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Abstract

Visually rich documents (VRDs) challenge
retrieval-augmented generation (RAG) with
layout-dependent semantics, brittle OCR, and
evidence spread across complex figures and
structured tables. This survey examines how
Multimodal Large Language Models (MLLMs)
are being used to make VRD retrieval practical
for RAG. We organize the literature into three
roles: Modality-Unifying Captioners, Multi-
modal Embedders, and End-to-End Represen-
ters. We compare these roles along retrieval
granularity, information fidelity, latency and in-
dex size, and compatibility with reranking and
grounding. We also outline key trade-offs and
offer some practical guidance on when to favor
each role. Finally, we identify promising di-
rections for future research, including adaptive
retrieval units, model size reduction, and the
development of evaluation methods.

1 Introduction

Visually rich documents (VRDs), such as PDFs,
scanned pages, slide decks, reports, forms, and in-
fographics, encode meaning through the interplay
of text, layout, figures, and graphics. As retrieval-
augmented generation (RAG) (Lewis et al., 2020)
becomes a default pattern for grounding large lan-
guage models (LLMs) (Guu et al., 2020; Borgeaud
et al., 2022; Izacard et al., 2023; Nakano et al.,
2022), many real-world deployments are moving
beyond plain text to these document types (Ma
et al., 2024; Faysse et al., 2025; Yu et al., 2025;
Suri et al., 2025; Tanaka et al., 2025). This shift
strains classical text-only RAG pipelines, motivat-
ing the broader development of multimodal RAG
(MM-RAG) systems designed to retrieve and rea-
son over varied data types, including images and
tables (Chen et al., 2022; Yasunaga et al., 2023).
However, VRDs represent a uniquely difficult
case for MM-RAG. Unlike retrieving standalone
images or text, VRD retrieval must contend with
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meaning derived from the fusion of layout, embed-
ded text, and graphics. Consequently, traditional
preprocessing steps like optical character recogni-
tion (OCR) and layout parsing remain brittle and
lossy, fine-grained visual cues vanish in textual
proxies, and evidence may span multiple pages or
views. Recent surveys in document understanding
(Ding et al., 2025) echo this shift, underscoring
both the opportunity and difficulty of learning over
text—layout—vision jointly.

At the same time, a new generation of methods
argues for seeing pages directly. Document Screen-
shot Embedding (DSE) (Ma et al., 2024) treats
a page screenshot as the unit of indexing, avoid-
ing preprocessing choices that introduce error and
latency. Its premise is pragmatic: keep all informa-
tion available at retrieval time. Likewise, ColPali
(Faysse et al., 2025) fuses Vision—Language Mod-
els (VLMs) with late-interaction matching, and re-
sults show that learning directly over page images
can simplify pipelines and improve effectiveness.
Beyond retrieval alone, VisSRAG (Yu et al., 2025)
integrates vision-based retrieval with generation,
adopting the page-as-image abstraction end-to-end
to mitigate conversion loss during both retrieval
and answer synthesis.

VRD-centric evaluation has also matured. Be-
yond classic DocVQA (Mathew et al., 2021), In-
fographicVQA (Mathew et al., 2022), and Slide-
VQA (Tanaka et al., 2023), newer resources now
increasingly stress chart reasoning and multi-slide
evidence aggregation reflecting practical needs like
finding a single number inside a plot or tracing an
argument across a deck (Tamber et al., 2025; Yang
et al., 2025; Liu et al., 2025; Chen et al., 2025b;
Peng et al., 2025). These datasets collectively high-
light why retrieval must respect both layout and
visual semantics, not only text.

Scope and goal This survey focuses specifically
on visually rich document retrieval for RAG. We
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analyze how Multimodal Large Language Models
(MLLMSs) are used to index and retrieve pages,
page regions, tables, figures, and slide content for
RAG over documents. Our goal is to distill design
patterns, compare empirical trends, and surface
trade-offs that matter for building reliable, cost-
aware systems.

Contributions
contributions:

This survey makes the following

1. Role-based taxonomy of VRD-RAG. We
organize how MLLMs enter the pipeline into
three roles tailored to documents.

Comparative analysis of key trade-offs. We
contrast these roles in terms of retrieval unit,
robustness to OCR and layout errors, latency
and indexing cost, and compatibility with
reranking and grounding, summarizing evi-
dence from recent VRD-focused work.

Practical takeaways and open challenges.
We discuss when to favor caption-first vs.
image-first retrieval, how to balance page-
level recall with element-level precision, how
to budget compute and storage for multimodal
indices, and where evaluation lags behind
given the current benchmarks.

Organization §2 reviews background on RAG,
multimodal retrieval, and MLLMs. §3 develops the
three-role framework and contrasts representative
approaches. §4 examines trade-offs and open chal-
lenges. §5 concludes with takeaways and future
directions.

2 Related Work

2.1 Retrieval-Augmented Generation

RAG combines a retriever and a generator to bridge
retrieval-based and generative models. This hybrid
approach dynamically retrieves documents to con-
dition generation, enhancing factual accuracy and
access to knowledge beyond training data (Shuster
et al., 2021; Gao et al., 2024; Lewis et al., 2020;
Asai et al., 2024; Shi et al., 2024; Izacard et al.,
2023; Borgeaud et al., 2022; Li et al., 2024). Re-
cent research expanded RAG to open-domain QA
(Guu et al., 2020; Mao et al., 2021; Siriwardhana
et al., 2023), dialogue systems (Thulke et al., 2021;
Komeili et al., 2022; Li et al., 2022b), and mul-
timodal tasks (Chen et al., 2022; Yasunaga et al.,
2023; Hu et al., 2023; Luo et al., 2024; Ren et al.,
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2025; Jeong et al., 2025), highlighting its poten-
tial for integrating diverse knowledge into NLP
pipelines.

2.2 Multimodal Retrieval

Recent studies have demonstrated that multimodal
retrieval and RAG significantly enhance LLMs by
integrating diverse data modalities, such as text,
images, and audio. The seminal work of MuRAG
(Chen et al., 2022) inaugurated the era of end-to-
end multimodal retrieval-augmented transformers,
a pioneering innovation that has since been shown
to enhance performance in a range of tasks, includ-
ing question answering, by leveraging external mul-
timodal memory. In a similar manner, RA-CM3
(Yasunaga et al., 2023) was the first to demonstrate
the capabilities of joint retrieval and text and image
generation, achieving superior performance com-
pared to models such as DALL-E (Ramesh et al.,
2021), while being more efficient. Wei et al. (2024)
proposed UnilR, a universal multimodal retrieval
model designed to handle a wide range of tasks.
Subsequent advancements include GENIUS (Kim
et al., 2025), a universal generative framework for
multimodal search, and UMaT (Bi and Xu, 2025),
which unifies video and audio data via textual rep-
resentations for long-form question-answering. A
comprehensive survey by Zhao et al. (2023) fur-
ther systematizes these approaches, highlighting
improvements in factuality, robustness, and cross-
modal reasoning. Collectively, these works em-
phasize the transformative potential of multimodal
RAG in scaling LLM capabilities across domains.

2.3 Multimodal Large Language Models

MLLMs have emerged as a transformative advance-
ment in the field of artificial intelligence, extending
the capabilities of LLMs by integrating multiple
data modalities, such as text, images, audio, and
videos. LLaVA (Liu et al., 2023, 2024a) has been
at the forefront of visual instruction tuning, achiev-
ing this through the alignment of a vision encoder
with a language model via a cross-modal connec-
tor. Subsequent developments like the Qwen-VL
Series (Bai et al., 2023; Wang et al., 2024; Bai
et al., 2025) and the InternVL Series (Chen et al.,
2024c,b, 2025d; Zhu et al., 2025; Wang et al., 2025)
have demonstrated significant progress in multi-
modal understanding and reasoning, including spe-
cialized alignment techniques for complex domains
like mathematical reasoning (Zhuang et al., 2025).



response

T synthesize answers

retrieved
tables

retrieved
images

retrieved
texts

I retrieve
=
Vector DB
T embed
I— . Embeddings j
Processed Textual
Chunks Summaries
I caption

chunk

]
l

I preprocess

2P P por

(a) Modality-Unifying Captioners

response

@ Generator

T synthesize answers

retrieved retrieved retrieved
texts images tables

1 1 I

l retrieve

=2
Vector DB

index
#MLLM as Embedder

] -+ 0000 --- 0000 IMMIRER]
LLM t 1
t
) Projection
el | MM-Encoder

| preprocess

PP pppe

(b) Multimodal Embedders

response

ﬂ(%ﬁ Generator

synthesize answers

retrieved
pages

‘ retrieve

=l
Vector DB
index

# | End-to-End Representer

000N --- 0000 --- 00NN TMMIRER]
1 1

LLM

)

Projection

l MM-Encoder
1 end-to-end

A A A A G

t t 1t ¢t t 1 1

| split as images

2P P ppF

(c) End-to-End Representers

Figure 1: Overview of how MLLMs enter VRD retrieval for RAG across three roles. Left: Modality-Unifying
Captioners (§3.1); Middle: Multimodal Embedders (§3.2); Right: End-to-End Representers (§3.3). Each panel
sketches the pipeline from document intake to retrieval and answer synthesis, highlighting typical retrieval units and

index types.

2.4 Related Surveys

A growing body of surveys maps the RAG land-
scape from text-only pipelines to fully multimodal
systems. Early overviews on RAG (Gao et al.,
2024; Fan et al., 2024a) consolidate architectures,
training strategies, and evaluation, motivating re-
trieval as a remedy for hallucinations and stale
knowledge. Xu et al. (2025b) survey the evolu-
tion of model architectures in information retrieval
(IR). For multimodality, Zhao et al. (2023) provide
one of the first broad treatments across images, ta-
bles, and audio. More recent efforts expand the
scope and depth: Abootorabi et al. (2025) orga-
nize the full multimodal RAG pipeline together
with datasets and training strategies; Mei et al.
(2025) synthesize definitions and components with
an emphasis on cross-modal alignment; Zheng et al.
(2025) bridge RAG with visual understanding and
generation and discuss embodied settings; and Gao
et al. (2025) review multimodal RAG approaches
for document understanding and compile a col-
lection of multimodal RAG datasets. Addition-
ally, Ding et al. (2025) provide a comprehensive
overview of deep learning—based VRD. Compared
with these works, our survey narrows the focus
to visually rich documents and contributes a role-
based taxonomy for how MLLMs enter the pipeline
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while foregrounding practical trade-offs specific to
document-centric RAG.

3 Three Roles of MLLMs in VRD RAG

We introduce the Emergent Large-Scale Paradigm
of multimodal RAG: the systematic use of MLLMs
to move beyond text-only pipelines by treating page
images, layout, and visual structure as first-class
retrieval signals. Rather than a single recipe, this
paradigm appears in practice through three com-
plementary roles that MLLMs can play in VRD
pipelines: Modality-Unifying Captioners, which
translate non-text elements into textual surrogates
for conventional indexing; Multimodal Embedders,
which map heterogeneous inputs into a shared rep-
resentation space for cross-modal search; and End-
to-End Representers, which encode whole pages
directly without explicit OCR or layout parsing.
Viewing the literature through these roles provides
a concrete basis for analyzing retrieval granularity,
information fidelity, and system cost in §4.
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As sketched in Figure 1 (left), this role converts
non-textual elements into textual surrogates for con-
ventional indexing and retrieval. In the Modality-
Unifying Captioner role, systems translate non-

MLLMs as Modality-Unifying Captioners



textual inputs into textual surrogates so that re-
trieval and generation can proceed in the fext modal-
ity. For VRDs, this typically means (i) OCR- and
layout-aware textualization of pages and regions,
and (ii) higher-level natural-language descriptions
that summarize figures, tables, and Ul screenshots.
The resulting text is embedded with standard text
encoders and indexed alongside native document
text, enabling drop-in multimodal support for exist-
ing text-only RAG stacks.

From captioning to document textualization
Early captioners established language as a univer-
sal interface for vision. Vinyals et al. (2015) and
Xu et al. (2015) demonstrated global and attention-
grounded image descriptions; Johnson et al. (2016)
introduced region-level captions, inspiring fine-
grained retrieval in VRDs, where figure panels or
table regions should be independently retrievable.
OCR-aware captioning such as TextCaps (Sidorov
et al., 2020) explicitly reads in-image text, crucial
for charts and slides where on-image text encodes
semantics. In VRD pipelines, LayoutLM (Xu et al.,
2020, 2021b; Huang et al., 2022) unified OCR to-
kens with 2D coordinates for forms and invoices,
while the DocVQA (Mathew et al., 2021) bench-
mark standardized OCR-first evaluation. Beyond
OCR, Donut (Kim et al., 2022) mapped document
images directly to target text to reduce error prop-
agation, and Pix2Struct (Lee et al., 2023) turned
Ul/web screenshots into simplified HTML, mak-
ing both approaches practical captioners that emit
structured proxies well-suited for text indexing.

Captions as textual proxies The same text proxy
pattern recurs across modalities and offers lessons
for VRDs. In video and audio, Miech et al. (2019)
leveraged narration transcripts for supervision; Xu
et al. (2021a) aligned video with text via con-
trastive pretraining; Lei et al. (2018) operational-
ized subtitle-centric QA with temporal localization.
Error cascades in speech-to-text QA were docu-
mented by Spoken SQuAD (Li et al., 2018), un-
derscoring the brittleness of ASR-first pipelines.
For environmental audio, AudioCaps (Kim et al.,
2019) and Clotho (Drossos et al., 2019) showed
that textual captions are effective surrogates for
downstream retrieval and clustering. For structured
vision, Johnson et al. (2015) treated a scene graph
as a structured caption to drive semantic retrieval.
In clinical imaging, R2Gen (Chen et al., 2020) cast
images into long textual reports, indexable as evi-
dence in text-first RAG.
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Practical Deployments Production systems gen-
erally follow a consistent approach to captioning.
They first introduce an upstream captioning layer
that generates page or region summaries, verbalizes
tables, and produces figure descriptions. After this
conversion stage, a mature text retriever and reader
are applied to the resulting text. Practical tutorials
by LangChain Team (2023) and Surla et al. (2024)
describe this convert-first-then-index workflow for
slide and PDF question answering. Comparable
industrial deployments and discussions of poten-
tial limitations are provided by Riedler and Langer
(2024). Evidence from these studies suggests that
using stronger captioners consistently improves re-
call and answer quality, even when the retrieval
model remains unchanged.

Video-RAG as a mirror for VRDs The caption-
ing approach can be extended to long videos by
treating time-aligned text as the primary index.
Recent systems refine this concept by explicitly
captioning long videos through the extraction of
automatic speech recognition (ASR), optical char-
acter recognition (OCR), and object detection out-
puts, which are converted into textual fragments
used as retrievable evidence. Video-RAG (Luo
et al., 2024) represents one such example, where
ASR, OCR, and detection results are transformed
into retrievable text aligned with sampled video
frames. SceneRAG (Zeng et al., 2025) incorpo-
rates ASR transcripts with timestamps and scene
segmentation, together with a scene-level knowl-
edge graph to enable multi-hop retrieval. VideoA-
gent (Fan et al., 2024b) further unifies these modal-
ities into a memory structure that combines two-
second subtitle segments with tables describing ob-
ject states. Subsequent research, including works
by Ren et al. (2025) and Jeong et al. (2025), ex-
tends these ideas to very long videos by advocat-
ing dual-channel architectures that preserve both
textual proxies and visual context. This approach
mirrors the best practices established in VRD tasks,
where captions are paired with region crops to im-
prove reranking and grounding. Resources devoted
to video chaptering, such as Chapter-Llama (Ven-
tura et al., 2025) and the VidChapters-7M dataset
(Yang et al., 2023), illustrate how ASR transcripts
combined with visual features can yield robust
segment-level indices. These insights are directly
applicable to VRD pipelines, where similar meth-
ods can strengthen section- or figure-level retrieval.



Conversion to a dominant modality Outside
text, proxy conversion is a common way to reuse
strong tooling. In 3D perception, MV3D (Chen
etal., 2017), PIXOR (Yang et al., 2018), and Point-
Pillars (Lang et al., 2019) project LiDAR point
clouds to BEV or pseudo-images to leverage 2D
detectors and infra. While their target modality is
vision, the strategy is analogous to VRD captioners:
convert heterogeneous inputs into the most mature
stack. For enterprise VRDs, the most mature stack
is text retrieval, hence captioning and structural
textualization is the natural endpoint.

Where modern MLLMs fit Modern MLLMs
enable seamless integration of captioning within
VRD pipelines. These models generate both page-
level and region-level descriptions, convert chart
and table content into text by describing units, axes,
trends, and outliers, and can even produce struc-
tured representations in formats such as HTML,
Markdown, or JSON, following the design princi-
ples of systems like Pix2Struct and Donut. Empiri-
cal evidence shows that employing more capable
captioners leads to measurable gains in recall and
answer accuracy for slide and PDF question an-
swering tasks (LangChain Team, 2023; Riedler and
Langer, 2024), even when the retrieval process at
query time remains entirely text-based.

Advantages Across modalities, the strategy of
first converting heterogeneous inputs into a domi-
nant or well-supported modality reflects a shared
set of motivations. By transforming diverse sig-
nals into text, practitioners can leverage decades of
progress in indexing, retrieval, and evaluation. Cas-
caded architectures allow modular replacement and
incremental upgrading of components such as OCR
or retrievers. This design enhances interpretability,
facilitates debugging, and eases deployment and
optimization in production environments. Addi-
tionally, online query latency remains unaffected,
as all processing of charts and tables by VLMs is
confined to the preprocessing stage.

Disadvantages Despite these advantages, the
paradigm carries inherent risks. Captioning or tran-
scription inevitably compresses the source signal,
risking the omission of fine-grained visual or tem-
poral information. Highly structured visual ele-
ments, such as charts, diagrams, or tables, often
lose numerical precision or relational cues when
summarized in free-form text, a weakness that mo-
tivates corrective research like chart-to-text gen-
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eration. Recognition errors from ASR or OCR
can cascade, significantly degrading downstream
retrieval or QA accuracy. The Spoken-SQuAD
dataset quantified this impact for speech QA (Li
et al., 2018), while models such as Donut explic-
itly sought to eliminate OCR-induced error chains
through end-to-end document decoding (Kim et al.,
2022). Furthermore, preprocessing for large-scale
captioning with this approach can be costly. Pro-
cessing vast repositories of documents, each po-
tentially containing numerous images and tables,
requires substantial computational resources and
time for the MLLM to generate descriptions for ev-
ery non-textual element. This upfront cost can be a
major bottleneck, especially for dynamic datasets
where new multimodal content is frequently added.

This suggests that while the modality-unifying
captioner role offers an accessible path to multi-
modal RAG, it may be best suited for applications
where the non-textual elements are relatively sim-
ple, where some information loss is tolerable, or
where the scale of data does not make preprocess-
ing costs insurmountable.

3.2 MLLMs as Multimodal Embedders

As shown in Figure 1 (middle), this role embeds
heterogeneous inputs into a shared space to enable
cross-modal search and matching.

While the captioner role (§3.1) is practical, re-
stricting MLLMs solely to text conversion has in-
herent limitations. In response to these constraints,
the research community has increasingly focused
on leveraging the advanced representation capabil-
ities of MLLMs to enhance multimodal RAG. A
prominent direction within this effort involves uti-
lizing MLLMs as Multimodal Embedders. In this
role, MLLMs function directly as powerful embed-
ding models, transforming data from diverse modal-
ities into a shared, rich semantic feature space.

The Core Mechanism Instead of converting
modalities to text, the MLLM learns to map in-
puts from different modalities into a common high-
dimensional vector space. In this shared space, the
embeddings of semantically related items from dif-
ferent modalities are expected to be close to each
other, allowing for direct comparison, similarity
search, and retrieval across modalities. For exam-
ple, an image query could retrieve relevant textual
passages, or a textual query could retrieve relevant
images and text.



Historical Roots This fundamental idea, unify-
ing disparate modalities into a common represen-
tational space to facilitate joint reasoning and re-
trieval, has deep historical roots. The most canon-
ical instantiation is perhaps CLIP (Radford et al.,
2021) and its numerous successors (Jia et al., 2021;
Zhai et al., 2022; Li et al., 2022a, 2023; Zhai et al.,
2023; Yao et al., 2021; Yu et al., 2022), which
align text and image representations via contrastive
learning, establishing CLIP as the de facto standard
embedding backbone in early multimodal RAG sys-
tems. Earlier precursors include DeViSE (Frome
et al., 2013), which projected visual features into
word2vec semantic space for zero-shot recognition;
Deep CCA (Andrew et al., 2013) and its deep exten-
sions DGCCA (Benton et al., 2019), which learned
shared subspaces via canonical correlation analy-
sis; VSE++ (Faghri et al., 2018), which emphasized
hard negative mining for improved alignment; and
SCAN (Lee et al., 2018), which introduced stacked
cross-attention to enable fine-grained word-region
alignment for stronger image—text matching. More
recently, ImageBind (Girdhar et al., 2023) uni-
fied six modalities into a single embedding space,
achieving cross-modal alignment using only image-
paired data as a bridging signal.

The Shift to MLLM-based Embedders Never-
theless, recent studies (Zhou et al., 2024b) have
indicated that the text embedding capabilities of
these vision-language models (e.g., CLIP) are com-
paratively inferior to those of specialized text em-
bedding models. This limitation may hinder their
effectiveness in tasks involving text-intensive mul-
timodal documents. Drawing inspiration from pio-
neering work such as LLM2Vec (BehnamGhader
et al., 2024), there has been a surge in research ef-
forts aimed at repurposing MLLMs as embedding
models (Jiang et al., 2025a,b; Meng et al., 2025;
Zhou et al., 2024a; Lin et al., 2025a; Zhang et al.,
2025c; Lan et al., 2025; Liu et al., 2024b; Chen
et al., 2025a; Lee et al., 2025b; Lin et al., 2025b).
Representative approaches include: VLM2Vec
(Jiang et al., 2025b; Meng et al., 2025), which
endows VLMs with instruction-aware embedding
capabilities and reports consistent gains across
the Massive Multimodal Embedding Benchmark
(MMEB); MM-Embed (Lin et al., 2025a), which
identifies and mitigates modality bias via modality-
aware hard negative mining and continual text-to-
text fine-tuning; and E5-V (Jiang et al., 2025a),
which surprisingly achieves state-of-the-art multi-
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modal retrieval by training exclusively on text pairs,
leveraging prompting to bridge modalities and dras-
tically reduce annotation and training costs.

Training Strategy This methodology, mirror-
ing LLM2Vec, transforms MLLMs into CLIP-
analogous representation models by embedding
diverse modalities into a shared feature space. For
instance, in the case of VLMs, the process involves
aggregating extensive datasets similar to CLIP’s
training corpus. During training, the EOS token
serves as the representative token, and contrastive
learning employs InfoNCE loss (van den Oord
et al., 2019). Through this approach, textual and vi-
sual modalities are seamlessly integrated into a uni-
fied feature space. Leveraging the MLLM’s world
knowledge from multimodal next-token prediction
(Chen et al., 2024a), this method demonstrates ex-
ceptional representational capacity across diverse
data types. Moreover, it offers the flexibility to
replace existing embedding models with minimal
disruption.

In addition to CLIP-style training, MoCa (Chen
et al., 2025a) converts causal VLMs into bidirec-
tional multimodal embedders via continual pre-
training and heterogeneous contrastive finetuning.
Vision-centric contrastive learning (VC2L) (Lin
et al., 2025b) renders mixed text—image content
into pixels to avoid OCR misalignment. General
training advances include a generalized contrastive
loss (GCL) (Lee et al., 2025b) that jointly con-
trasts text, image, and fused representations within
a batch.

The Role of Data and Synthetic Supervision
Beyond algorithmic design, data composition and
synthetic supervision play pivotal roles. Zhang et al.
(2025c¢) target universal multimodal retrieval over
visually rich documents, emphasizing balanced
modality mixing and efficient generation of fused-
modality training pairs. Zhou et al. (2024a) scale
synthetic supervision by generating instruction-
style queries over image pairs, significantly enhanc-
ing zero-shot generalization.

Optimization On the optimization front, LLaVE
(Lan et al., 2025) introduces hardness-weighted
contrastive learning to better separate ambiguous
negatives. Complementing standard bi-encoder
frameworks, LamRA (Liu et al., 2024b) attaches
lightweight LoRA (Hu et al., 2022) heads to gener-
ative MLLMs, unifying retrieval and reranking and
enabling strong transfer to unseen retrieval tasks.



Empirical Evidence and Performance The su-
perior impact of these MLLM-derived embeddings
is evident in downstream performance, with exten-
sive evaluations confirming better representational
quality and metrics. Table 2, compiling results
from the MMEB introduced by Jiang et al. (2025b),
illustrates this trend. Notably, employing MLLMs
as Multimodal Embedders yields substantial per-
formance enhancements compared to RAG sys-
tems using conventional multimodal embedding
models like CLIP. In VQA-related tasks, for exam-
ple, MLLMs as Multimodal Embedders leverage
their inherent advanced visual reasoning capabili-
ties, highlighting their distinct advantage.

Complementary advances in reranking Sev-
eral concurrent efforts investigate VLM-based
reranking methods to complement retrieval with
reasoning-aware relevance modeling (Xu et al.,
2025a; Wasserman et al., 2025a; Chen et al., 2025c;
Gong et al., 2025).

3.3 MLLMs as End-to-End Representers

As illustrated in Figure 1 (right), the End-to-End
Representers role encodes whole pages directly to
retrieve at page granularity. It uses MLLMs to gen-
erate holistic representations directly from entire
multimodal inputs, such as treating full document
pages as single images. Instead of breaking a docu-
ment down into its constituent parts and processing
them separately or converting them, the MLLM
takes a more holistic view. For example, an entire
PDF page, with its complex layout of text, images,
and graphical elements, might be fed as a single
image input to the MLLM, which then generates a
unified representation for that entire page.

A key characteristic of this approach is that it
bypasses intermediate steps like explicit OCR or
layout parsing. Traditional document processing
pipelines often rely on separate modules for OCR,
layout analysis, and then subsequent processing of
these extracted elements. Each of these stages can
introduce errors.

Rationale To illustrate this methodology, con-
sider the example of VLMs. In this instance, spe-
cific components within traditional RAG pipelines
are replaced with VLMs, thereby enabling direct
end-to-end representation generation. This ap-
proach is motivated by two key factors. Firstly, pre-
vious research has demonstrated that the process of
OCR introduces noise into RAG systems, degrad-
ing their performance (Zhang et al., 2025b; Xie
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et al., 2025). Secondly, the advanced visual com-
prehension capabilities of contemporary VLMs ren-
der separate identification of layouts, tables, im-
ages, and other discrete elements unnecessary. In-
stead, an entire PDF page can be treated as a single
image input to a VLM, thereby facilitating the pro-
duction of a holistic representation.

Exemplary Models Significant contributions
have been made in this domain, with DSE (Ma
et al., 2024), ColPali (Faysse et al., 2025) and Vis-
RAG (Yu et al., 2025) being particularly notewor-
thy examples. DSE has the capacity to convert doc-
ument screenshots directly into dense vectors for
retrieval. ColPali incorporates the late-interaction
matching mechanism of ColBERT (Khattab and
Zaharia, 2020), embedding document page images
into high-dimensional vector spaces for retrieval.
This method excels at capturing intricate visual de-
tails and is simple, fast, and end-to-end trainable.
Similarly, VisRAG directly encodes and retrieves
document pages, mitigating information loss while
fully exploiting the visual content present in docu-
ments. These approaches adopt InfoNCE loss for
training, aligning with the training approach of the
Multimodal Embedders role.

Beyond Single-Page Beyond page-level late-
interaction encoders, multi-page representers de-
couple retrieval and reasoning. DREAM (Zhang
et al., 2025a) integrates hierarchical multimodal
retrieval and a multi-page VLM with global and
token-level cross-page attention. ColMate (Masry
et al., 2025), while primarily an embedder, inher-
its ColBERT-style end-to-end matching over page
images and masked text. Industry efforts such as
Docopilot (Duan et al., 2025) study non-RAG, end-
to-end multi-round document understanding over
the Doc-750K corpus, complementary to retrieval-
centric approaches.

Advantage This end-to-end Representer method-
ology capitalizes on the advanced representational
capabilities of MLLMs while concurrently reduc-
ing the overall latency of the pipeline (Faysse et al.,
2025; Yu et al., 2025). In traditional multimodal
RAG, predominant latency sources are initial lay-
out analysis, segmentation, and OCR, not embed-
ding itself. Employing MLLMs for end-to-end
recognition, despite a slight increase in embed-
ding duration, results in a substantial reduction
in total processing time. This is demonstrated in
Table 1, which compares the latency of an OCR-



reliant pipeline with an MLLM-based end-to-end
representer, showing a reduction in total offline la-
tency for the MLLM-based approach due to the
elimination of parsing overhead.

This approach can also reduce the noise caused
by imperfect parsing. OCR errors, misinterpreta-
tions of document layout, or failures to correctly
segment different content blocks can degrade the
quality of information fed into a RAG system. An
MLLM that directly sees the entire page might
learn to be more robust to such variations or low-
quality inputs, as it can leverage the global context
of the page. This holistic processing can be par-
ticularly advantageous for ingesting large volumes
of complex documents, such as scanned PDFs or
documents with unconventional layouts, where tra-
ditional parsing tools might struggle.

Furthermore, end-to-end training integrates the
previously acquired world knowledge and inher-
ent capabilities of MLLMs, and thus elevates the
performance ceiling of multimodal RAG systems.

4 Trade-offs and Future Directions

While integrating MLLMs into RAG systems of-
fers significant benefits, this paradigm also presents
challenges and is not universally optimal. Key lim-
itations involve retrieval granularity, information
fidelity, and computational and storage demands.

4.1 Retrieval Granularity and Interpretability

4.1.1 Coarse vs. Fine-Grained Retrieval

The End-to-End Representer role, despite prepro-
cessing benefits, often yields coarser retrieval gran-
ularity. For example, both ColPali and VisRAG
adopt the page as the retrieval unit (Faysse et al.,
2025; Yu et al., 2025). While representing a whole
page with one vector identifies relevant pages, it
obscures fine-grained details, forcing a secondary
search for specific facts, unlike text-based RAG
systems that retrieve individual paragraphs or sen-
tences. This highlights a fundamental tension:
holistic processing improves robustness but sac-
rifices retrieval precision, whereas fine-grained re-
trieval enhances precision but risks losing global
context or suffering from error propagation.

4.1.2 Information Loss in Conversion

Similarly, the Modality-Unifying Captioner role,
which converts non-textual elements to text, inher-
ently suffers from information loss, as textual de-
scriptions rarely capture the full richness of images,
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tables, or diagrams. This preprocessing informa-
tion loss directly degrades fidelity: if the LLM gen-
erator receives incomplete or oversimplified con-
text, the final output will lack nuance and accuracy,
undermining the RAG system’s purpose.

Ideal granularity and acceptable information loss
are application-dependent. For instance, general
summarization may tolerate coarser granularity,
whereas fact-checking demands high-fidelity, fine-
grained retrieval. This tension highlights the need
for adaptive, task-aware systems rather than a sin-
gle, universally optimal strategy.

Recent studies (Gong et al., 2025; Chen et al.,
2025c; Zhang et al., 2025a) further demonstrate
that adaptive hierarchical and co-modality retrieval
strategies can effectively recover fine-grained evi-
dence and improve cross-page reasoning in visually
rich documents.

4.2 Computational Overhead and Costs
4.2.1 Increased Latency

Generating rich multimodal embeddings or detailed
textual captions using MLLMs is computationally
intensive. Figure 2 shows MLLMs as multimodal
embedders incur substantially higher latency dur-
ing both offline encoding and online searching com-
pared to CLIP-based models. This starkly illus-
trates why model miniaturization is essential for
broader applicability.

4.2.2 Substantial Storage Demands

MLLM-RAG systems also face substantial stor-
age demands. MLLMSs in the Multimodal Embed-
der role produce high-dimensional embeddings, of-
ten significantly larger than traditional text vectors,
to capture rich cross-modal information. Storing
these vectors for large corpora can become pro-
hibitive. For instance, Lin et al. (2025a) report that
its index storage demands exceed those of CLIP-
based models by a factor of five or more.

This increased storage footprint not only incurs
direct hardware costs but also degrades efficiency
by slowing index loading and vector searches, com-
pounding latency issues.

Potential solutions include model miniaturiza-
tion via higher-quality data or knowledge distilla-
tion (Hinton et al., 2015), which could produce
compact Multimodal Small Language Models to
address these root challenges.

Another promising avenue is the adoption of a
Matryoshka-style multimodal learning framework
(Sturua et al., 2024; Cai et al., 2025), which learns



representations across multiple granularities. By
dynamically selecting inference modes, this ap-
proach could offer a scalable performance-cost gra-
dient tailored to downstream tasks.

Recent works (Rajendran et al., 2025; Yan et al.,
2025; Giinther et al., 2025; Masry et al., 2025)
have also explored efficiency-oriented solutions
that balance accuracy and cost through adaptive
routing, vector pruning, and lightweight embed-
ding designs.

4.3 Challenges in Evaluation Metrics

Evaluating multimodal RAG remains fundamen-
tally difficult because traditional metrics, largely
developed for text-only settings, cannot fully cap-
ture the fidelity and interpretability of cross-modal
reasoning. While frameworks such as RAGAs (Es
et al., 2024) and ARES (Saad-Falcon et al., 2024)
provide initial measures for faithfulness and rele-
vance, multimodal scenarios introduce new failure
sources, including misaligned visual grounding and
inconsistencies between retrieved and generated
evidence (Mortaheb et al., 2025). Recent bench-
marks (Wasserman et al., 2025b; Peng et al., 2025)
highlight that current systems often underperform
on real-world, document-heavy, and paraphrase-
variant data, underscoring a persistent gap be-
tween laboratory metrics and practical robustness.
Human-centered datasets can also help narrow this
pragmatic gap (Zhang, 2025a).

A more holistic evaluation paradigm is needed,
combining end-to-end performance with modality-
aware diagnostics such as table and figure ground-
ing accuracy, cross-page evidence localization, and
paraphrase robustness, aligning with broader calls
for benchmarks that prioritize safety and real-world
user needs (Zhang, 2025b). Progress in this direc-
tion will enable fairer comparison across retrieval
granularity levels and provide actionable signals
for improving factual alignment and interpretability
in visually rich document RAG systems.

5 Conclusion

This survey has chartered the evolving landscape of
Retrieval-Augmented Generation for visually rich
documents, focusing on the critical roles played
by MLLMs. We have structured this emergent
field by proposing a taxonomy of three primary
roles: Modality-Unifying Captioners, Multimodal
Embedders, and End-to-End Representers.

Our analysis reveals that there is no single, uni-
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versally optimal solution. Instead, practitioners
face a distinct set of trade-offs. The Captioner
role offers a pragmatic path to multimodal sup-
port by integrating with mature, text-based RAG
pipelines, but at the risk of information loss and
error cascades from imperfect textual conversion.
The Embedder role enables true cross-modal search
by unifying modalities in a shared vector space, but
this power often comes at the cost of significant
computational and storage overhead. Finally, the
Representer role provides robustness by bypassing
brittle OCR and parsing steps, but this simplicity
typically sacrifices retrieval precision by operating
at a coarse, page-level granularity.

These findings highlight a tension in the field: a
balancing act between retrieval granularity, infor-
mation fidelity, computational cost, and pipeline
simplicity. As the field matures, we anticipate
future research will focus on three challenges.
First, the development of adaptive and hierarchi-
cal retrieval methods to dynamically blend coarse-
grained and fine-grained retrieval to get the best of
both. Second, the need for model miniaturization
and efficiency, producing smaller, faster MLLMs
that make these advanced techniques practical for
real-world latency and storage budgets. Finally, the
design of next-generation evaluation benchmarks
that move beyond simple text-based metrics to
holistically measure factual accuracy, cross-modal
grounding, and the interpretability of RAG systems
handling complex, visually-grounded evidence.

Limitations

This survey has limitations. Firstly, its scope is
constrained by available literature on MLLMs in
multimodal RAG. The generalizability of the syn-
thesized findings may be limited by the datasets,
MLLMs, and tasks predominantly featured in these
studies. Secondly, while performance and latency
are discussed based on reported figures, this survey
does not account for the variability in hardware
configurations or deployment environments used
in those studies, which could impact real-world
applicability comparisons. Lastly, the reviewed lit-
erature often focuses more on technical and perfor-
mance aspects, with less emphasis on user-centric
evaluation metrics such as nuanced interpretability
and usability. This survey reflects that focus, leav-
ing broader user-centric analyses for future work
or dedicated studies.
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A Supplemental Data

This section provides supplementary empirical data
referenced in the main survey, offering a more de-
tailed view of the performance and cost trade-offs
discussed.
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Model Offline (ms) Online (ms)
P. E. Total E. S. Total

MiniCPM 284 28 312 28 26 54

VisRAG-Ret - 121 121 28 26 54

Table 1: Latency comparison between an OCR-reliant
pipeline MiniCPM (Hu et al., 2024)) and an MLLM-
based end-to-end representer (VisSRAG-Ret (Yu et al.,
2025)) during offline and online processing stages. Ab-
breviations: P. - Parsing; E. - Encoding; S. - Searching.
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Figure 2: Comparison of encoding latency (displaying
top 1%, 50%, and 99th percentiles) and vector search
latency for the CLIPsr (Wei et al., 2024) and UniEmb
(Lin et al., 2025a) models. Measurements were based
on 100 randomly sampled queries from each of the 16
M-BEIR (Wei et al., 2024) tasks.

* Table 2 presents a comprehensive comparison
on the MMEB benchmark, substantiating the
performance gains of the MLLM as Multimodal
Embedder role (§3.2) over traditional baselines.

e Table 3 details retrieval performance
(MRR@10) across various VQA datasets,
comparing End-to-End Representers (§3.3)
with baseline methods.

» Table 1 and Figure 2 provide specific latency
measurements, illustrating the computational
overhead and costs discussed in §4.2.
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Per Meta-Task Score Average Score

Model
Classification VQA Retrieval Grounding Overall
# of datasets — 10 10 12 4 36
Baselines
CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.8
BLIP2 (Li et al., 2023) 27.0 4.2 33.9 47.0 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 34.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.7
UnilR (BLIPgr) (Wei et al., 2024) 42.1 15.0 60.1 62.2 42.8
UnilR (CLIPgg) (Wei et al., 2024) 44.3 16.2 61.8 65.3 44.7
Magiclens (Zhang et al., 2024) 38.8 8.3 35.4 26.0 27.8
Baseline Average 40.4 10.3 46.9 52.2 36.1
MLLMs as Multimodal Embedders

VLM2Vec (Phi-3.5-V-4B) (Jiang et al., 2025b) 54.8 54.9 62.3 79.5 60.1
VLM2Vec (LLaVA-1.6-7B) (Jiang et al., 2025b) 61.2 49.9 67.4 86.1 62.9
VLM2Vec (Qwen2-VL-7B) (Jiang et al., 2025b) 62.6 57.8 69.9 81.7 65.8
MMRet-MLLM (LLaVA-1.6-7B) (Zhou et al., 2024a) 56.0 574 69.9 83.6 64.1
GME (Qwen2-VL-2B) (Zhang et al., 2025c¢) 56.9 412 67.8 53.4 55.8
LLaVE-2B (Lan et al., 2025) 62.1 60.2 65.2 84.9 65.2
LLaVE-7B (Lan et al., 2025) 65.7 65.4 70.9 91.9 70.3
MLLM-based Average 59.9 55.3 67.6 80.2 63.5
Average Improvement (A = MLLM-based - Baselines) +19.5 +45.0 +20.7 +28.0 +27.4

Table 2: Performance comparison of multimodal embedding models on the MMEB benchmark, compiled from
(Jiang et al., 2025b) and other cited works. Scores are averaged per meta-task, and an overall average score is also
provided. Within each model category, the best reported performance for each task is marked in bold, and the
second-best is underlined. This table synthesizes results to highlight the contrast between these model categories
and summarizes the average improvement reported for MLLMs over the baselines.

Model ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA Average
Baselines
BM25 (2009) (OCR) 43.65 61.47 75.27 66.94 57.28 86.78 65.23
bge-large (2023) (OCR) 39.29 59.64 75.04 72.38 51.33 81.38 59.13
MiniCPM (2024) (OCR) 58.43 77.74 72.54 83.45 64.78 91.74 74.78
NV-Embed-v2 (2025a) (OCR) 59.39 80.47 75.46 84.24 59.36 92.49 75.24
SigLIP (2023) 59.16 81.34 64.60 74.59 61.32 89.08 71.68
MLLMs as End-to-End Representers
ColPali (2025) 72.50 73.49 82.79 81.15 55.32 93.99 76.54
VisRAG-Ret (2025) 75.11 76.63 75.37 86.37 62.14 91.85 77.91

Table 3: Overall retrieval performance (MRR @ 10) across multiple Visual Question Answering (VQA) datasets,
summarizing results from cited studies. This table synthesizes and compares reported performances of traditional
baselines with MLLMs as End-to-End Representers. In each model category, the best reported performance is
marked in bold, and the second-best is underlined.
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