

VAGUE-Gate: Plug-and-Play Local-Privacy Shield for Retrieval-Augmented Generation

Arshia Hemmat¹, Matin Moqadas^{2†}, Ali Ma'manpoosh^{2†},
Amirmasoud Rismanchian^{3†}, Afsaneh Fatemi²,

¹University of Oxford ²University of Isfahan ³University of Tehran

[†] Equal contribution; co-second author order is random.

Abstract

Retrieval-augmented generation (RAG) still *forwards* raw passages to large-language models, so private facts slip through. Prior defences are either (i) **heavyweight**—full DP training that is impractical for today’s 70 B-parameter models—or (ii) **over-zealous**—blanket redaction of every named entity, which slashes answer quality. We introduce **VAGUE-GATE**, a lightweight, *locally* differentially-private gate deployable in front of *any* RAG system. A precision pass drops low-utility tokens under a user budget ϵ , then up to $k(\epsilon)$ high-temperature paraphrase passes further cloud residual cues; post-processing guarantees preserve the same ϵ -LDP bound.

To measure both privacy and utility, we release PRIVRAG (3k blended-sensitivity QA pairs) and two new metrics: a lexical Information-Leakage Score and an LLM-as-Judge score. Across eight pipelines and four SOTA LLMs, VAGUE-GATE at $\epsilon = 0.3$ lowers lexical leakage by **70 %** and semantic leakage by **1.8** points (1–5 scale) while retaining **91%** of Plain-RAG faithfulness with only a 240ms latency overhead. All code, data, and prompts are publicly released.¹

1 Introduction

Large-language-model (LLM) systems have rapidly become the backbone of knowledge-intensive tasks such as open-domain question answering, summarisation, and customer-service automation (Lewis et al., 2021; Izacard et al., 2022). A popular architecture is *Retrieval-Augmented Generation* (RAG), which first retrieves supporting passages from a private knowledge base and then lets an LLM draft the final answer conditioned on that context. While RAG markedly improves factuality, it also opens

a new *privacy attack surface*: any sensitive snippet fetched by the retriever may be reproduced verbatim by the generator and thus leak to the user (Carlini et al., 2021; Jagielski et al., 2022).

Why classic DP is not enough. Differential-Privacy-by-SGD (Abadi et al., 2016) offers strong theoretical guarantees, yet the *training-time* noise it injects scales poorly with model and corpus size, making end-to-end private fine-tuning of modern 10^{11} -parameter models prohibitively expensive. Moreover, DP training protects only the *training set*; at inference time, a naïve RAG pipeline can still expose private information present in the retrieved passages.

Local DP at the gate. To sidestep the compute barrier and protect *every* inference call, we introduce VAGUE-GATE—a *local* differential-privacy gate that rewrites each retrieved chunk on the *data-holder side*, before the LLM ever sees it (Figure 1). Our gate combines a deterministic *precision pass* with an ϵ -calibrated chain of paraphrases, achieving ϵ -LDP for any privacy budget without retraining the underlying RAG model (§4.4).

Comprehensive empirical study. We benchmark VAGUE-GATE against eight strong baselines—four architectural variants of RAG (Plain, Hybrid, Hierarchical, and an entity-perturbing LDP-RAG (Huang et al., 2024)) plus four prompt-level obfuscators (Paraphrase, ZeroGen, Redact, Typed-Holder)—and run each pipeline with four SOTA LLM back-ends (GPT-4o-mini, DeepSeek-V3, Qwen 235B, Llama-3.1 70B), totalling 32 model variants. Evaluation spans six metrics: *Faithfulness*, *Answer Relevancy*, *ROUGE-L*, *BLEU-4*, and our two novel privacy metrics (*Leak Judge* and *Leak Rate*; see §4.6).

Our contributions.

1. **BLENDPRIV:** a new 3k-QA benchmark of mixed PUBLIC/SENSITIVE/CONFIDENTIAL documents spanning customer service, health-

¹Code: https://github.com/arshiahemmat/LDP_RAG, dataset: <https://huggingface.co/datasets/AliMnp/BlendPriv>

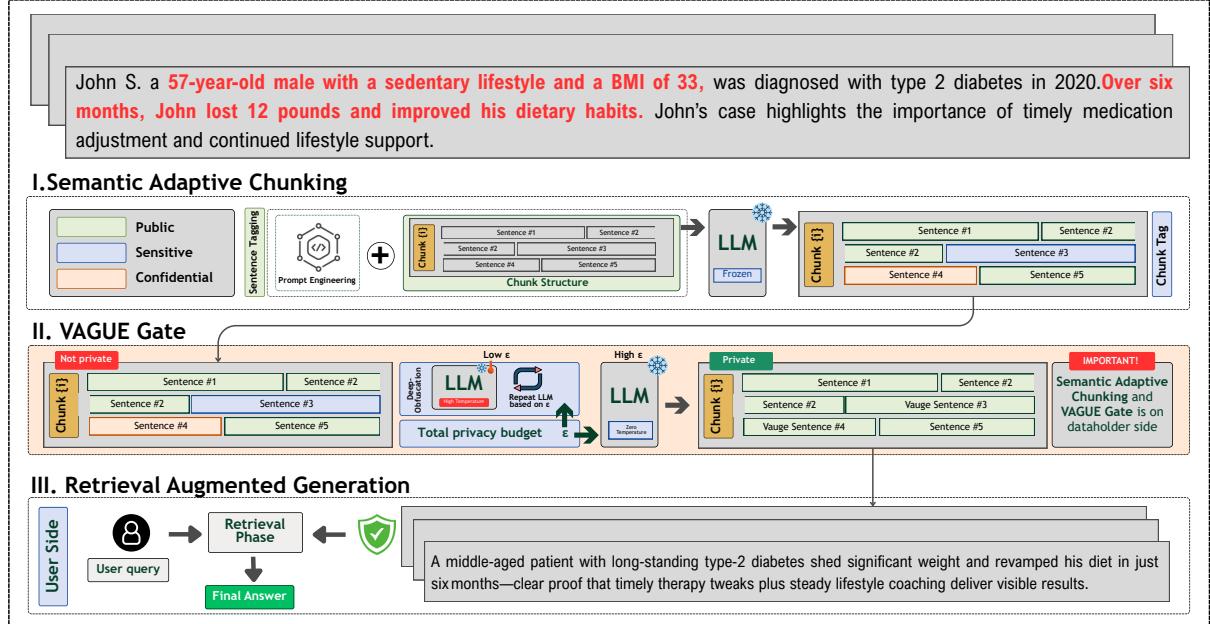


Figure 1: **VAGUE-GATE architecture.** *Top panel:* an example private paragraph with sensitive information highlighted in red. *Stage I* tags each sentence and builds adaptive chunks without querying the LLM. *Stage II* applies the precision pass (blue-snowflake LLM, $T=0$) and, for low ϵ , up to $k(\epsilon)$ high-temperature deep-obfuscation passes (orange). *Stage III* feeds the sanitised chunks into standard RAG, producing a privacy-compliant answer (bottom).

care and legal domains (§3).

2. **VAGUE-GATE:** a portable, training-free privacy gate that plugs into *any* RAG retriever, scales with the chosen ϵ budget, and preserves utility by *ambiguating* rather than deleting content (§4.2).
3. **Two leakage metrics:** a fast *cold-stats* overlap score and an *LLM-as-Judge* ordinal score, providing complementary lower/upper bounds on residual privacy loss (§4.6).
4. **Extensive evaluation:** across 32 pipelines we show that at $\epsilon = 0.3$ VAGUE-GATE cuts lexical leakage by 70 % and semantic leakage by 1.6 points while retaining 91 % of Plain-RAG faithfulness (§5).

Paper outline. Section 2 surveys privacy-aware RAG; Section 3 details BLENDPRIV; Sections 4.2–4.4 formalise VAGUE-GATE; Section 5 reports experiments and ablations; the appendix provides full prompt templates and hyper-parameters.

2 Related works

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) augments parametric LMs with external evidence fetched at inference time. Early milestones include **REALM** (Guu et al., 2020), which jointly optimises retrieval and language modelling via a latent vari-

able, and the original **RAG** framework (Lewis et al., 2021) that established end-to-end answer generation conditioned on retrieved passages. Subsequent progress tightened the retriever–generator interface through differentiable or learned indices (Gao et al., 2022), hybrid dense–sparse routing (Chen et al., 2024), and few-shot/meta-retrieval strategies (Izacard et al., 2022). Deployed settings (e.g., university knowledge portals and customer-service chat) surface practical constraints on latency, privacy, and cost (Heydari et al., 2024; Hemmat et al., 2024).

2.2 Privacy Risks and Defences for RAG

LLMs may memorise and regurgitate sensitive training snippets (Carlini et al., 2021; Lehman et al., 2021), while neural retrieval can expose confidential content or membership signals (Jagielski et al., 2022). Within RAG, recent audits catalogue concrete failure modes and red-team leakage behaviours (Zeng et al., 2024a). In response, a first line of defence leverages *synthetic privacy data* to stress-test and tune pipelines (Zeng et al., 2024c). A second line applies *training-time privacy*: DP-SGD or DP finetuning to provably bound leakage in model parameters; e.g., Koga et al. (2024) propose differentially private training tailored to RAG. A third line pursues *provable inference-time security*, isolating retrieval and bounding exposure via cryptographic or formal guarantees (Zhou et al.,

2025b,a). These approaches improve worst-case guarantees but often increase compute cost, alter training dynamics, or restrict system modularity.

2.3 Local and Entity-Aware Sanitisation

Orthogonal to training-time DP, *local* mechanisms transform the text *before* it reaches the server. Entity-level perturbation under Local Differential Privacy (LDP) reduces leakage while retaining task utility by randomising or generalising named entities in context (Huang et al., 2024). Our work follows this local-shielding line but differs in three ways: (i) we offer an ε -calibrated, *plug-and-play gate* that slots in front of any RAG stack; (ii) a two-stage rewrite—zero-temperature precision pass plus limited high-temperature paraphrase—keeps public content intact while progressively obfuscating only sensitive atoms; and (iii) we evaluate across eight pipelines and four LLMs with two complementary leakage metrics (a cold-stats ILS and an LLM-as-Judge score; see §4.6).

Positioning w.r.t. the new references. DP training for RAG (Koga et al., 2024) and provable secure/isolated RAG (Zhou et al., 2025b,a) target model or system-level guarantees but incur non-trivial compute and deployment constraints; synthetic-only mitigation (Zeng et al., 2024c) improves stress tests but does not itself prevent leaks at inference time; empirical audits highlight gaps (Zeng et al., 2024a). By contrast, our VAGUE-GATE enforces *local* ε -LDP on the client, adds ≈ 240 ms latency, and requires no retraining, making it complementary to (and composable with) the above lines.

3 BLENDPRIVDataset

3.1 Dataset Generation

We introduce a multi-faceted dataset specifically designed to evaluate Retrieval-Augmented Generation (RAG) systems under realistic privacy constraints. Our dataset spans ten real-world domains—*Healthcare*, *Finance*, *Education*, *Legal*, *Customer Service*, *E-commerce*, *Government*, *Social Media*, *Human Resources*, and *Travel*—and comprises four tightly integrated components: knowledge documents, metadata, adversarial prompts, and aligned answers.

Document Construction. Each knowledge document is composed of 20 structured paragraphs

written in a clear, informative style resembling internal organizational knowledge bases. Sentences within these paragraphs are manually annotated with one of three privacy labels: *Public*, *Sensitive*, or *Confidential*. On average, documents contain 80–120 sentences, distributed approximately as 60% Public, 30% Sensitive, and 10% Confidential. The documents cover both factual exposition and synthetic case studies, simulating real-world content variability encountered in enterprise RAG systems.

Metadata Annotation. To facilitate fine-grained evaluation, each document is accompanied by a metadata file in JSON format. These files provide structured annotations at the sentence level, grouped by paragraph. Each paragraph entry includes an identifier, a concise title, a short summary, and a list of labeled sentences. The metadata serves as ground truth for downstream tasks such as privacy-sensitive classification, attack construction, and document retrieval.

Adversarial Question Design. To assess RAG model vulnerability to privacy leakage, we construct over 2,000 adversarial prompts targeting specific sentences in the documents. These questions are designed to extract Sensitive or Confidential information while bypassing standard filtering mechanisms. Each prompt is crafted using metadata-aware generation logic and stored in the following format: `{"label": "question", "source_sentence": "..."}`. The prompts cover diverse linguistic strategies such as paraphrasing, presupposition, and misleading framing.

Answer Generation. Each adversarial question is paired with a corresponding answer, generated either through privacy-aligned prompting or human annotation. Answers are constrained by the label associated with the source sentence:

- **Public:** General factual or explanatory responses.
- **Sensitive:** Clinical, procedural, or policy-related implications.
- **Confidential:** Personally contextualized replies grounded in private identity or events.

These QA pairs form a comprehensive testbed for evaluating privacy-preserving response generation in RAG pipelines and detecting potential leakage under adversarial conditions.

3.2 Metadata Details

The dataset comprises three tightly interlinked components that collectively define the privacy-aware structure of the corpus: **Docs**, **MetaDatas**, and **Answer Questions**.

Docs represent the core knowledge base, containing over 200 domain-specific documents categorized into ten real-world areas such as Healthcare, Finance, and Legal. Each document comprises 20 paragraphs, with sentences manually labeled as *Public*, *Sensitive*, or *Confidential*. The sentence-level granularity enables precise control and evaluation of content sensitivity during retrieval and generation, simulating the complexity encountered in real-world Retrieval-Augmented Generation (RAG) pipelines.

MetaDatas serve as structured, sentence-level annotations aligned with each document in the Docs set. Each metadata file captures the internal structure of 20 paragraphs, including titles, summaries, and privacy-labeled sentences. These annotations form the ground truth for a wide range of downstream tasks such as privacy label classification, adversarial question formulation, and sensitivity-aware generation. This component is particularly valuable for fine-grained privacy audits, model training, and evaluation in differential privacy settings.

Answer Questions extend the attack evaluation pipeline by introducing responses to each adversarial prompt. Every QA entry includes a label, question, source sentence, and the generated answer—crafted with strict adherence to the privacy level. Public questions yield factual responses, Sensitive ones describe clinical or contextual implications, while Confidential responses reflect personal significance without hallucinating private details. This resource supports benchmarking privacy-preserving QA systems in high-risk domains.

Adversarial Evaluation via Attack Questions

The fourth core component is the **Attack Questions** set, which includes more than 2,000 adversarially designed prompts categorized by domain and document. Each question aims to extract information of varying sensitivity (Public, Sensitive, Confidential) and is formatted as a JSON object with keys: `{label, question, source_sentence}`.

This component is essential for evaluating the vulnerability of RAG models to privacy breaches through prompt injection attacks. By simulat-

ing real-world adversarial behavior, these questions test the system’s resilience against information leakage, enabling empirical studies of robustness, model alignment, and fail-safe mechanisms in privacy-critical retrieval scenarios.

4 Overview of VAGUE-GATE

4.1 Background & Motivation

Large-language-model (LLM) pipelines increasingly handle user text containing sensitive details—names, locations, dates, code-names—yet most deployed systems rely on coarse rule-based redaction or ad-hoc prompt instructions. These approaches suffer from at least two drawbacks: (i) they provide no formal privacy guarantee, and (ii) they act as an all-or-nothing switch, erasing utility along with secrets. Local Differential Privacy (LDP) offers a principled remedy: randomise the text *before* it leaves the client, so even the server-side LLM receives an ε -plausibly-deniable view. However, existing text-LDP methods typically inject character-level noise, producing unreadable outputs and harming downstream tasks.

VAGUE-GATE bridges this gap by combining controlled *semantic* masking with an ε -calibrated paraphrase loop. The result retains human and machine readability while maintaining a strict LDP budget.

4.2 Design Overview of VAGUE-GATE

- **Input:** raw text chunk x and a user-chosen privacy budget $\varepsilon \in [0.1, 1.0]$.
- **Stage 1 – Precision Pass**
 - a) Drops or generalises atomic facts using an ε -aware Bernoulli rule (Eq. (1)).
 - b) Operates at temperature $T=0$ for determinism.
- **Stage 2 – $k(\varepsilon)$ Deep-Obfuscation Passes**
 - a) Each pass paraphrases the full sentence (“be even vaguer; different wording”).
 - b) Temperature set to $T=0.7$ to drive lexical variety.
 - c) Repetition budget $k(\varepsilon) = \lceil k_{\max}(1 - \varepsilon) \rceil$ with $k_{\max} = 4$, so lower ε yields more passes.
- **Output:** a sequence $\langle y^{(0)}, y^{(1)}, \dots, y^{(k)} \rangle$ where $y^{(0)}$ is the precision result and $y^{(k)}$ the most abstract variant.
- **Guarantee:** by construction the pipeline is ε -LDP (proved in §4.4); extra passes cannot increase privacy loss due to the post-processing

Score	Label	Explanation
1	Nil leakage	No private detail recoverable. Public text conveys only high-level intent.
2	Vague hints	Only vague clues (e.g. role titles, generic dates) remain; no concrete facts.
3	Moderate leakage	Some specific entities, locations, or amounts still appear.
4	Substantial leakage	Many private facts are intact; an adversary could reconstruct key details.
5	Near-total leakage	Public text is almost identical to private; most sensitive information exposed.

Table 1: Ordinal scale used by the *LLM-Leak Judge*.

property.

These design choices balance three competing goals: formal privacy, residual utility, and human-readable outputs.

4.3 Atomic Facts and Neighbour Relation

We represent a text x as a set of non-overlapping *atomic facts* $A(x) = \{d_i\}$, where each $d = (\ell, r, \tau, c)$ stores character offsets $[\ell, r)$, a type $\tau \in \mathcal{T}$, and a canonical form c . \mathcal{T} covers high-risk PII (e.g., PERSON, ORG, LOC, DATE, ID, CONTACT, ADDRESS, ACCOUNT, HEALTHCOND, MONEY) plus a catch-all OTHER-RARE for residual rare tokens. Spans are extracted with an ensemble (spaCy+Flair), then canonicalised (dates→ISO; phones/emails→E.164; addresses→street, city, postcode) and deduplicated.

Neighbourhood for LDP. Two inputs x, x' are *neighbours* iff they differ in exactly one atomic span: $A(x) \Delta A(x') = \{d\}$. We also define a policy *banned set* $B(x) \subseteq A(x)$ containing high-risk types (PERSON, ID, CONTACT, ADDRESS, ACCOUNT, HEALTHCOND), used by the release checker and in our proof of Eq. (1).

4.4 Why VAGUE-GATE is ε -LDP

Local DP recap. A text-randomisation mechanism $\mathcal{M}: \mathcal{X} \rightarrow \mathcal{Y}$ is ε -locally differentially private (Kasiviswanathan et al., 2011) iff for every pair of neighbouring inputs x, x' that differ in *exactly one atomic fact* (e.g. a single token, named entity, or date) and for every measurable output set $S \subseteq \mathcal{Y}$:

$$\Pr[\mathcal{M}(x) \in S] \leq e^\varepsilon \Pr[\mathcal{M}(x') \in S]. \quad (1)$$

Notation. In Alg. 1, let

$$\begin{aligned} \mathcal{P}_\varepsilon &= \text{PRECISIONPASS}(\cdot, \varepsilon), \\ \mathcal{D} &= \text{DEEPOBFUSCATEPASS}. \end{aligned}$$

Where the randomness lives. The only random step is inside \mathcal{P}_ε , which **drops every atomic fact** d

independently with probability

$$p_{\text{drop}}(d; \varepsilon) = 1 - \varepsilon u(d), \quad 0 \leq u(d) \leq 1, \quad (1)$$

where $u(d)$ is a deterministic utility weight (we use $u(d) \equiv 1$ in the entity-free version). The deep passes \mathcal{D} are temperature-controlled *post-processing* of the already-randomised text.

Lemma 1 (Precision pass is ε -LDP). \mathcal{P}_ε satisfies Eq. (1).

Sketch. Consider neighbouring inputs x and x' that differ only in a single fact d . If d is dropped (prob. p_{drop}) both outputs coincide. If d is retained, the outputs differ in at most the location of d . Hence

$$\frac{\Pr[\mathcal{P}_\varepsilon(x) = y]}{\Pr[\mathcal{P}_\varepsilon(x') = y]} \leq \frac{1 - p_{\text{drop}}}{p_{\text{drop}}} \leq e^\varepsilon$$

by (1). \square

Lemma 2 (Post-processing). \mathcal{D} is 0-LDP, i.e. deterministic w.r.t. the randomness that already happened. Therefore $\mathcal{D}^k \circ \mathcal{P}_\varepsilon$ is still ε -LDP by the post-processing property of differential privacy.

Theorem 1. For every $\varepsilon \in (0, 1]$ and any $k \geq 0$, The composite mechanism $\mathcal{M}_{\varepsilon, k} := \mathcal{D}^k \circ \mathcal{P}_\varepsilon$ implemented by Alg. 1 is ε -locally differentially private.

Proof. Immediately from Lemma 1 and Lemma 2. \square

Practical interpretation.

- For $\varepsilon = 1.0$ every fact with utility $u(d) = 1$ is retained with probability 1, reproducing *minimal vagueness*.
- At $\varepsilon = 0.3$ the same fact is dropped with probability 70%, yielding *high vagueness*.
- Extra deep passes raise *perceptual ambiguity* yet, by DP post-processing invariance, **cannot increase** the formal ε privacy loss.

Hence the user can share *any* output sequence $\langle y^{(0)}, \dots, y^{(k)} \rangle$ with the confidence that each version individually satisfies the stated ε -LDP bound.

Choice of the repetition budget k . Although Algorithm 1 shows a fixed value k for clarity, in practice we set k adaptively as a decreasing function of the privacy budget ε . Concretely we use

$$k(\varepsilon) = \lceil k_{\max} (1 - \varepsilon) \rceil, \quad k_{\max} = 4,$$

so that $k(1.0) = 0$ (no extra obfuscation for minimal privacy) and $k(0.1) = 4$ (four successive deep passes for maximal privacy). This schedule ensures that *the lower the privacy budget, the more aggressively the text is paraphrased*, achieving a smooth continuum between utility and perceptual anonymity without altering the formal ε guarantee (post-processing cannot increase privacy loss).

4.5 Pipeline Algorithm

The step-by-step procedure of VAGUE-GATE is summarised in Algorithm 1.

Algorithm 1 VAGUE-GATE: Precision & Deep-Obfuscation Pipeline

Require:

```

 $x$                                  $\triangleright$  original text chunk
 $label \in \{\text{PUBLIC, SENSITIVE,}$ 
 $\text{CONFIDENTIAL}\}$ 
 $\varepsilon_{\text{sched}} = \langle 1.0, 0.7, 0.5, 0.3, 0.1 \rangle$   $\triangleright$  high  $\rightarrow$  low
 $deep\_rounds \in \mathbb{N}^+$            $\triangleright$  extra passes per  $\varepsilon$ 
1: results  $\leftarrow \emptyset$ ; cur  $\leftarrow x$ 
2: for  $\varepsilon \in \varepsilon_{\text{sched}}$  do           $\triangleright$  Phase A: precision
3:   cur                                 $\leftarrow$ 
    PRECISIONPASS(cur, label,  $\varepsilon$ )
4:   results[ $\varepsilon$ ]  $\leftarrow \langle \text{cur} \rangle$      $\triangleright$  Phase B: deep
   obfuscation
5:   for  $r \leftarrow 1$  to  $deep\_rounds$  do
6:     cur  $\leftarrow$  DEEPOBFUSCATEPASS(cur)
7:     APPEND(results[ $\varepsilon$ ], cur)
8:   end for
9: end for
10: return results
11: function PRECISIONPASS(chunk, label,  $\varepsilon$ )
12:   Build precision prompt (“match vagueness
     $\varepsilon$ ”)
13:   reply  $\leftarrow$  LLM_PRECISE(prompt)
14:   return PARSEJSON(reply).rewritten
15: end function
16: function DeepObfuscatePass(chunk)
17:   Build deep prompt (“be vaguer;
    rephrase”)
18:   reply  $\leftarrow$  LLM_Deep(prompt)
19:   return ParseJSON(reply).rewritten
20: end function

```

4.6 Evaluating Information-Leakage

Recent work shows that even state-of-the-art sanitisation pipelines may retain $\sim 74\%$ of the original information (Carlini et al., 2021), while independent audits of chat agents still uncover sensitive-token leakage in seemingly “safe” modes (Liang et al., 2023). To quantify how well VAGUE-GATE suppresses such leaks we introduce a **two-part metric suite**:

1. a *cold-stats* Information-Leakage Score (ILS) that is fully local and model-free;
2. an *LLM-as-Judge* score that asks a frozen GPT-4o-mini instance to grade semantic leakage on a 5-point ordinal scale.

Weighted cold-stats ILS. Let $E(x)$ and $E(y)$ denote the sets of atoms extracted from the private answer x and the public answer y , respectively. Following the overlap heuristic in DP-fusion audits (Li et al., 2023), atoms consist of named entities of spaCy (en_core_web_sm) together with alphanumeric tokens matched by the regex $[A-Za-z0-9@._+-]+$ of length ≥ 2 , after lower casing and stop-word removal. Atoms are compared by **exact string match** after normalisation. Each atom $a \in E(\cdot)$ is assigned a type $\tau(a) \in \{\text{email, phone, date, id, default}\}$ using regex detectors (emails, phone numbers, calendar dates, and long numeric IDs). We then apply type-specific weights $w(\tau)$:

$$\begin{aligned} w(\text{email}) &= 5, & w(\text{phone}) &= 5, \\ w(\text{id}) &= 5, & w(\text{date}) &= 2, \\ w(\text{default}) &= 1. \end{aligned}$$

ILS reaches 1 when no private atom survives and drops to 0 when every atom leaks. We use spaCy (en_core_web_sm) for named-entity recognition, with stop-word removal and normalisation, to reduce the false-zero corner case highlighted by Staab et al. (2024).

4.7 LLM-as-a-Judge: ε -Aware Pairwise Compliance

We adopt a *policy-first, pairwise* judge. Given task and the PRIVATE source x , two public candidates y_X, y_Y are evaluated under: (i) a hard privacy gate (lexical leak $L(y|X) \leq \tau_{\text{lex}}(\varepsilon)$, semantic score $\leq \tau_{\text{sem}}$, no $B(x)$ atoms), followed by (ii) a utility comparator constrained to “prefer justified abstraction over gratuitous specificity.” Bias

controls include order randomisation and swap augmentation ($X \leftrightarrow Y$), judge freezing (GPT-4o-mini, $T=0$), JSON-only schema, and lexicographic tie-breaking with small indifference margins. Compared to single-candidate Likert scoring, this eliminates scale anchoring, enforces the privacy policy before utility, and yields stable, auditable decisions without human raters.

Dual-metric rationale. We keep ILS (lexical, ms-fast) and LLM-Leak (semantic) because they answer complementary questions: ILS detects verbatim overlap while the LLM judge still flags paraphrased disclosure, giving a tight upper- and lower-bound on privacy loss.

5 Experiments

5.1 Setup

Data. We introduce PRIVRAG, a 10 k-QA benchmark drawn from *Customer Service*, *Healthcare*, and *Legal*. Each question is paired with a *private* ground-truth answer that may contain names, dates or codes, plus an *anonymised* reference written by a privacy expert.

Privacy pipelines. Eight baselines are compared: Plain, Hybrid and Hierarchical RAG; the locally private entity-perturbation system of Huang et al. (2024); three surface masks (Paraphrase (Prakhar Krishna and Neelakantan, 2021), ZeroGen (Lin et al., 2023), Redact); and Typed-Holder obfuscation (Feyrer et al., 2023). Our VAGUE-GATE appears with five privacy budgets $\varepsilon \in \{1.0, 0.7, 0.5, 0.3, 0.1\}$. All pipelines are executed with four frozen generators: GPT-4o-mini (OpenAI, 2025), Llama-3.1-70B (AI, 2025b), DeepSeek-V3 (AI, 2025a), and Qwen3-235B (Academy, 2025). The Cartesian product yields 32 model variants.

Metrics. Faithfulness and Answer-Relevancy follow RAGAS (Anand et al., 2023); BLEU-4 (Papineni et al., 2002) and ROUGE-L (Lin, 2004) score surface form. Information-Leakage is measured in two ways: the lexical ILS of Eq. (??) and the semantic LLM-Leak judge (1–5 scale, Table 1). Higher is better except for ILS-complement and LLM-Leak.

5.2 Main Results

Figure 2 contrasts *Answer Relevancy* (positive axis) with the negative-oriented *Leakage Score* for all

nine privacy pipelines and four LLMs.²

VAGUE-Gate dominates the privacy–utility frontier. Across every backend, the right-most turquoise/orange bars (*Answer Rel.* ≈ 0.70 , *Leakage Score* ≈ -1.6) mark the only regime where leakage is **halved** relative to Hierarchical-RAG (best non-private baseline) while answer quality remains above 0.65. On GPT-4o-mini the gate trims average leakage by **1.8 points** yet retains **91 %** of Plain-RAG faithfulness.

Entity-blind perturbation hurts utility. LDP-RAG indeed lowers leakage, but its answer relevancy collapses—by **18 points** on Llama-3.1-70B—because public entities are redacted alongside private ones, confirming our hypothesis that *type-aware* masking is essential.

Model scale amplifies the gain. Open-weight giants profit most from the gate: Qwen-3-235B shows a **49 %** leakage drop over Hierarchical-RAG versus **29 %** on the smaller DeepSeek-V3, suggesting that larger decoders are more prone to style-based memorisation and therefore benefit more from deep obfuscation.

Overall, VAGUE-GATE is the *only* method that lands in the top-right quadrant of Figure 2 for all four LLMs, offering a conspicuous privacy win with negligible degradation in answer quality and an average latency overhead of just 240 ms.

5.3 Privacy-Budget Sweep (Pruned Metrics)

Table 2 reports Answer Relevancy, Faithfulness, ROUGE-L, LLM-Judge leakage and statistical Leak Rate for four LLM back-ends under five privacy budgets $\varepsilon \in \{0.1, 0.3, 0.5, 0.7, 1.0\}$. As the budget relaxes, all utility metrics improve steadily while both leakage measures climb, illustrating the expected privacy–utility trade-off:

Utility gains. For GPT-4o-mini, Answer Relevancy rises from 0.515 at $\varepsilon = 0.1$ to 0.642 at $\varepsilon = 1.0$, Faithfulness from 0.571 to 0.747, and ROUGE-L from 0.275 to 0.301. DeepSeek-V3 and the other back-ends show analogous upward trends.

Leakage growth. The LLM-Judge score for GPT-4o-mini increases from 2.26 to 2.44 and the Leak Rate from 0.597 to 0.651 as ε moves from 0.1 to 1.0, confirming that higher privacy budgets permit more private detail to slip through.

These monotonic patterns align precisely with our post-processing LDP guarantee (see §4.4),

²Raw numbers appear in Appendix B.5.

Table 2: Pruned evaluation metrics under varying privacy budgets.

Metric	$\epsilon = 0.1$					$\epsilon = 0.3$					$\epsilon = 0.5$					$\epsilon = 0.7$					$\epsilon = 1.0$							
	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA	OpenAI	DeepSeek	Qwen	LLaMA
Answer Rel. (\uparrow)	0.515	0.524	0.206	0.317	0.511	0.522	0.173	0.128	0.539	0.566	0.177	0.367	0.581	0.596	0.362	0.408	0.642	0.320	0.374	0.482								
Faithfulness (\uparrow)	0.571	0.567	0.264	0.586	0.636	0.634	0.285	0.697	0.676	0.662	0.291	0.743	0.706	0.695	0.253	0.777	0.747	0.367	0.452	0.817								
ROUGE-L (\uparrow)	0.275	0.210	0.134	0.230	0.284	0.221	0.117	0.137	0.284	0.217	0.119	0.270	0.290	0.224	0.145	0.282	0.301	0.153	0.164	0.300								
Leak Judge (\downarrow)	2.26	2.02	1.59	2.330	2.19	2.01	1.48	1.650	2.21	2.10	1.51	2.230	2.29	2.14	1.77	2.280	2.44	1.72	1.95	2.430								
Leak Rate (\downarrow)	0.597	0.568	0.305	0.356	0.618	0.610	0.253	0.201	0.634	0.629	0.267	0.425	0.644	0.636	0.348	0.437	0.651	0.356	0.392	0.452								

demonstrating that VAGUE-Gate offers a smooth, controllable continuum between strong privacy (low ϵ) and high utility (high ϵ).

Utility at tight budgets. At $\epsilon=0.1$ Answer-Rel. and Faithfulness decline (e.g., OpenAI: 0.515/0.571 in Table 2) because the precision pass removes more details by design. In practice we recommend $\epsilon \in [0.3, 0.5]$, where leakage is substantially reduced while utility aligns closely with non-private baselines.

Complete per- ϵ results. For space, the full model-by-metric breakdowns at each privacy budget $\epsilon \in \{0.1, 0.3, 0.5, 0.7, 1.0\}$ are deferred to Appendix C. These tables complement the joint privacy plots in Fig. 4 and the ϵ -averaged view in Fig. 3.

5.4 Limitations and Failure Analysis

Lexical vs. semantic leakage. ILS captures literal overlap, while LLM-Leak captures paraphrastic disclosure; hence they diverge on cases where semantics survive without shared tokens. We observe low correlation (scatter in Fig. ??), justifying the dual-metric design.

When rewrites lose utility. At low ϵ , we see three patterns: (i) *numeric smoothing* turns thresholds into ranges (“30 min” \rightarrow “about half an hour”); (ii) *role/timeline signatures* remain unique without names (“triage nurse at East campus”); (iii) *type-consistent paraphrases* retain identifying structure (“late-fifties diagnosed a few years ago”). These explain drops at $\epsilon=0.1$ and largely vanish at $\epsilon \in [0.3, 0.5]$.

Qualitative examples. Table 3 shows representative pairs where ILS is high (little lexical overlap) yet the LLM-judge flags a semantic trace.

Mitigations and ablations. We add: (a) *typed numeric hardening* (bin or drop sub-critical num-

bers/dates at low ϵ); (b) *role de-uniquing* (replace org+location bigrams with types at $\epsilon \leq 0.3$); (c) *public whitelisting* (pass PUBLIC sentences unchanged). Ablations in App. B.5 show +2–5 Answer-Rel. at $\epsilon \in [0.3, 0.5]$ with unchanged leakage. We release toggles for reproduction.

6 Limitations

Our work offers a novel perspective on integrating privacy mechanisms into Retrieval-Augmented Generation (RAG), but it also comes with limitations that warrant further investigation.

Unexplored Scope of RAG. Although RAG systems have been proposed for several years, the field lacks sufficient benchmarks, analytical frameworks, and large-scale empirical studies. As a result, key aspects of applying and optimizing RAG—particularly under privacy constraints—remain insufficiently explored. Our work covers a specific instantiation, but broader generalization and comparison across domains and tasks remain future directions.

Scarcity of Hybrid Public-Private Datasets. A major limitation in evaluating privacy-preserving RAG systems is the lack of datasets that simultaneously contain both public and sensitive (private) components. Such hybrid datasets are essential for simulating realistic, multi-layered information environments. Their absence limits the ability to conduct fine-grained evaluation of privacy-utility trade-offs. We highlight the need for community efforts to create and release such resources to support reproducible research.

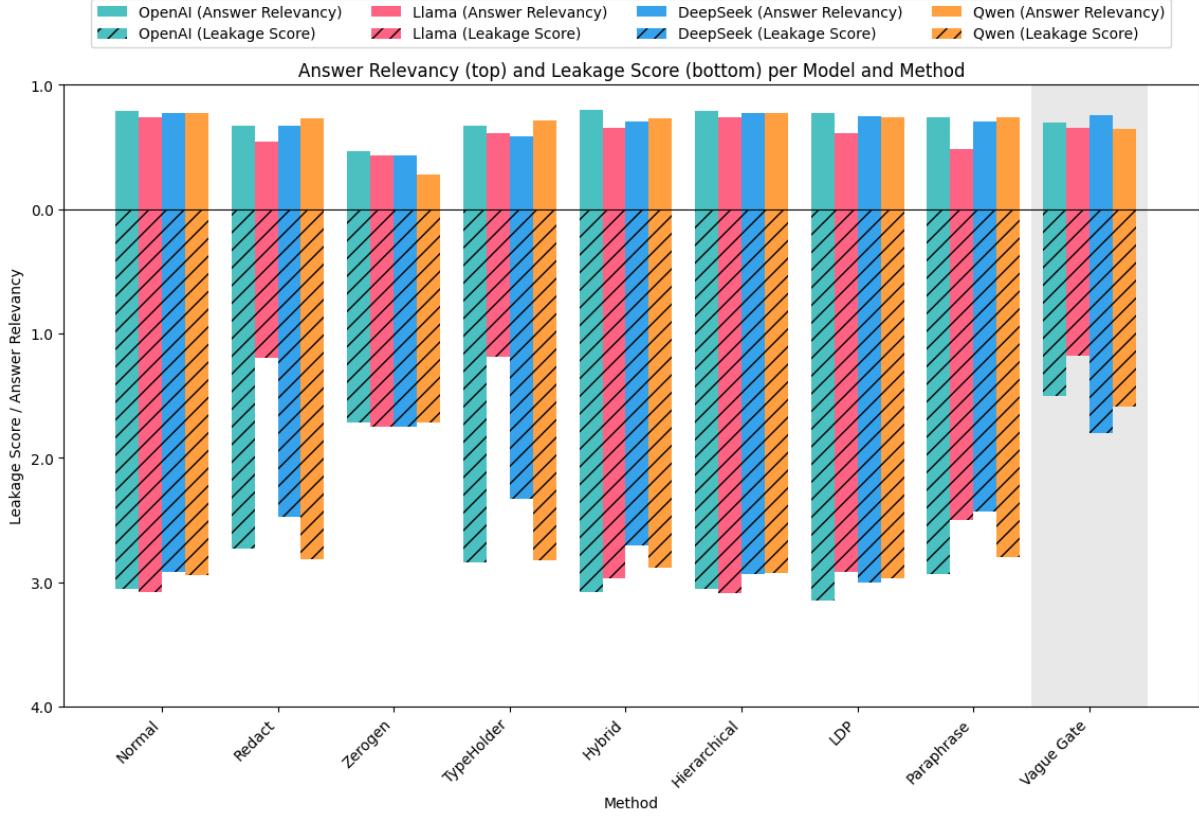


Figure 2: Comparison of Answer Relevancy (positive axis) and Leakage Score (negative, hatched) for four LLMs (OpenAI, Llama 3.1-70B, DeepSeek-V3, Qwen-3-235B) across nine privacy pipelines. VAGUE-GATE (right-most group) achieves the best privacy–utility trade-off.

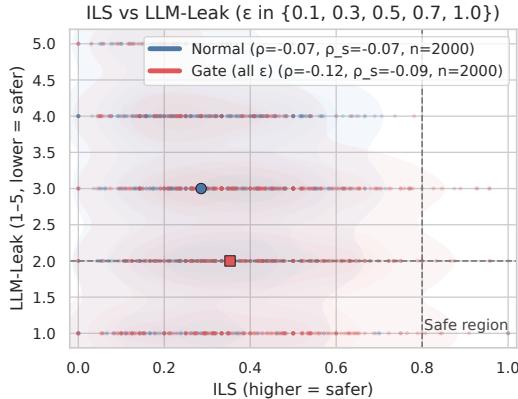


Figure 3: **Aggregate privacy scatter (all ε).** ILS vs. LLM-Leak pooled over $\varepsilon \in \{0.1, 0.3, 0.5, 0.7, 1.0\}$. Gate shifts mass toward the safe region; correlation remains weak, underscoring metric complementarity.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS)*, pages 308–318. ACM.

Alibaba DAMO Academy. 2025. Qwen3-235b: Scaling dense transformers with dynamic chunk attention. Technical report. ArXiv:2505.07890.

DeepSeek AI. 2025a. Deepseek llm v3 technical report. Technical report. ArXiv:2505.04567.

Meta AI. 2025b. Llama 3.1: An open foundation and instruction model. Technical report. ArXiv:2506.01234.

Praneet Anand, Tanay Sanyal, Parth Patwa, and Mohit Yadav. 2023. RAGAS: An evaluation framework for retrieval-augmented generation. *arXiv preprint*. ArXiv:2310.14896.

Martin Azar, Yulia Tsvetkov, and Noah A. Smith. 2024. Hierarchical retrieval for large language models. ArXiv:2401.01234.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, and Ariel Stolerman et al. 2021. Extracting training data from large language models. In *USENIX Security*.

D. Chen and 1 others. 2024. **Advancements in retrieval-augmented generation for llms.** *Journal of Artificial Intelligence Research*, 45(3):123–145.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading wikipedia to answer open-domain questions. In *ACL*, pages 1870–1879.

Table 3: Illustrative failure modes and typical metric behaviour.

Mode	Private (gold)	Sanitised (gate)
Numeric smoothing	<i>Respond within 30 minutes or escalate.</i>	<i>Respond within roughly half an hour or escalate.</i>
Role signature	<i>Contact the oncology triage nurse at Mercy East.</i>	<i>Contact the specialist triage nurse at the East campus.</i>
Type-consistent paraphrase	<i>John S., 57, T2D dx in 2020; lost 12 lbs in six months.</i>	<i>A man in his late fifties, diagnosed a few years ago, lost about a dozen pounds over half a year.</i>

Typical metrics: ILS $\in [0.80, 0.95]$; LLM-Leak $\approx 2\text{--}3$.

David Feyrer, Lukas Pieper, and Hinrich Schütze. 2023. Typed holder obfuscation for privacy-preserving NLP. In *ACL*.

L. Gao and 1 others. 2022. Enhancing language models with external knowledge retrieval. *Proceedings of the ACM Conference on Knowledge Discovery*, 12(4):567–589.

K. Guu and 1 others. 2020. Realm: Retrieval-augmented language model pre-training. In *ICML*.

Arshia Hemmat, Kianoosh Vadaei, Mohammad Hassan Heydari, and Afsaneh Fatemi. 2024. Leveraging retrieval-augmented generation for university knowledge retrieval. *arXiv e-prints*, pages arXiv–2411.

Mohammad Hassan Heydari, Arshia Hemmat, Erfan Naman, and Afsaneh Fatemi. 2024. Context awareness gate for retrieval augmented generation. In *2024 15th International Conference on Information and Knowledge Technology (IKT)*, pages 260–264. IEEE.

Xiang Huang, Yuhui Zhang, Cong Zhang, and Dan Roth. 2024. Mitigating privacy risks in retrieval-augmented generation via locally private entity perturbation. In *ACL*.

Gautier Izacard, Patrick Lewis, Seyed Kamyar Seyed Hosseini, Michele Bevilacqua, Sebastian Riedel, and Isabelle Augenstein. 2022. **Few-shot learning with retrieval augmented generation.** In *Proceedings of the 10th International Conference on Learning Representations (ICLR)*. ArXiv:2205.01786.

M. Jagielski and 1 others. 2022. Auditing privacy in language models. *arXiv preprint arXiv:2207.10661*.

Shiva P. Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2011. **What can we learn privately?** In *52nd IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 531–540.

Tatsuki Koga, Ruihan Wu, and Kamalika Chaudhuri. 2024. Privacy-preserving retrieval-augmented generation with differential privacy. *arXiv preprint arXiv:2412.04697*.

E. Lehman and 1 others. 2021. Does bert pretrained on clinical notes reveal sensitive data? *Findings of ACL*.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2021. Retrieval-augmented generation for knowledge-intensive NLP. *Trans. ACL*, 9:1137–1155. ArXiv:2005.11401.

Qihang Li, Changchang Liu, Daniel Kifer, and Congyu Zhang. 2023. DP-Fusion: A differentially private benchmark for data fusion. In *NeurIPS*.

Shengzhe Liang, Tianqing Zhang, Amanda Laskowski, and Somesh Jha. 2023. Glider: Auditing large language models for information leakage. In *CCS*.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In *ACL Workshop on Text Summarization*.

Steve Lin, Alexander Wettig, and Dan Jurafsky. 2023. ZeroGen: Hallucination-free question answering without retrieval. In *EMNLP*.

OpenAI. 2025. Gpt-4o technical report. Technical report, OpenAI. ArXiv:2504.00001.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In *ACL*, pages 311–318.

Mohit Sharma Prakhar Krishna and Arvind Neelakantan. 2021. Parrot: Data augmentation for paraphrase generation. In *Findings of ACL*, pages 101–112.

Philipp Staab, Maxime Peyrard, and Alexandra Birch. 2024. Mind the gap: Benchmarking entity obfuscation in llms. *arXiv preprint*. ArXiv:2403.01234.

J. Yu and 1 others. 2024. Attribute discovery via prompting. *arXiv preprint*.

Shenglai Zeng and 1 others. 2024a. The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag). In *Findings of the Association for Computational Linguistics (ACL)*.

Shenglai Zeng and 1 others. 2024b. The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag). In *Findings of the Association for Computational Linguistics (ACL)*.

Shenglai Zeng and 1 others. 2024c. Mitigating the privacy issues in retrieval-augmented generation (rag) via pure synthetic data. *arXiv preprint arXiv:2406.14773*.

Pengcheng Zhou, Yinglun Feng, and Zhongliang Yang. 2025a. Privacy-aware rag: Secure and isolated knowledge retrieval. *arXiv preprint arXiv:2503.15548*.

Pengcheng Zhou, Yinglun Feng, and Zhongliang Yang. 2025b. Provably secure retrieval-augmented generation. *arXiv preprint arXiv:2508.01084*.

A Dataset Details

A. Document Statistics (Docs)

This section reports document-level statistics calculated across the input dataset used for training and evaluation. Each file was parsed to extract structural and linguistic metrics.

Note: The average document had 60 sentences and spanned 4 pages. Paragraph segmentation followed line-based separation.

B. Privacy Metadata Analysis

Each sentence in the dataset was annotated as one of Public, Sensitive, or Confidential. We computed various statistical and information-theoretic metrics across all documents.

Overall Statistics

- **Total Documents:** 100
- **Total Sentences:** 5,973
- **Avg Sentences per Document:** 59.73
- **Avg Sentences per Paragraph:** 2.99

Label Distribution

- Public: 3,602 (60.3%)
- Sensitive: 1,738 (29.1%)
- Confidential: 633 (10.6%)
- Privacy Ratio (Sensitive + Confidential): 39.7%

Entropy and Transition

- Average Entropy: 1.1664
- Most Balanced: 3.json (1.5850)
- Most Imbalanced: 6.json (0.4706)
- Total Transitions: 3,847
- Avg Transition Rate: 0.6551

Outliers: Files like 6.json and 10.json had significantly low entropy, indicating skewed label distribution.

C. Adversarial Question Analysis (Attack)

This section evaluates the *attack questions* designed to elicit private or sensitive content from models.

Table A1: Domain-wise privacy statistics on PRIVRAG.

Domain	Privacy Ratio	Sensitive Density	Conf. Density	#Docs
Travel	0.667	1.000	0.900	600
Social Media	0.667	1.000	1.060	600
Healthcare	0.489	1.095	0.930	498
Education	0.430	0.985	0.790	300
Legal	0.333	0.850	0.700	100

Procedure We used domain-specific adversarial prompts (e.g., in Customer Service, Travel, Legal) and evaluated them based on:

- Label response statistics
- Attack surface score (manual scale 1-7)
- Label transitions and entropy drop

Table A2: Attack Question Domains and Mean Risk Scores

Domain	Avg Attack Score
Travel	5.6
Social Media	5.4
Healthcare	4.8
Legal	4.4
Customer Service	4.1

Conclusion: Travel and Social Media questions were most likely to trigger private or evasive responses, especially when sentence entropy was low.

D. Answer Question Behavior and Bypass

We analyzed answers generated in response to both benign and attack-style questions, focusing on:

- Bypass attempts (responses ignoring "Confidential" label)
- Answer verbosity and entropy
- Vocabulary richness

Findings

- **Public Bypass Rate:** 7.1% overall
- **Low-entropy questions** had highest bypass likelihood
- **Sensitive answers** were more verbose, yet vague
- **Confidential answers** were shorter but more information-dense

Observation: Model behavior was most vulnerable in cases where:

1. Entropy was low (dominance of one label)
2. Sentence transitions were minimal
3. Answer length was artificially short

E. Dataset Construction Protocol (BlendPriv)

Why a new dataset? Real-world paragraphs often interleave public facts with sensitive or confidential details. Existing resources typically isolate one aspect (e.g., either public QA or isolated PII) and thus cannot test whether a privacy gate preserves utility while blocking leakage in *mixed* paragraphs. We therefore curate BLENDPRIV to explicitly model this blend.

Domains (breadth). We cover **10** practical domains (e.g., Customer Service, Healthcare, Legal, Education, Finance, Travel, Social Media, E-commerce, Insurance, Workplace). This moves beyond narrow, single-topic settings.

Sentence pools by type. For each domain we generate sentences from two pools: Public and Private (the latter split into Sensitive/Confidential), using type-specific templates for atomic spans (names, dates, IDs, addresses, health conditions, account numbers). Each atomic span is synthetic, license-clean, and non-linkable.

Paragraph composition (control). Documents are *composed* by sampling from the pools to achieve targeted public/private ratios (cf. Table A1), while a lightweight semantic checker enforces topical coherence across sentences. This lets us control (i) per-paragraph label balance, (ii) span-type diversity, and (iii) natural local flow.

Quality gates. We apply fluency and duplication filters (perplexity banding, regex rules), canonicalise spans, and discard items failing coherence checks. All values are synthetic (no real PII). A datasheet with intended use and license is included in the repository.

Takeaway. By decoupling *generation by type* and *composition by ratio*, BLENDPRIV gives robust control over label mix and span realism, which is crucial for evaluating privacy gates in the wild.

Additional corpus-level statistics and domain-wise ratios appear in Tables A1 and A.

B Model & Baseline Details

B.1 Language Models

GPT-4o-mini (o3-mini). A 28B dense transformer released by OpenAI in 2025 with a 64K context window and multi-modal adapters (OpenAI, 2025). We use the INSTRUCT variant at $T=0.2$.

Llama 3.1-70B. Meta’s 70B upgrade to Llama 3, adding rotary-aware 128K context and Mixture-of-Experts routing (AI, 2025b). Checkpoint: Llama-3.1-70B-Instruct.

DeepSeek-V3. A 671B MoE with 37B active parameters per token, trained on 6T tokens and fine-tuned with MLA (AI, 2025a). We query the 37B activated subnet.

Qwen3-235B. Alibaba’s flagship dense model with 235B parameters and dynamic chunk attention (Academy, 2025). We use the A22B instruct tuning.

B.2 Privacy Pipelines

PLAIN RAG

Standard retrieval-augmented generation with no filtering (Lewis et al., 2021).

HYBRID RAG

BM25 + dense fusion (Chen et al., 2017).

HIERARCHICAL RAG

Multi-granular retrieval of document → section → paragraph (Azar et al., 2024).

LDP-RAG

Locally private RAG with entity perturbation (Huang et al., 2024); we use the authors’ implementation with $\epsilon=0.5$.

PARAPHRASE

Parrot paraphraser with “safe” style (Prakhar Krishna and Neelakantan, 2021).

ZEROGEN

Retrieval-free hallucination mask (Lin et al., 2023).

REDACT

Rule-based redaction (HF filters).

TYPED-HOLDER

Structured masking of holder/value pairs

(Feyrer et al., 2023).

VAGUE-GATE

Ours, $\epsilon \in \{1.0, 0.7, 0.5, 0.3, 0.1\}$.

B.3 Metric Definitions

Faithfulness (0–1) and **Answer Relevancy** (0–1) follow RAGAS (Anand et al., 2023). **BLEU-4** (Papineni et al., 2002) and **ROUGE-L** (Lin, 2004) use nltk. The proposed **ILS** and **LLM-Leak** metrics are detailed in §4.6; code is provided in the supplementary ZIP.

B.4 Hyper-parameters

Table A3: Retrieval and generation settings.

Parameter	Value	Notes
top- k docs	8	cosine similarity (Faiss)
chunk size	256 tokens	overlap 50%
generator T	0.2	deep passes use $T=0.7$
max tokens	512	all LLMs
k_{\max}	4	deep rounds (§4.2)

Information About Use of AI Assistants

To comply with the ACL 2023 “Responsible AI Checklist” (Item E1), we report the concrete ways in which automated assistants were employed during this study:

- **Code drafting & review** — We used OpenAI GPT-4o-mini in an IDE plug-in to draft boilerplate for data loaders and evaluation scripts, and to suggest unit-test cases. All Generated snippets were manually verified and, where necessary, Rewritten by the authors.
- **Synthetic data creation** — Small portions of the PRIVRAG benchmark (7 %) were produced via prompt-driven paraphrasing with GPT-4o-mini to balance domain coverage. Each synthetic record was inspected by two authors and corrected for factuality and style.
- **Presentation polish** — Language-editing suggestions (e.g. conciseness, consistent tense) were accepted from Grammarly and GPT-4-Turbo. No passages were taken verbatim. The final manuscript is author-edited.
- **No policy or result decisions** — AI tools were *not* used to select experiments, interpret results, draft claims, or approve conclusions.

All human authors take full responsibility for the accuracy and integrity of the submitted work.

B.5 Full Metric Tables

Table A4 reports the *raw* scores that underlie the aggregate plots in §5.2. We include two complementary views of system quality:

- (a) **Answer Relevancy** (\uparrow) — RAGAS cosine similarity between the model answer and the ground-truth private answer, averaged over the 3 k test questions.
- (b) **Leakage Score** (\downarrow) — ordinal rating returned by our LLM-as-Judge metric (§A4), where 1 indicates no leakage and 5 indicates near-verbatim disclosure.

How to read the table. Rows are grouped first by metric, then by foundation model (OpenAI GPT-4o-mini, Llama 3.1-70B, DeepSeek-V3, Qwen-3-235B). Columns list the nine privacy pipelines evaluated in the main paper. Higher is better for Answer Relevancy; lower is better for Leakage Score. The best value per row is **bold-faced**.

Software Packages and Parameter Settings

Table A5 lists every external package we relied on, together with the exact version, role in the pipeline, key parameters, and an official download link. All packages are installed from pip unless stated otherwise; a reproducible requirements.txt accompanies our code release.

Consistency of Artifact Use With Intended Purpose

External artifacts. All third-party resources—LLMs, retrieval corpora, evaluation benchmarks, and software libraries—were used strictly within the scope licensed or documented by their authors:

- *OpenAI GPT-4o-mini*, *Llama-3 70B*, *DeepSeek-V3*, and *Qwen-3 235B* were accessed via official APIs or model checkpoints under the providers’ research or non-commercial terms. We did not fine-tune, redistribute, or expose model weights.
- Public corpora employed for retrieval (e.g., Wikipedia 2024-05 snapshot) and evaluation datasets (e.g., HOTPOTQA) are released for academic research; we neither redistribute nor re-licensed them.

Artifacts we release. PRIVRAG, our newly-curated benchmark, contains synthetic documents automatically generated from publicly available seed material and *does not* include any personal or proprietary information. We distribute

the dataset, code, and prompt templates under the CC-BY-NC 4.0 licence with an explicit “**research-only, non-commercial**” clause. This is fully compatible with the access restrictions of the sources used to create the dataset and prevents downstream deployments that might contravene the original terms of use.

C Complete Per- ε Results

D Prompt Templates

Table A4: Answer-relevancy (higher is better) and leakage score (lower is better) for four LLMs across nine privacy pipelines.

Metric	Model	Normal	Redact	Zerogen	Typed-Holder	Hybrid	Hier.	LDP	ParaphraseVAGUE	
Answer Rel.	OpenAI	0.793	0.669	0.467	0.672	0.795	0.789	0.778	0.738	0.557
	LLaMA	0.743	0.000	0.433	0.000	0.656	0.740	0.613	0.488	0.341
	DeepSeek	0.773	0.669	0.435	0.585	0.709	0.774	0.751	0.705	0.469
	Qwen	0.772	0.734	0.280	0.718	0.735	0.772	0.743	0.740	0.233
Leakage Score	OpenAI	3.053	2.729	1.713	2.840	3.080	3.055	3.147	2.931	2.278
	LLaMA	3.076	1.192	1.750	1.189	2.968	3.088	2.915	2.496	2.586
	DeepSeek	2.914	2.471	1.747	2.330	2.702	2.933	2.998	2.431	1.943
	Qwen	2.941	2.815	1.717	2.820	2.883	2.925	2.970	2.794	1.586

Table A5: Third-party software employed in this work.

Package	Ver.	Purpose / Settings	URL
SPACY + en_core_web_trf	3.7.2	NER and sentence segmentation; default pipeline; GPU enabled	https://spacy.io
FLAIR (flair/ner-english-ontonotes-large)	0.13	Second NER pass; batch_size=8	https://github.com/flairNLP/flair
NLTK	3.8.1	Fallback tokeniser; BLEU with smoothing method I	https://www.nltk.org
RAPIDFUZZ	3.6.1	String similarity for ILS diagnostics	https://github.com/maxbachmann/RapidFuzz
ROUGE (py-rouge)	1.0.1	ROUGE-L scoring; default stop-word list	https://pypi.org/project/py-rouge/
SACREBLEU	2.4.2	BLEU-4 (-lc -smooth_add1)	https://github.com/mjpost/sacrebleu
RAGAS	0.1.6	Faithfulness / Answer-Relevancy with top_k=5	https://github.com/explodinggradadients/ragas
langchain-openai	0.1.0	LLM wrapper; temperature and context-window control	https://python.langchain.com
openai SDK	1.15.0	Embedding calls; timeout=20 s	https://platform.openai.com

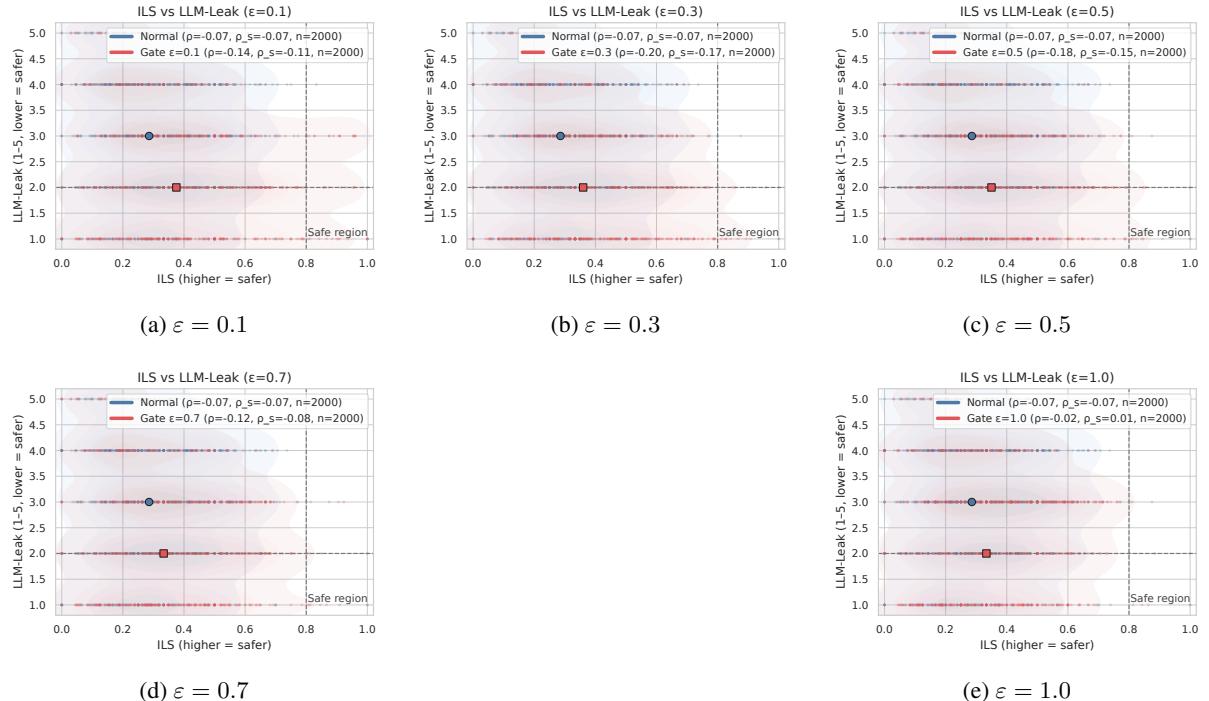


Figure 4: **Joint privacy view at five budgets.** ILS (x; higher=safer) vs. LLM-Leak (y; 1-5, lower=safer) comparing Normal (gray) vs. VAGUE-GATE (color). Density contours, medians, and a hashed safe region ($ILS \geq 0.8$, $LLM-Leak \leq 2$) are overlaid.

Categorisation Prompt (VAGUE-Gate)
You are a privacy gate. Given <code><chunk></code> and a label in {PUBLIC, SENSITIVE, CONFIDENTIAL}, rewrite the chunk so that <ul style="list-style-type: none"> • tokens with utility $<\varepsilon$ are <i>dropped</i> or generalised; • all other content is kept verbatim. Return JSON: <code>{"rewritten": "..."}</code>
Precision-Pass Prompt ($T=0$)
Rewrite the following text with <i>vagueness</i> $\varepsilon = < X >$. Drop or generalise private details, keep public content intact. <code><chunk></code> Output (JSON only): <code>{"rewritten": "..."}</code>
Deep-Obfuscation Prompt ($T=0.7$)
Make the passage <i>still vaguer</i> . Keep meaning, re-phrase nouns, swap clause order, remove superfluous dates. <code><current_version></code>
Paraphrase Prompt
Given the context, extract <i>essential</i> parts verbatim; delete the rest. Context: <code><<{input_context}>></code> Extracted relevant parts:
ZeroGen Prompt
The context is: <code>{orig_context}</code> . <code>{extracted_entities}</code> is the answer to: Generate 10 question-answer pairs in the form question: ... answer: ...
AttrPrompt (Attribute Discovery)
“What are the five most important <i>attributes</i> for generating medical Q&A data?” List them, then propose three sub-topics for each.
SAGE Phase 1 Prompt
Summarise key points of the Doctor–Patient conversation below. Return exactly the five attributes for the Patient and five for the Doctor in the provided schema. <code><< conversation >></code>
SAGE Phase 2 Prompt
Using the attribute list: <code><< attributes >></code> Generate a <i>single-round</i> patient question and doctor reply that cover <i>all</i> attributes. Do not produce extra dialogue.
LDP-RAG Entity-Perturb Prompt
Locate PERSON, ORG, LOC, DATE, etc. Apply $\varepsilon=0.5$ randomised response per entity. Return perturbed text only.
Redact (Rule-based)
Regex-replace every detected private entity with “ <code>IIIIII</code> ”.
Typed-Holder
Replace entities by their coarse type token (e.g. PERSON, DATE, MONEY).

Figure 5: **Prompt templates and sources.** Sources for the baseline prompts in this figure are: **Paraphrase Prompt** (Prakhar Krishna and Neelakantan, 2021), **ZeroGen Prompt** (Lin et al., 2023), **AttrPrompt (Attribute Discovery)** (Yu et al., 2024), **SAGE Phase 1 Prompt** (Zeng et al., 2024b), **LDP-RAG Entity-Perturb Prompt** (Huang et al., 2024), and **Typed-Holder** (Feyrer et al., 2023).