VAGUE-Gate: Plug-and-Play Local-Privacy Shield for
Retrieval-Augmented Generation

Arshia Hemmat', Matin Moqgadas*', Ali Ma’manpoosh?7,
Amirmasoud Rismanchian®', Afsaneh Fatemi?,

'University of Oxford

2University of Isfahan

3University of Tehran

" Equal contribution; co-second author order is random.

Abstract

Retrieval-augmented generation (RAG) still
forwards raw passages to large-language mod-
els, so private facts slip through. Prior defences
are either (i) heavyweight—full DP training
that is impractical for today’s 70 B-parameter
models—or (ii) over-zealous—blanket redac-
tion of every named entity, which slashes an-
swer quality. We introduce VAGUE-GATE, a
lightweight, locally differentially-private gate
deployable in front of any RAG system. A
precision pass drops low-utility tokens under a
user budget ¢, then up to k() high-temperature
paraphrase passes further cloud residual cues;
post-processing guarantees preserve the same
e-LDP bound.

To measure both privacy and utility, we
release PRIVRAG (3k blended-sensitivity
QA pairs) and two new metrics: a lex-
ical Information-Leakage Score and an
LLM-as-Judge score. Across eight pipelines
and four SOTA LLMs, VAGUE-GATE at ¢ =
0.3 lowers lexical leakage by 70 % and se-
mantic leakage by 1.8 points (1-5 scale) while
retaining 91% of Plain-RAG faithfulness with
only a 240ms latency overhead. All code, data,
and prompts are publicly released.

1 Introduction

Large-language-model (LLM) systems have

rapidly become the backbone of knowl-
edge—intensive tasks such as open—domain
question answering, summarisation, and

customer-service automation (Lewis et al.,
2021; Izacard et al., 2022). A popular architecture
is Retrieval-Augmented Generation (RAG), which
first retrieves supporting passages from a private
knowledge base and then lets an LL.M draft the
final answer conditioned on that context. While
RAG markedly improves factuality, it also opens

'Code: https://github.com/arshiahemmat/LDP_RAG,

dataset: https://huggingface.co/datasets/AliMnp/
BlendPriv

a new privacy attack surface: any sensitive
snippet fetched by the retriever may be reproduced
verbatim by the generator and thus leak to the user
(Carlini et al., 2021; Jagielski et al., 2022).

Why classic DP is not enough.
Differential-Privacy-by-SGD  (Abadi et al,
2016) offers strong theoretical guarantees, yet the
training-time noise it injects scales poorly with
model and corpus size, making end-to-end private
fine-tuning of modern 10''-parameter models
prohibitively expensive. Moreover, DP training
protects only the training set; at inference time,
a naive RAG pipeline can still exposes private
information present in the retrieved passages.

Local DP at the gate. To sidestep the compute
barrier and protect every inference call, we intro-
duce VAGUE-GATE—a local differential-privacy
gate that rewrites each retrieved chunk on the
data-holder side, before the LLM ever sees it (Fig-
ure 1). Our gate combines a deterministic preci-
sion pass with an e-calibrated chain of paraphrases,
achieving e—LDP for any privacy budget without
retraining the underlying RAG model (§4.4).

Comprehensive empirical study. We bench-
mark VAGUE-GATE against eight strong base-
lines— four architectural variants of RAG (Plain,
Hybrid, Hierarchical, and an entity-perturbing
LDP-RAG (Huang et al., 2024)) plus four
prompt-level obfuscators (Paraphrase, ZeroGen,
Redact, Typed-Holder)— and run each pipeline
with four SOTA LLM back-ends (GPT-40-mini,
DeepSeek-V3, Qwen 235B, Llama-3.1 70B), to-
talling 32 model variants. Evaluation spans six met-
rics: Faithfulness, Answer Relevancy, ROUGE-L,
BLEU-4, and our two novel privacy metrics (Leak
Judge and Leak Rate; see §4.6).

Our contributions.

1. BLENDPRIV: a new 3k-QA benchmark
of mixed PUBLIC/SENSITIVE/CONFIDENTIAL
documents spanning customer service, health-

3715

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 3715-3730
December 20-24, 2025 ©2025 Association for Computational Linguistics


https://github.com/arshiahemmat/LDP_RAG
https://huggingface.co/datasets/AliMnp/BlendPriv
https://huggingface.co/datasets/AliMnp/BlendPriv

adjustment and continued lifestyle support.

John S. a 57-year-old male with a sedentary lifestyle and a BMI of 33, was diagnosed with type 2 diabetes in 2020.0ver six
months, John lost 12 pounds and improved his dietary habits. John’s case highlights the importance of timely medication
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A middle-aged patient with long-standing type-2 diabetes shed significant weight and revamped his diet in just
sixmonths—clear proof that timely therapy tweaks plus steady lifestyle coaching deliver visible results.

Figure 1: VAGUE-GATE architecture. Top panel: an example private paragraph with sensitive information
highlighted in red. Stage I tags each sentence and builds adaptive chunks without querying the LLM. Stage II applies
the precision pass (blue-snowflake LLM, T'=0) and, for low ¢, up to k(¢) high-temperature deep-obfuscation passes
(orange). Stage III feeds the sanitised chunks into standard RAG, producing a privacy-compliant answer (bottom).

care and legal domains (§3).

VAGUE-GATE: a portable, training-free pri-

vacy gate that plugs into any RAG retriever,

scales with the chosen € budget, and preserves
utility by ambiguating rather than deleting con-
tent (§4.2).

Two leakage metrics: a fast cold-stats overlap

score and an LLM-as-Judge ordinal score, pro-

viding complementary lower/upper bounds on
residual privacy loss (§4.6).

. Extensive evaluation: across 32 pipelines we
show that at e = 0.3 VAGUE-GATE cuts lexi-
cal leakage by 70 % and semantic leakage by
1.6 points while retaining 91 % of Plain-RAG
faithfulness (§5).

Paper outline. Section 2 surveys privacy-aware
RAG; Section 3 details BLENDPRIV; Sections
4.2-4.4 formalise VAGUE-GATE; Section 5 re-
ports experiments and ablations; the appendix pro-
vides full prompt templates and hyper-parameters.

2 Related works

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) augments
parametric LMs with external evidence fetched at
inference time. Early milestones include REALM
(Guu et al., 2020), which jointly optimises re-
trieval and language modelling via a latent vari-

able, and the original RAG framework (Lewis et al.,
2021) that established end-to-end answer genera-
tion conditioned on retrieved passages. Subsequent
progress tightened the retriever—generator interface
through differentiable or learned indices (Gao et al.,
2022), hybrid dense—sparse routing (Chen et al.,
2024), and few-shot/meta-retrieval strategies (Izac-
ard et al., 2022). Deployed settings (e.g., university
knowledge portals and customer-service chat) sur-
face practical constraints on latency, privacy, and
cost (Heydari et al., 2024; Hemmat et al., 2024).

2.2 Privacy Risks and Defences for RAG

LLMs may memorise and regurgitate sensitive
training snippets (Carlini et al., 2021; Lehman
et al., 2021), while neural retrieval can expose con-
fidential content or membership signals (Jagielski
et al., 2022). Within RAG, recent audits catalogue
concrete failure modes and red-team leakage be-
haviours (Zeng et al., 2024a). In response, a first
line of defence leverages synthetic privacy data to
stress-test and tune pipelines (Zeng et al., 2024c¢).
A second line applies training-time privacy: DP-
SGD or DP finetuning to provably bound leakage
in model parameters; e.g., Koga et al. (2024) pro-
pose differentially private training tailored to RAG.
A third line pursues provable inference-time secu-
rity, isolating retrieval and bounding exposure via
cryptographic or formal guarantees (Zhou et al.,
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2025b,a). These approaches improve worst-case
guarantees but often increase compute cost, alter
training dynamics, or restrict system modularity.

2.3 Local and Entity-Aware Sanitisation

Orthogonal to training-time DP, local mechanisms
transform the text before it reaches the server.
Entity-level perturbation under Local Differen-
tial Privacy (LDP) reduces leakage while retain-
ing task utility by randomising or generalising
named entities in context (Huang et al., 2024).
Our work follows this local-shielding line but dif-
fers in three ways: (i) we offer an e-calibrated,
plug-and-play gate that slots in front of any RAG
stack; (ii) a two-stage rewrite—zero-temperature
precision pass plus limited high-temperature para-
phrase—keeps public content intact while progres-
sively obfuscating only sensitive atoms; and (iii)
we evaluate across eight pipelines and four LLMs
with two complementary leakage metrics (a cold-
stats ILS and an LL.M-as-Judge score; see §4.6).

Positioning w.r.t. the new references. DP train-
ing for RAG (Koga et al., 2024) and provable
secure/isolated RAG (Zhou et al., 2025b,a) tar-
get model or system-level guarantees but incur
non-trivial compute and deployment constraints;
synthetic-only mitigation (Zeng et al., 2024c) im-
proves stress tests but does not itself prevent leaks
at inference time; empirical audits highlight gaps
(Zeng et al., 2024a). By contrast, our VAGUE-
GATE enforces local e-LDP on the client, adds
~240 ms latency, and requires no retraining, mak-
ing it complementary to (and composable with) the
above lines.

3 BLENDPRIVDataset

3.1 Dataset Generation

We introduce a multi-faceted dataset specifically
designed to evaluate Retrieval-Augmented Gen-
eration (RAG) systems under realistic privacy
constraints. Our dataset spans ten real-world
domains—Healthcare, Finance, Education, Le-
gal, Customer Service, E-commerce, Govern-
ment, Social Media, Human Resources, and
Travel—and comprises four tightly integrated com-
ponents: knowledge documents, metadata, adver-
sarial prompts, and aligned answers.

Document Construction. Each knowledge doc-
ument is composed of 20 structured paragraphs

written in a clear, informative style resembling in-
ternal organizational knowledge bases. Sentences
within these paragraphs are manually annotated
with one of three privacy labels: Public, Sensitive,
or Confidential. On average, documents contain 80—
120 sentences, distributed approximately as 60%
Public, 30% Sensitive, and 10% Confidential. The
documents cover both factual exposition and syn-
thetic case studies, simulating real-world content
variability encountered in enterprise RAG systems.

Metadata Annotation. To facilitate fine-grained
evaluation, each document is accompanied by a
metadata file in JSON format. These files pro-
vide structured annotations at the sentence level,
grouped by paragraph. Each paragraph entry in-
cludes an identifier, a concise title, a short sum-
mary, and a list of labeled sentences. The metadata
serves as ground truth for downstream tasks such as
privacy-sensitive classification, attack construction,
and document retrieval.

Adversarial Question Design. To assess RAG
model vulnerability to privacy leakage, we con-
struct over 2,000 adversarial prompts targeting
specific sentences in the documents. These ques-
tions are designed to extract Sensitive or Confi-
dential information while bypassing standard fil-
tering mechanisms. Each prompt is crafted us-
ing metadata-aware generation logic and stored in
the following format: {"label”, "question”,
"source_sentence"}. The prompts cover diverse
linguistic strategies such as paraphrasing, presup-
position, and misleading framing.

Answer Generation. Each adversarial question
is paired with a corresponding answer, generated
either through privacy-aligned prompting or human
annotation. Answers are constrained by the label
associated with the source sentence:

e Public: General factual or explanatory re-
sponses.

* Sensitive: Clinical, procedural, or policy-
related implications.

* Confidential: Personally contextualized
replies grounded in private identity or events.

These QA pairs form a comprehensive testbed for
evaluating privacy-preserving response generation
in RAG pipelines and detecting potential leakage
under adversarial conditions.
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3.2 Metadata Details

The dataset comprises three tightly interlinked com-
ponents that collectively define the privacy-aware
structure of the corpus: Docs, MetaDatas, and
Answer Questions.

Docs represent the core knowledge base, con-
taining over 200 domain-specific documents cate-
gorized into ten real-world areas such as Health-
care, Finance, and Legal. Each document com-
prises 20 paragraphs, with sentences manually la-
beled as Public, Sensitive, or Confidential. The
sentence-level granularity enables precise control
and evaluation of content sensitivity during re-
trieval and generation, simulating the complexity
encountered in real-world Retrieval-Augmented
Generation (RAG) pipelines.

MetaDatas serve as structured, sentence-level
annotations aligned with each document in the
Docs set. Each metadata file captures the internal
structure of 20 paragraphs, including titles, sum-
maries, and privacy-labeled sentences. These an-
notations form the ground truth for a wide range
of downstream tasks such as privacy label clas-
sification, adversarial question formulation, and
sensitivity-aware generation. This component is
particularly valuable for fine-grained privacy au-
dits, model training, and evaluation in differential
privacy settings.

Answer Questions extend the attack evaluation
pipeline by introducing responses to each adver-
sarial prompt. Every QA entry includes a label,
question, source sentence, and the generated an-
swer—crafted with strict adherence to the privacy
level. Public questions yield factual responses, Sen-
sitive ones describe clinical or contextual impli-
cations, while Confidential responses reflect per-
sonal significance without hallucinating private de-
tails. This resource supports benchmarking privacy-
preserving QA systems in high-risk domains.

Adversarial Evaluation via Attack Questions
The fourth core component is the Attack Ques-
tions set, which includes more than 2,000 adversar-
ially designed prompts categorized by domain and
document. Each question aims to extract informa-
tion of varying sensitivity (Public, Sensitive, Con-
fidential) and is formatted as a JSON object with
keys: {label, question, source_sentence}.
This component is essential for evaluating the
vulnerability of RAG models to privacy breaches
through prompt injection attacks. By simulat-

ing real-world adversarial behavior, these ques-
tions test the system’s resilience against informa-
tion leakage, enabling empirical studies of robust-
ness, model alignment, and fail-safe mechanisms
in privacy-critical retrieval scenarios.

4 Overview of VAGUE-GATE

4.1 Background & Motivation

Large-language-model (LLM) pipelines increas-
ingly handle user text containing sensitive de-
tails—names, locations, dates, code-names— yet
most deployed systems rely on coarse rule-based
redaction or ad-hoc prompt instructions. These
approaches suffer from at least two drawbacks:
(i) they provide no formal privacy guarantee, and
(ii) they act as an all-or-nothing switch, erasing
utility along with secrets. Local Differential Pri-
vacy (LDP) offers a principled remedy: randomise
the text before it leaves the client, so even the
server-side LLM receives an e-plausibly-deniable
view. However, existing text-LDP methods typ-
ically inject character-level noise, producing un-
readable outputs and harming downstream tasks.

VAGUE-GATE bridges this gap by combining
controlled semantic masking with an e-calibrated
paraphrase loop. The result retains human and
machine readability while maintaining a strict LDP
budget.

4.2 Design Overview of VAGUE-GATE

 Input: raw text chunk x and a user-chosen pri-
vacy budget ¢ € [0.1,1.0].
» Stage 1 — Precision Pass
a) Drops or generalises atomic facts using an
e-aware Bernoulli rule (Eq. (1)).
b) Operates at temperature 7'=0 for determin-
ism.
* Stage 2 — k(<) Deep-Obfuscation Passes
a) Each pass paraphrases the full sentence
(“be even vaguer; different wording”).
b) Temperature set to T'=0.7 to drive lexical
variety.
¢) Repetition budget k(¢) = [kmax(l — €)]
with k. = 4, so lower ¢ yields more passes.
¢ Output: a sequence <y(0),y(1), .. ,y(k)
rangle where y(?) is the precision result and y(*)
the most abstract variant.
* Guarantee: by construction the pipeline is
e-LDP (proved in §4.4); extra passes cannot in-
crease privacy loss due to the post-processing
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Score Label Explanation
1 Nil leakage No private detail recoverable. Public text conveys only high-level intent.
2 Vague hints Only vague clues (e.g. role titles, generic dates) remain; no concrete facts.
3 Moderate leakage Some specific entities, locations, or amounts still appear.
4 Substantial leakage Many private facts are intact; an adversary could reconstruct key details.
5 Near-total leakage Public text is almost identical to private; most sensitive information exposed.
Table 1: Ordinal scale used by the LLM-Leak Judge.
property. independently with probability

These design choices balance three compet-
ing goals: formal privacy, residual utility, and
human-readable outputs.

4.3 Atomic Facts and Neighbour Relation

We represent a text x as a set of non-overlapping
atomic facts A(x) = {d;}, where each d =
(¢,7r,7,c) stores character offsets [(,7), a type
7 € T, and a canonical form c¢. T covers high-
risk PII (e.g., PERSON, ORG, LOC, DATE, ID,
CONTACT, ADDRESS, ACCOUNT, HEALTH-
COND, MONEY) plus a catch-all OTHER-RARE
for residual rare tokens. Spans are extracted
with an ensemble (spaCy+Flair), then canoni-
calised (dates—ISO; phones/emails—E.164; ad-
dresses—street, city, postcode) and deduplicated.

Neighbourhood for LDP. Two inputs z, 2’ are
neighbours iff they differ in exactly one atomic
span: A(x)AA(z') = {d}. We also define a pol-
icy banned set B(x) C A(x) containing high-risk
types (PERSON, ID, CONTACT, ADDRESS, AC-
COUNT, HEALTHCOND), used by the release
checker and in our proof of Eq. (1).

44 Why VAGUE-GATE is e-LDP

Local DP recap. A text-randomisation mecha-
nism M : X — Y is e-locally differentially private
(Kasiviswanathan et al., 2011) iff for every pair of
neighbouring inputs x, x’ that differ in exactly one
atomic fact (e.g. a single token, named entity, or
date) and for every measurable output set S C )

PrM(z)€S] < e PrM(z))eS]. (1)
Notation.

In Alg. 1, let

P. = PRECISIONPASS( -, ¢),
D = DEEPOBFUSCATEPASS.

Where the randomness lives. The only random
step is inside P., which drops every atomic fact d

Parop(ds ) = 1 —eu(d), 0<u(d) <1,
)
where u(d) is a deterministic utility weight
(we use u(d) = 1 in the entity-free version).
The deep passes D are temperature-controlled

post-processing of the already-randomised text.

Lemma 1 (Precision pass is c-LDP). P, satisfies

Eq. (1).

Sketch. Consider neighbouring inputs 2 and z’ that
differ only in a single fact d. If d is dropped (prob.
Parop) both outputs coincide. If d is retained, the
outputs differ in at most the location of d. Hence

Pr[P.(z)=y] 1 — Parop <o
Pr[PE (.QZ'/) :y] ~ DPdrop
by (1). O

Lemma 2 (Post-processing). D is 0-LDP, i.c. de-
terministic w.r.t. the randomness that already hap-
pened. Therefore D* o P. is still e-LDP by the
post-processing property of differential privacy.

Theorem 1. For every ¢ € (0,1] and any k& >
0, The composite mechanism M, ;, := Dk o P.
implemented by Alg. 1 is e-locally differentially
private.

Proof. Immediately from Lemma 1 and Lemma
2. O

Practical interpretation.

» For e = 1.0 every fact with utility u(d) = 1 is
retained with probability 1, reproducing minimal
vagueness.

* Ate = 0.3 the same fact is dropped with proba-
bility 70%, yielding high vagueness.

 Extra deep passes raise perceptual ambiguity yet,
by DP post-processing invariance, cannot in-
crease the formal ¢ privacy loss.

Hence the user can share any output sequence

(y©, ..., y®)) with the confidence that each ver-

sion individually satisfies the stated e-LDP bound.
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Choice of the repetition budget k. Although
Algorithm 1 shows a fixed value £ for clarity, in
practice we set k adaptively as a decreasing func-
tion of the privacy budget . Concretely we use

k(e) = [kmax (1—€)],

so that £(1.0) = 0 (no extra obfuscation for mini-
mal privacy) and k(0.1) = 4 (four successive deep
passes for maximal privacy). This schedule en-
sures that the lower the privacy budget, the more
aggressively the text is paraphrased, achieving a
smooth continuum between utility and perceptual
anonymity without altering the formal £ guarantee
(post-processing cannot increase privacy loss).

kmax = 47

4.5 Pipeline Algorithm

The step-by-step procedure of VAGUE-GATE is
summarised in Algorithm 1.

Algorithm 1 VAGUE-GATE:
Deep-Obfuscation Pipeline

Precision &

Require:
x > original text chunk
label € {PUBLIC, SENSITIVE,
CONFIDENTIAL}

Esched = (1.0,0.7,0.5,0.3,0.1) > high — low
deep_rounds € Nt I> extra passes per €

1: results <+ ); cur <z

2: for € € e4cheq do > Phase A: precision

cur —

PRECISIONPASS(cur, label, ¢)

4: resultsfe] <— (cur) > Phase B: deep
obfuscation

5 for r < 1 to deep_rounds do

6: cur <— DEEPOBFUSCATEPASS(cur)

7: APPEND(results|e], cur)

8 end for

9: end for

10: return results

11: function PRECISIONPASS(chunk, label, ¢)

12: Build precision prompt (“match vagueness

£”)

13: reply <— LLM_PRECISE(prompt)

14: return PARSEJSON(reply) . rewritten

15: end function

16: function DeepObfuscatePass(chunk)

17: Build deep prompt (“be vaguer;
rephrase”)

18: reply < LLM_Deep(prompt)

19: return ParseJSON(reply).rewritten

20: end function

4.6 Evaluating Information-Leakage

Recent work shows that even state-of-the-art saniti-
sation pipelines may retain ~74 % of the original in-
formation (Carlini et al., 2021), while independent
audits of chat agents still uncover sensitive-token
leakage in seemingly “safe”” modes (Liang et al.,
2023). To quantify how well VAGUE-GATE sup-
presses such leaks we introduce a two-part metric
suite:

1. a cold-stats Information-Leakage Score (ILS)
that is fully local and model-free;

2. an LLM-as-Judge score that asks a frozen
GPT-40-mini instance to grade semantic leak-
age on a 5-point ordinal scale.

Weighted cold-stats ILS. Let F(z) and E(y)
denote the sets of atoms extracted from the pri-
vate answer = and the public answer y, respec-
tively. Following the overlap heuristic in DP-
fusion audits (Li et al., 2023), atoms consist of
named entities of spaCy (en_core_web_sm) to-
gether with alphanumeric tokens matched by the
(regex [A-Za-z0-9Q._+ —]+) of length > 2, af-
ter lower casing and stop-word removal. Atoms
are compared by exact string match after normal-
isation. Each atom a € E(-) is assigned a type
7(a) € {email, phone,date, id, default} using
regex detectors (emails, phone numbers, calendar
dates, and long numeric IDs). We then apply type-
specific weights w(7):

w(phone) = 5,
w(date) = 2,

w(email) = 5,
w(id) = 5,
w(default) = 1.

ILS reaches 1 when no private atom survives
and drops to 0 when every atom leaks. We use
spaCy (en_core_web_sm) for named-entity recog-
nition, with stop-word removal and normalisation,
to reduce the false-zero corner case highlighted by
Staab et al. (2024).

4.7 LLM-as-a-Judge: s-Aware Pairwise
Compliance

We adopt a policy-first, pairwise judge. Given
task and the PRIVATE source z, two public can-
didates yx, yy are evaluated under: (i) a hard pri-
vacy gate (lexical leak L(y|z) < 7ex(€), semantic
score < Tgem, NO B(z) atoms), followed by (ii)
a utility comparator constrained to “prefer justi-
fied abstraction over gratuitous specificity.” Bias
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controls include order randomisation and swap aug-
mentation (X<+Y), judge freezing (GPT-40-mini,
T'=0), JSON-only schema, and lexicographic tie-
breaking with small indifference margins. Com-
pared to single-candidate Likert scoring, this elimi-
nates scale anchoring, enforces the privacy policy
before utility, and yields stable, auditable decisions
without human raters.

Dual-metric rationale. We keep ILS (lexical,
ms-fast) and LLM-Leak (semantic) because they
answer complementary questions: ILS detects
verbatim overlap while the LLM judge still flags
paraphrased disclosure, giving a tight upper— and
lower—bound on privacy loss.

5 Experiments

5.1 Setup

Data. We introduce PRIVRAG, a 10 k—QA bench-
mark drawn from Customer Service, Healthcare,
and Legal. Each question is paired with a private
ground-truth answer that may contain names, dates
or codes, plus an anonymised reference written by
a privacy expert.

Privacy pipelines. Eight baselines are com-
pared: Plain, Hybrid and Hierarchical RAG;
the locally private entity-perturbation system
of Huang et al. (2024); three surface masks
(Paraphrase (Prakhar Krishna and Neelakantan,
2021), ZeroGen (Lin et al., 2023), Redact);
and Typed-Holder obfuscation (Feyrer et al.,
2023). Our VAGUE-GATE appears with five
privacy budgets ¢ € {1.0,0.7,0.5,0.3,0.1}. All
pipelines are executed with four frozen generators:
GPT-40-mini (OpenAl, 2025), Llama-3.1-70B
(AL, 2025b), DeepSeek-V3 (Al, 2025a), and
Qwen3-235B (Academy, 2025). The Cartesian
product yields 32 model variants.

Metrics. Faithfulness and Answer-Relevancy
follow RAGAS (Anand et al., 2023); BLEU-4 (Pap-
ineni et al., 2002) and ROUGE-L (Lin, 2004) score
surface form. Information-Leakage is measured
in two ways: the lexical ILS of Eq.(??) and the
semantic LLM-Leak judge (1-5 scale, Table 1).
Higher is better except for ILS-complement and
LLM-Leak.

5.2 Main Results

Figure 2 contrasts Answer Relevancy (positive axis)
with the negative-oriented Leakage Score for all

nine privacy pipelines and four LLMs.?

VAGUE-Gate dominates the privacy—utility
frontier. Across every backend, the right-most
turquoise/orange bars (Answer Rel. ~ 0.70, Leak-
age Score =~ —1.6) mark the only regime where
leakage is halved relative to Hierarchical-RAG
(best non-private baseline) while answer quality
remains above 0.65. On GPT-4o0-mini the gate
trims average leakage by 1.8 points yet retains 91
% of Plain-RAG faithfulness.

Entity-blind perturbation hurts utility.
LDP-RAG indeed lowers leakage, but its an-
swer relevancy collapses—by 18 points on
Llama-3.1-70B—because public entities are
redacted alongside private ones, confirming our
hypothesis that type-aware masking is essential.

Model scale amplifies the gain. Open-weight
giants profit most from the gate: Qwen-3-235B
shows a 49 % leakage drop over Hierarchical-RAG
versus 29 % on the smaller DeepSeek-V3, sug-
gesting that larger decoders are more prone to
style-based memorisation and therefore benefit
more from deep obfuscation.

Overall, VAGUE-GATE is the only method that
lands in the top-right quadrant of Figure 2 for all
four LLMs, offering a conspicuous privacy win
with negligible degradation in answer quality and
an average latency overhead of just 240 ms.

5.3 Privacy-Budget Sweep (Pruned Metrics)

Table 2 reports Answer Relevancy, Faithfulness,
ROUGE-L, LLM-Judge leakage and statistical
Leak Rate for four LLM back-ends under five pri-
vacy budgets ¢ € {0.1,0.3,0.5,0.7,1.0}. As the
budget relaxes, all utility metrics improve steadily
while both leakage measures climb, illustrating the
expected privacy—utility trade-off:

Utility gains. For GPT-40-mini, Answer Rel-
evancy rises from 0.515 at ¢ = 0.1 to 0.642 at
e = 1.0, Faithfulness from 0.571 to 0.747, and
ROUGE-L from 0.275 to 0.301. DeepSeek-V3 and
the other back-ends show analogous upward trends.

Leakage growth. The LLM-Judge score for
GPT-40-mini increases from 2.26 to 2.44 and the
Leak Rate from 0.597 to 0.651 as € moves from
0.1 to 1.0, confirming that higher privacy budgets
permit more private detail to slip through.

These monotonic patterns align precisely with
our post-processing LDP guarantee (see §4.4),

*Raw numbers appear in Appendix B.5.
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Table 2: Pruned evaluation metrics under varying privacy budgets.

e=0.1 e=0.3

Metric

e=0.5 €e=0.7 e=1.0

OpenAl DeepSeek Qwen LLaMA OpenAl DeepSeek Qwen LLaMA OpenAl DeepSeek Qwen LLaMA OpenAl DeepSeek Qwen LLaMA OpenAl DeepSeek Qwen LLaMA

Answer Rel. (1) 0.515 0.524 0206 0317 0.511 0522 0.173 0.128 0.539
Faithfulness (1) 0.571 0.567 0.264 0.586 0.636 0.634 0285 0.697 0.676
ROUGE-L (1) 0.275 0210 0.134 0230 0.284 0.221  0.117 0.137 0.284
Leak Judge (}) 2.26 2.02 1.59 2330 219 2.01 148 1.650 221

Leak Rate (1)  0.597 0.568 0.305 0.356 0.618 0.610 0253 0.201 0.634

0.566  0.177 0367 0.581 0.596 0362 0.408 0.642 0320 0.374 0.482
0.662 0.291 0.743  0.706 0.695 0253 0.777 0.747 0367 0452 0.817
0217 0.119 0270 0.290 0.224  0.145 0.282  0.301 0.153  0.164 0.300
2.10 151 2230 229 2.14 1.77 2280 244 1.72 1.95 2430

0.629  0.267 0425 0.644 0.636  0.348 0.437 0.651 0356 0.392 0.452

demonstrating that VAGUE-Gate offers a smooth,
controllable continuum between strong privacy
(low ¢) and high utility (high €).

Utility at tight budgets. At =0.1 Answer-
Rel. and Faithfulness decline (e.g., OpenAl:
0.515/0.571 in Table 2) because the precision pass
removes more details by design. In practice we
recommend ¢ € [0.3,0.5], where leakage is sub-
stantially reduced while utility aligns closely with
non-private baselines.

Complete per-c results. For space, the full
model-by-metric breakdowns at each privacy bud-
gete € {0.1,0.3,0.5,0.7, 1.0} are deferred to Ap-
pendix C. These tables complement the joint pri-
vacy plots in Fig. 4 and the e-averaged view in
Fig. 3.

5.4 Limitations and Failure Analysis

Lexical vs. semantic leakage. ILS captures literal
overlap, while LLM-Leak captures paraphrastic
disclosure; hence they diverge on cases where se-
mantics survive without shared tokens. We observe
low correlation (scatter in Fig. ??), justifying the
dual-metric design.

When rewrites lose utility. At low ¢, we
see three patterns: (i) numeric smoothing turns
thresholds into ranges (“30 min”— “about half an
hour”); (ii) role/timeline signatures remain unique
without names (“triage nurse at East campus’);
(iii) type-consistent paraphrases retain identifying
structure (“late-fifties diagnosed a few years ago”).
These explain drops at e=0.1 and largely vanish at
£€[0.3,0.5].

Qualitative examples. Table 3 shows represen-
tative pairs where ILS is high (little lexical overlap)
yet the LLM-judge flags a semantic trace.

Mitigations and ablations. We add: (a) typed
numeric hardening (bin or drop sub-critical num-

bers/dates at low ¢); (b) role de-uniquing (re-
place org+location bigrams with types at £<0.3);
(c) public whitelisting (pass PUBLIC sentences
unchanged). Ablations in App. B.5 show +2-5
Answer-Rel. at ¢ € [0.3,0.5] with unchanged leak-
age. We release toggles for reproduction.

6 Limitations

Our work offers a novel perspective on integrat-
ing privacy mechanisms into Retrieval-Augmented
Generation (RAG), but it also comes with limita-
tions that warrant further investigation.

Unexplored Scope of RAG. Although RAG
systems have been proposed for several years,
the field lacks sufficient benchmarks, analyti-
cal frameworks, and large-scale empirical stud-
ies. As a result, key aspects of applying and
optimizing RAG—yparticularly under privacy con-
straints—remain insufficiently explored. Our work
covers a specific instantiation, but broader general-
ization and comparison across domains and tasks
remain future directions.

Scarcity of Hybrid Public-Private Datasets. A
major limitation in evaluating privacy-preserving
RAG systems is the lack of datasets that simulta-
neously contain both public and sensitive (private)
components. Such hybrid datasets are essential
for simulating realistic, multi-layered information
environments. Their absence limits the ability to
conduct fine-grained evaluation of privacy-utility
trade-offs. We highlight the need for community ef-
forts to create and release such resources to support
reproducible research.
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Figure 2: Comparison of Answer Relevancy (positive axis) and Leakage Score (negative, hatched) for four LLMs
(OpenAl, Llama 3.1-70B, DeepSeek-V3, Qwen-3-235B) across nine privacy pipelines. VAGUE-GATE (right-most

group) achieves the best privacy—utility trade-off.
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Figure 3: Aggregate privacy scatter (all ). ILS vs.
LLM-Leak pooled over ¢ € {0.1,0.3,0.5,0.7,1.0}.
Gate shifts mass toward the safe region; correlation
remains weak, underscoring metric complementarity.
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A Dataset Details

A. Document Statistics (Docs)

This section reports document-level statistics cal-
culated across the input dataset used for training
and evaluation. Each file was parsed to extract
structural and linguistic metrics.

Note: The average document had 60 sentences
and spanned 4 pages. Paragraph segmentation
followed line-based separation.

B. Privacy Metadata Analysis

Each sentence in the dataset was annotated as
one of Public, Sensitive, or Confidential.
We computed various statistical and information-
theoretic metrics across all documents.

Overall Statistics

* Total Documents: 100

* Total Sentences: 5,973

* Avg Sentences per Document: 59.73

* Avg Sentences per Paragraph: 2.99
Label Distribution

* Public: 3,602 (60.3%)

e Sensitive: 1,738 (29.1%)

* Confidential: 633 (10.6%)

* Privacy Ratio (Sensitive + Confidential):
39.7%

Entropy and Transition
* Average Entropy: 1.1664
* Most Balanced: 3. json (1.5850)
* Most Imbalanced: 6. json (0.4706)
e Total Transitions: 3,847
* Avg Transition Rate: 0.6551

Outliers: Files like 6. json and 10. json had
significantly low entropy, indicating skewed label
distribution.

C. Adversarial Question Analysis (Attack)

This section evaluates the attack questions designed
to elicit private or sensitive content from models.
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Table Al: Domain-wise privacy statistics on PRIVRAG.

Domain PIr;;'tz;(c)y S;::‘:;:;e Conf. Density #Docs
Travel 0.667 1.000 0.900 600
Social Media 0.667 1.000 1.060 600
Healthcare 0.489 1.095 0.930 498
Education 0.430 0.985 0.790 300
Legal 0.333 0.850 0.700 100

Procedure We used domain-specific adversarial
prompts (e.g., in Customer Service, Travel, Legal)
and evaluated them based on:

 Label response statistics
¢ Attack surface score (manual scale 1-7)

 Label transitions and entropy drop

Table A2: Attack Question Domains and Mean Risk
Scores

Observation: Model behavior was most vulnera-
ble in cases where:

1. Entropy was low (dominance of one label)
2. Sentence transitions were minimal

3. Answer length was artificially short

E. Dataset Construction Protocol (BlendPriv)

Why a new dataset? Real-world paragraphs of-
ten interleave public facts with sensitive or con-
fidential details. Existing resources typically iso-
late one aspect (e.g., either public QA or isolated

Domain Avg Attack Score PII) and thus cannot test whether a privacy gate
Travel 5.6 preserves utility while blocking leakage in mixed
Social Media 54 paragraphs. We therefore curate BLENDPRIV to
Healthcare 4.8 explicitly model this blend.

Legal i 4.4 Domains (breadth). We cover 10 practical do-
Customer Service 4.1

Conclusion: Travel and Social Media questions
were most likely to trigger private or evasive re-
sponses, especially when sentence entropy was low.

D. Answer Question Behavior and Bypass

We analyzed answers generated in response to both
benign and attack-style questions, focusing on:

* Bypass attempts (responses ignoring "Confi-
dential" label)

* Answer verbosity and entropy
* Vocabulary richness
Findings
e Public Bypass Rate: 7.1% overall

* Low-entropy questions had highest bypass
likelihood

* Sensitive answers were more verbose, yet
vague

¢ Confidential answers were shorter but more
information-dense

mains (e.g., Customer Service, Healthcare, Le-
gal, Education, Finance, Travel, Social Media, E-
commerce, Insurance, Workplace). This moves
beyond narrow, single-topic settings.

Sentence pools by type. For each domain
we generate sentences from two pools:
Public and Private (the latter split into
Sensitive/Confidential), using type-specific
templates for atomic spans (names, dates, IDs,
addresses, health conditions, account numbers).
Each atomic span is synthetic, license-clean, and
non-linkable.

Paragraph composition (control). Documents
are composed by sampling from the pools to
achieve targeted public/private ratios (cf. Ta-
ble A1), while a lightweight semantic checker en-
forces topical coherence across sentences. This
lets us control (i) per-paragraph label balance, (ii)
span-type diversity, and (iii) natural local flow.

Quality gates. We apply fluency and duplication
filters (perplexity banding, regex rules), canoni-
calise spans, and discard items failing coherence
checks. All values are synthetic (no real PII). A
datasheet with intended use and license is included
in the repository.
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Takeaway. By decoupling generation by type
and composition by ratio, BLENDPRIV gives ro-
bust control over label mix and span realism, which
is crucial for evaluating privacy gates in the wild.

Additional corpus-level statistics and domain-wise
ratios appear in Tables Al and A.

B Model & Baseline Details

B.1 Language Models

GPT-40-mini (0o3-mini). A 28B dense trans-
former released by OpenAl in 2025 with a 64K con-
text window and multi-modal adapters (OpenAl,
2025). We use the INSTRUCT variant at 7'=0.2.

Llama 3.1-70B. Meta’s 70B upgrade to Llama 3,
adding rotary-aware 128K context and Mixture-
of-Experts routing (Al, 2025b). Checkpoint:
Llama-3.1-70B-Instruct.

DeepSeek-V3. A 671B MoE with 37B active pa-
rameters per token, trained on 6T tokens and fine-
tuned with MLA (A, 2025a). We query the 37B
activated subnet.

Qwen3-235B. Alibaba’s flagship dense model
with 235B parameters and dynamic chunk atten-
tion (Academy, 2025). We use the A22B instruct
tuning.

B.2 Privacy Pipelines

PLAIN RAG
Standard retrieval-augmented generation with
no filtering (Lewis et al., 2021).
HYBRID RAG
BM25 + dense fusion (Chen et al., 2017).
HIERARCHICAL RAG
Multi-granular retrieval of document — section
— paragraph (Azar et al., 2024).
LDP-RAG
Locally private RAG with entity perturbation
(Huang et al., 2024); we use the authors’ imple-
mentation with e=0.5.
PARAPHRASE
Parrot paraphraser with ‘“safe” style
(Prakhar Krishna and Neelakantan, 2021).
ZEROGEN
Retrieval-free hallucination mask (Lin et al.,
2023).
REDACT
Rule-based redaction (HF filters).
TYPED-HOLDER
Structured masking of holder/value pairs

(Feyrer et al., 2023).
VAGUE-GATE
Ours, ¢ € {1.0,0.7,0.5,0.3,0.1}.

B.3 Maetric Definitions

Faithfulness (0-1) and Answer Relevancy (0-1)
follow RAGAS (Anand et al., 2023). BLEU-4 (Pa-
pineni et al., 2002) and ROUGE-L (Lin, 2004)
use nltk. The proposed ILS and LLM-Leak met-
rics are detailed in §4.6; code is provided in the
supplementary ZIP.

B.4 Hyper-parameters

Table A3: Retrieval and generation settings.

Parameter Value Notes

top-k docs 8 cosine similarity (Faiss)
chunk size 256 tokens overlap 50%
generator 7' 0.2 deep passes use 1T'=0.7
max tokens 512 all LLMs

Emax 4 deep rounds (§4.2)

Information About Use of AI Assistants

To comply with the ACL 2023 “Responsible Al
Checklist” (Item E1), we report the concrete ways
in which automated assistants were employed dur-
ing this study:

* Code drafting & review — We used OpenAl
GPT-40-mini in an IDE plug-in to draft boiler-
plate for data loaders and evaluation scripts, and
to suggest unit-test cases. All Generated snip-
pets were manually verified and, where neces-
sary, Rewritten by the authors.

* Synthetic data creation — Small portions of the
PRIVRAG benchmark (7 %) were produced via
prompt-driven paraphrasing with GPT-40-mini
to balance domain coverage. Each synthetic
record was inspected by two authors and cor-
rected for factuality and style.

* Presentation polish — Language-editing sug-
gestions (e.g. conciseness, consistent tense) were
accepted from Grammarly and GPT-4-Turbo.
No passages were taken verbatim. The final
manuscript is author-edited.

* No policy or result decisions — Al tools were
not used to select experiments, interpret results,
draft claims, or approve conclusions.

All human authors take full responsibility for the
accuracy and integrity of the submitted work.
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B.5 Full Metric Tables

Table A4 reports the raw scores that underlie the
aggregate plots in §5.2. We include two comple-
mentary views of system quality:

(a) Answer Relevancy (1) — RAGAS cosine
similarity between the model answer and the
ground-truth private answer, averaged over the
3 k test questions.

(b) Leakage Score (/) — ordinal rating re-
turned by our LLM-as-Judge metric (§A4),
where 1 indicates no leakage and 5 indicates
near-verbatim disclosure.

How to read the table. Rows are grouped
first by metric, then by foundation model (Ope-
nAl GPT-40-mini, Llama 3.1-70B, DeepSeek-V3,
Qwen-3-235B). Columns list the nine privacy
pipelines evaluated in the main paper. Higher is bet-
ter for Answer Relevancy; lower is better for Leak-
age Score. The best value per row is bold-faced.

Software Packages and Parameter Settings

TableAS lists every external package we relied on,
together with the exact version, role in the pipeline,
key parameters, and an official download link. All
packages are installed from pip unless stated oth-
erwise; a reproducible requirements. txt accom-
panies our code release.

Consistency of Artifact Use With Intended
Purpose

External artifacts. All third-party re-

sources—LLMs, retrieval corpora, evaluation

benchmarks, and software libraries—were used
strictly within the scope licensed or documented
by their authors:

* OpenAl  GPT-4o-mini, Llama-3 70B,
DeepSeek-V3, and Qwen-3 235B were ac-
cessed via official APIs or model checkpoints
under the providers’ research or non-commercial
terms. We did not fine-tune, redistribute, or
expose model weights.

* Public corpora employed for retrieval (e.g.,
Wikipedia 2024-05 snapshot) and evaluation
datasets (e.g., HOTPOTQA) are released for
academic research; we neither redistribute nor
re-licensed them.

Artifacts we release. PRIVRAG, our
newly-curated benchmark, contains synthetic docu-
ments automatically generated from publicly avail-
able seed material and does not include any per-
sonal or proprietary information. We distribute

the dataset, code, and prompt templates under
the CC-BY-NC 4.0 licence with an explicit
“research-only, non-commercial” clause. This
is fully compatible with the access restrictions of
the sources used to create the dataset and prevents
downstream deployments that might contravene the
original terms of use.

C Complete Per-c Results
D Prompt Templates
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Table A4: Answer—relevancy (higher is better) and leakage score (lower is better) for four LLMs across nine privacy

pipelines.
Metric Model Normal Redact Zerogen Typed- Hybrid Hier. LDP  ParaphraseVAGUE
Holder
OpenAl 0.793 0.669 0.467 0.672 0.795 0.789 0.778 0.738 0.557
Answer Rel LLaMA 0.743 0.000 0.433 0.000 0.656 0.740 0.613 0.488 0.341
: DeepSeek  0.773 0.669 0.435 0.585 0.709 0.774 0.751 0.705 0.469
Qwen 0.772 0.734 0.280 0.718 0.735 0.772 0.743 0.740 0.233
OpenAl 3.053 2.729 1.713 2.840 3.080 3.055 3.147 2.931 2.278
Leakage Score LLaMA 3.076 1.192 1.750 1.189 2.968 3.088 2915 2.496 2.586
g DeepSeek 2914 2471 1.747 2.330 2.702 2.933 2.998 2431 1.943
Qwen 2.941 2.815 1.717 2.820 2.883 2.925 2.970 2.794 1.586
Table A5: Third-party software employed in this work.
Package Ver. Purpose / Settings URL
SPACY + en_core_web_trf 3.7.2 NER and sentence segmentation; default pipeline; GPU  https://spacy.io
enabled
FLAIR 0.13 Second NER pass; batch_size=8 https://github.com/flairNLP/flair

(flair/ner-english-ontonotes-large)

NLTK 3.8.1 Fallback tokeniser; BLEU with smoothing method I https://www.nltk.org
RAPIDFUZZ 3.6.1 String similarity for ILS diagnostics https://github.com/maxbachmann/RapidFuzz
ROUGE (py-rouge) 1.0.1 ROUGE-L scoring; default stop-word list https://pypi.org/project/py-rouge/
SACREBLEU 242 BLEU-4 (-1c —smooth_add1) https://github.com/mjpost/sacrebleu
RAGAS 0.1.6 Faithfulness / Answer-Relevancy with top_k=5 https://github.com/explodinggradients/ragas
langchain-openai 0.1.0 LLM wrapper; temperature and context-window control ~ https://python.langchain.com
openai SDK 1.15.0 Embedding calls; timeout=20s https://platform.openai.com
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Figure 4: Joint privacy view at five budgets. ILS (x; higher=safer) vs. LLM-Leak (y; 1-5, lower=safer) comparing
Normal (gray) vs. VAGUE-GATE (color). Density contours, medians, and a hashed safe region (ILS> 0.8, LLM-

Leak< 2) are overlaid.
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Categorisation Prompt (VAGUE-Gate)

You are a privacy gate. Given <chunk> and a label in {PUBLIC, SENSITIVE, CONFIDENTIAL}, rewrite the chunk so that
o tokens with utility <e are dropped or generalised;

o all other content is kept verbatim.

Return JSON: {"rewritten": "..."}.

Precision—Pass Prompt (7=0)

Rewrite the following text with vagueness ¢ =< X >. Drop or generalise private details, keep public content intact.
<chunk>

Output (JSON only): {"rewritten": "..."}

Deep-Obfuscation Prompt (7=0.7)

Make the passage still vaguer. Keep meaning, re-phrase nouns, swap clause order, remove superfluous dates.

<current_version>

Paraphrase Prompt

Given the context, extract essential parts verbatim; delete the rest.
Context: «<{input_context}»>
Extracted relevant parts:

ZeroGen Prompt

The context is: {orig_context}. {extracted entities} is the answer to:
Generate 10 question—answer pairs in the form question: ... answer:

AttrPrompt (Attribute Discovery)

“What are the five most important attributes for generating medical Q&A data?” List them, then propose three sub-topics
for each.

SAGE Phase 1 Prompt

Summarise key points of the Doctor—Patient conversation below. Return exactly the five attributes for the Patient and
five for the Doctor in the provided schema.

«< conversation »>

SAGE Phase 2 Prompt

Using the attribute list: «< attributes »>
Generate a single-round patient question and doctor reply that cover all attributes. Do not produce extra dialogue.

LDP-RAG Entity-Perturb Prompt

Locate PERSON, ORG, LOC, DATE, etc. Apply €=0.5 randomised response per entity. Return perturbed text only.

Redact (Rule-based)

Regex-replace every detected private entity with “ITIIII”

Replace entities by their coarse type token (e.g. PERSON, DATE, MONEY).

Figure 5: Prompt templates and sources. Sources for the baseline prompts in this figure are: Paraphrase
Prompt (Prakhar Krishna and Neelakantan, 2021), ZeroGen Prompt (Lin et al., 2023), AttrPrompt (Attribute Dis-
covery) (Yu et al., 2024), SAGE Phase 1 Prompt (Zeng et al., 2024b), LDP-RAG Entity-Perturb Prompt (Huang
et al., 2024), and Typed-Holder (Feyrer et al., 2023).
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