
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 383–395

December 20-24, 2025 ©2025 Association for Computational Linguistics

An Analysis of the Impact of Problem Paraphrasing on
LLM-Based Mathematical Problem Solving

Yerim Han, Hyein Seo, Hyuk Namgoong, Sangkeun Jung*

Computer Science and Engineering, Chungnam National University, Republic of Korea
{namu.rim2, hyenee97, hyuk199, hugmanskj}@gmail.com

Abstract

Recent advances in large language models
(LLMs) have significantly improved mathe-
matical problem-solving. Among various tech-
niques, paraphrasing problem statements has
emerged as a promising strategy to enhance
model understanding and accuracy. We define
twelve paraphrasing types grounded in mathe-
matics education theory and analyze their im-
pact on LLM performance across different con-
figurations. To automate selection, we propose
a Paraphrase Type Selector that predicts effec-
tive paraphrases for each problem. Experiments
on MATH-500, SVAMP, and AIME shows
consistent performance gain from paraphrased
problems. On MATH-500 with LLAMA 3.1-
8B, combining the original with the best five
paraphrased problems improves accuracy by
+8.4%, with the selector achieving an addi-
tional +1.33% gain.

1 Introduction

Recent advances in large language models (LLMs)
have improved their success in mathematical
problem-solving, demonstrating high accuracy and
efficiency in complex reasoning tasks.

Key approaches include Chain-of-Thought
(CoT) (Wei et al., 2022) prompting, (Wang et al.,
2023) and retrieval-based reasoning (Guan et al.,
2025; Gao et al., 2023). Recently, paraphrasing
problem statements has gained attention as a way
to enhance model understanding and performance.

Problem paraphrasing is a technique that con-
verts the original problem Q into semantically
equivalent variants Q̃; numerous studies have
shown that a model’s accuracy can vary signif-
icantly depending on the specific paraphrasing
method used. For instance, Zhou et al. (2024) report
that paraphrasing leads to a +10.2% accuracy im-
provement on the MATH dataset for LLAMA-2-

*Corresponding author

Random paraphrase

paraphrase

Original Problem

You have 104 dollars,
How many packs of
dvds can you buy if
each pack cost 26
dollars?

Paraphrased Problem 1

You have 104 dollars. How
many boxes of books can
you buy if each box costs 26
dollars?

Paraphrased Problem 2

You have 104 dollars. How
many boxes of toys can you
buy if each box costs 26
dollars?

Type based paraphrase

paraphrase

Original Problem

You have 104 dollars,
How many packs of
dvds can you buy if
each pack cost 26
dollars?

Paraphrased Problem (Type2)

You have 104 dollars in total.
Each pack of DVDs costs 26
dollars…

Paraphrased Problem (Type1)

If each pack of DVDs costs
26 dollars, how many packs
can you buy with 104
dollars?

Figure 1: How Type based paraphrase works. A math
problem is paraphrased into different forms. Random
paraphrases may appear similar.

70B (Touvron et al., 2023) and a +6.0% improve-
ment for GPT-3.5-TURBO (Brown et al., 2020).

Several strategies have been proposed, such as
determining the final answer by measuring cross-
paraphrase consistency (Lai et al., 2025), reformu-
lating the input in the model’s preferred style (Fu
et al., 2024b), or allowing the model to reformulate
math problems and solve them through code-based
reasoning (Zhang et al., 2025).

However, current paraphrasing methods have
key limitations. They often rely on random, prompt-
based generation without a clear framework or tax-
onomy, and lack quantitative analysis of effective
combinations of paraphrase types. In other words,
although paraphrasing is known to influence
performance, empirical guidance on which para-
phrases to use, when to apply them, and how
many to include remains scarce.

To address these limitations, we analyze how

383

𝑄𝑇𝑦𝑝𝑒1

𝑄𝑇𝑦𝑝𝑒3

𝑇𝑦𝑝𝑒1

𝑇𝑦𝑝𝑒3
Ques�on paraphrasing phase

select

paraphrase

𝐿𝐿𝑀𝑃

𝐿𝐿𝑀𝑀𝐴𝑇𝐻
𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏

𝑃𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒
𝑇𝑦𝑝𝑒

𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟

𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅
𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝒔 (𝑸∗)

𝑄𝑇𝑦𝑝𝑒1

𝑄𝑇𝑦𝑝𝑒3

Type 1 : Text Reduc�on
Type 2 : Object Subs�tu�on
Type 3 : Variable Renaming
… 𝑄

𝑄
+

𝐴

𝑨𝒏𝒔𝒘𝒆𝒓

solve

Prompt

Your task is to
paraphrase ..

Figure 2: Our proposed multi-paraphrase problem-solving framework. Q denotes the original math problem. The
Paraphrase Type Selector predicts a subset of effective paraphrase types. Based on these, the paraphrasing model
LLMP generates type-specific paraphrased problems Q̃Type, which form a paraphrase set Q̃∗. The original problem
Q and the selected paraphrased problems Q̃∗ are jointly fed into the solver model LLMMATH, which produces the
final answer A.

paraphrased problems affect LLM-based math
problem solving. Grounded in mathematics edu-
cation theory and prior work on problem paraphras-
ing and data augmentation, we define twelve para-
phrasing types and generate multiple variants per
problem. This setup enables quantitative analysis
of how performance varies with paraphrase num-
ber, combination, and type, revealing when spe-
cific types are most effective. Figure 1 shows the
key distinction between random and type-based
paraphrasing. Randomly generated paraphrases are
produced without constraints, and as a result, they
often end up being overly similar to one another.
In contrast, type-based paraphrasing applies prede-
fined transformation rules to generate structurally
distinct variants, promoting greater expression di-
versity and improving learning efficacy.

For each original problem, we generate a vari-
able number of paraphrases and provide them to
the model alongside the original. This design en-
ables a systematic evaluation of how performance
varies with the number, combination, and type of
paraphrases, allowing us to identify the conditions
under which specific types are most effective.

Building on these findings, we propose a Para-
phrase Type Selector that selects effective para-
phrase combinations based on the original prob-
lem. Experiments show it generalizes to unseen
problems and consistently improves performance
over the baseline. As shown in Figure 2, we further
integrate the selector into a full multi-paraphrase
problem-solving framework that leverages multiple
paraphrased variants to enhance reasoning accu-
racy.

Experiments were conducted on three stan-
dard math reasoning benchmarks: MATH
dataset (Hendrycks et al., 2021), SVAMP (Patel
et al., 2021), and AIME (Veeraboina, 2023). For
MATH, we used a 500-item subset (MATH-500)

obtained via random sampling. When providing
the Top-n paraphrases alongside each original
problem, we observed accuracy improvements on
MATH-500 of up to +9.73% for LLAMA 3.1-
8B, +3.54% for LLAMA 3.3-70B, +1.33% for
QWEN 2.5-7B, and +0.07% for QWEN 2.5-72B.
Furthermore, applying our proposed Paraphrase
Type Selector provided additional improvements
up to +7.7% over the original-only baseline on
MATH-500, confirming the effectiveness of
automated paraphrase selection.

The key contributions of this paper are as fol-
lows:
1. We present a taxonomy of twelve paraphrasing

types, rooted in mathematics education theory,
that preserve semantics while varying surface
form.

2. We develop a multi-paraphrase prompting strat-
egy and provide quantitative analysis on how
paraphrase type, number, and combination af-
fect LLM accuracy.

3. We propose a Paraphrase Type Selector that
automatically selects effective paraphrases per
problem and empirically improves perfor-
mance.

2 Related Works

Problem Paraphrasing and Expression Varia-
tion Multiple studies have demonstrated that the
surface formulation of a math problem can sub-
stantially affect an LLM’s reasoning accuracy.
Zhou et al. (2024) analyze how solving accuracy
varies when the same problem is paraphrased in
different ways and introduce Self-Consistency-
over-Paraphrases (SCoP) to aggregate answers
across variants. Zhang et al. (2025) combine para-
phrasing with code-based reasoning in the RM-
PoT framework, while Fu et al. (2024b) mitigate
paraphrasing variance by aligning problems to

384

a model-preferred style in their PEARL frame-
work. Deng et al. (2023) further show that letting
a model first rephrase a question and then respond
(Rephrase-and-Respond) yields clearer formula-
tions and higher accuracy. Research has also ad-
dressed problem perturbations beyond paraphras-
ing, such as logical, computational, and conceptual
transformations (Hong et al., 2024).
Analogical and Retrieval-based Reasoning Re-
search has also explored exploiting analogous or
retrieved problems. Lin et al. (2025) propose Meta-
Ladder, which provides similar examples and solu-
tions to induce analogy-based reasoning. Yasunaga
et al. (2023) introduce analogical prompting, where
the model self-generates similar examples for use
in reasoning. Conversely, Qin et al. (2024) compare
relevant and irrelevant examples to critically assess
whether LLMs truly exploit analogy. Additional
lines of work include memory-augmented solvers
that recall previously solved problems (Huang et al.,
2021) and retrieval-augmented generation (RAG)
that grounds reasoning with textbook knowledge
(Levonian et al., 2023).
Hint-based and Structured Prompting Prompt-
ing techniques that supply hints or induce structural
analysis have also been proposed. Agrawal et al.
(2024) show that providing explicit hints before the
problem statement boosts performance, whereas
Fu et al. (2024a) have the model generate its own
hints via Hint-before-Solving Prompting (HSP).
Yugeswardeenoo et al. (2024) introduce Question-
Analysis Prompting, which guides the model to
structurally parse the problem prior to solving.
Aggregation and Consistency-based Approaches
A complementary strand aggregates diverse inputs
or reasoning paths to increase answer reliability.
Imani et al. (2023) propose MathPrompter, which
explores multiple solution strategies and compares
outcomes. Lai et al. (2025) present the MRC frame-
work, performing self-consistency over variations
in formulation, example order, and even language.
In the classification domain, Yadav et al. (2024) im-
prove accuracy by aggregating predictions across
multiple paraphrases, illustrating the utility of ex-
pression diversity in voting schemes.

Prior work has thus shown that changing prob-
lem formulation can influence LLM performance
and that diversity can be exploited for greater con-
sistency or accuracy. Building on this line of re-
search, we propose an approach that presents the
original problem alongside multiple paraphrased
variants to better highlight core concepts.

Category Index Abbr. Paraphrase Types

Expression

1 MET
Mathematical Expression
Transformation

2 TR Text Reduction
3 TW Text Rewriting
4 SOM Sentence Order Modification
5 SM Sentence Merging
6 MR Metaphorical Representation
7 ST Syntactic Transformation

Object
8 OS Object Substitution
9 VR Variable Renaming
10 CR Contextual Rewriting

Structural
11 SBS Step-by-Step Breakdown
12 IS Information Segmentation

Table 1: Mathematical problem paraphrasing types.

3 Mathematical Problem Paraphrasing

3.1 Education-based Paraphrasing Types

For decades, the mathematics-education commu-
nity has viewed problem paraphrasing as a key
means of cultivating mathematical thinking and
improving problem-solving skills. Activities that
modify existing problems or construct new ones in
varied ways are widely used as pedagogical strate-
gies to foster creative reasoning.

In parallel, the NLP community has investi-
gated paraphrase types (Wahle et al., 2023), typ-
ically assessing sentence-level semantic equiva-
lence and classifying linguistic paraphrases such
as lexicon-based, syntax-based, morphology-based,
while proposing general types for generating se-
mantically diverse variants.

Building on both lines of work, we extend these
ideas to the mathematical domain. Drawing on
prior research in mathematics education and data
augmentation (Cai et al., 2015; Christou et al.,
2005; Baumanns and Rott, 2022; Singer et al.,
2015), we systematically define twelve paraphrase
types that preserve the underlying mathematical
operations and logical flow required for problem
solving, while altering only surface-level features
such as wording, sentence structure, and contextual
framing.

Table 1 summarizes our taxonomy of twelve
paraphrasing types, organized into three high-level
categories based on expression features specific to
mathematical problems. These types are designed
to preserve the core mathematical logic and oper-
ations while varying only surface-level elements
such as wording, structure, or context.

The twelve types can be classified into three

385

Problem Paraphrase Prompt ()

You are a helpful math assistant. Your task is to
paraphrase a math problem using the following technique:

Technique : {paraphrase type}
Description : {description}

Here is an example :
Original : {original example}
Paraphrased : {paraphrased example}

Now, apply the technique to the following problem.
Only output the paraphrased problem statement.
Ensure that the solution remains logically equivalent.

Original Problem: {original problem}

Figure 3: Prompt for problem paraphrase generation.

broader functional categories:

• Expression Paraphrase (MET, TR, TW, SOM,
SM, MR, ST): Modify equations, phrasing, and
syntax to create diverse surface forms.

• Object Paraphrase (OS, VR, CR): Change vari-
ables, objects, or contextual settings without al-
tering the problem’s logic.

• Structural Paraphrase (SBS, IS): Restructure
information by breaking down step-by-step or
reorganizing the problem presentation.

These types are defined based on expression fea-
tures unique to mathematical problems—such as
how mathematical objects are referenced, how con-
ditions are phrased, and whether the problem is
staged step-by-step. Unlike general paraphrasing
that aims for semantic equivalence, our taxonomy
emphasizes preserving the mathematical problem-
solving process itself.

3.2 Problem Paraphraser

To transform mathematical problems into diverse
expressions, our study employs an LLM-based
mathematical problem paraphraser LLMP and
generates problems as follows:

Q̃i
k = LLMP (P

i
T , Qk)

Using the k-th original problem Qk and the para-
phrase prompt P i

T corresponding to paraphrase
type i, the paraphrased problem Q̃i

k is produced.
Each paraphrase type is summarized in Table 1,

and an example prompt is presented in Figure 3.
The generated paraphrased problem is designed to
be logically equivalent to the original problem and

Notation Description

Qk k-th original problem
Q̃i Problem from i-th paraphrase type
Q̃∗ Best-per-Instance paraphrase set
Q̃∗,selector Selector-chosen paraphrase set
A Ground-truth answer
Â Predicted answer
Âi Predicted answer for Q̃i

Âi,n n-th attempt for Q̃i

Ci
k Correct count for Q̃i of Qk

Csorted
k Paraphrases sorted by correctness

N Number of attempts per problem

PS Standard problem-solving prompt
P̃S Extended prompt with paraphrases
PT Prompt used to paraphrases
P i Prompt for i-th paraphrase type

I+ Index set of effective paraphrase type

Table 2: Notation used in the paraphrased problem-
solving framework.

therefore shares the same Ak. The main notation
used is summarized in Table 2. Further details can
be found in Appendix B, C.

4 Analyzing the Impact of Paraphrased
Problems on Math Problem Solving

4.1 Problem Solver

Mathematical problem solving is performed with a
solver LLMMath, defined as follows:

Q̃∗
k =

{
Q̃1

k, Q̃
2
k, . . . , Q̃

I
k

}

︸ ︷︷ ︸
Selected Paraphrased Questions

Base: Âk = LLMMath(PS , Qk)

Ours: Âk = LLMMath(P̃S , Qk; Q̃
∗
k)

As shown in Figure 4, our prompt provides the
original problem together with several semantically
equivalent paraphrased versions in a single input,
allowing the model to reason with more informa-
tion. These paraphrased versions form a selected
set Q̃∗

k for problem Qk; the set can be chosen manu-
ally via heuristic rules or automatically by an LLM-
based selector to aim maximize performance.

The standard prompt PS is used for ordinary
problem solving, whereas the extended prompt P̃S

386

Original Only Prompt ()

You are a math expert.

Solve the following math problem step-by-step.
At the end, provide your final answer in the form
\boxed{...}.

Problem: {original problem}

Answer:

(a) Prompt for original-only math problem solving.

Paraphrase Augmented Prompt (Ours) - 𝑃𝑆

You are a math expert.
The following is an original math problem along with
five paraphrased versions of the same problem.
Analyze them together and solve the original problem
step-by-step.
At the end, provide your �inal answer in the form
\boxed{...}.
If paraphrased versions help clarify the meaning, use
them.

Original problem: {original problem }

Paraphrased 1 ({type}): {paraphrased Problem }
Paraphrased 2 ({type}): {paraphrased Problem }

Answer:

(b) Prompt for math problem solving with paraphrases. Blue
text marks the paraphrase-generating instruction.

Figure 4: Prompts for math problem solving.

is employed when the paraphrased versions are
included. The model’s final output is the predicted
answer Âk for the given problem.

4.2 Experimental Analysis of Paraphrase
Effects

Experiments were conducted on the MATH-
500 (Hendrycks et al., 2021), SVAMP (Patel
et al., 2021) and AIME (Veeraboina, 2023) datasets
with the LLAMA 3.1-8B-INSTRUCT, LLAMA
3.3-70B-INSTRUCT (Grattafiori et al., 2024),
and QWEN 2.5-7B-INSTRUCT, QWEN2.5-72B-
INSTRUCT (Yang et al., 2024) models and GPT-
4O-2024-11-20 (Achiam et al., 2023). Each model
was evaluated over three runs for robustness. Para-
phrased problems were generated by GPT-4.1-
MINI (Achiam et al., 2023) and finalized through
dual verification by a human reviewer and the
same model. All answers were evaluated using Har-
ness (Gao et al., 2024) to ensure consistent and
accurate scoring. Refer to Appendix D for details.

To evaluate the impact of paraphrased versions
on LLM performance in mathematical problem
solving, we conducted four experiments. Further

experiments can be found in the Appendix E:
(1) using paraphrased versions only,
(2) varying the number of paraphrases provided,
(3) supplying the problem-specific optimal para-
phrase set, and
(4) selecting paraphrases using a trained Para-
phrase Type Selector.

4.2.1 Performance Analysis with Paraphrased
Versions Only

This experiment investigates whether LLMs can
solve problems using only paraphrased versions,
without access to the original. For each problem in
MATH-500, we generated paraphrased problems
using predefined types and solved each three times
with LLAMA 3.1-7B. We then identified the five
highest-performing paraphrase types (SBS, TW,
TR, ST, MET) based on aggregate accuracy.

Using these top types, we constructed input se-
quences containing n paraphrased versions (exclud-
ing the original) and compared their performance
to a baseline that used only the original problem.

As shown in Table 3, using only paraphrased
inputs improved accuracy by up to +14.8% for
LLAMA 3.1-7B, +2.54% for LLAMA 3.3-70B,
and +1.2% for QWEN 2.5 on MATH-500. These
results indicate that certain paraphrases align more
closely with model preferences, and that problem
surface formulation plays a critical role in mathe-
matical reasoning performance.

To analyze which paraphrase types are consis-
tently effective, we applied all 12 paraphrase types
to each problem in the MATH-500 dataset using
the LLAMA-3.1-8B-INSTRUCT model.

4.2.2 Performance Analysis with Varying
Numbers of Paraphrased Versions

Experiments were conducted under settings where
one to five paraphrased versions were added to
the original problem, in order to analyze how
the number of paraphrases affects accuracy. The
paraphrased versions were selected from the top-
performing types identified in the previous experi-
ment.

As shown in Table 3, adding paraphrases leads
to accuracy gains of up to +8.4% for LLAMA 3.1-
8B, +3.27% for LLAMA 3.3-70B, and +2.66%
for QWEN 2.5-7B on MATH-500. While perfor-
mance generally improves as more paraphrases are
added, the trend does not always hold: in some
models, adding too many paraphrases results in a
slight drop in accuracy. These results suggest that

387

SVAMP MATH-500 AIME 2024

Paraphrased
Questions (n)

LLaMA Qwen GPT-4o LLaMA Qwen GPT-4o LLaMA Qwen GPT-4o

8B 70B 7B 72B 8B 70B 7B 72B 8B 70B 7B 72B
Original Problem Only

Q only
(baseline)

73.61
± 0.73

96.17
± 0.25

95.35
± 0.15

95.81
± 0.38

89.43
± 1.00

35.40
± 1.28

67.13
± 1.87

67.27
± 0.47

77.20
± 0.69

67.07
± 1.04

2.22
± 1.92

26.67
± 3.34

11.11
± 6.94

16.67
± 6.67

11.11
± 5.09

Paraphrased Problem Only

Q̃ (n=1)
69.73
± 0.32

95.35
± 0.19

95.60
± 0.20

95.76
± 0.29

92.96
± 0.54

42.80
± 0.28

67.87
± 0.75

68.40
± 0.57

73.19
± 1.60

64.67
± 1.47

3.33
± 3.34

24.45
± 3.85

8.89
± 1.92

16.67
± 3.34

6.67
± 3.34

Q̃ (n=2)
74.17
± 0.69

96.53
± 0.19

95.66
± 0.50

96.63
± 0.33

92.70
± 0.94

43.93
± 0.19

67.80
± 1.56

67.53
± 0.34

72.47
± 1.32

64.20
± 0.28

5.55
± 6.94

25.56
± 5.09

7.78
± 5.09

21.11
± 6.94

11.11
± 1.92

Q̃ (n=3)
74.62
± 1.04

95.40
± 0.22

95.40
± 0.66

95.91
± 0.29

91.27
± 0.33

44.60
± 1.14

70.40
± 0.59

69.40
± 0.40

74.93
± 0.74

65.87
± 0.57

5.56
± 1.93

21.11
± 3.85

12.22
± 5.09

17.78
± 3.85

12.22
± 3.85

Q̃ (n=4)
74.68
± 0.94

95.61
± 0.29

95.41
± 0.13

96.02
± 0.12

91.22
± 0.07

49.80
± 0.99

69.13
± 0.25

70.67
± 0.50

73.87
± 0.90

66.00
± 0.99

4.44
± 5.09

23.33
± 3.34

7.78
± 5.09

15.55
± 6.94

7.78
± 3.85

Q̃ (n=5)
75.85
± 1.28

96.02
± 0.12

95.77
± 0.15

96.12
± 0.32

91.12
± 0.57

50.20
± 0.71

69.67
± 0.38

68.47
± 0.90

74.33
± 0.57

66.80
± 0.49

2.22
± 1.92

17.78
± 3.85

11.11
± 1.92

15.56
± 1.93

8.89
± 1.92

Original Problem + Top-N Paraphrased

Q+ Q̃ (n=1)
75.75
± 1.44

96.22
± 0.38

95.51
± 0.40

96.53
± 0.19

91.37
± 0.56

37.73
± 1.23

70.27
± 0.41

68.27
± 0.09

76.00
± 1.28

67.60
± 0.71

2.22
± 1.92

24.44
± 1.93

11.11
± 7.70

12.22
± 3.85

10.00
± 3.33

Q+ Q̃ (n=2)
79.48
± 0.75

96.22
± 0.07

95.56
± 0.90

96.48
± 0.13

89.54
± 0.64

37.33
± 2.13

69.33
± 0.90

68.80
± 1.56

76.33
± 0.19

67.60
± 0.75

4.44
± 1.93

25.56
± 5.09

10.00
± 3.33

17.78
± 6.94

10.00
± 6.67

Q+ Q̃ (n=3)
77.89
± 1.00

96.02
± 0.33

95.97
± 0.26

95.36
± 0.31

90.15
± 0.62

38.20
± 0.75

69.87
± 0.09

68.33
± 1.39

75.80
± 0.71

67.40
± 0.16

7.78
± 1.92

18.89
± 3.85

11.11
± 1.92

17.78
± 1.92

15.56
± 1.93

Q+ Q̃ (n=4)
77.69
± 1.16

95.97
± 0.31

95.66
± 0.15

96.17
± 0.43

89.38
± 1.04

43.53
± 1.43

70.40
± 0.57

69.20
± 1.50

75.60
± 0.28

67.13
± 0.25

2.22
± 1.92

21.11
± 5.09

11.11
± 1.92

16.67
± 6.67

10.00
± 3.33

Q+ Q̃ (n=5)
78.61
± 0.58

96.27
± 0.07

96.20
± 0.47

95.56
± 0.22

89.18
± 0.19

43.80
± 1.56

69.87
± 0.34

69.93
± 1.20

76.87
± 0.09

66.40
± 0.33

5.55
± 3.85

18.89
± 3.85

12.22
± 6.94

14.45
± 3.85

11.11
± 1.92

Best-per-Instance (Original Problem + Problem-Specific Best Top-N Paraphrased)

Q+ Q̃ (n=1)
75.65
± 1.25

96.88
± 0.15

96.22
± 0.19

96.84
± 0.40

91.01
± 0.08

39.20
± 0.00

71.87
± 0.77

70.20
± 1.14

75.60
± 0.28

68.00
± 0.57

3.33
± 3.34

18.89
± 1.92

13.33
± 3.34

16.67
± 3.34

6.67
± 3.34

Q+ Q̃ (n=2)
80.19
± 1.05

96.83
± 0.08

95.71
± 0.38

97.09
± 0.22

90.51
± 1.19

39.40
± 1.56

71.33
± 0.62

70.33
± 1.23

76.13
± 0.68

67.73
± 0.98

2.22
± 1.92

23.33
± 0.00

12.22
± 1.92

15.56
± 5.09

8.89
± 1.92

Q+ Q̃ (n=3)
80.35
± 1.63

96.99
± 0.51

96.38
± 0.40

96.79
± 0.22

90.45
± 0.40

41.67
± 0.68

70.47
± 0.57

68.60
± 1.42

76.40
± 1.13

67.33
± 0.41

3.33
± 3.34

24.44
± 5.09

13.34
± 5.77

15.55
± 3.85

13.33
± 3.34

Q+ Q̃ (n=4)
81.37
± 0.80

96.83
± 0.08

95.87
± 0.13

96.94
± 0.50

90.71
± 0.38

42.27
± 0.75

71.13
± 0.09

68.80
± 0.16

76.73
± 1.25

67.00
± 0.49

2.22
± 3.85

24.44
± 5.09

13.33
± 0.00

20.00
± 0.00

8.89
± 1.92

Q+ Q̃ (n=5)
81.06
± 0.83

96.53
± 0.40

96.38
± 0.26

96.22
± 0.40

89.69
± 0.52

45.13
± 0.62

70.67
± 0.19

68.60
± 0.59

77.27
± 1.00

67.13
± 0.09

6.67
± 3.34

22.22
± 3.85

15.55
± 3.85

20.00
± 3.33

7.78
± 3.85

Selector (Original Problem + Selected Top-N Paraphrased)

Q+ Q̃ (n=5)
78.97
± 1.03

96.68
± 0.26

96.02
± 0.46

96.47
± 0.55

90.76
± 0.54

43.10
± 1.56

70.47
± 0.57

69.67
± 1.84

78.11
± 1.56

68.73
± 0.73

8.34
± 2.36

25.56
± 1.54

7.78
± 3.09

15.56
± 1.54

8.89
± 1.54

Table 3: Performance across different paraphrasing conditions. Q denotes the original problem, and Q̃ represents
its paraphrased problems. The number n indicates how many paraphrased problems were included in the prompt.
We compare settings where only the original problem is used, only paraphrased problems are used, or both are
combined. The “Top-n” setting uses fixed high-performing paraphrase types, “Best-per-Instance” selects the best
combination for each problem, and “Selector” automatically predicts effective paraphrase types.

a moderate number of paraphrased versions can
enhance performance, but excessive additions may
introduce noise and lead to diminishing or even
negative returns.

4.2.3 Performance Analysis with
Problem-Specific Best Paraphrased
Versions

This experiment shows the upper bound of
paraphrase effectiveness by selecting the best-

performing paraphrases for each problem. Unlike
previous settings that use the same fixed top-n
paraphrase types across all problems, this Best-
per-Instance setting identifies which paraphrases
actually led to correct answers on a per-problem
basis, and provides those in the input along with
the original problem. If fewer than n effective para-
phrases were available for a given problem, the
remaining slots were filled using paraphrases from

388

Paraphrase
Type Algebra Counting

& Probability Geometry Intermediate
Algebra

Number
Theory Prealgebra Precalculus

Original 43.01 (±3.98) 14.04 (±1.52) 21.14 (±1.41) 13.74 (±1.56) 30.11 (±3.34) 37.40 (±2.79) 12.50 (±1.79)
MET 36.29 (±5.29) 14.91 (±1.52) 20.32 (±1.41) 15.12 (±2.63) 25.14 (±6.81) 34.56 (±1.25) 9.52 (±0.99)
TR 40.59 (±3.36) 16.66 (±8.04) 21.14 (±7.84) 16.49 (±0.00) 27.96 (±3.23) 31.71 (±4.56) 8.93 (±3.57)
TW 43.01 (±1.86) 14.91 (±8.04) 17.07 (±4.88) 16.50 (±2.70) 31.72 (±6.48) 29.68 (±8.23) 11.90 (±0.99)
SOM 42.20 (±5.84) 17.54 (±3.04) 18.70 (±5.08) 13.40 (±1.03) 28.50 (±3.23) 35.37 (±3.66) 8.93 (±0.00)
SM 40.05 (±2.46) 8.77 (±4.02) 14.63 (±0.00) 12.69 (±1.55) 26.88 (±7.44) 33.74 (±4.01) 8.93 (±1.78)
MR 19.89 (±2.83) 9.65 (±5.48) 13.01 (±3.72) 5.84 (±1.57) 16.13 (±2.79) 15.44 (±3.48) 5.95 (±2.69)
ST 40.32 (±2.91) 12.28 (±1.52) 17.88 (±1.41) 12.69 (±1.55) 29.70 (±4.04) 37.00 (±1.73) 9.52 (±2.69)
OS 35.48 (±0.81) 12.28 (±5.48) 13.82 (±2.81) 10.65 (±3.11) 19.36 (±4.14) 26.68 (±2.44) 9.52 (±2.69)
VR 38.17 (±1.68) 14.04 (±4.02) 13.82 (±3.72) 13.75 (±5.19) 24.73 (±0.82) 32.12 (±4.93) 8.93 (±0.00)
CR 33.07 (±3.52) 14.04 (±3.04) 21.14 (±2.82) 11.68 (±0.57) 26.88 (±1.87) 34.15 (±3.16) 11.90 (±0.99)
SBS 46.24 (±3.64) 23.68 (±5.27) 30.90 (±5.63) 13.74 (±1.56) 33.33 (±4.08) 36.58 (±5.33) 13.69 (±5.16)
IS 40.59 (±1.68) 5.26 (±2.63) 20.32 (±3.73) 14.43 (±2.64) 28.50 (±3.73) 30.49 (±6.14) 10.71 (±1.78)

Table 4: Accuracy by paraphrase type across subjects with LLAMA-3.1-8B-INSTRUCT. Best-performing cells are
highlighted in Blue.

the globally top-ranked list that achieved the same
score, prioritized by their overall performance.

As shown in Table 3, the Best-per-Instance set-
ting achieves the highest accuracy across most mod-
els. For instance, accuracy improves by +9.73% for
LLAMA 3.1-8B, +4.74% for LLAMA 3.3-70B,
+3.06% for QWEN 2.5-7B, and +0.07% for QWEN

2.5-72B, relative to the original-only baseline on
MATH-500. These findings confirm that selecting
problem-specific best paraphrases can substantially
improve the quality of inputs for mathematical rea-
soning tasks.

4.2.4 Analysis of Performance Improvement

As shown in Table 3, all settings using paraphrased
versions outperformed the original-only baseline.
The highest gains were achieved when, selecting
the best-fitting paraphrases per problem, highlight-
ing the importance of aligning paraphrases with the
problem’s formulation to boost LLM performance.
Further details can be found in Appendix E.1

4.2.5 Analysis of Individual Paraphrase Types

As shown in Table 4, Step-by-Step (SBS), Text
Rewriting (TW), and Text Reduction (TR) fre-
quently outperformed the original across multiple
subjects. Notably, SBS achieved substantial im-
provements in Algebra and Counting & Probabil-
ity, while TW consistently boosted performance
in Algebra and Number Theory. These results sug-
gest that paraphrase types that either (i) make the
reasoning path explicit or (ii) align the problem
with linguistic patterns familiar to the model are
particularly beneficial.

5 Multi-paraphrase problem solving
framework

The Best-per-Instance study identified the best para-
phrase set per problem in hindsight, but practical
systems must select effective paraphrase types for
new problems. To this end, we propose a Para-
phrase Type Selector Model that predicts helpful
paraphrase types given an original problem, formu-
lated as a multi-label classification task.

Building on prior results showing the benefits
of combining original and paraphrased inputs, we
also introduce a multi-paraphrase problem-solving
framework. As shown in Figure 2, the selector
guides paraphrase generation, and the original and
paraphrased problems are jointly provided to the
solver. This enables automated, problem-specific
augmentation that improves math reasoning accu-
racy.

5.1 Construction of the Paraphrase Dataset

1. Starting from the 6,500 training problems in
MATH, we used GPT-4.1-MINI to generate I
paraphrased versions Q̃1

k, Q̃
2
k, . . . , Q̃

I
k for each

original problem Qk by applying the predefined
paraphrase types. In this study I = 12; each
paraphrase was produced with a paraphrase
type-specific prompt.

2. For every paraphrased problem Q̃i
k, the mathe-

matical solver LLMMath was invoked to obtain
a predicted answer Âi

k.
3. This procedure was repeated N times for each

problem, yielding per-trial predictions Âi,n
k . We

set N = 3.
4. For each type i, we counted how many of the

N trials were correct and denoted that count by

389

Figure 5: Construction of the paraphrase dataset. For each original problem Qk in the dataset, we generate
I paraphrased variants Q̃i

k using prompts specific to each paraphrasing type via LLMP . These paraphrased
problems are then solved by LLMMATH to obtain predicted answers Âi,j

k , where i indexes the paraphrasing type and
j ∈ {1, . . . , N} denotes repeated trials. The number of correct predictions per type is counted to compute a score
Ci

k, which is used to select the top-N effective paraphrasing types. These are then converted into multi-class labels
(1 for selected, 0 otherwise), yielding training instances that map each original problem Qk to a set of effective
paraphrase types.

Ci
k. For example, if technique 1 produced two

correct answers out of three trials, then C1
k = 2.

5. For every problem Qk, the types were ranked
in descending order of Ci

k to form the priority
list Csorted

k .
6. The top n technique indices were extracted as

the effective paraphrasing set for that problem
and used as positive multi-class labels to train
the paraphrase selection model.

The overall data-generation pipeline is illustrated
in Figure 5.

5.2 Paraphrase Type Selector

The paraphrase selection task is formulated as a
multi-label classification problem: given an origi-
nal problem, the model predicts which of the prede-
fined paraphrase types are likely to be beneficial for
solving it. We use MODERNBERT-BASE (Warner
et al., 2024) as the selection model. The input is
the original problem text, and the output is a 12-
dimensional probability vector, one dimension per
types. For each problem, types that actually im-
proved performance are labeled 1, and the rest are
labeled 0.

Training details are as follows: learning rate 2×
10−5, batch size 16, maximum input length 512
tokens, and 50 training epochs. Early stopping is
triggered if no improvement is observed on the
validation set for three consecutive evaluations.

5.3 Problem Solver
Mathematical problem solving is carried out with
the solver LLMMath, defined as follows:

Âk = LLMMath(P̃S , Qk; Q̃
∗,selector
k)

where, Q̃∗,selector
k denotes the set of paraphrased

versions automatically assembled from the types
predicted by the selection model.

5.4 Performance Analysis with the
Paraphrase Selection Model

This experiment evaluates the effectiveness of our
Paraphrase Type Selector, which aims to automati-
cally select the most beneficial paraphrase types for
each problem. For each original question, the selec-
tor predicts the top-n paraphrase types expected to
improve accuracy. The corresponding paraphrased
versions are then generated using GPT-4.1-MINI

and appended to the original problem in the prompt.
We fix n=5, as it consistently produced strong re-
sults across datasets.

As shown in Table 3, the selector consistently
outperforms the baseline across all datasets and
models. For instance, on MATH-500, it improves
LLaMA 3.1-8B from 35.40% to 43.10%, and Qwen
2.5-7B from 67.27% to 69.67%. Similar gains are
observed on SVAMP and AIME 2024. Although
the selector does not surpass the Best-per-Instance
upper bound, its performance is competitive with

390

the average top-n strategy and demonstrates strong
generalization to unseen problems.

These results show that learning problem-
specific paraphrase preferences is feasible, and that
automated selection is an effective way to boost
LLM performance in math reasoning.

6 Discussion

We organize our discussion around four key obser-
vations from the experiments:
Effectiveness of Paraphrasing Over Baseline

Across all datasets and models, providing para-
phrased versions—either alone or in combination
with the original question—consistently outper-
formed the baseline using only the original prob-
lem. Notably, even when the original question
was excluded, LLMs could solve many items cor-
rectly, indicating that certain reformulations bet-
ter align with model preferences. Furthermore, the
Best-per-Instance condition, which selects the best
paraphrases per problem, showed substantial gains
over the baseline, confirming that well-chosen para-
phrases can significantly enhance performance.
Impact of the Number of Paraphrased Versions
Increasing the number of paraphrased problems
generally improved performance, with the n=5 set-
ting achieving the highest accuracy in most cases.
However, the marginal benefits diminished with
larger n, suggesting that while diverse formula-
tions are helpful, too many inputs may introduce
redundancy or noise.
Selector Performance and Automation Poten-

tial Our proposed Paraphrase Type Selector model,
which predicts effective paraphrase types per prob-
lem, achieved meaningful improvements over the
baseline. On MATH-500, the selector reached near
Best-per-Instance performance for some models
(e.g., QWEN2.5-7B), demonstrating the feasibility
of automated paraphrase selection. Importantly, our
contribution is not the selector’s performance itself,
but the finding that some paraphrase combinations
are consistently more effective than others, and that
such combinations can be automatically identified
even with a simple classifier.
Dependency on Problem Difficulty and Model
Capability Paraphrasing is most effective for
moderately difficult problems. Easy problems are
solved regardless of phrasing, while hard ones re-
main unsolved even with paraphrases. Stronger
models benefit less, as they often solve the orig-
inal directly, but paraphrasing still boosts average

accuracy and helps recover otherwise missed solu-
tions.
Limited Generalization to AIME While the selec-
tor performed well on MATH-500 and SVAMP,
its performance on AIME 2024 was relatively
weaker. This may reflect differences in problem
style or structure, suggesting that paraphrase pref-
erences learned from one dataset may not directly
carry over to others.

7 Conclusion

Our study examines the impact of problem para-
phrasing on LLM performance using the MATH-
500 dataset under four settings: baseline, paral-
lel paraphrases, Best-per-Instance, and selector.
We propose a Paraphrase Type Selector that au-
tomatically predicts beneficial paraphrase types for
each problem. This selector consistently improves
performance over the baseline across models and
datasets. For example, on MATH-500 with LLaMA
3.1-8B, combining the original with the best five
paraphrased versions improves accuracy by +8.4%,
and the selector achieves an additional +1.33%
gain.

Acknowledgements

This work was supported by research fund
of Chungnam National University, Institute
of Information & communications Technology
Planning & Evaluation (IITP) grant funded
by the Korea government(MSIT) (No.RS-2022-
00155857, Artificial Intelligence Convergence In-
novation Human Resources Development (Chung-
nam National University)) and the National Re-
search Foundation of Korea(NRF) grant funded
by the Korea government(MSIT)(No. RS-2025-
0055621731482092640101).

8 Limitaion

The Paraphrase Type Selector was trained solely
on the MATH dataset, which may limit its ability
to generalize to datasets with different styles or
distributions.

In addition, our evaluation relied on the Eval-
Harness framework, which measures only final an-
swer correctness, without accounting for the quality
of intermediate reasoning or partial solutions.

391

References
Josh Achiam et al. 2023. Gpt-4 technical report. arXiv

preprint arXiv:2303.08774.

Vansh Agrawal, Pratham Singla, Amitoj Singh Miglani,
Shivank Garg, and Ayush Mangal. 2024. Give me a
hint: Can llms take a hint to solve math problems?
arXiv preprint arXiv:2410.05915.

Lukas Baumanns and Benjamin Rott. 2022. The process
of problem posing: Development of a descriptive
phase model of problem posing. Educational Studies
in Mathematics, 110(2):251–269.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jinfa Cai et al. 2015. Problem-posing research in math-
ematics education: Some answered and unanswered
questions. Mathematical problem posing: From re-
search to effective practice, pages 3–34.

Constantinos Christou et al. 2005. An empirical taxon-
omy of problem posing processes. Zdm, 37:149–158.

Yihe Deng, Weitong Zhang, Zixiang Chen, and Quan-
quan Gu. 2023. Rephrase and respond: Let large
language models ask better questions for themselves.
arXiv preprint arXiv:2311.04205.

Jinlan Fu, Shenzhen Huangfu, Hang Yan, See-Kiong
Ng, and Xipeng Qiu. 2024a. Hint-before-solving
prompting: Guiding llms to effectively utilize en-
coded knowledge. arXiv preprint arXiv:2402.14310.

Junbo Fu et al. 2024b. Learning to paraphrase for align-
ment with llm preference. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 2394–2407.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. 2024.
The language model evaluation harness.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. 2023. Retrieval-augmented
generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2:1.

Aaron Grattafiori et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin,
Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and
Jie Zhou. 2025. Deeprag: Thinking to retrieval step
by step for large language models. arXiv preprint
arXiv:2502.01142.

Dan Hendrycks et al. 2021. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Pengfei Hong, Navonil Majumder, Deepanway Ghosal,
Somak Aditya, Rada Mihalcea, and Soujanya Poria.
2024. Evaluating llms’ mathematical and coding
competency through ontology-guided interventions.
arXiv preprint arXiv:2401.09395.

Shifeng Huang, Jiawei Wang, Jiao Xu, Da Cao, and
Ming Yang. 2021. Recall and learn: A memory-
augmented solver for math word problems. arXiv
preprint arXiv:2109.13112.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398.

Huiyuan Lai, Xiao Zhang, and Malvina Nissim. 2025.
Multidimensional consistency improves reasoning in
language models. arXiv preprint arXiv:2503.02670.

Zachary Levonian, Chenglu Li, Wangda Zhu, Anoushka
Gade, Owen Henkel, Millie-Ellen Postle, and Wanli
Xing. 2023. Retrieval-augmented generation to im-
prove math question-answering: Trade-offs between
groundedness and human preference. arXiv preprint
arXiv:2310.03184.

Honglin Lin et al. 2025. Metaladder: Ascending mathe-
matical solution quality via analogical-problem rea-
soning transfer. arXiv preprint arXiv:2503.14891.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Chengwei Qin et al. 2024. Relevant or random: Can
llms truly perform analogical reasoning? arXiv
preprint arXiv:2404.12728.

Florence Mihaela Singer et al. 2015. Mathematical
problem posing. New York: Springer. doi, 10:978–1.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Hemish Veeraboina. 2023. Aime problem set 1983-
2024.

Jan Philip Wahle, Bela Gipp, and Terry Ruas. 2023.
Paraphrase types for generation and detection. arXiv
preprint arXiv:2310.14863.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

392

https://doi.org/10.5281/zenodo.12608602
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Vikas Yadav, Zheng Tang, and Vijay Srinivasan. 2024.
Paraphrase and aggregate with large language models
for minimizing intent classification errors. arXiv
preprint arXiv:2406.17163.

An Yang et al. 2024. Qwen2. 5 technical report. arXiv
preprint arXiv:2412.15115.

Michihiro Yasunaga et al. 2023. Large language
models as analogical reasoners. arXiv preprint
arXiv:2310.01714.

Dharunish Yugeswardeenoo, Kevin Zhu, and Sean
O’Brien. 2024. Question-analysis prompting im-
proves llm performance in reasoning tasks. arXiv
preprint arXiv:2407.03624.

Yu Zhang, Shujun Peng, Nengwu Wu, Xinhan Lin, Yang
Hu, and Jie Tang. 2025. Rm-pot: Reformulating
mathematical problems and solving via program of
thoughts. arXiv preprint arXiv:2502.12589.

Yue Zhou et al. 2024. Paraphrase and solve: Exploring
and exploiting the impact of surface form on math-
ematical reasoning in large language models. arXiv
preprint arXiv:2404.11500.

A Experiments Setup

In this study, experiments were conducted on
a high-performance computing system equipped
with a 104-core CPU, 4 NVIDIA V100 GPUs
(32GB each), 256GB of RAM, and 33TB of HDD
storage. This infrastructure provided the necessary
computational resources for executing model infer-
ence, evaluation, and data processing. Additionally,
for models such as GPT-4o, we used the Open-
Router API to conduct inference.

B Prompts used for Paraphrasing

Table 5 summarizes the twelve paraphrasing types
with their corresponding prompt descriptions, clar-
ifying how each paraphrase was operationalized in
our study.

C Examples of Paraphrasing Types

Table 6 presents examples of the twelve paraphras-
ing types, each applied to the same math problem
to demonstrate how the original is transformed.

D Verification of Paraphrased Problems

To ensure the quality and validity of the para-
phrased problems, we conducted a two-stage ver-
ification process involving both human reviewers
and GPT-4.1-Mini.

A total of 200 paraphrased problems covering all
twelve paraphrase types were independently evalu-
ated. For each problem, both annotators provided:

• Binary judgment on logical consistency
(Yes/No)

• Binary judgment on technique match
(Yes/No)

• A brief justification

In the initial evaluation, the agreement rate be-
tween the two annotators was approximately 89%.
After refining the evaluation prompt to address
common sources of error, the same set of 200 sam-
ples was re-evaluated, producing:

• 94% agreement on logical consistency
• 89% agreement on technique match
• 92% overall agreement

For cases where GPT-4.1-Mini’s justifications
were insufficient or ambiguous, the final judgment
was always made by the human reviewer. If a para-
phrase failed either criterion, up to three regenera-
tion attempts were allowed. When still unsuitable,
the paraphrase was manually rewritten by a human
annotator with a Master’s degree or higher in Com-
puter Science.

E Additional Experiments

E.1 Random vs. Structured Paraphrase
Selection

We investigated whether structured paraphrase
sets, defined by our 12 paraphrase types, offer
advantages compared to randomly selected para-
phrases. The following settings were evaluated on
the MATH-500 dataset:

• Q + Random 5: Original problem plus 5 ran-
domly sampled paraphrases.

• Q + Avg Top 5: Original problem plus the 5
types with the highest global average perfor-
mance.

393

https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663

Paraphrase Type Prompt Description
Mathematical Expression
Transformation Modify mathematical expressions while preserving their meaning.

Text Reduction Remove unnecessary details while retaining key information.
Text Rewriting Rephrase the problem using different linguistic styles (formal vs. informal).
Sentence Order Modification Change the order of the given statements while keeping the problem intact.
Sentence Merging Combine multiple sentences into a single, coherent statement.
Metaphorical Representation Use analogies or metaphors to describe the problem more intuitively.
Syntactic Transformation Change the sentence structure while maintaining the original meaning.
Object Substitution Do not change any numerical values, expressions, or mathematical structure. Replace objects

or subjects (e.g., people, items, context) with equivalent ones.
Variable Renaming Change variable names without altering the logic of the problem.
Contextual Rewriting Change the context or background setting of the problem while keeping its logic intact.
Step-by-Step Breakdown Decompose a complex problem into multiple smaller steps.
Information Segmentation Split a single sentence into multiple statements for clarity.

Table 5: Prompts for the 12 paraphrase types used in our study.

Paraphrase Type Example

Original How many ounces of pure water must be added to 30 ounces of a $30%$ solution of
acid to yield a solution that is $20%$ acid?

Mathematical Expression
Transformation

How many ounces of pure water need to be mixed with 30 ounces of a solution that
contains 30 acid in order to produce a solution that has an acid concentration of 20?

Text Reduction How many ounces of pure water must be added to 30 ounces of a $30%$ acid solution
to make it $20%$ acid?

Text Rewriting

Formal: Determine the quantity of pure water, measured in ounces, that needs to be
incorporated into a 30 ounce solution containing $30%$ acid in order to produce a
resultant solution that contains $20%$ acid.
Informal: How much pure water do you need to mix with 30 ounces of a $30%$ acid
solution to make it a $20%$ acid solution?

Sentence Order Modification To yield a solution that is $20%$ acid, how many ounces of pure water must be added to
30 ounces of a $30%$ solution of acid?

Sentence Merging How many ounces of pure water must be added to 30 ounces of a $30%$ acid solution
in order to create a new solution that has an acid concentration of $20%$?

Metaphorical Representation

Imagine you have a large pot filled with a thick soup that is 30% spice. The pot contains
30 ounces of this spicy soup. You want to create a milder version of the soup that only
has 20% spice. To achieve this, you need to add pure water to the pot. How many ounces
of pure water should you pour in to dilute the spicy soup down to the desired flavor?

Syntactic Transformation
What is the amount of pure water, in ounces, that needs to be added to 30 ounces
of a $30%$ acid solution in order to create a solution that has an acid concentration of
$20%$?

Object Substitution How many ounces of pure juice must be added to 30 ounces of a $30%$ mixture of
syrup to yield a mixture that is $20%$ syrup?

Variable Renaming How many ounces of pure liquid must be added to 30 ounces of a $30%$ mixture of
acid to yield a mixture that is $20%$ acid?

Contextual Rewriting
In a laboratory, a chemist has 30 ounces of a $30%$ saline solution. To dilute this
solution to a concentration of $20%$ saline, how many ounces of pure water must be
added?

Step-by-Step Breakdown
1. Calculate how much acid is in 30 ounces at 30%.
2. Set up the equation with unknown x added.
3. Solve for x.

Information Segmentation We have 30 ounces of solution. It is 30% acid. We want 20% acid. How much water
must we add?

Table 6: Examples of 12 paraphrase types applied to the same math problem.

Setting LLaMA-8B LLaMA-70B Qwen-7B Qwen-72B GPT-4o

Q + Random 5 43.80 (±2.28) 69.47 (±1.16) 67.67 (±1.34) 75.33 (±0.38) 66.80 (±0.17)
Q + Avg Top 5 43.80 (±1.56) 69.87 (±0.34) 69.93 (±1.20) 76.87 (±0.09) 66.40 (±0.33)
Q + Best Top 5 45.13 (±0.62) 70.67 (±0.19) 68.60 (±0.59) 77.27 (±1.00) 67.13 (±0.09)

Table 7: Comparison of paraphrase selection strategies on MATH-500. Results are accuracy (%) with standard
deviation. The best value for each model is highlighted in Blue.

394

Paraphrasing Type Q + 1 Q + 2 Q + 3 Q + 4 Q + 5

Contextual Rewriting 38.20 (±1.91) 37.20 (±1.22) 37.53 (±0.83) 37.00 (±2.31) 39.27 (±2.10)
Information Segmentation 35.53 (±1.89) 38.80 (±0.20) 37.67 (±1.85) 39.07 (±2.66) 38.60 (±1.04)
Mathematical Expression 40.20 (±1.56) 38.27 (±1.81) 38.93 (±1.92) 39.47 (±1.81) 37.53 (±1.01)
Metaphorical Representation 35.40 (±1.31) 36.33 (±0.76) 36.80 (±1.06) 37.00 (±0.20) 35.33 (±1.40)
Object Substitution 37.40 (±1.64) 37.00 (±1.31) 36.13 (±2.66) 36.13 (±2.10) 36.00 (±0.53)
Sentence Merging 38.00 (±0.80) 39.27 (±1.68) 39.47 (±0.90) 39.73 (±0.61) 39.80 (±0.53)
Sentence Order Modification 37.40 (±1.44) 39.27 (±1.86) 40.53 (±1.62) 38.80 (±2.50) 38.73 (±1.75)
Step-by-Step Breakdown 33.67 (±0.83) 37.60 (±0.35) 38.40 (±0.80) 36.00 (±1.11) 37.00 (±1.11)
Syntactic Transformation 38.80 (±0.80) 38.33 (±1.03) 38.93 (±2.04) 37.80 (±1.25) 38.87 (±0.81)
Text Reduction 39.13 (±0.64) 38.47 (±1.45) 38.47 (±1.17) 39.33 (±0.31) 39.27 (±0.31)
Text Rewriting 38.73 (±1.29) 39.00 (±2.26) 39.27 (±1.33) 40.33 (±1.21) 39.60 (±1.20)
Variable Renaming 36.27 (±2.42) 37.67 (±0.76) 36.40 (±0.53) 37.40 (±1.11) 36.73 (±1.17)

Table 8: Performance (Mean ± Std, %) of different paraphrasing types when incrementally adding 1–5 paraphrases
of the same type. The best result per row is highlighted in blue.

• Q + Best Top 5: Original problem plus the 5
most effective types selected per problem.

Table 7 shows the results. Overall, structured
paraphrase sets tend to outperform random com-
binations, and the Best Top 5 setting provides the
strongest upper bound across models.

E.2 Controlled Experiment on Paraphrase
Quantity

To disentangle the effects of paraphrase quantity
and type diversity, we conducted a controlled exper-
iment in which multiple paraphrases were added
from the same paraphrasing technique. The exper-
iment was performed on the MATH-500 dataset
using the LLaMA-3.1-8B-Instruct model, and each
configuration was executed three times.

As shown in Table 8, adding paraphrases from
the same technique does not guarantee monotoni-
cally increasing gains, and peak performance tends
to occur around Q+2–Q+4 depending on the type.
For instance, Text Rewriting achieves its best per-
formance when four paraphrases are added. Text
Reduction exhibits a similar upward trend followed
by a slight decline. Sentence Order Modification
reaches its peak when three paraphrases are added,
after which accuracy decreases. Mathematical Ex-
pression shows its best performance with a small
number of additions (40.2 at Q+1), with diminish-
ing returns as more are introduced. Object Substi-
tution also saturates relatively early. Overall, these
results suggest that, rather than simply increasing
the number of paraphrases from a single technique,
it is more effective to carefully select and combine
high-impact types.

395

