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Abstract

Recent advances in multimodal question an-
swering have primarily focused on combining
heterogeneous modalities or fine-tuning mul-
timodal large language models. While these
approaches have shown strong performance,
they often rely on a single, generalized rea-
soning strategy, overlooking the unique char-
acteristics of each modality ultimately limiting
both accuracy and interpretability. To address
these limitations, we propose MAMMOQA , a
multi-agent QA framework for multimodal in-
puts spanning text, tables, and images. Our
system includes two Visual Language Model
(VLM) agents and one text-based Large Lan-
guage Model (LLM) agent. The first VLM de-
composes the user query into sub-questions and
sequentially retrieves partial answers from each
modality. The second VLM synthesizes and
refines these results through cross-modal rea-
soning. Finally, the LLM integrates the insights
into a cohesive answer. This modular design en-
hances interpretability by making the reasoning
process transparent and allows each agent to
operate within its domain of expertise. Experi-
ments on diverse multimodal QA benchmarks
demonstrate that our cooperative, multi-agent
framework consistently outperforms existing
baselines in both accuracy and robustness.

1 Introduction

Multimodal question answering (MMQA) aims to
answer complex queries by jointly reasoning over
text, tables, and images, reflecting real-world infor-
mation needs in domains such as scientific analysis,
business intelligence, and education (Talmor et al.,
2021; Hannan et al., 2020). Early MMQA sys-
tems typically linearized tables or generated image
captions to cast all inputs into a text-only format,
feeding them into pretrained text-only models (Luo
et al., 2023a; Chen et al., 2020, 2021). While effec-
tive under certain settings, these unified approaches
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Figure 1: Depicting Illustration for our proposed MAM-
MQA , with three agents: 1) Modality Expert, that ex-
tracts modality specific insights; 2) Cross Modal Systhe-
sis Agent, that synchronises information across modali-
ties with insights from Modality Expert; 3) Aggregator
Agent, that ground the answer using extracted cross
modal information.

often obscure the unique structure and semantics of
each modality, leading to degradation when inputs
are missing or when fine-grained visual and tabular
cues are critical.

Recent advances in prompt-based reasoning
have unlocked zero-shot and few-shot capabili-
ties in large language models. Chain-of-Thought
(CoT) prompting (Wei et al., 2022) and its multi-
modal extensions (Zhang et al., 2023; Zheng et al.,
2023) guide a single LLM to generate interme-
diate steps, improving factual accuracy. Tree-of-
Thoughts (ToT) further introduces search over mul-
tiple reasoning branches (Yao et al., 2023). How-
ever, these monolithic strategies still treat the LLM
as a black box, entangling modality-specific extrac-
tion with cross-modal synthesis, which can obscure
errors, hinder interpretability, and induce hallucina-
tions when faced with ambiguous or partial inputs.

By contrast, multi-agent and ensemble tech-
niques in NLP have demonstrated that specialized
experts can collaborate to improve both accuracy
and robustness (Chen et al., 2023; Puerto et al.,
2023). Yet, such architectures remain underex-
plored in the multimodal setting. We identify a
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key opportunity: decoupling modality-specific evi-
dence extraction from cross-modal integration and
final answer adjudication can both leverage domain-
specific strengths and provide transparent, verifi-
able reasoning traces.

In this work, we introduce MAMMOQA , a fully
prompt-driven, multi-agent framework for MMQA
that dynamically allocates three types of agents
modality experts, cross-modal synthesizers, and
a consensus aggregator to decompose and solve
complex queries without any fine-tuning. Our core
contributions are:

* MAMMOQA : A fully prompt-driven, multi-
agent MMQA framework that splits reason-
ing into three interpretable stages modal-
ity experts, cross-modal synthesis, and
evidence-grounded aggregation without any
fine-tuning.

 Unified, role-consistent agents: A single
prompt template reused across text, table, and
image experts, enabling dynamic activation,
efficient inference, and transparent error trac-
ing.

 State-of-the-art zero-shot performance:
Outperforms CoT, CapCoT, and ToT baselines
and matches or exceeds several fine-tuned
models on MULTIMODALQA and MANY-
MODALQA, across both proprietary and open-
source LLMs.

* Robustness and calibration: Static agents
beat dynamic search methods (e.g. ToT) by
over 10 %, maintain faithfulness under noise
and irrelevant context, and avoid hallucina-
tions via evidence-based abstention.

By structuring MMQA as a pipeline of special-
ized agents, MAMMOQA not only achieves high
accuracy but also provides end-to-end transparency
and graceful failure modes in the face of ambiguous
or incomplete inputs key properties for real-world
deployment.

2 Our MAMMQA Framework

We propose MAMMOQA , a Multi-Agent Multi-
modal Question Answering framework designed to
address core challenges in MMQA, such as modal-
ity ambiguity, fragmented evidence, and halluci-
nated reasoning. Rather than relying on monolithic

prompting or fine-tuned end-to-end models, MAM-
MQA adopts a structured, agent-based architec-
ture that decomposes the reasoning process into
interpretable, well-defined steps. Each agent spe-
cializes in a narrow subtask, enabling systematic
insight extraction, targeted cross-modal synthesis,
and final answer adjudication through consensus.

2.1 Motivation and Design Principles

Multimodal question answering requires models
to accurately interpret and integrate information
across diverse modalities. However, conventional
prompting approaches often struggle with modality
disambiguation and fail to coordinate evidence co-
herently. To address this, our framework is inspired
by the structure of expert committees, where do-
main specialists independently contribute insights
that are later synthesized into a final decision.
MAMMOQA is guided by three core principles.
Each agent is assigned a focused, well-defined role
either modality-specific analysis, cross-modal syn-
thesis, or answer aggregation mirroring real-world
task delegation. The reasoning process is decom-
posed into a multi-stage pipeline that progresses
from factual extraction to cross-modal interpreta-
tion and ultimately to consensus. The entire frame-
work is prompt-driven, leveraging pre-trained lan-
guage models without requiring any task-specific
fine-tuning.

2.2  Overview of the MAMMOQA Architecture

The MAMMOQA framework consists of three se-
quential stages: modality-specific insight extrac-
tion, cross-modality synthesis and reasoning, and
final answer aggregation. Each stage employs a set
of pre-trained language models acting as agents,
each prompted with a structured task definition.
The number of active agents in the system dy-
namically adjusts depending on the available input
modalities, ranging from five in the bi-modal case
to seven for full tri-modal inputs. All agents in-
teract through textual interfaces, ensuring that the
pipeline remains fully modular and interpretable,
best illustrated by Figure 1.

2.3 Stage I: Modality Expert Agent

The first stage applies a unified modality expert
agent to each available input modality text, table,
and image. Although executed independently for
each modality, the same underlying system prompt
is used across all instances; the only variation lies
in the input modality. This agent is not tasked with
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answering the question but instead focuses on ex-
tracting key information relevant to the query, such
as factual details, temporal markers, and contextual
cues. It also flags gaps or ambiguities in the input
that may impede complete reasoning. The agent’s
output is structured using a consistent templating
format, producing modality-specific insights that
form the foundation for the next reasoning stage.

2.4 Stage II: Cross-Modality Synthesis Agent

In the second stage, the same cross-modality syn-
thesis agent is invoked once for each modality
acting as the anchor context. Each instance of
the agent takes as input the insights from a sin-
gle modality-specific agent in Stage I, the raw data
from the remaining two modalities, and the original
question. This setup allows the agent to synthesize
information across modalities while maintaining
a consistent perspective grounded in one primary
modality. The agent generates a complete answer
to the question, supports it with structured reason-
ing, and identifies any remaining uncertainties. As
with the first stage, the output adheres to a tem-
plated format comprising extracted insights, inter-
mediate sub-answers, and a final answer. These
outputs are then passed to the final aggregation
stage.

2.5 Stage III: Aggregator Agent

The final stage introduces an aggregation agent re-
sponsible for synthesizing the outputs of the three
synthesis agents. Crucially, this agent does not
have access to the raw inputs. Instead, it receives
only the generated responses and reasoning from
the prior stage, along with the original question. Its
task is to resolve disagreements, consolidate consis-
tent answers, and produce a final, justified response.
The agent follows a hierarchical decision process:
it first checks for answer consistency among the
agents; if two or more agree and present clear rea-
soning, it adopts that answer. If two agents express
uncertainty while the third provides a confident,
well-supported answer, the agent selects the confi-
dent one. In cases where all three answers differ,
it evaluates them based on the clarity, coherence,
and strength of their rationale, ultimately choosing
the most convincing explanation. The final output
includes both the chosen answer and a transparent
summary of the reasoning process that led to its
selection.

2.6 Advantages of the Multi-Agent Prompting
Framework

The agent-based design of MAMMQA deliv-
ers interpretable and robust multimodal question
answering. Its transparency stems from trace-
able intermediate steps, and robustness is achieved
through redundant synthesis agents for answer
cross-verification. Crucially, MAMMOQA scales
across LLM sizes and domains using only prompt-
ing, avoiding fine-tuning. This modularity sup-
ports generalization and faithful data grounding,
establishing a framework for enhanced reliabil-
ity, accuracy, and interpretability within MULTI-
MODALQA.

3 Experiments

We evaluate the effectiveness of our method on
the Multimodal Question Answering (MMQA)
task using exact match, demonstrating superior
performance compared to prior state-of-the-art
approaches, including UniMMQA (Luo et al.,
2023a), AutoRouting (Talmor et al., 2021), Implic-
itDecomp (Talmor et al., 2021), Binder (Cheng
et al., 2023), SKURG (Yang et al.,, 2023a),
PERQA (Yang et al., 2023b), Solar (Yu et al.,
2023), UniRaG (Sharifymoghaddam et al., 2025),
AETGA (Zhang et al.,, 2024), and PReasM-
Large (Yoran et al., 2021). Additionally, we
benchmark against standard in-context prompting
baselines such as Chain-of-Thoughts (Wei et al.,
2022) (CoT), Image-Captioning + CoT (CapCoT),
and Tree-of-Thoughts (Yao et al., 2023) (ToT),
across both proprietary (gpt-4o-mini (OpenAl
et al., 2024), Gemini-1.5-flash-8B (Team and
et al, 2024)) and open-source models (Qwen2. 5-
VL-Instruct-7B/3B (Qwen et al., 2025)). We fur-
ther conduct endurance tests to assess the robust-
ness of our approach under challenging scenarios.
Note: All experiments involving Qwen models were
conducted locally on a system equipped with 8x
NVIDIA H200 GPUs.

Datasets We evaluate our approach on two
prominent benchmark datasets designed to test key
reasoning capabilities in multimodal question an-
swering (MMQA).

MANYMODALQA (Hannan et al., 2020) con-
tains 10,190 questions involving text, images, and
tables distributed across 2,873 images, 3,789 pas-
sages, and 3,528 tables. The dataset is intentionally
constructed with ambiguous questions where the
relevant modality is not explicitly indicated. This
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Modality Img TblImg TbITxt Tb TxtlImg Txt Total
OpenAl 40 Mini
CoT 33.15 53.81 66.67  84.55 55.95 77.67 64.60
CapCoT  53.91 64.98 69.05 84.14 61.90 77.33 70.39
ToT 54.97 63.35 64.37 67.70 61.11 69.65 64.88
Ours 61.31 70.30 81.58 89.16 59.75 85.57 76.37
Gemini 1.5-Flash 8B
CoT 47.41 53.38 58.88 74.73 46.43 72.82 62.16
CapCoT  47.84 50.02 55.87  74.88 39.29 7242  60.66
ToT 36.93 43.06 52.32 53.72 33.33 70.61 53.10
Ours 51.23 54.12 5742  83.69 42.86 79.47 65.84
Qwen 2.5 VL 7B Instruct
CoT 29.11 32.58 30.66 38.75 17.86 38.28 33.84
CapCoT  48.10 53.94 60.56  71.52 41.67 71.31 61.54
ToT 55.90 47.82 52.50 60.83 41.64 64.44 57.12
Ours 50.74 55.88 63.68 81.35 53.26 80.51 67.56
Qwen 2.5 VL 3B Instruct
CoT 11.86 23.71 22.14 32.25 14.29 25.52 23.15
CapCoT  48.10 42.08 47.08  64.94 39.29 65.04 53.98
ToT 42.01 43.65 48.40 52.57 33.74 66.51 5291
Ours 33.73 43.10 45.33 62.29 35.52 67.73 52.12

Table 1: Quantitative Analysis on MULTIMODALQA dataset

design tests a model’s ability to perform modal-
ity disambiguation and selectively retrieve relevant
information. It highlights whether the model can
reason about what modality is needed and how to
integrate it effectively. With 2,036 training and
3,055 development examples, it serves as a strong
benchmark for evaluating modality selection under
uncertainty.

MULTIMODALQA (Talmor et al., 2021) consists
of 29,918 question-answer pairs across multiple
modalities, with a significant 35.7% of questions
requiring cross-modal reasoning that is, combin-
ing evidence from different types of inputs. This
dataset assesses a model’s ability to integrate het-
erogeneous information and reason jointly across
modalities, not just within a single source. It is di-
vided into training (23,817), development (2,442),
and test (3,660) splits, and is particularly suited for
evaluating compositional reasoning and informa-
tion fusion in complex multimodal contexts.

Baselines To comprehensively evaluate our
method, we compare it against several strong base-
lines spanning both finetuned and prompting-based
approaches for multimodal question answering.

Finetuned Baseline. UniMMQA (Luo et al.,
2023b) serves as a TS5 (Raffel et al., 2020)-based

finetuned baseline and represents a strong state-
of-the-art model for MMQA.. It is trained with su-
pervised signals across modalities, enabling robust
cross-modal representation learning.

Prompting-Based Agents. Our proposed prompt-
ing strategies adopt an agent in-context learning
setup. Each agent specializes in a modality and col-
laborates to perform modality disambiguation and
reasoning, allowing the model to retrieve, decom-
pose, and integrate evidence dynamically without
any parameter updates.

Reasoning Variants. Chain-of-Thought (CoT)
guides the model to generate intermediate reason-
ing steps from the raw question and context.

CapCoT enhances CoT by incorporating de-
tailed image and table captions generated via
Gemini-2.0-Flash, providing richer modality cues
in textual form.

Tree-of-Thought (ToT) extends CapCoT by
simulating multiple reasoning paths using a depth-
first search (DFS) strategy over caption-augmented
inputs, introducing structured exploration for better
answer synthesis.

LLM Configurations. All models, both pro-
prietary and open-source, are evaluated with a
temperature of 0.3 and top-p of 0.7 to ensure
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Methods Text Table Image Total
Human 92.00 89.60 94.00 91.60
Voting 2370 2290 1550 21.10
MMQA 48.60 4040 2720 39.70
MMQA" 5930 4630 29.00 46.30
UniMMQA Finetuned T5 Model
Base 46.60 60.70  30.20 45.40
Large 4850 67.50 3490 50.00
3B 49.80 5830 4090 52.10
OpenAl 40-mini
CoT 87.20 9423 57.33 81.21
CoT" 68.22 70.51 59.42  66.54
CapCoT  87.68 94.05 68.26 84.41
ToT 84.94 9319 7290 84.70
Ours 92.50 96.78 78.02 89.90
Gemini 1.5-Flash 8B
CoT 86.05 91.52 68.77 82.81
CoT" 5493 61.15 3477 5141
CapCoT  85.74 9140 63.14 81.34
ToT 86.08 86.81 62.81 79.80
Ours 89.76 94.52 7733 8791
Qwen 2.5 VL 7B Instruct
CoT 59.84 68.71 4547  58.87
CoT" 61.80 66.73 5453 61.46
CapCoT  83.50 92.86 71.07 83.41
ToT 81.95 9041 69.29 81.89
Ours 87.11 96.31 77.56 87.61
Qwen 2.5 VL 3B Instruct
CoT 70.08 75.61 50.70 66.54
CoT* 5877 6455 59.51 58.77
CapCoT  80.79 91.38 67.13  80.63
ToT 82.66 86.14 68.11 80.42
Ours 88.79 9490 72.67 86.37

Table 2: Quantitative results on the MANYMODALQA
dataset. Superscript T denotes the oracle setting, while *
indicates the no-context (open-book QA) variant. Red
highlights mark cases where CoT fails to abstain from
answering without context, and occasionally outper-
forms its baseline in the [No Image] setting, suggesting
potential data leakage.

consistent generation behavior. We employ the
framework! to implement Tree-of-Thought (ToT)
agents. Our proposed agents operate in a static and
synchronous manner, removing the need for asyn-
chronous execution. The corresponding prompts
are detailed in Appendix C: Prompt A presents
the Modality Expert Agent prompt, Prompt B il-
lustrates the Cross-Modality Agent prompt, and
Prompt C provides the Aggregator prompt.

3.1 Comparison with State-of-the-Art

A. MULTIMODALQA Results. As shown in
Table 3, our method consistently outperforms
prompting-based baselines across both proprietary
and open-source models. On Qwen2.5-VL-7B, our
agentic method achieves 76.37 %, surpassing Cap-
CoT (+5.98%) and ToT (+11.49%). Largest gains

1https://github.com/openai/
openai-agents-python

Model Single Multi Overall
Finetuned Models
AutoRouting 51.7 342 44.7
ImplicitDecomp 51.6 44.6 48.8
Binder - - 51.0
SKURG 66.1 52.5 59.8
PERQA 69.7 54.7 62.8
Solar 69.7 55.5 59.8
UniRaG 71.7 62.3 67.4
AETGA 69.8 64.7 68.8
PReasM L - - 59.0
MMQA-T5 L - - 579
UniMMQA (T5 B) - - 67.9
UniMMQA (T5L) - - 71.3
UniMMQA (TS5 3B) - - 75.5
Zero-Shot Models
CoT Qwen 3B 2375 2224 23.15
CoT Qwen 7B 36.07 30091 33.84
Our Agent 3B 57.72  43.39 52.12
Our Agent 7B 73.16  58.93 67.56

Table 3: Comparison of models on MULTIMODALQA
dataset across single-modality, multi-modality, and over-
all performance. Note: B depicts Base Model and L
depicts Large model.

are observed in cross-modal settings like [table,
text] (+17.21%) and image (+7.4%), underscor-
ing the benefit of grounded signal integration. On
Gemini-1.5 Flash 8B, we achieve 65.84%, out-
performing CoT by +3.68%. While prompting
methods show less spread here, our model remains
notably better in text (+6.65%) and table (+8.81%),
showing advantages in structurally complex inputs.

Open-Source Scaling (Qwen). Our method yields
strong results even on small open-source mod-
els. On Qwen2.5-VL-3B, it achieves 52.12%,
beating CoT by +28.97% and closely trailing
ToT (-0.79 %) despite significantly lower compu-
tation. On Qwen2.5-VL-7B, our method reaches
67.56 %, outperforming CapCoT (+6.02%), ToT
(+10.44%), and CoT (+33.72%). These gains are
especially prominent in multi-hop, hybrid modality
tasks e.g., [text, image] (+90.53%) and [table, text]
(+40.48%).

Model Scaling. Increasing model size from 3B
to 7B brings a substantial +29.62% gain in overall
performance. Improvements are concentrated in im-
age (+50.43%) and [text, image] (+49.95%) modal-
ities, suggesting that increased capacity amplifies
our agentic system’s ability to perform complex,
cross-modal reasoning.

Efficiency Over Larger Baselines. Despite its
smaller size, our 3B model surpasses Qwen-7B CoT
on multiple modalities text (+76.94%), [table, im-
age] (+32.31%) with an overall gain of +54.02%.
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This highlights the architectural efficiency of struc-
tured agentic reasoning over naive pattern-based
prompting.

B. MANYMODALQA Results. Our method gen-
eralizes well on this more challenging benchmark.
On Qwen2.5-VL-7B, we score 89.90%, outper-
forming CoT by +8.69%, ToT by +5.20%, and
CapCoT by +5.49%. The largest gains occur in
visual reasoning tasks e.g., image (+5.12%). On
Gemini 1.5-Flash 8B, we obtain 87.91%, with con-
sistent improvements across modalities: +5.10%
over CoT, +8.11% over ToT, and +6.57% over
CapCoT. Our method shows stronger synergy be-
tween vision and language compared to captioning-
heavy baselines.

Open-Source Performance On Qwen2.5-VL-7B
we achieve 87.61%, outperforming ToT (+5.72%)
and CapCoT (+4.20%). Notably, we also sur-
pass Gemini 1.5-8B in overall score (+0.30%) and
structured modalities like text (+4.32%) and table
(+5.38%). On Qwen2.5-VL-3B, our model reaches
86.37%, significantly ahead of CoT (+19.83%)
and CapCoT (+5.74%), and even outperforming
Gemini-8B on both total score (+1.56%) and image
(+8.56%).

Model Scaling. Scaling from Qwen 3B to 7B
gives a modest +1.24% overall, but a pronounced
boost in visual reasoning (+6.72%). This suggests
that while our architecture is already strong at 3B,
larger models especially enhance performance on
ambiguous, visually grounded questions.

Finetuned vs. Zero-shot. Despite being zero-
shot, our 7B method outperforms several finetuned
baselines e.g., SKURG (59.8%), Solar (59.8%)
and rivals AETGA (68.8%) and UniRaG (67.4%).
Compared to Qwen-7B CoT, we observe large
gains in both single-modality (+37.09 %) and multi-
modality (+28.02%) settings. Even our 3B variant
exceeds Qwen-7B CoT by +18.2%, reaffirming that
architecture not just size drives robust performance.

3.2 Robustness Analysis

MAMMOQA Mislabeling Robustness. In our
experiments with the MULTIMODALQA dataset,
we evaluated multiple LLMs such as GPT and
Qwen using baseline methods CoT, CapCoT, Tree-
of-Thoughts, and our agentic method. During the
analysis, we discovered discrepancies in the ground
truth labels of the dataset, such as typos and out-
dated factual information. For instance, an answer

labeled movie name “laughin" should have been
“laughing." This led to certain models, particularly
CoT, memorizing and reproducing these incorrect
labels, thereby inflating their performance metrics
artificially.

Model (Qwen 7B) Old New

TreeOfThoughts ~ 57.12  59.06 (+1.94)
CoT 33.84 35.05 (+1.21)
CapCoT 61.54 64.52 (+2.98)
OurAgent 67.56 71.58 (+4.02)
Model (Qwen3B)  Old New

TreeOfThoughts 5291 54.36 (+1.45)
CoT 23.15 24.07 (+0.92)
CapCoT 53.98 56.16 (+2.18)
OurAgent 52.12 55.24 (+3.12)

Table 4: Performance improvements with lable correc-
tion across model sizes on MULTIMODALQA .

After correcting these labels, we observed that
the performance of our agentic method improved
significantly more than the baseline methods as de-
picted in Table 4. This highlights the robustness
of our approach in extracting and synthesizing in-
Sformation from multiple modalities and grounding
it accurately, even when faced with noisy or in-
consistent data. This correction process ultimately
underscores the efficacy of our model in real-world
scenarios.

MAMMOQA Pertubations Robustness. Table 5
evaluates model robustness under two text-level
perturbations: (1) sentence or paragraph shuffling
and (2) injection of irrelevant context. In the
Text Shuffle setting, baseline methods like Tree-
OfThoughts (7B: -42.21%, 3B: -6.97%) and Cap-
CoT (7B: -39.11%, 3B: -8.82%) exhibit substan-
tial drops but still attempt to answer suggesting re-
liance on memorized question patterns. In contrast,
MAMMOQA exhibits steep performance drops
(7B: -91.24%, 3B: -85.30%), suggesting that it
fails gracefully under broken contextual grounding,
thereby reducing the risk of hallucinated answers.

Model (7B) Original Text Shuffle Irrelevant Context
TreeOfThoughts 57.12 33.01 (-42.21%) 52.45 (-08.18%)
CoT 33.84 31.18 (-07.86%) 29.54 (-12.71%)
CapCoT 61.54 37.47 (-39.11%) 55.39 (-09.99%)
OurAgent 67.56 05.92 (-91.24%) 63.74 (-05.65%)
Model (3B) Original Text Shuffle Irrelevant Context
TreeOfThoughts 5291 49.22 (-06.97%) 47.11 (-10.96%)
CoT 23.15 20.48 (-11.53%) 19.62 (-15.25%)
CapCoT 53.98 49.22 (-08.82%) 47.12 (-12.71%)
OurAgent 52.12 07.66 (-85.30%) 48.05 (-07.81%)

Table 5: Robustness of different reasoning strategies
under perturbations across model sizes.

In the Irrelevant Context setting, where un-
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related text is appended, OurAgent remains the
most stable (7B: -5.65%, 3B: -7.81% ) compared
to TreeOfThoughts (7B: -8.18%, 3B: -10.96%)
and CapCoT (7B: -9.99%, 3B: -12.71%). This
demonstrates that while OurAgent avoids over-
committing in incoherent contexts, it retains ro-
bustness when faced with extraneous information
underscoring its grounding-driven reasoning ap-
proach.

MAMMOQA Calibration Robustness. Chain-
of-Thought (CoT) prompting, while effective in
unimodal text reasoning, fails to generalize reliably
in multimodal contexts. On MULTIMODALQA,
CoT consistently produces high-confidence yet un-
faithful answers when modality-specific evidence
is absent intentionally. This prompts an impor-
tant question: Can LLMs, when operating under
the MAMMOQA framework, refrain from answer-
ing when provided with incomplete inputs? As
depicted in Table 2, on Qwen-7B, CoT achieves
58.87%, but this rises to 61.46% in a no-context
setting (CoT*) indicating a reliance on pretraining
priors rather than grounded inference.

This behavior suggests that CoT “recalls” plau-
sible reasoning paths learned during training rather
than “inferring" from the input analogous to a lan-
guage model predicting the next sentence in a famil-
iar story, even when the plot doesn’t match. In con-
trast, our agent-based architecture enforces struc-
tured, evidence-grounded reasoning. The Modality
Expert Agent first extracts information indepen-
dently from text, table, and image inputs. A Cross-
Modality Expert then integrates these signals with
consistency checks. Crucially, if no relevant evi-
dence is found, these agents abstain from answer-
ing propagating that abstention to the Aggregator,
which itself is blind to the original question. This
ensures that the final output is generated only when
sufficient grounded evidence exists.

This setup explicitly separates extraction from
generation, reducing hallucinations and enforcing
cross-modal faithfulness. As a result, our method
achieves 89.90% on OpenAl Qwen2.5-VL-7B
and 87.61% on Qwen-7B outperforming CoT by
+8.69% and +28.74 %, respectively. Unlike CoT,
which confidently answers even in the absence of
valid context, our agents are “evidence-seeking",
"input grounded", rather than “answer-seeking,"
leading to more trustworthy and robust multimodal

QA.

3.3 Choicesin MAMMOQA Architecture

Dynamic vs. Static Agents . Dynamic agen-
tic frameworks like Tree-of-Thoughts (ToT) (Yao
et al., 2023) rely on explicit search typically via
depth-first traversal to enumerate and rank multiple
reasoning paths. In our setup, ToT is instantiated
with 3 agents and a max depth of 3, generating an
average of 12 thoughts per question. Despite this
computational overhead, as shown in Table 1, ToT
achieves 57.12% on Qwen-7B, while our static agen-
tic method using only 3 sequential agents achieves
67.56%, a +10.44% gain.

Beyond accuracy, ToT exhibits failure modes
indicative of brittle search behavior: it frequently
returns confidently incorrect answers (avg. confi-
dence 0.93) and often declares multi-hop questions
“unanswerable," missing key compositional signals.
In contrast, our static framework without iterative
search or re-ranking demonstrates more grounded
reasoning, better calibration, and robust handling
of multi-modal, multi-hop queries. These findings
challenge the assumption that dynamic search im-
proves generalization, and highlight the efficacy of
a lean, static agentic architecture in complex QA
tasks.

87.5
85.0 Twe% T

With Q

Accuracy (%)
<
3
n

70.0 /

0.5B 1.5B 3B 7B 32B
Aggregator Agent Size

Figure 2: Aggregator Agent performance with and with-
out question on MULTIMODALQA Dataset.

Question Agnostic Aggregator. As shown in
Figure 2, our experiments reveal withholding
the original question from the Aggregator Agent
consistently improves performance across model
scales. For instance, at 7B parameters, accuracy
increases from 82.06% (with question) to 87.61%
(without question). This improvement arises be-
cause removing the question reduces reliance on
linguistic priors and compels the Aggregator to
synthesize answers solely from cross modality-
grounded evidence provided by expert agents. This,
making the MAMMOQOQA agent question agnostic
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make it’s unbias, grounded, and more factual.

Analogous to ensemble methods in NLP, where
a meta-learner integrates outputs from base models
without direct access to the input query, this sep-
aration mitigates bias and enhances answer faith-
fulness and factual consistency reducing hallucina-
tions (Puerto et al., 2023).

4 Comparison with Related Work

We position our work within four key areas of mul-
timodal question answering (MMQA): benchmark
design, unified models, prompt-based reasoning,
and multi-agent systems.

Benchmarks for Multimodal QA Datasets like
MANYMODALQA (Hannan et al., 2020) and MUL-
TIMODALQA (Talmor et al., 2021) challenge sys-
tems to reason across text, tables, and images, with
a significant portion requiring cross-modal fusion.
Others, such as HYBRIDQA (Chen et al., 2020),
OTT-QA (Chen et al., 2021), and TAT-QA (Zhu
et al., 2021), focus on structured-unstructured com-
binations. These benchmarks highlight core chal-
lenges in modality disambiguation and evidence
integration issues MAMMOQA explicitly tackles
through specialized agents.

Unified Models Encoder-decoder architectures
like AUTOROUTING and IMPLICITDECOMP (Tal-
mor et al., 2021) embed all modalities into a shared
space. More advanced models BINDER, SKURG,
PERQA (Yang et al., 2023b), SOLAR (Yu et al.,
2023), and UNIRAG (Sharifymoghaddam et al.,
2025) incorporate retrieval and structural cues.
While effective, these approaches often obscure
modality roles and degrade with missing inputs.
MAMMOQA sidesteps these issues by activating
only relevant agents per input.

Prompt-Based Reasoning Prompting strategies
like Chain-of-Thought (Wei et al., 2022) and its
multimodal variants (Zhang et al., 2023; Zheng
et al., 2023), including Tree-of-Thoughts (Yao
et al., 2023), offer zero-shot reasoning capabili-
ties. However, they typically depend on a single
LLM, making them prone to hallucinations and
conflicts while MAMMOQA distributes reasoning
across modality-specific agents.

Multi-Agent Systems Agent-based approaches
such as RECONCILE (Chen et al., 2023) lever-
age collective decision-making, often via voting.
Though applied to math and planning (Yao et al.,

2023), they remain underexplored in MMQA.
MAMMOQA adapts this paradigm by coordinating
agents across modalities with structured synthesis,
enabling verifiable and interpretable reasoning.

Unlike prior approaches that rely on monolithic
models or single-agent prompting, MAMMOQA in-
troduces a multi-agent, interpretable architecture. It
assigns specialized roles to agents based on modal-
ity and separates reasoning into distinct stages: ex-
traction, synthesis, and aggregation. This design
enables MAMMOQA to match or exceed the per-
formance of state-of-the-art MMQA models while
offering improved interpretability, robustness, and
zero-shot generalization.

5 Conclusion

We present MAMMOQA , a modular, prompt-
driven multi-agent framework for multimodal
QA that performs structured reasoning through
modality-specific extraction, cross-modal syn-
thesis, and evidence-grounded aggregation en-
tirely without finetuning. MAMMOQA achieves
state-of-the-art zero-shot results on both MUL-
TIMODALQA and MANYMODALQA, outper-
forming prompting-based baselines and several
finetuned models. On MULTIMODALQA, it
achieves 76.37% with Qwen2.5-VL-7B and 67.56%
with Qwen2.5-VL-7B, surpassing CapCoT and
Tree-of-Thoughts by over 6% and 10%, re-
spectively. On MANYMODALQA, it reaches
89.90% with Qwen2.5-VL-7B and 87.61% with
Qwen2.5-VL-7B, outperforming CoT by up to
28.74%. In addition to strong performance, MAM-
MQA exhibits higher robustness and interpretabil-
ity. It remains stable under irrelevant context and
avoids hallucination in perturbed settings, while
static agents outperform dynamic search-based
methods like ToT with less complexity. These re-
sults underscore MAMMOQA as a scalable, inter-
pretable, and high-performing zero-shot solution
for multimodal QA.

6 Limitations

MAMMOQA s reliance on separate LLM/VLM
experts for each modality simplifies zero-shot gen-
eralization but incurs substantial inference latency,
memory usage, and monetary cost. Extending
the framework to additional modalities (e.g., au-
dio, video, sensor data) would require equally ca-
pable foundation models or complex preprocess-
ing pipelines, limiting applicability in resource-
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constrained or real-time environments. The three-
stage design (Aggregator) enhances transparency
but makes the system brittle: mistakes in early ex-
traction cannot be corrected downstream, and the
Aggregator blind to raw inputs cannot recover miss-
ing or misinterpreted evidence. This fragility is
reflected in our perturbation tests, where scrambled
or incomplete context causes small accuracy drops.
Incorporating iterative feedback or retrieval loops
could improve robustness but would complicate the
current prompt-driven simplicity.
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highest ethical standards in research and publi-
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A Additional Experimental Results

This section reports supplementary experiments
extending our main evaluation. These include abla-
tions analyzing model modularity, efficiency, and
robustness.

Ablation on Synthesizer and Single Expert.
Following reviewer feedback, we tested (a) removal
of the Cross-Modal Synthesizer and (b) replace-
ment of modality-specialized experts with a single
unified expert. The results are presented in Table 6.

Model MultiModalQA Single ManyModalQA Single
Expert Expert
Qwen2.5-VL-7B 76.37 72.17 89.90 85.70
Gemini 8B 65.84 61.64 87.91 83.71
Qwen2.5-VL-3B 67.56 53.36 87.61 63.41

Table 6: Ablation analysis on the Synthesizer and single-
expert variants. Removing the Synthesizer or unifying
experts both reduce accuracy by 4-25 points, demon-
strating the necessity of modular specialization.

Removing the cross-modal Synthesizer causes
significant drops (up to 24.2 pp on multi-hop
tasks with Qwen-7B). Using a single unified expert
consistently under performs relative to modality-
specialized agents, confirming that modular decom-
position is crucial not over-engineering.

Latency and Cost Efficiency. Although MAM-
MOQA involves multiple agents, each executes a
single prompt, unlike CoT, which relies on multi-
sample decoding. Consequently, MAMMOQA re-
mains both interpretable and cost-efficient.

* Qwen 2.5-VL 3B + MAMMOQA: 86.37 %
* Qwen 2.5-VL 7B + MAMMOQA: 87.61%

Both outperform stronger baselines such as
Qwen-7B + CoT (66.54%) and Gemini 8B + CoT
(84.81%), as well as GPT-40 + CoT (86.20%),
demonstrating higher performance per parameter.
The agentic overhead is minimal compared to CoT
sampling-based reasoning.

Semantic Sensitivity: Text Shuffle Test. We ad-
ditionally perform a “text shuffle" stress test, where
words (not sentences) are randomly permuted to
disrupt semantic coherence. CoT baselines show
resilience (indicating reliance on superficial token
associations), while MAMMOQA suffers a larger
drop (~91.2%), highlighting stronger semantic
sensitivity-an important trait for grounded multi-
modal reasoning.

These results empirically validate the design
choices in MAMMOQA: (i) modular specialization

across experts is essential, (ii) the Synthesizer plays
a key role in cross-modal composition, and (iii) the
framework achieves both interpretability and cost
efficiency without sacrificing accuracy.

B Qualitative Walkthrough Examples

We further illustrate MAMMQA's reasoning pro-
cess through representative examples.

Example 1: “Which animal in the image is a
mammal?"'

Input: An image showing a frog, a dolphin,
and a bird, with the caption “These animals live
in different habitats."

Answer: Dolphin.

Stage 1 — Expert Agents: Image agent identi-
fies animal regions; text agent extracts relevant
concepts (“different habitats").

Stage 2 — Synthesizer: Fuses visual and textual
evidence to reason over biological traits.

Stage 3 — Aggregator: Produces the reasoning
trace: [Visual: Dolphin = live birth]
+ [Text: warm-blooded] - Dolphin is
mammal.

Baseline (CoT) Comparison. CoT misclassifies
“bird" due to token frequency bias. MAMMOQA’s
modular design ensures factual grounding and in-
terpretability.

Example 2: “According to the chart and text,
which city had the highest rainfall?''

Input: A bar chart with rainfall data and a
paragraph on weather patterns.

Answer: Singapore.

MAMMOQA correctly identifies “Rainfall (mm)"
as the relevant dimension, grounds the chart bars,
aligns textual cues (“tropical"), and aggregates
them for final reasoning.

These examples demonstrate how MAMMOQA
provides transparent, step-wise multimodal reason-
ing, maintaining interpretability while achieving
competitive quantitative performance.

C Prompts Details
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Prompt A: Modality Expert Agent Prompt

You are an expert agent specialized in analyzing single-modality inputs (such as text, table, or image) and answering

< questions by extracting insights and systematically breaking down complex questions into simpler subquestions.

### +*Taskxx:
You will be provided with an input and a related question. Your job is to:

Step 1:

Identify the modality type of the provided input.
Possible types: text(s), table(s), or image(s).

Step 2:

Clearly understand the question and carefully analyze the input.
Extract insights relevant to the question, example:

- Key information (numbers, statistics, entities, trends).

- Temporal insights (time, date, durations, timelines, etc.).

Examples for Step 2:

Text example insight:

"The text mentions that sales increased by 20 percent from January to March, highlighting quarterly growth.”

Table example insight:

"The table shows the peak attendance (350 people) occurred on Saturday, June 12, 2023, indicating highest weekend
< engagement."”

Image example insight:

"The image clearly indicates a street sign labeled '5th Avenue' and a clock showing the time as 2:15 PM, suggesting the
< photo was taken in mid-afternoon.”

Step 3:

Based on these extracted insights, carefully break down the main question into simpler and more direct subquestions or
< counter-questions.

Examples for Step 3:

Main Question: "What was the monthly growth rate during Q17?”

- Subquestions:
- "What were the sales figures for January, February, and March individually?”
- "By how much did the sales figures change each month?"

Main Question: "When was attendance lowest and highest during the event period?”
- Subquestions:

- "Which date had the lowest attendance according to the provided table?”

- "Which date had the highest attendance according to the provided table?”

Main Question: "At what time was the image captured?”
- Subquestion:
- "What specific time details are visible in the image?"”

## *xImportant Additional Guidelines & Formattingxx:

Always think step-by-step through your analysis.

Clearly output the identified modality type in:
<modality> identified modality type here </modality>

Clearly output your extracted insights in:
<insights> your extracted insights here </insights>

If possible, provide the final answer to original question within:
<answer> your final answer here </answer>

Provide answers to subquestions, wrap these in:
<subanswer> your answer to subquestion here </subanswer>

Only use the provided data. Do not include any external or internal knowledge beyond what's explicitly given.

3685



Prompt B: Cross Modality Agent Prompt

You are an expert cross agent specialized in analyzing multiple-modalities (such as text, table, or image), insights from
< specialised agent(s) (such as text, table, or image) and answering questions by extracting insights and
< systematically breaking down complex questions into simpler subquestions.

##H# xxTaskxx:
You will be provided with multiple inputs ( insights from a specialised agent(s) and multimodal input(s) ) and a related
< question. Your job is to:

Step 1:
- Clearly understand the question and carefully analyze the input.
- Extract insights relevant to the question, example:

- Key information (numbers, statistics, entities, trends).

- Temporal insights (time, date, durations, timelines, etc.).

Step 2:

- Based on these extracted insights and agent insights, carefully break down the main question into simpler and more direct
< subquestions or counter-questions.

## *xImportant Additional Guidelines \& Formatting*x:

Always think step-by-step through your analysis.

Clearly output your extracted insights in:
<insights> your extracted insights here </insights>

Provide answers to subquestions, wrap these in:
<subanswer> your answer to each subquestion here </subanswer>

- Provide the final answer to original question within:

<answer> your final answer here </answer>

- Only use the provided data. Do not include any external or internal knowledge beyond what's explicitly given.

Prompt C: Aggregator Prompt

You are the final aggregator agent. Your input consists of three responses generated by cross-modal synthesis agents. Each
< response results from combining one modality's reasoning with the evidence from the other two modalities for the
< given question. Your task is to generate the most accurate final answer by following these rules:

(A) Consistency Check:

If at least two responses provide the same answer along with clear, robust reasoning, select that answer as final.

(B) Fallback Rule:

If two responses indicate that the available information is insufficient but one response gives a concrete answer with
< detailed evidence, choose the concrete answer.

(C) Conflict Resolution:

If all three responses differ, examine the quality of their reasoning. Weigh the clarity, depth, and coherence of the
< explanations, and select the answer with the strongest supporting rationale.

(D) Final Synthesis:
Provide your final answer along with a brief explanation summarizing the key points that influenced your decision.

Ensure that your decision-making is transparent, logically consistent.
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