectories. These approaches provide new avenues for improving the naturalness and ex-

pressiveness of synthesized singing. More recently, flow matching has emerged as a prominent generative paradigm; flow-matching acoustic models like TechSinger (Guo et al., 2025b) offer faster and more stable generation while maintaining quality.

Vocoder Before the widespread adoption of deep learning, vocoders were typically of two types: (i) algorithmic reconstruction, such as the Griffin–Lim algorithm; and (ii) parametric reconstruction, exemplified by WORLD (Morise et al., 2016). Neural vocoders have since become prevalent due to their superior reconstruction quality and strong generalization. WaveRNN (Kalchbrenner et al., 2018) is a commonly used autoregressive vocoder in SVS systems. Non-autoregressive alternatives include teacher–student frameworks (Oord et al., 2018) and diffusion-based methods (Chen et al., 2020b). At present, the most widely adopted neural vocoders are GAN-based, with HiFi-GAN (Kong et al., 2020a) and BigVGAN (Lee et al., 2022b) demonstrating strong performance in audio reconstruction. Leveraging the unique characteristics of singing, researchers have also developed task-specific neural vocoders tailored for SVS, enabling expressive reconstruction (Huang et al., 2021).

3.2 End-to-End SVS Systems

To mitigate error accumulation and train–test domain mismatch inherent to cascaded pipelines, researchers have advanced end-to-end SVS models. ViSinger (Zhang et al., 2022b) first brought the VITS architecture (Kim et al., 2021b) to SVS, delivering a fully end-to-end system. ViSinger2 (Zhang et al., 2023) further integrates DSP techniques and raises the sampling rate to substantially improve acoustic fidelity. SiFiSinger (Cui et al., 2024), an extension of ViSinger, introduces a source module that generates F0-controlled excitation signals for enhanced pitch control. UniSyn (Lei et al., 2023) adopts a multi-conditioned VAE (Kingma et al., 2013) to provide flexible control over audio attributes and singing style. CSSinger (Cui et al., 2025) designs a semi-streaming framework that leverages latent representations within a VAE to achieve fully end-to-end streaming synthesis, improving quality while reducing latency. Besides, inspired by LLMs, researchers have also explored neural-codec-based high-fidelity SVS schemes (Hwang et al., 2025; Wu et al., 2024).

4 SVS Representations and Control

4.1 Representations and Modeling of SVS

Representations are central to SVS, determining how inputs are interpreted and how vocals are ultimately rendered. Required dimensions span content (lyrics, score), acoustic information and semantic embeddings. In this chapter, we survey commonly used representation and modeling choices for both content and audio signals in SVS systems.

Singing’s Content Representation Content representations focus on the question of “*what to sing*” and “*when to sing*”, mapping lyrics and score onto time, and providing the backbone for SVS stability. A common pipeline uses G2P-derived phoneme sequences⁵ fused with score cues (MIDI pitch, note duration/boundaries) (Lu et al., 2020; Liu et al., 2022a). To address the one-to-many rhythm mapping and melisma, systems rely on: (i) external forced alignment for phoneme/syllable durations (He et al., 2022); (ii) learnable monotonic alignment with stochastic duration prediction to model rhythmic uncertainty (Zhang et al., 2022b); and (iii) learnable up-sampling or a length regulator to expand token-level states to frames (He et al., 2023; Zhang et al., 2024b). Despite wide adoption,

studies have highlighted limitations in robustness and naturalness (Jiang et al., 2025). Consequently, recent systems refine alignment modeling, for example by introducing RL-based optimization to improve perceptual objectives (Li et al., 2025), and masked-token representations to stabilize monotonic alignments (Zhang et al., 2025b).

Singing’s Acoustic Representation Acoustic representations determine “who sings” and largely drive perceived quality and naturalness. Cascaded SVS predicts hand-crafted targets like Mel, F0, and UV, because they are stable and easy to optimize (Liu et al., 2022a; Zhang et al., 2022c; He et al., 2023). Recent work adopts learned latents to capture long-range structure and micro-textures. Two main lines are: (i) neural-codec tokens with RVQ, providing compact, robust discrete acoustic units (Zeghidour et al., 2021); and (ii) continuous latents from VAE/RQ-VAE encoders, typically arranged in multi-band or multi-scale hierarchies to balance timbral detail and global coherence (Lee et al., 2022a). Among discrete methods, HiddenSinger discretizes acoustics with stacked RVQ blocks (Hwang et al., 2025), while TokSing fuses VQ-VAE, RVQ, and clustered SSL embeddings to construct tokens (Wu et al., 2024; Van Den Oord et al., 2017). Meanwhile, continuous latents are usually adopted to couple high-level conditioning with waveform rendering. VITS-like (Kim et al., 2021b) SVS systems use VAE latents with a learned prior to model frame-level variability while keeping alignment monotonic (Zhang et al., 2023). UniSyn (Lei et al., 2023) further introduces a multi-conditional VAE that factorizes speaker and style subspaces. More recently, contrastive learning have been coupled with VAEs to learn style-aware acoustic tokens (Zhang et al., 2025b).

Singing’s Semantic Representation Semantic representations target content and expressivity, shaping correctness and control, and primarily focus on the question of “*how to sing*.” Early work on semantic representations used classical ML (SVMs, HMMs) with hand-crafted spectral and statistical features. Deep learning then popularized CNN/RNN extractors for speech and singing semantics (Shirian and Guha, 2021). Pretrained speech encoders have since delivered further breakthroughs. For emotion recognition, wav2vec 2.0 (Baevski et al., 2020) employs masked latent modeling with quantized contrastive learning, setting strong baselines for speaker and emotion

⁵<https://github.com/Kyubyong/g2p>

recognition (Huang et al., 2022). HuBERT (Hsu et al., 2021) couples offline clustering targets with masked-region prediction to learn joint acoustic–linguistic representations; its hierarchical attention captures prosodic cues linked to emotion. WavLM (Chen et al., 2022) jointly optimizes masked-speech prediction and denoising, further improving discriminability. And a systematic evaluation (Atmaja and Sasou, 2022) reports strong performance from both HuBERT and WavLM. Moreover, given the expressive power of language, LLM-based interfaces are emerging for complex singing semantics. For instance, SeCap (Xu et al., 2024) uses a Q-Former bridge to convert speech into style-aware tokens for LLaMA (Touvron et al., 2023), and this semantic modeling solution may also be a beneficial exploration direction.

4.2 Control Techniques for Generation

Style control in audio generation mainly follows two routes: audio-based transfer and text-based control. Audio-driven transfer is especially popular because it avoids extra annotations, and recently style control via multi-modal prompting has gradually become a research hotspot. These approaches have matured into several representative pathways, delivering notable advances in both TTS and SVS (Jiang et al., 2023; Zhao et al., 2024).

Audio-based Style Transfer Within classical autoregressive TTS, Wang et al. (Wang et al., 2018) introduces Global Style Tokens (GST), establishing the paradigm for disentangled, controllable prosody. Attentron (Choi et al., 2020a) further leverages an attention mechanism to extract prosodic cues, enabling fine-grained transfer. Building on this line, Li et al. (Li et al., 2021) designs a multi-scale reference encoder that captures phoneme-level style, achieving precise control. Spurred by advances in non-autoregressive audio generation (Lam et al., 2021), research has explored new style-transfer paradigms. Styler (Lee et al., 2021) factorizes style into disentangled components and Mega-TTS (Jiang et al., 2024) models prosody with a latent LM, learning distributions over rhythmic and stylistic patterns to support style transfer. HierSpeech line (Lee et al., 2022c, 2023) conditions jointly on text and audio prompts to generate pitch, providing control over prosodic style. In SVS, researchers advance beyond GST by introducing style adaptors and adaptive decoders, enabling more versatile transfer (Zhang et al., 2024b).

Moreover, in singing voice conversion, a well-established paradigm disentangles the reference audio into multiple factors (content, rhythm, timbre, etc.) and then fuses them to achieve zero-shot transfer (Li et al., 2023; Dai et al., 2025).

Text-based Style Control A natural route to precise style control is to inject control signals by concatenation or addition. PromptSinger (Wang et al., 2024a) concatenates style features within a multi-scale Transformer to steer timbre, emotion, and loudness. SinTechSVS (Zhao et al., 2024) follows a similar idea, introducing an attention-based local-score module to enhance controllability of specific singing techniques. A direct extension is cross-attention, and Lyth et al. (Lyth and King, 2024) model speaker style and emotion in this way, removing dependence on reference audio. In parallel, many SVS systems adopt adaptive normalization (Huang and Belongie, 2017; Peebles and Xie, 2023) to modulate intermediate activations with style codes, providing lightweight, continuous control that composes well with attention-based conditioning (Zhang et al., 2025d). Moreover, the widespread use of conditional generators in SVS naturally enables CFG-based control (Ho and Salimans, 2021), allowing users to adjust the strength of style conditioning at inference (Guo et al., 2025b). Notably, recent work also introduces MoE controllers: by learning routing policies that select specialized generation experts, these systems achieve high-quality style control while preserving robustness and efficiency (Zhang et al., 2025b).

5 Resources in SVS Models

5.1 Open-Source Datasets

High-quality datasets are the foundation of effective singing voice synthesis (SVS) systems. Compared with speech synthesis, SVS demands higher data quality and finer-grained annotations to capture singing’s intrinsic complexity, making dataset collection substantially more challenging. Several singing corpora have been released to alleviate this data bottleneck, as summarized in Table 1. VocalSet (Wilkins et al., 2018), built for waveform-concatenative synthesis, mainly records isolated phonemes and is thus unsuitable for natural SVS. For DL-based SVS, MIR-1K (Hsu and Jang, 2009), PopBuTFy (Liu et al., 2022b) and NHSS (Sharma et al., 2021) examine speech–singing relations, while NUS-48E (Duan et al., 2013) introduces phoneme-level alignments, motivating later

Table 1: Overview of publicly available singing voice datasets. **Lang** denotes the number of supported languages. **Dur. (hour)** refers to the total annotated duration. **Score** indicates whether musical score or note-level information is provided. **Align** shows the availability of precise text-audio alignment. **Style** indicates whether vocal style annotations are included.

Corpus	Lang	Song	Singer	Dur. (hour)	Score	Align	Style
VocalSet (Wilkins et al., 2018)	1	3(mainly vocalise)	20	10.1	✗	✗	✗
PJS (Koguchi et al., 2020)	1	100(sentences)	1	0.5	Both	✗	✓
MIR-1K (Hsu and Jang, 2009)	1	110	19	2.2	✗	Voiced type	✗
NUS-48E (Duan et al., 2013)	1	20	12	2.8	✗		✗
KVT (Kim et al., 2020)	1	466	114	18.9	✗	✗	✓
CSD (Choi et al., 2020b)	2	100	1	4.9	MIDI	✓	✗
NHSS (Sharma et al., 2021)	1	20	10	4.8	✗	word	✗
OpenSinger (Huang et al., 2021)	1	1146	66	50	✗		✗
Tohoku Kiritan (Ogawa and Morise, 2021)	1	50	1	3.5	Score	✓	✗
PopCS (Liu et al., 2022a)	1	117	1	5.9	✗	✗	✗
M4Singer (Zhang et al., 2022a)	1	700	20	29.8	MIDI	✓	✗
PopBuTFy (Liu et al., 2022b)	2	542	34	50.8	✗	✗	✓
Opencpop (Wang et al., 2022b)	1	100	1	5.3	MIDI	✓	✗
SingStyle111 (Dai et al., 2023)	3	111	8	12.8	Both	✓	✓
GTSinger (Zhang et al., 2024d)	9	1366	20	80.6	Score	✓	✓
ACE-Opencpop (Shi et al., 2024)	1	100	30	4.3	MIDI	✓	✗
ACE-KiSing (Shi et al., 2024)	2	23	34	1.0	MIDI	✓	✗

Mandarin corpora (Huang et al., 2021; Liu et al., 2022a). Recent datasets add musical-score annotations (pitch, note boundaries, duration, meter) to improve musicality in synthesis (Wang et al., 2022b; Choi et al., 2020b; Koguchi et al., 2020; Ogawa and Morise, 2021). With rising demand for customized vocals, M4Singer (Zhang et al., 2022a) and KVT (Kim et al., 2020) introduce substantial diversity in timbre and style, respectively. The most customization-oriented open corpora to date are SingStyle111 (Dai et al., 2023) and GTSinger (Zhang et al., 2024d), which provide rich annotations alongside multilingual recordings. Additionally, ACE-Opencpop and ACE-KiSing (Shi et al., 2024) are synthesizer-generated corpora, offering a complementary avenue for data augmentation.

5.2 Annotation Tools for Singing Data

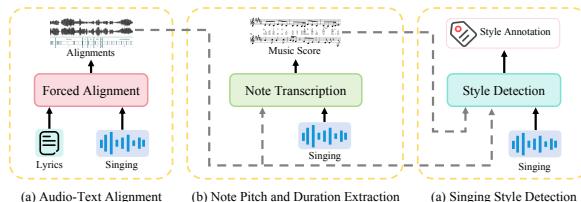


Figure 3: Three data annotation tasks required by the singing voice synthesis system.

Training data for SVS should at minimum include lyric text, phoneme durations, and note information. The annotation tasks required by SVS is shown in Figure 3. For alignment, Praat⁶ is the

⁶<https://www.fon.hum.uva.nl/praat/>

de-facto tool for manual labeling; while MFA is an HMM-based automatic tool, which is widely and effectively used in clean vocals (McAuliffe et al., 2017); a CTC-loss singing aligner, SOFA⁷, further builds on MFA. For vocal-note transcription, Parselmouth⁸ provides convenient pitch extraction interfaces (Ren et al., 2020b). More recent learning-based systems achieve higher accuracy: ROSVOT leverages a Conformer (Gulati et al., 2020) backbone for robust pitch and duration estimation (Li et al., 2024c), while MusicYOLO (Wang et al., 2022a) adapts the YOLO detection framework to jointly detect note pitch and duration. As for style annotations, the principal methods are outlined in Section 4. Notably, recent work proposes end-to-end, multi-task annotation frameworks (Guo et al., 2025c), offering a more efficient route to automatic singing labeling.

5.3 Evaluations for SVS

Singing is intrinsically multifaceted, encompassing pitch accuracy, timbre similarity, naturalness, expressiveness, and technique, which makes evaluation both challenging and essential (Cho et al., 2021). This section details a range of evaluation metrics, re-categorized by the specific attribute they assess: accuracy, expressiveness & naturalness, timbral quality , similarity, controllability.

Accuracy Accuracy metrics assess fidelity to score and lyrics—the basis of intelligible, musi-

⁷<https://github.com/qiuqiao/SOFA>

⁸<https://github.com/YannickJadoul/Parselmouth>

cally correct SVS. Lyric accuracy, the most basic requirement, typically assessed using character error rate (CER), as in TTS (Du et al., 2024; Huang et al., 2023). Pitch accuracy measures the conformity of the synthesized fundamental frequency (F0) contour to the target pitch derived from a musical score or a reference recording and it is a cornerstone metric in many SVS challenges (e.g., SVS-VC (Huang et al., 2023)). Common criteria include F0 Frame Error (FFE) (Zhang et al., 2024c) and Root Mean Square Error (RMSE) (Zhang et al., 2023), and some studies additionally provide the linear correlation between ground-truth and synthesized F0 contours (Zhang et al., 2022c). What’s more, as a critical dimension for rhythmic integrity and intelligibility, duration and rhythm accuracy are commonly evaluated by Duration RMSE/MAE (the error between predicted and ground-truth phoneme durations) and Duration Prediction Accuracy.

Expressiveness and Naturalness Expressiveness metrics quantify artistic, emotional, and nuanced aspects beyond basic accuracy. Subjectively, Mean Opinion Score (MOS) remains the gold standard for perceptual quality (Zhang et al., 2022a). Objectively, early work often sought to model subjective judgments. For example, SingMOS (Tang et al., 2024, 2025) introduces a dedicated dataset for singing MOS prediction, and many studies trained neural predictors on this resource; the Voice-MOS challenges (Cooper et al., 2023; Huang et al., 2024) also include tracks specifically targeting the prediction of subjective ratings for SVS and SVC. An emerging direction is using MLLM (Chen et al., 2024) to evaluate expressiveness. For instance, an RL agent can be trained to optimize a singing model toward a perceptual objective, such as maximizing a predicted emotion score, and the resulting reward can serve as an objective proxy for that expressive dimension (Lei et al., 2025; Bai et al., 2025). Another practical strategy is to leverage Singing Voice Deepfake Detection to assess the authenticity of vocals (Zhang et al., 2024a).

Sound Quality Noise- and artifact-free singing is a fundamental requirement for SVS. Early audio quality evaluation practices in SVS were adopted from TTS, including the use of PESQ (Rix et al., 2001) for objective perceptual quality estimation and SNR (Tandra and Sahai, 2008) for quantifying the noise proportion in synthesized singing. Other studies quantify timbral differences between synthesized and reference audio by comparing spectral

representations, employing metrics such as Mel-Cepstral Distortion (MCD) (Zhang et al., 2024c) and alternatives based on Bark-frequency cepstral coefficients (BFCC) (Zhang et al., 2022c).

Similarity Similarity metrics are crucial for tasks such as singing voice conversion (SVC) and voice cloning, assessing how well the synthesized voice matches a target singer’s identity or style. The most reliable approach remains subjective evaluation, exemplified by the Similarity Mean Opinion Score (MOS-S) (Zhang et al., 2024b), which uses a 5-point scale to rate the similarity between reference and synthesized audio. Preference-based protocols such as the AXY Test (Skerry-Ryan et al., 2018) ask listeners to choose, from two synthesized samples, the one closer to the reference, enabling robust cross-system comparison; this protocol is widely used in evaluations like the Singing Voice Conversion Challenge. On the objective side, Speaker Embedding Cosine Similarity (COS) is commonly employed, where SSL encoders (Chen et al., 2022) extract speaker embeddings (e.g., x-vectors (Snyder et al., 2018), d-vectors) and cosine similarity between reference and generated embeddings serves as a proxy for the model’s transfer capability.

Controllability Controllability metrics evaluate a model’s ability to precisely manipulate specified singing-voice attributes in response to user inputs. Control MOS (MOS-C) (Zhang et al., 2024d) is a subjective test in which listeners judge how well the model follows a given instruction, such as altering style, emotion, or a singing technique. On the objective side, evaluation typically relies on attribute prediction models; for example, an emotion recognition model (Ma et al., 2024) can infer the emotion of the synthesized audio, which is then compared with the input control signal. Common summary metrics include Accuracy and F1 score.

6 Conclusion

In this survey, we systematically review the recent research on singing voice synthesis based on deep learning from tasks and architectures to core technologies in SVS including singing modeling, control techniques and training strategies. We also collect and demonstrate datasets, annotation tools and evaluation benchmarks for SVS systems. Through reviewing recent progress, we hope to drive SVS development by clearer insights, gap identification, and ideas for more expressive synthesis.

Limitations

Recent advances in generative models (e.g. GANs (Goodfellow et al., 2014), Transformers (Vaswani et al., 2017), diffusion models (Ho et al., 2020; Rombach et al., 2022; Peebles and Xie, 2023), and flow-matching frameworks (Liu et al., 2022c; Lipman et al., 2022) have accelerated progress in singing voice synthesis. **Consequently, this survey mainly focuses on deep-learning-based SVS researches.** Relative to traditional methods such as waveform concatenation (Kenmochi and Ohshita, 2007) and statistical parametric synthesis (Saino et al., 2006), modern deep models yield markedly better voice quality and naturalness, while affording superior controllability and generalization. For the above considerations, we don't introduce the paradigms of traditional singing voice synthesis at length.

Ethical Considerations

Although this survey itself raises no immediate ethical concerns, two potential risks must be addressed when applying the reviewed methods. (1) **Data licensing.** Users must respect the licenses of public corpora and obtain explicit permission before crawling or repurposing web-hosted singing recordings. (2) **Misuse of generative models.** Modern SVS systems can convincingly imitate a singer's timbre and style; without safeguards, they may be used for unauthorized voice-over, infringing intellectual-property and personality rights. Practitioners should comply with model developers' usage policies and local regulations, and future research should explore mitigation measures like voice-print watermarking to protect singers' privacy and provenance.

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No.U24A20326.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng, Chuang Ding, Lu Gao, et al. 2024. Seed-tts: A family of high-quality versatile speech generation models. *arXiv preprint arXiv:2406.02430*.

Bagus Tris Atmaja and Akira Sasou. 2022. Evaluating self-supervised speech representations for speech emotion recognition. *IEEE Access*, 10:124396–124407.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing systems*, 33:12449–12460.

Bingsong Bai, Fengping Wang, Yingming Gao, and Ya Li. 2024a. Spa-svc: Self-supervised pitch augmentation for singing voice conversion. *arXiv preprint arXiv:2406.05692*.

Yatong Bai, Jonah Casebeer, Somayeh Sojoudi, and Nicholas J Bryan. 2025. Dragon: Distributional rewards optimize diffusion generative models. *arXiv preprint arXiv:2504.15217*.

Ye Bai, Haonan Chen, Jitong Chen, Zhuo Chen, Yi Deng, Xiaohong Dong, Lamtharn Hantrakul, Weituo Hao, Qingqing Huang, Zhongyi Huang, et al. 2024b. Seed-music: A unified framework for high quality and controlled music generation. *arXiv preprint arXiv:2409.09214*.

Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. 2023. Whisperx: Time-accurate speech transcription of long-form audio. *INTERSPEECH 2023*.

Dong-Min Byun, Sang-Hoon Lee, Ji-Sang Hwang, and Seong-Whan Lee. 2024. Midi-voice: Expressive zero-shot singing voice synthesis via midi-driven priors. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 12622–12626. IEEE.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, and Lichao Sun. 2024. Mllm-as-a-judge: Assessing multimodal lilm-as-a-judge with vision-language benchmark. In *Forty-first International Conference on Machine Learning*.

Jiawei Chen, Xu Tan, Jian Luan, Tao Qin, and Tie-Yan Liu. 2020a. Hifisinger: Towards high-fidelity neural singing voice synthesis. *arXiv preprint arXiv:2009.01776*.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. 2020b. Wavegrad: Estimating gradients for waveform generation. *arXiv preprint arXiv:2009.00713*.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, et al. 2022. Wavlm: Large-scale self-supervised pre-training for full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):1505–1518.

Yin-Ping Cho, Yu Tsao, Hsin-Min Wang, and Yi-Wen Liu. 2022. Mandarin singing voice synthesis with denoising diffusion probabilistic wasserstein gan. In *2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)*, pages 1956–1963. IEEE.

Yin-Ping Cho, Fu-Rong Yang, Yung-Chuan Chang, Ching-Ting Cheng, Xiao-Han Wang, and Yi-Wen Liu. 2021. A survey on recent deep learning-driven singing voice synthesis systems. In *2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)*, pages 319–323. IEEE.

Seungwoo Choi, Seungju Han, Dongyoung Kim, and Sungjoo Ha. 2020a. Attentron: Few-shot text-to-speech utilizing attention-based variable-length embedding. In *Proc. Interspeech 2020*, pages 2007–2011.

Soonbeom Choi, Wonil Kim, Saebul Park, Sangeon Yong, and Juhan Nam. 2020b. Children’s song dataset for singing voice research. In *International Society for Music Information Retrieval Conference (ISMIR)*, volume 4.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, et al. 2024. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*.

Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. 2025. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*.

Erica Cooper, Wen-Chin Huang, Yu Tsao, Hsin-Min Wang, Tomoki Toda, and Junichi Yamagishi. 2023. The voicemos challenge 2023: Zero-shot subjective speech quality prediction for multiple domains. In *2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, pages 1–7. IEEE.

Jianwei Cui, Yu Gu, Shihao Chen, Jie Zhang, Liping Chen, and Lirong Dai. 2025. Cssinger: End-to-end chunkwise streaming singing voice synthesis system based on conditional variational autoencoder. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pages 23704–23714.

Jianwei Cui, Yu Gu, Chao Weng, Jie Zhang, Liping Chen, and Lirong Dai. 2024. Sifisinger: A high-fidelity end-to-end singing voice synthesizer based on source-filter model. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 11126–11130. IEEE.

Shuqi Dai, Ming-Yu Liu, Rafael Valle, and Siddharth Gururani. 2024. Expressivesinger: Multilingual and multi-style score-based singing voice synthesis with expressive performance control. In *Proceedings of the 32nd ACM International Conference on Multimedia*.

Shuqi Dai, Yunyun Wang, Roger B Dannenberg, and Zeyu Jin. 2025. Everyone-can-sing: Zero-shot singing voice synthesis and conversion with speech reference. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*.

Shuqi Dai, Yuxuan Wu, Siqi Chen, Roy Huang, and Roger B Dannenberg. 2023. Singstyle111: A multilingual singing dataset with style transfer. In *ISMIR*, pages 765–773.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. 2020. Jukebox: A generative model for music. *arXiv preprint arXiv:2005.00341*.

Shuangrui Ding, Zihan Liu, Xiaoyi Dong, Pan Zhang, Rui Qian, Conghui He, Dahua Lin, and Jiaqi Wang. 2024. Songcomposer: A large language model for lyric and melody composition in song generation. *arXiv preprint arXiv:2402.17645*.

Chris Donahue, Antoine Caillon, Adam Roberts, Ethan Manilow, Philippe Esling, Andrea Agostinelli, Mauro Verzetti, Ian Simon, Olivier Pietquin, Neil Zeghidour, et al. 2023. Singsong: Generating musical accompaniments from singing. *arXiv preprint arXiv:2301.12662*.

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yixin Yang, Hangrui Hu, Siqi Zheng, Yue Gu, Ziyang Ma, et al. 2024. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*.

Zhihao Du, Changfeng Gao, Yuxuan Wang, Fan Yu, Tianyu Zhao, Hao Wang, Xiang Lv, Hui Wang, Chongjia Ni, Xian Shi, et al. 2025. Cosyvoice 3: Towards in-the-wild speech generation via scaling-up and post-training. *arXiv preprint arXiv:2505.17589*.

Zhiyan Duan, Haotian Fang, Bo Li, Khe Chai Sim, and Ye Wang. 2013. The nus sung and spoken lyrics corpus: A quantitative comparison of singing and speech. In *2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference*, pages 1–9. IEEE.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. 2023. Clap learning audio concepts from natural language supervision. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. *Advances in neural information processing systems*, 27.

Yu Gu, Xiang Yin, Yonghui Rao, Yuan Wan, Benlai Tang, Yang Zhang, Jitong Chen, Yuxuan Wang, and Zeyun Ma. 2021. Bytesing: A chinese singing voice

synthesis system using duration allocated encoder-decoder acoustic models and wavernn vocoders. In *2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)*, pages 1–5. IEEE.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. 2020. Conformer: Convolution-augmented transformer for speech recognition. In *Proc. Interspeech 2020*, pages 5036–5040.

Shuai Guo, Jiatong Shi, Tao Qian, Shinji Watanabe, and Qin Jin. 2022. Singaug: Data augmentation for singing voice synthesis with cycle-consistent training strategy. *arXiv preprint arXiv:2203.17001*.

Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Xintong Hu, Yu Zhang, Li Tang, Rui Yang, Han Wang, Zongbao Zhang, Yuhang Wang, et al. 2025a. Mr-saudio: A large-scale multimodal recorded spatial audio dataset with refined annotations. *arXiv preprint arXiv:2510.10396*.

Wenxiang Guo, Yu Zhang, Changhao Pan, Rongjie Huang, Li Tang, Ruiqi Li, Zhiqing Hong, Yongqi Wang, and Zhou Zhao. 2025b. Techsinger: Technique controllable multilingual singing voice synthesis via flow matching. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Wenxiang Guo, Yu Zhang, Changhao Pan, Zhiyuan Zhu, Ruiqi Li, Zhetao Chen, Wenhai Xu, Fei Wu, and Zhou Zhao. 2025c. Stars: A unified framework for singing transcription, alignment, and refined style annotation. *arXiv preprint arXiv:2507.06670*.

Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, et al. 2024. Emilia: An extensive, multilingual, and diverse speech dataset for large-scale speech generation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pages 885–890. IEEE.

Jinzheng He, Jinglin Liu, Zhenhui Ye, Rongjie Huang, Chenye Cui, Huadai Liu, and Zhou Zhao. 2023. Rmssinger: Realistic-music-score based singing voice synthesis. In *Findings of the Association for Computational Linguistics: ACL 2023*, pages 236–248.

Xuming He, Zhiyuan You, Junchao Gong, Couhua Liu, Xiaoyu Yue, Peiqin Zhuang, Wenlong Zhang, and Lei Bai. 2025a. Radarqa: Multi-modal quality analysis of weather radar forecasts. *arXiv preprint arXiv:2508.12291*.

Xuming He, Zhiwang Zhou, Wenlong Zhang, Xiangyu Zhao, Hao Chen, Shiqi Chen, and Lei Bai. 2025b. Diffsr: Learning radar reflectivity synthesis via diffusion model from satellite observations. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*.

Yunchao He, Jian Luan, and Yujun Wang. 2022. Pama tts: Progression-aware monotonic attention for stable seq2seq tts with accurate phoneme duration control. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851.

Jonathan Ho and Tim Salimans. 2021. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*.

Zhiqing Hong, Chenye Cui, Rongjie Huang, Lichao Zhang, Jinglin Liu, Jinzheng He, and Zhou Zhao. 2023. Unisinger: Unified end-to-end singing voice synthesis with cross-modality information matching. In *Proceedings of the 31st ACM International Conference on Multimedia*.

Zhiqing Hong, Rongjie Huang, Xize Cheng, Yongqi Wang, Ruiqi Li, Fuming You, Zhou Zhao, and Zhimeng Zhang. 2024. Text-to-song: Towards controllable music generation incorporating vocal and accompaniment. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 6248–6261.

Chao-Ling Hsu and Jyh-Shing Roger Jang. 2009. On the improvement of singing voice separation for monaural recordings using the mir-1k dataset. *IEEE transactions on audio, speech, and language processing*, 18(2):310–319.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov, and Abdelrahman Mohamed. 2021. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 29:3451–3460.

Jiliang Hu, Jiajia Li, Ziyi Pan, Chong Chen, Zuchao Li, Ping Wang, and Lefei Zhang. 2025. Songsong: A time phonograph for chinese songci music from thousand of years away. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Dingbang Huang, Wenbo Li, Yifei Zhao, Xinyu Pan, Yanhong Zeng, and Bo Dai. 2025a. Psdiffusion: Harmonized multi-layer image generation via layout and appearance alignment. *arXiv preprint arXiv:2505.11468*.

Kexin Huang, Qian Tu, Liwei Fan, Chenchen Yang, Dong Zhang, Shimin Li, Zhaoye Fei, Qinyuan Cheng, and Xipeng Qiu. 2025b. Instructtseval: Benchmarking complex natural-language instruction following in text-to-speech systems. *arXiv preprint arXiv:2506.16381*.

Rongjie Huang, Feiyang Chen, Yi Ren, Jinglin Liu, Chenye Cui, and Zhou Zhao. 2021. Multi-singer:

Fast multi-singer singing voice vocoder with a large-scale corpus. In *Proceedings of the 29th ACM International Conference on Multimedia*, pages 3945–3954.

Rongjie Huang, Yi Ren, Jinglin Liu, Chenye Cui, and Zhou Zhao. 2022. Generspeech: Towards style transfer for generalizable out-of-domain text-to-speech. *Advances in Neural Information Processing Systems*, pages 10970–10983.

Wen-Chin Huang, Szu-Wei Fu, Erica Cooper, Ryandhimas E Zezario, Tomoki Toda, Hsin-Min Wang, Junichi Yamagishi, and Yu Tsao. 2024. The voicemos challenge 2024: Beyond speech quality prediction. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pages 803–810. IEEE.

Wen-Chin Huang, Lester Phillip Violeta, Songxiang Liu, Jiatong Shi, and Tomoki Toda. 2023. The singing voice conversion challenge 2023. In *2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, pages 1–8. IEEE.

Xun Huang and Serge Belongie. 2017. Arbitrary style transfer in real-time with adaptive instance normalization. In *Proceedings of the IEEE international conference on computer vision*.

Ji-Sang Hwang, Sang-Hoon Lee, and Seong-Whan Lee. 2025. Hiddensinger: High-quality singing voice synthesis via neural audio codec and latent diffusion models. *Neural Networks*.

Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin Li, Zhen Wei, Yuping Wang, et al. 2025. Ditar: Diffusion transformer autoregressive modeling for speech generation. *arXiv preprint arXiv:2502.03930*.

Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Zhenhui Ye, Shengpeng Ji, Qian Yang, Chen Zhang, Pengfei Wei, Chunfeng Wang, et al. 2024. Mega-tts 2: Boosting prompting mechanisms for zero-shot speech synthesis. In *The Twelfth International Conference on Learning Representations*.

Ziyue Jiang, Yi Ren, Ruiqi Li, Shengpeng Ji, Boyang Zhang, Zhenhui Ye, Chen Zhang, Bai Jionghao, Xiaoda Yang, Jialong Zuo, et al. 2025. Megatts 3: Sparse alignment enhanced latent diffusion transformer for zero-shot speech synthesis. *arXiv preprint arXiv:2502.18924*.

Ziyue Jiang, Yi Ren, Zhenhui Ye, Jinglin Liu, Chen Zhang, Qian Yang, Shengpeng Ji, Rongjie Huang, Chunfeng Wang, Xiang Yin, et al. 2023. Mega-tts: Zero-shot text-to-speech at scale with intrinsic inductive bias. *arXiv preprint arXiv:2306.03509*.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. 2018. Efficient neural audio synthesis. In *International Conference on Machine Learning*, pages 2410–2419. PMLR.

Hideki Kenmochi and Hayato Ohshita. 2007. Vocaloid-commercial singing synthesizer based on sample concatenation. In *Interspeech*.

Gwantae Kim, David K Han, and Hanseok Ko. 2021a. Specmix: A mixed sample data augmentation method for training withtime-frequency domain features. *arXiv preprint arXiv:2108.03020*.

Jaehyeon Kim, Jungil Kong, and Juhee Son. 2021b. Vits: Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech. In *Proc. ICML*, pages 5530–5540.

Keunhyoung Luke Kim, Jongpil Lee, Sangeun Kum, Chae Lin Park, and Juhan Nam. 2020. Semantic tagging of singing voices in popular music recordings. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 28:1656–1668.

Sungjae Kim, Yewon Kim, Jewoo Jun, and Injung Kim. 2023. Muse-svs: Multi-singer emotional singing voice synthesizer that controls emotional intensity. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*.

Tae-Woo Kim, Min-Su Kang, and Gyeong-Hoon Lee. 2022. Adversarial multi-task learning for disentangling timbre and pitch in singing voice synthesis. *arXiv preprint arXiv:2206.11558*.

Diederik P Kingma, Max Welling, et al. 2013. Auto-encoding variational bayes.

Junya Koguchi, Shinnosuke Takamichi, and Masanori Morise. 2020. Pjs: Phoneme-balanced japanese singing-voice corpus. In *2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)*, pages 487–491. IEEE.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020a. Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. *Advances in neural information processing systems*, 33:17022–17033.

Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumley. 2020b. Panns: Large-scale pretrained audio neural networks for audio pattern recognition. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*.

Max WY Lam, Jun Wang, Rongjie Huang, Dan Su, and Dong Yu. 2021. Bilateral denoising diffusion models. *arXiv preprint arXiv:2108.11514*.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. 2022a. Autoregressive image generation using residual quantization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*.

Keon Lee, Kyumin Park, and Daeyoung Kim. 2021. Styler: Style factor modeling with rapidity and robustness via speech decomposition for expressive and

controllable neural text to speech. In *22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021*, pages 3431–3435. International Speech Communication Association.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanaro, and Sungroh Yoon. 2022b. Bigvgan: A universal neural vocoder with large-scale training. *arXiv preprint arXiv:2206.04658*.

Sang-Hoon Lee, Ha-Yeong Choi, Seung-Bin Kim, and Seong-Whan Lee. 2023. Hierspeech++: Bridging the gap between semantic and acoustic representation of speech by hierarchical variational inference for zero-shot speech synthesis. *arXiv preprint arXiv:2311.12454*.

Sang-Hoon Lee, Seung-Bin Kim, Ji-Hyun Lee, Eunwoo Song, Min-Jae Hwang, and Seong-Whan Lee. 2022c. Hierspeech: Bridging the gap between text and speech by hierarchical variational inference using self-supervised representations for speech synthesis. *Advances in Neural Information Processing Systems*, 35:16624–16636.

Shun Lei, Yaoxun Xu, Zhiwei Lin, Huaicheng Zhang, Wei Tan, Hangting Chen, Jianwei Yu, Yixuan Zhang, Chenyu Yang, Haina Zhu, et al. 2025. Levo: High-quality song generation with multi-preference alignment. *arXiv preprint arXiv:2506.07520*.

Shun Lei, Yixuan Zhou, Boshi Tang, Max WY Lam, Feng Liu, Hangyu Liu, Jingcheng Wu, Shiyin Kang, Zhiyong Wu, and Helen Meng. 2024. Songcreator: Lyrics-based universal song generation. *arXiv preprint arXiv:2409.06029*.

Yi Lei, Shan Yang, Xinsheng Wang, Qicong Xie, Jixun Yao, Lei Xie, and Dan Su. 2023. Unisyn: an end-to-end unified model for text-to-speech and singing voice synthesis. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Ruiqi Li, Zhiqing Hong, Yongqi Wang, Lichao Zhang, Rongjie Huang, Siqi Zheng, and Zhou Zhao. 2024a. Accompanied singing voice synthesis with fully text-controlled melody. *arXiv preprint arXiv:2407.02049*.

Ruiqi Li, Rongjie Huang, Yongqi Wang, Zhiqing Hong, and Zhou Zhao. 2024b. Self-supervised singing voice pre-training towards speech-to-singing conversion. *arXiv preprint arXiv:2406.02429*.

Ruiqi Li, Rongjie Huang, Lichao Zhang, Jinglin Liu, and Zhou Zhao. 2023. Alignsts: Speech-to-singing conversion via cross-modal alignment. In *Findings of the Association for Computational Linguistics: ACL 2023*, pages 7074–7088.

Ruiqi Li, Yu Zhang, Yongqi Wang, Zhiqing Hong, Rongjie Huang, and Zhou Zhao. 2024c. Robust singing voice transcription serves synthesis. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 9751–9766.

Xiang Li, Changhe Song, Jingbei Li, Zhiyong Wu, Jia Jia, and Helen Meng. 2021. Towards multi-scale style control for expressive speech synthesis. *arXiv preprint arXiv:2104.03521*.

Yinghao Aaron Li, Xilin Jiang, Fei Tao, Cheng Niu, Kaifeng Xu, Juntong Song, and Nima Mesgarani. 2025. Dmospeech 2: Reinforcement learning for duration prediction in metric-optimized speech synthesis. *arXiv preprint arXiv:2507.14988*.

Susan Liang, Dejan Markovic, Israel D Gebru, Steven Krenn, Todd Keebler, Jacob Sandakly, Frank Yu, Samuel Hassel, Chenliang Xu, and Alexander Richard. 2025. Binauralflow: A causal and streamable approach for high-quality binaural speech synthesis with flow matching models. *arXiv preprint arXiv:2505.22865*.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. 2022. Flow matching for generative modeling. In *The Eleventh International Conference on Learning Representations*.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumbley. 2023. Audioldm: Text-to-audio generation with latent diffusion models. *arXiv preprint arXiv:2301.12503*.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. 2022a. Diffssinger: Singing voice synthesis via shallow diffusion mechanism. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pages 11020–11028.

Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, and Zhou Zhao. 2022b. Learning the beauty in songs: Neural singing voice beautifier. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7970–7983.

Xingchao Liu, Chengyue Gong, et al. 2022c. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*.

Zihan Liu, Shuangrui Ding, Zhixiong Zhang, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Dahu Lin, and Jiaqi Wang. 2025. Songgen: A single stage auto-regressive transformer for text-to-song generation. *arXiv preprint arXiv:2502.13128*.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural information processing systems*.

Peiling Lu, Jie Wu, Jian Luan, Xu Tan, and Li Zhou. 2020. Xiaoicesing: A high-quality and integrated singing voice synthesis system. In *Proc. Interspeech 2020*, pages 1306–1310.

Yiwen Lu, Zhen Ye, Wei Xue, Xu Tan, Qifeng Liu, and Yike Guo. 2024. Comosvc: Consistency model-based singing voice conversion. In *2024 IEEE 14th International Symposium on Chinese Spoken Language Processing (ISCSLP)*.

Dan Lyth and Simon King. 2024. Natural language guidance of high-fidelity text-to-speech with synthetic annotations. *arXiv preprint arXiv:2402.01912*.

Ziyang Ma, Zhisheng Zheng, Jiaxin Ye, Jinchao Li, Zhifu Gao, Shiliang Zhang, and Xie Chen. 2024. emotion2vec: Self-supervised pre-training for speech emotion representation. In *Findings of the Association for Computational Linguistics: ACL 2024*.

Ruskin Raj Manku, Yuzhi Tang, Xingjian Shi, Mu Li, and Alex Smola. 2025. Emergenttts-eval: Evaluating tts models on complex prosodic, expressiveness, and linguistic challenges using model-as-a-judge. *arXiv preprint arXiv:2505.23009*.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger. 2017. Montreal forced aligner: Trainable text-speech alignment using kaldi. In *Interspeech*, volume 2017, pages 498–502.

Masanori Morise, Fumiya Yokomori, and Kenji Ozawa. 2016. World: a vocoder-based high-quality speech synthesis system for real-time applications. *IEICE TRANSACTIONS on Information and Systems*.

Ziqian Ning, Huakang Chen, Yuepeng Jiang, Chunbo Hao, Guobin Ma, Shuai Wang, Jixun Yao, and Lei Xie. 2025a. Diffrrhythm: Blazingly fast and embarrassingly simple end-to-end full-length song generation with latent diffusion. *arXiv preprint arXiv:2503.01183*.

Ziqian Ning, Shuai Wang, Yuepeng Jiang, Jixun Yao, Lei He, Shifeng Pan, Jie Ding, and Lei Xie. 2025b. Drop the beat! freestyler for accompaniment conditioned rapping voice generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Itsuki Ogawa and Masanori Morise. 2021. Tohoku kiritan singing database: A singing database for statistical parametric singing synthesis using japanese pop songs. *Acoustical Science and Technology*, 42(3):140–145.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. 2021. Ot-flow: Fast and accurate continuous normalizing flows via optimal transport. In *Proceedings of the AAAI Conference on Artificial Intelligence*.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. 2018. Parallel wavenet: Fast high-fidelity speech synthesis. In *International conference on machine learning*. PMLR.

Changhao Pan, Wenxiang Guo, Yu Zhang, Zhiyuan Zhu, Zhetao Chen, Han Wang, and Zhou Zhao. 2025. A multimodal evaluation framework for spatial audio playback systems: From localization to listener preference. In *Proceedings of the 33rd ACM International Conference on Multimedia*.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le. 2019. SpecAugment: A simple data augmentation method for automatic speech recognition. *arXiv preprint arXiv:1904.08779*.

William Peebles and Saining Xie. 2023. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4195–4205.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2020a. Fastspeech 2: Fast and high-quality end-to-end text to speech. In *International Conference on Learning Representations*.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech: Fast, robust and controllable text to speech. *Advances in neural information processing systems*, 32.

Yi Ren, Xu Tan, Tao Qin, Jian Luan, Zhou Zhao, and Tie-Yan Liu. 2020b. DeepSinger: Singing voice synthesis with data mined from the web. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 1979–1989.

Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. 2001. Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs. In *2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. No. 01CH37221)*, volume 2, pages 749–752. IEEE.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695.

Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. 2024. Eliminating oversaturation and artifacts of high guidance scales in diffusion models. In *The Thirteenth International Conference on Learning Representations*.

Keiji Saino, Heiga Zen, Yoshihiko Nankaku, Akinobu Lee, and Keiichi Tokuda. 2006. An hmm-based singing voice synthesis system. In *INTERSPEECH*, pages 2274–2277.

Bidisha Sharma, Xiaoxue Gao, Karthika Vijayan, Xiaohai Tian, and Haizhou Li. 2021. Nhss: A speech and singing parallel database. *Speech Communication*, 133:9–22.

Kai Shen, Zeqian Ju, Xu Tan, Eric Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang Bian. 2024. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers. In *ICLR*.

Jiatong Shi, Yueqian Lin, Xinyi Bai, Keyi Zhang, Yuning Wu, Yuxun Tang, Yifeng Yu, Qin Jin, and Shinji Watanabe. 2024. Singing voice data scaling-up: An introduction to ace-opencpop and ace-kising. *arXiv preprint arXiv:2401.17619*.

Amir Shirian and Tanaya Guha. 2021. Compact graph architecture for speech emotion recognition. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 6284–6288. IEEE.

RJ Skerry-Ryan, Eric Battenberg, Ying Xiao, Yuxuan Wang, Daisy Stanton, Joel Shor, Ron Weiss, Rob Clark, and Rif A Saurous. 2018. Towards end-to-end prosody transfer for expressive speech synthesis with tacotron. In *international conference on machine learning*, pages 4693–4702. PMLR.

David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudanpur. 2018. X-vectors: Robust dnn embeddings for speaker recognition. In *2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)*, pages 5329–5333. IEEE.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. 2023. Consistency models.

Yingjie Song, Wei Song, Wei Zhang, Zhengchen Zhang, Dan Zeng, Zhi Liu, and Yang Yu. 2022. Singing voice synthesis with vibrato modeling and latent energy representation. In *2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)*, pages 1–6. IEEE.

Peiwen Sun, Sitong Cheng, Xiangtai Li, Zhen Ye, Huadai Liu, Honggang Zhang, Wei Xue, and Yike Guo. 2024. Both ears wide open: Towards language-driven spatial audio generation. *arXiv preprint arXiv:2410.10676*.

Rahul Tandra and Anant Sahai. 2008. Snr walls for signal detection. *IEEE Journal of selected topics in Signal Processing*, 2(1):4–17.

Yuxun Tang, Lan Liu, Wenhao Feng, Yiwen Zhao, Jionghao Han, Yifeng Yu, Jiatong Shi, and Qin Jin. 2025. Singmos-pro: An comprehensive benchmark for singing quality assessment. *arXiv preprint arXiv:2510.01812*.

Yuxun Tang, Jiatong Shi, Yuning Wu, and Qin Jin. 2024. Singmos: An extensive open-source singing voice dataset for mos prediction. *arXiv preprint arXiv:2406.10911*.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning. *Advances in neural information processing systems*, 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.

Michael Wagner and Duane G Watson. 2010. Experimental and theoretical advances in prosody: A review. *Language and cognitive processes*, 25(7-9):905–945.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. 2024. Diffusion model alignment using direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*.

Chun Wang, Xiaoran Pan, Zihao Pan, Haofan Wang, and Yiren Song. 2025a. Gre suite: Geo-localization inference via fine-tuned vision-language models and enhanced reasoning chains. *arXiv preprint arXiv:2505.18700*.

Le Wang, Jun Wang, Chunyu Qiang, Feng Deng, Chen Zhang, Di Zhang, and Kun Gai. 2025b. Audiogenomni: A unified multimodal diffusion transformer for video-synchronized audio, speech, and song generation. *arXiv preprint arXiv:2508.00733*.

Xianke Wang, Bowen Tian, Weiming Yang, Wei Xu, and Wenqing Cheng. 2022a. Musicyolo: A vision-based framework for automatic singing transcription. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, pages 229–241.

Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang, Qixi Zheng, Rui Wang, Xiaoqin Feng, et al. 2025c. Spark-tts: An efficient llm-based text-to-speech model with single-stream decoupled speech tokens. *arXiv preprint arXiv:2503.01710*.

Yashan Wang, Shangda Wu, Jianhuai Hu, Xingjian Du, Yueqi Peng, Yongxin Huang, Shuai Fan, Xiaobing Li, Feng Yu, and Maosong Sun. 2025d. Notagen: Advancing musicality in symbolic music generation with large language model training paradigms. *arXiv preprint arXiv:2502.18008*.

Yongqi Wang, Ruofan Hu, Rongjie Huang, Zhiqing Hong, Ruiqi Li, Wenrui Liu, Fuming You, Tao Jin, and Zhou Zhao. 2024a. Prompt-singer: Controllable singing-voice-synthesis with natural language prompt. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pages 4780–4794.

Yu Wang, Xinsheng Wang, Pengcheng Zhu, Jie Wu, Hanzhao Li, Heyang Xue, Yongmao Zhang, Lei Xie, and Mengxiao Bi. 2022b. Opencpop: A high-quality open source chinese popular song corpus for singing voice synthesis. In *Proc. Interspeech 2022*, pages 4242–4246.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. 2017. Tacotron: Towards end-to-end speech synthesis. *Interspeech 2017*, page 4006.

Yuxuan Wang, Daisy Stanton, Yu Zhang, RJ-Skerry Ryan, Eric Battenberg, Joel Shor, Ying Xiao, Ye Jia, Fei Ren, and Rif A Saurous. 2018. Style tokens: Unsupervised style modeling, control and transfer in end-to-end speech synthesis. In *International conference on machine learning*, pages 5180–5189. PMLR.

Zihao Wang, Haoxuan Liu, Jiaxing Yu, Tao Zhang, Yan Liu, and Kejun Zhang. 2024b. Mudit & musit: Alignment with colloquial expression in description-to-song generation. *arXiv preprint arXiv:2407.03188*.

Julia Wilkins, Prem Seetharaman, Alison Wahl, and Bryan Pardo. 2018. Vocalset: A singing voice dataset. In *ISMIR*, pages 468–474.

Yuning Wu, Chunlei Zhang, Jiatong Shi, Yuxun Tang, Shan Yang, and Qin Jin. 2024. Toksing: Singing voice synthesis based on discrete tokens. In *Proc. Interspeech 2024*, pages 2549–2553.

Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfu Zhu, et al. 2025a. Qwen3-omni technical report. *arXiv preprint arXiv:2509.17765*.

Kai-Tuo Xu, Feng-Long Xie, Xu Tang, and Yao Hu. 2025b. Fireredasr: Open-source industrial-grade mandarin speech recognition models from encoder-decoder to llm integration. *arXiv preprint arXiv:2501.14350*.

Xuenan Xu, Jiahao Mei, Zihao Zheng, Ye Tao, Zeyu Xie, Yaoyun Zhang, Haohe Liu, Yuning Wu, Ming Yan, Wen Wu, et al. 2025c. Uniflow-audio: Unified flow matching for audio generation from omni-modalities. *arXiv preprint arXiv:2509.24391*.

Yaoxun Xu, Hangting Chen, Jianwei Yu, Qiaochu Huang, Zhiyong Wu, Shi-Xiong Zhang, Guangzhi Li, Yi Luo, and Rongzhi Gu. 2024. Secap: Speech emotion captioning with large language model. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 19323–19331.

Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. 2020. Parallel wavegan: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 6199–6203. IEEE.

Zhen Ye, Wei Xue, Xu Tan, Jie Chen, Qifeng Liu, and Yike Guo. 2023. Comospeech: One-step speech and singing voice synthesis via consistency model. In *Proceedings of the 31st ACM International Conference on Multimedia*.

Yifeng Yu, Jiatong Shi, Yuning Wu, Yuxun Tang, and Shinji Watanabe. 2024. Visinger2+: End-to-end singing voice synthesis augmented by self-supervised learning representation. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pages 719–726. IEEE.

Ruixin Yuan, Hanfeng Lin, Shuyue Guo, Ge Zhang, Jiahao Pan, Yongyi Zang, Haohe Liu, Yiming Liang, Wenye Ma, Xingjian Du, et al. 2025. Yue: Scaling open foundation models for long-form music generation. *arXiv preprint arXiv:2503.08638*.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. 2021. Soundstream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 30:495–507.

Bowen Zhang, Congchao Guo, Geng Yang, Hang Yu, Haozhe Zhang, Heidi Lei, Jialong Mai, Junjie Yan, Kaiyue Yang, Mingqi Yang, et al. 2025a. Minimax-speech: Intrinsic zero-shot text-to-speech with a learnable speaker encoder. *arXiv preprint arXiv:2505.07916*.

Chen Zhang, Jiaxing Yu, LuChin Chang, Xu Tan, Jiawei Chen, Tao Qin, and Kejun Zhang. 2021. Pdaugment: Data augmentation by pitch and duration adjustments for automatic lyrics transcription. *arXiv preprint arXiv:2109.07940*.

Lichao Zhang, Ruiqi Li, Shoutong Wang, Liqun Deng, Jinglin Liu, Yi Ren, Jinzheng He, Rongjie Huang, Jieming Zhu, Xiao Chen, et al. 2022a. M4singer: A multi-style, multi-singer and musical score provided mandarin singing corpus. *Advances in Neural Information Processing Systems*, 35:6914–6926.

Yongmao Zhang, Jian Cong, Heyang Xue, Lei Xie, Pengcheng Zhu, and Mengxiao Bi. 2022b. Visinger: Variational inference with adversarial learning for end-to-end singing voice synthesis. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 7237–7241. IEEE.

Yongmao Zhang, Heyang Xue, Hanzhao Li, Lei Xie, Tingwei Guo, Ruixiong Zhang, and Caixia Gong. 2023. Visinger2: High-fidelity end-to-end singing voice synthesis enhanced by digital signal processing synthesizer. In *Proc. Interspeech 2023*, pages 4444–4448.

You Zhang, Yongyi Zang, Jiatong Shi, Ryuichi Yamamoto, Tomoki Toda, and Zhiyao Duan. 2024a. Svdd 2024: The inaugural singing voice deepfake detection challenge. In *2024 IEEE Spoken Language Technology Workshop (SLT)*, pages 782–787. IEEE.

Yu Zhang, Wenxiang Guo, Changhao Pan, Dongyu Yao, Zhiyuan Zhu, Ziyue Jiang, Yuhang Wang, Tao Jin, and Zhou Zhao. 2025b. Tcsinger 2: Customizable multilingual zero-shot singing voice synthesis. *arXiv preprint arXiv:2505.14910*.

Yu Zhang, Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Tao Jin, and Zhou Zhao. 2025c. Isdrama: Immersive spatial drama generation through multimodal prompting. In *Proceedings of the 33rd ACM International Conference on Multimedia*.

Yu Zhang, Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Ruiqi Li, Jingyu Lu, Rongjie Huang, Ruiyuan Zhang, Zhiqing Hong, Ziyue Jiang, et al. 2025d. Versatile framework for song generation with prompt-based control. *arXiv preprint arXiv:2504.19062*.

Yu Zhang, Rongjie Huang, Ruiqi Li, JinZheng He, Yan Xia, Feiyang Chen, Xinyu Duan, Baoxing Huai, and Zhou Zhao. 2024b. Stylesinger: Style transfer for out-of-domain singing voice synthesis. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 19597–19605.

Yu Zhang, Ziyue Jiang, Ruiqi Li, Changhao Pan, Jinzheng He, Rongjie Huang, Chuxin Wang, and Zhou Zhao. 2024c. Tcsinger: Zero-shot singing voice synthesis with style transfer and multi-level style control. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 1960–1975.

Yu Zhang, Changhao Pan, Wenxiang Guo, Ruiqi Li, Zhiyuan Zhu, Jialei Wang, Wenhao Xu, Jingyu Lu, Zhiqing Hong, Chuxin Wang, et al. 2024d. Gtsinger: A global multi-technique singing corpus with realistic music scores for all singing tasks. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*.

Zewang Zhang, Yibin Zheng, Xinhui Li, and Li Lu. 2022c. Wesinger: Data-augmented singing voice synthesis with auxiliary losses. In *Proc. Interspeech 2022*, pages 4252–4256.

Junchuan Zhao, Low Qi Hong Chetwin, and Ye Wang. 2024. Sintechsvs: A singing technique controllable singing voice synthesis system. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V Le, James Laudon, et al. 2022. Mixture-of-experts with expert choice routing. *Advances in Neural Information Processing Systems*.

Yuhao Zhou, Yiheng Wang, Xuming He, Ruoyao Xiao, Zhiwei Li, Qiantai Feng, Zijie Guo, Yuejin Yang, Hao Wu, Wenxuan Huang, et al. 2025. Scientists' first exam: Probing cognitive abilities of mllm via perception, understanding, and reasoning. *arXiv preprint arXiv:2506.10521*.

Zhiyuan Zhu, Yu Zhang, Wenxiang Guo, Changhao Pan, and Zhou Zhao. 2025. Asaudio: A survey of advanced spatial audio research. *arXiv preprint arXiv:2508.10924*.

A Training and Inference Strategies

A.1 Training Data Augmentation

Public singing datasets often suffer from limited scale, uneven recording quality, and inconsistent annotations, creating a data bottleneck that poses substantial challenges to training stable and robust SVS systems (Zhang et al., 2024d). Data augmentation seeks to expand acoustic-condition diversity while preserving score consistency. Common strategies include: (a) **Score-aware pitch/tempo transforms**. Specifically, do semitone transposition and BPM-proportional time-stretching, with synchronized updates to MIDI, F0, and durations, which enlarges timbre/prosody coverage while preserving musical structure (Guo et al., 2022; Zhang et al., 2021). (b) **Spectral perturbations**. The application of spectrogram perturbations, such as frequency/time masking and spectrogram-domain mixup, functions as an effective regularizer for the acoustic model and effectively improves robustness (Park et al., 2019; Kim et al., 2021a). (c) **F0-centric perturbations**. To add small vibratos and slightly shift UV boundary for training data could effectively improve cross-domain generalization while keeping musicality (Bai et al., 2024a). (d) **Speech infusion**. Incorporating speech data expands style and prosody coverage by exploiting shared human-voice attributes, benefiting the controllability of SVS (Wang et al., 2024a). Together, these techniques alleviate data scarcity, improve robustness, and yield more controllable SVS models.

A.2 Training Strategies

Training strategies in SVS aim to balance quality, controllability, data efficiency, and inference cost. We summarize two complementary axes.

Pre-train & Fine-tune Large-scale self supervised encoders (Baevski et al., 2020; Hsu et al., 2021) and singing-specific pre-training (Li et al., 2024b) provide robust features and transfer well to low-resource singers and languages. The above training methods are generally based on the following steps. Firstly, freeze or partially fine-tune the SSL backbone while training SVS heads; then, add PEFT for efficient style adaptation; and finally use domain adapters to bridge speech and singing. Such strategies are also applicable to latent diffusion backbones (Liu et al., 2023).

Multi-Stage Training For cascaded systems, a typical schedule trains the acoustic model and du-

ration/F0 (note) predictors first, followed by the vocoder; a subsequent joint fine-tuning stage aligns the conditional distributions and mitigates error accumulation (Chen et al., 2020a; Liu et al., 2022a). For consistency-model frameworks, lightweight high-throughput synthesis is commonly achieved via teacher–student distillation, compressing sampling steps while preserving fidelity; this distillation is performed after training a high-quality teacher (often a diffusion model) and serves as its downstream refinement (Ye et al., 2023).

A.3 Inference Acceleration Method

In addition to the consistency model, rapid progress in deep generative modeling (Ho et al., 2020; Liu et al., 2022c; He et al., 2025b; Huang et al., 2025a) enable faster inference for diffusion-based and flow-matching SVS systems. For diffusion models, fast ODE/SDE solvers—notably DDIM (Song et al., 2020) and DPM-Solver (Lu et al., 2022)—recast the reverse process as an ODE and use higher-order, adaptive updates to achieve high fidelity with few steps. For flow matching, which learns an explicit velocity field from data to noise, acceleration is largely intrinsic: integrators provide short trajectories with minimal overhead (Guo et al., 2025b). Beyond step-size reduction, methods that smooth the vector field like Rectified Flow (Liu et al., 2022c) and OT-Flow (Onken et al., 2021) regularize the transport dynamics to yield straighter, more stable paths, thereby further cutting the number of required steps.

B Discussions about Singing Voice Synthesis

B.1 Novel Singing Tasks

As discussed in Section 2, recent SVS systems already achieve strong performance on core accuracy dimensions—e.g., lyric and pitch correctness (Liu et al., 2022a; Zhang et al., 2022b). Nevertheless, a substantial gap remains between current outputs and human expectations (Zhang et al., 2025b). This gap stems in part from the community’s ambitions moving beyond merely “singing the notes correctly” toward richer objectives that encompass expressivity, style, and realism. Building on this, future SVS research can advance along two axes: (1) customization and (2) high expressivity. For **customization-oriented singing**, instruction following should be prioritized once basic audio quality is ensured. A practical route is to strengthen

both generative capacity and cross-modal alignment—for example, by using MLLMs (Comanici et al., 2025) to encode heterogeneous conditioning into a unified representation, or by leveraging contrastive learning (Elizalde et al., 2023) to build a task-specific, multimodal singing representation. Moreover, reinforcement learning has demonstrated improvements in instruction following across domains (Liu et al., 2024; Bai et al., 2025; Du et al., 2025). For **high expressivity singing**, beyond fine-grained control over dimensions such as emotion and style (Dai et al., 2024), and beyond joint vocal-accompaniment generation (Ning et al., 2025a; Liu et al., 2025), an equally promising direction is **immersive (spatial) singing synthesis**. While spatial audio generation has seen breakthroughs in speech and sound effects (Liang et al., 2025; Sun et al., 2024; Zhang et al., 2025c), it remains underexplored for singing. Given its growing deployment in in-car and headphone scenarios (Pan et al., 2025; Zhu et al., 2025) and the recent release of recorded spatial-singing datasets (Guo et al., 2025a), we anticipate rapid progress in immersive singing generation.

B.2 Architectures of SVS

The architectural discussion for SVS systems can be framed along two perspectives: (i) cascaded vs. end-to-end designs, and (ii) autoregressive(AR) vs. non-autoregressive(NAR) paradigms.

Cascaded vs. End-to-End Evidently, end-to-end (single-stage) generation is a more promising direction, benefiting from direct modeling. In contrast to TTS, where end to end designs are widely adopted (Zhang et al., 2025a; Du et al., 2025), the SVS community still features many strong cascaded systems (Zhang et al., 2024c). A likely reason is that cascaded pipelines rely on hand-crafted targets such as Mel spectrograms to regularize the acoustic stage, which adds auxiliary supervision and reduces the compression rate, thereby securing a higher performance floor, especially in low resource settings (Wang et al., 2022b). By comparison, end to end systems offer a higher ceiling but face challenges, including greater data requirements, training instability, and heightened sensitivity to alignment and temporal modeling (Peebles and Xie, 2023). Recent work often mitigates these issues by introducing neural codecs or continuous latents as intermediate representations to ease waveform prediction (Wu et al., 2024; Hwang et al.,

2025). Looking ahead, end to end SVS can be advanced by reducing data and compute requirements and by incorporating reinforcement learning and contrastive learning to improve perceptual quality. These directions merit deeper investigation.

AR vs. NAR Inspired by FastSpeech (Ren et al., 2020a), NAR SVS gained broad adoption in academia and industry due to its inference speed. However, the rise of long form generation introduces unavoidable compute overheads for non autoregressive models, and the progress of MLLMs together with the inherently sequential nature of singing has renewed interest in autoregressive modeling (Liu et al., 2025). Autoregressive generation, in turn, can suffer from training instability and longer inference time (Wang et al., 2017). Hybrid approaches that combine autoregressive and non autoregressive modeling, such as DITAR (Jia et al., 2025), as well as streaming inference (Cui et al., 2025), may provide practical avenues for SVS.

B.3 Representation of SVS

Continuous Representation vs. Discrete Representation There is no consensus on whether singing voice generation should adopt continuous or discrete representations. Discrete representations (Zeghidour et al., 2021) align naturally with autoregressive and LLM next-token objectives, enabling long-context caching, streaming inference, instruction following, and precise control (Hwang et al., 2025); however, quantization may smooth out fine vocal details. Continuous representations preserve fine-grained acoustic textures and phase structure, yet they often rely on powerful decoders and are more sensitive to alignment (Lei et al., 2023; Kim et al., 2021b). A dual-track approach that combines discrete and continuous representations may offer the best balance among efficiency, controllability, and high fidelity for SVS.

Trade-off between Quality and Controllability Experiences show that an overemphasis on control can degrade audio fidelity (Sadat et al., 2024). Moreover, achieving sufficient disentanglement of content, acoustic, and semantic factors, together with effective cross-lingual and cross-style transfer, remains challenging (Jiang et al., 2025). Therefore, relying on a single encoder to extract control and transfer features is insufficient, and increasing guidance strength only at inference time does not yield genuine controllability (Ho and Salimans, 2021). To address these issues, future work can

explore sparse architectures such as Mixture-of-Experts (Zhou et al., 2022) to enhance style control and transfer (Zhang et al., 2025d), and apply reinforcement learning to align model behavior with human preferences (Wang et al., 2025d).

B.4 Data for SVS

A significant challenge for SVS is the scarcity and quality of training data (Zhang et al., 2022a). In contrast to speech datasets, which exceed 100,000 hours, open-source singing data is extremely limited and plagued by long-tail distributions in style and language, as well as poor annotation quality (e.g., inaccurate lyric timestamps) (Zhang et al., 2024d). Consequently, for the SVS community, a more pragmatic strategy is to pursue large-scale, weakly-labeled data collection rather than investing heavily in small, perfectly annotated corpora (Kong et al., 2020b). This points to two crucial long-term research directions: developing efficient data processing pipelines (He et al., 2024) and designing effective self-supervised or weakly-supervised encoding schemes for singing (Li et al., 2024b).

C Potential Contribution of MLLMs to SVS Field

Multimodal Large Language Models (MLLMs) (Xu et al., 2025a; He et al., 2025a; Wang et al., 2025a) are increasingly shaping the landscape of Singing Voice Synthesis (SVS). To highlight their growing significance, we provide a systematic discussion of their contributions from six key perspectives. This section outlines how MLLMs are driving progress in SVS, offering both new methodological insights and practical advancements for the field.

C.1 Data Captioning and Annotation

One of the longstanding challenges in SVS is the scarcity of richly annotated singing datasets, especially those with semantic labels such as emotion, style, or techniques (Guo et al., 2025c; Dai et al., 2023). MLLMs offer a powerful solution by enabling automated, high-level semantic annotation. For instance, Automatic Speech Recognition(ASR) systems like Whisper (Bain et al., 2023) and FireRedASR (Xu et al., 2025b) can first transcribe singing content, while advanced MLLMs (e.g., GPT-4o (Achiam et al., 2023), Gemini 2.5 Pro (Comanici et al., 2025)) can then be prompted to analyze the transcribed lyrics, melody context,

and acoustic features to generate descriptive captions (Wang et al., 2025c). This capability significantly reduces manual annotation costs and enables the creation of semantically enriched datasets that support more expressive and controllable synthesis.

C.2 Content Understanding and Generation

Beyond annotation, MLLMs excel at deep semantic understanding and creative generation of musical content (Lei et al., 2024; Ding et al., 2024). They can assist in high-level music composition tasks such as lyric writing, melody suggestion, rhyme structuring, and even genre-aware song structuring (Bai et al., 2024b; Yuan et al., 2025). By conditioning on textual prompts, MLLMs can generate coherent and stylistically appropriate lyrics that align with intended emotional narratives. Moreover, when integrated with symbolic music models or score-based diffusion systems (Wang et al., 2025d), they enable end-to-end co-creation of lyrics and melodies, forming a crucial bridge between natural language semantics and musical structure.

C.3 Expressiveness Prediction and Guidance

A key frontier in SVS is achieving human-like expressiveness, with subtle variations in pitch, timing, dynamics, and timbre that convey emotion and artistry (Zhang et al., 2024d; Yu et al., 2024). MLLMs may contribute by modeling the pragmatic and contextual aspects of singing performance. Recent works such as Prompt-Singer (Wang et al., 2024a) and TechSinger (Guo et al., 2025b) demonstrate how textual prompts describing singing styles or techniques can guide systems to produce more contextually appropriate and nuanced outputs. MLLMs serve as interpreters between human intentions and acoustic parameters, enabling intuitive control over expressiveness without requiring technical expertise in signal processing.

C.4 Voice and Song Generation

Thanks to their strong long-sequence modeling capabilities and emergent multimodal alignment, large models have become foundational in end-to-end singing voice and full-song generation. Systems like YuE (Yuan et al., 2025), Seed-Music (Bai et al., 2024b), Suno⁹, and Mureka¹⁰ leverage MLLM-like architectures to generate high-quality singing voices directly from text and melody

⁹<https://suno.com/>

¹⁰<https://www.mureka.ai/>

inputs, often in a zero-shot or few-shot manner. These models capture complex dependencies across lyrics, rhythm, pitch, and prosody, producing musically coherent and emotionally engaging results. Furthermore, emerging "all-in-one" audio foundation models such as AudioGen-Omni (Wang et al., 2025b) and UniFlow-Audio (Xu et al., 2025c) push the boundary by supporting unified generation of speech, sound effects, and singing from diverse inputs, including text and video modalities, highlighting the potential of MLLMs as general-purpose audio creators.

C.5 Cross-Modal Alignment

MLLMs inherently promote better cross-modal alignment between text, music, and audio, ensuring semantic consistency across layers of expression (Elizalde et al., 2023). For example, if a lyric mentions "a storm is coming," an MLLM-guided SVS system can adjust both the vocal intensity and background instrumentation to reflect tension or drama, thereby enhancing narrative coherence. This holistic integration of meaning across modalities is difficult to achieve with traditional pipeline systems but emerges naturally in MLLM-based frameworks due to their joint training on vast multimodal corpora.

C.6 MLLMs as SVS Evaluation

Beyond generation, MLLMs can serve as intelligent evaluators for singing voice synthesis. Traditional metrics and small-scale human tests often fail to capture semantic fidelity, emotional expression, or musical naturalness (Anastassiou et al., 2024). MLLMs, with their cross-modal understanding, can assess synthesized singing by answering targeted questions (Zhou et al., 2025). Inspired by the "LLM-as-a-Judge" paradigm (Chen et al., 2024), this approach has been already widely applied in TTS benchmarks (Manku et al., 2025; Huang et al., 2025b) and shows strong potential for automating and scaling SVS evaluation with high correlation to human judgment. Moreover, MLLMs can generate interpretable feedback, offering actionable insights beyond scalar scores. This enables faster, more informative model iteration and paves the way toward standardized, explainable evaluation in future SVS research.

In summary, MLLMs are not merely auxiliary tools in SVS; they are becoming central enablers of semantic richness, expressivity, and accessibility in singing synthesis. Their integration marks

a paradigm shift, from purely signal-driven systems to intention-aware, context-sensitive, and user-centered music generation platforms.