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Abstract

Large Language Models (LLMs) have recently
made significant advancements in tackling com-
plex tasks, such as retrieving hard-to-find in-
formation and solving intricate problems. Con-
sequently, various approaches have been pro-
posed to integrate LLMs into recommender
systems, primarily by embedding them within
existing architectures or training them on the
recommendation data. However, most exist-
ing methods fail to effectively incorporate user-
item interaction signals into pretrained LLMs
due to the modality gap between interaction
data and the LLM’s internal knowledge. To
address this challenge, we propose the Item-
Language Model (ILM) to enhance LLMs for
recommendation. ILM consists of two main
components: An item-language representation
learning module, where an ILM encoder is pre-
trained to generate text-aligned item represen-
tations. And an item-language co-training mod-
ule, where the ILM encoder is integrated into a
pretrained LLM for the recommendation tasks.
Extensive experiments demonstrate the supe-
rior performance of our approach over several
state-of-the-art methods, validating the impor-
tance of text-aligned item representations in
bridging this modality gap. Our ablation stud-
ies further reveal the effectiveness of our model
design for integrating the interaction knowl-
edge into LLMs for recommendation tasks.
Our code is available at: https://anonymous.
4open.science/r/ILM-7AD4/.

1 Introduction

Large Language Models (LLMs) (OpenAI, 2024a;
Gemini Team, 2024b; Dubey et al., 2024), have
demonstrated remarkable emergent capabilities,
including complex reasoning (OpenAI, 2024b;
DeepSeek-AI, 2025) and multimodal understand-
ing, when scaled in data, parameters, and compute.
These models have achieved and even surpassed
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Figure 1: ILM is applicable in various types of recom-
mendation tasks. User and item collaborative filtering
embeddings, marked by placeholders in the input, are
interleaved with text embeddings and fed to the model.
{history} can be a sequence of item embeddings.

human-level performance on various professional
and academic benchmarks. In contrast, advance-
ments in recommender systems have not seen sim-
ilar breakthroughs despite the rapid progress in
LLMs (Wu et al., 2023; Chen et al., 2024; Lin et al.,
2024b), even though recommendation algorithms
power a significant portion of online user activity.
A key challenge is that user interactions in rec-
ommender systems are not naturally expressed in
language. Instead, these signals are often implicit,
such as item co-watch behavior. For example, in a
video recommendation system, if many users watch
both v1 and v2, a user who likes v1 may also like v2.
However, these interactions are difficult to explain,
and natural language descriptions of such patterns
are often unavailable. As a result, LLMs pretrained
on web-scale text data struggle to inherently un-
derstand user-item interaction signals, leading to
suboptimal performance compared to traditional
recommendation algorithms.

Various approaches have been proposed to tackle
this issue, including 1) Using LLMs as agents and
employing tool-use to integrate them with recom-
mender systems (Zhang et al., 2024; Wang et al.,
2024c). 2) Inputting different types of item con-
tent representations—such as text, images, audio,
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and content embeddings—into an LLM (Dai et al.,
2023; Liao et al., 2024). 3) Providing item IDs as
input to an LLM (Geng et al., 2022; Rajput et al.,
2023). 4) Inputting item collaborative filtering (CF)
embeddings into an LLM (Zhang et al., 2025; Ten-
nenholtz et al., 2024). The first two approaches
do not enable LLMs to directly understand user-
item interaction signals. In contrast, the latter two
approaches allow LLMs to incorporate both lan-
guage understanding and user-item interaction sig-
nals. However, a modality gap exists between item
CF signals and an LLM’s internal knowledge. Most
prior works address this gap using simple embed-
ding lookups or MLP networks for item represen-
tation, but how item representations can effectively
bridge this modality gap remains an open question.

To address this limitation, we propose the Item-
Language Model (ILM), which effectively incor-
porates the interaction patterns with item represen-
tation learning, and can be directly used in vari-
ous recommendation tasks, as shown in Figure 1.
Specifically, ILM is a two-stage framework con-
sisting of an item-language representation learning
stage and an item-language co-training stage. In
the first stage, the ILM encoder takes collaborative
filtering (CF) embeddings as input and is pretrained
using various contrastive learning objectives to gen-
erate language-aligned item representations. In the
second stage, we integrate the ILM encoder into a
pretrained LLM using a linear projection adaptor
layer. The LLM receives an interleaved sequence
of item and token embeddings as input, enabling
it to incorporate both language understanding and
user-item interaction signals. The main contribu-
tions of this work are summarized as follows:

• We reveal that item-language representation
learning plays a crucial role in closing the
modality gap between user-item interaction
signals and language, and propose an item-
language model to effectively bridge this gap.

• We design an interleaved format of item and
token embeddings, allowing ILM to be able to
perform arbitrary recommendation tasks, and
therefore effectively integrates the interaction
information into LLM through the co-training.

• We conduct extensive experiments and ablation
studies across various recommendation tasks,
demonstrating that our ILM approach consis-
tently outperforms existing methods for inte-
grating item representations into LLMs.

Paper Overview. In Section 2, we provide a brief
literature survey of LLM for recommender systems,
how item representations are used in existing ap-
proaches. In Section 3, we present the details of
the proposed ILM approach, including model ar-
chitecture and training. We present our experiment
results in Section 4 with deep analysis and discus-
sions in Section 5. We conclude in Section 6.

2 Related Work

LLM for Recommendation With LLMs show-
ing remarkable emergent abilities and surpassing
human-level performance across various domains,
there have been explorations to apply LLMs to rec-
ommender systems (Wu et al., 2023; Chen et al.,
2024; Zhao et al., 2024; Lin et al., 2024b; Li et al.,
2025). In-Context Learning methods have been
used as a straightforward way for this purpose (Dai
et al., 2023; Gao et al., 2023; Kang et al., 2023;
Zhang et al., 2021; Wang et al., 2023), which rely
on LLMs’ world knowledge. However, since user
interaction data in recommender systems is largely
not available during LLM pretraining, purely text-
prompting based methods show suboptimal perfor-
mance. Another line of work is by finetuning a
language model on user interaction data. P5 (Geng
et al., 2022; Xu et al., 2023) pretrains a unified lan-
guage model for many different recommendation
tasks by converting them into a common natural
language sequence format, where user and item
ids are represented as text strings. TALLRec (Bao
et al., 2023) finetunes a LLM using LoRA (Hu
et al., 2022) on user rating data, and the model
outputs a binary label.

Item Representations in LLM4Rec Efficiently
representing users and items in recommender sys-
tems is a rich field with years of work of traditional
techniques such as Matrix Factorization (Koren
et al., 2009; Rendle et al., 2022). When applying
LLM to recommender systems, users and items
are key objects, and it is critical for LLM to be
able to understand them. Using text representation,
such as the title of an item is a straightforward way.
However, one issue is text representation of an item
may not be informative enough. For example, it
is quite common that a video title is unrelated to
the video content, and different content can have
a single title. We can always include more text
features of an item, such as description, author and
other content features, but this may introduce irrele-
vant information, which may confuse the model or
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Figure 2: Overall model architecture of ILM. a) Item-Language Representation Learning. The ILM encoder takes
CF embeddings as input and is pretrained using various contrastive learning objectives to generate language-aligned
item representations. b) Item-Language Co-training. ILM encoder is integrated into a pretrained LLM using a linear
projection adaptor layer. The LLM receives an interleaved sequence of item and token embeddings.

make the method inefficient due to very long input.
Quantized id representations as item representation
has been proposed in the methods of random in-
dexing (Anderson et al., 2020; Xu et al., 2023), se-
quential or collaborative indexing (Xu et al., 2023;
Hua et al., 2023) and semantic ids in the context
of generative retrieval (Wang et al., 2024a,b; Liu
et al., 2025). In addition to using quantized ids,
ELM (Tennenholtz et al., 2024) demystifies the
input embedding spaces by feeding semantic em-
beddings to LLM, and CoLLM (Zhang et al., 2025)
enhances recommendation performance on rating
prediction tasks by feeding user and item collabora-
tive filtering embeddings to LLM. Recently, USER-
LLM (Ning et al., 2024) contextualizes LLM with
user history embeddings by integrating user em-
beddings to LLM through perceiver (Jaegle et al.,
2021; Alayrac et al., 2022), projection, and cross-
attention modules, where the LLM can be frozen
to preserve the original ability.

3 Methodology

3.1 ILM Overview
In LLM-based recommendation models, the in-
put and output typically consist of interleaved se-
quences of items and text, making the model’s abil-
ity to understand items crucial. The key idea be-
hind ILM is to develop an effective item-language
learning framework that bridges the gap between
item representation and LLM adaptation for recom-
mendation tasks. The overall ILM architecture is
illustrated in Figure 2. It comprises two main com-
ponents: (1) Item-Language Representation Learn-
ing Module (Section 3.2): This module trains the
ILM encoder using multiple contrastive learning
objectives to generate language-aligned item repre-

sentations. (2) Item-Language Co-training Module
(Section 3.3): This module integrates the pretrained
ILM encoder into an LLM via a linear projection
adaptor layer. The LLM is then co-trained on rec-
ommendation tasks using an interleaved sequence
of item and token embeddings. This structured
approach ensures that the LLM effectively incor-
porates user-item interaction signals, enhancing its
recommendation capabilities.

3.2 Item-Language Representation Learning

In the Item-Language Representation Learning
stage, we pretrain the ILM encoder to gener-
ate language-aligned item representations from
item collaborative filtering (CF) embeddings. To
achieve this, we employ three item-text learning
tasks: item-text generation, item-text matching, and
item-text contrastive learning, as illustrated in Fig-
ure 2(a). Specifically, for item-grounded text gen-
eration, we apply an auto-regressive loss on top
of the text tower, following the approach in (Li
et al., 2023). For item-text matching, we use a bi-
nary cross-entropy loss on the CLS token output
from the text tower. For item-text contrastive learn-
ing, given a positive item-text pair, we compute
the output representations [h1, h2, ..., hN ] for the
N learnable queries [q1, q2, ..., qN ] from the query
tower fq and use the CLS output representation
from the text tower ft as the text representation.
The contrastive loss is then computed to align these
representations effectively:

[h1, h2, ..., hN ] = fq([q1, q2, ..., qN ], e)

htext = ft([tcls, t1, ..., tL]),
(1)

where e is the item input embedding and [t1, ..., tL]
are text tokens. We select the closest query repre-
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sentation to htext as the item representation:

hitem = max
hi

cosine_similarity(hi, h
text) (2)

Then the contrastive loss between hitem and htext

is computed using in-batch negative sampling fol-
lowing (Radford et al., 2021):

Litem−text

=−
B∑

j=1

log
es(h

item
j ,htext

j )

es(h
item
j ,htext

j ) +
∑N

k es(h
item
j ,htext

k
)
,

(3)

where j is the index in the batch, B is the batch size,
N is the number of in-batch negative samples, and
s is the cosine similarity function with a learnable
temperature parameter. The item-text pair data is
processed from item descriptions and tags, more
details can be found in Section 4.1.

In addition to item-text alignment tasks, we in-
troduce a novel item-item contrastive learning task
to mitigate overfitting on item-text data, especially
when text labels are sparse. This task extends the
item-text contrastive loss to directly align item rep-
resentations. Specifically, given a positive item-
item pair, we compute the output representations
of the N learnable queries for both items. This en-
sures that items with similar interaction patterns are
mapped closer in the learned representation space,
improving model robustness and generalization.

[h
[1]
1 , h

[1]
2 , ..., h

[1]
N ] = fq([q1, q2, ..., qN ], e[1])

[h
[2]
1 , h

[2]
2 , ..., h

[2]
N ] = fq([q1, q2, ..., qN ], e[2]),

(4)

where e[1] and e[2] are embeddings for item1 and
item2, respectively. Note that we use a single set
of learnable queries for all items. We then select
the pair of closest query representations as the rep-
resentations for the two items hitem1 and hitem2 ,
and compute the contrastive loss between them:

Litem−item
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log
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item1
j ,h

item2
j )
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k
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(5)

Combining item-item learning with item-text
learning offers a key advantage: it enhances the
ILM encoder’s ability to generate higher-quality
representations. These representations not only
capture item-text similarity but also encode item-
item similarity, allowing the model to infer text-
related information for items without explicit text
labels. However, due to the in-batch negative sam-
pling used in contrastive loss, we cannot mix item-
text and item-item examples within the same batch.

To address this, we train the ILM encoder on sep-
arate item-text and item-item batches, optimizing
Litem−text and Litem−item in an alternating manner.
The impact of item-item contrastive loss is further
analyzed through ablation studies in Section 5.3.

3.3 Item-Language Co-Training

After item-language representation learning, we in-
tegrate the learned ILM encoder with a pretrained
LLM in a co-training module for recommendation
tasks as shown in Figure 2(b). Specifically, For
each text token xi, we retrieve its embedding ei
from the embedding table. For each item yj , the
ILM encoder generates a sequence of N embed-
dings, corresponding to the query length in the
ILM encoder. We then apply a linear MLP pro-
jection to align these embeddings with the token
embedding space, resulting in [f1

j , f
2
j , ..., f

N
j ]. For

example, given an interleaved sequence of items
and text [x1, x2, y1, x3, y2, x4], the corresponding
input sequence of embeddings to the LLM becomes
[e1, e2, f

1
1 , f

2
1 , ..., f

N
1 , e3, f

1
2 , f

2
2 , ..., f

N
2 , e4]. The

LLM’s output consists solely of text and is opti-
mized using autoregressive learning.

LLM = −
T∑

t=1

log p (xt | x1, x2, y1, x3, . . . , xt−1) (6)

The LLM can be pretrained for various purposes,
including general-purpose instruction-following
LLMs (OpenAI, 2024a; Gemini Team, 2024b,a)
and recommendation-specialized LLMs trained
on recommendation data to support generative re-
trieval (Rajput et al., 2023; Sun et al., 2023). We
evaluate both scenarios and present experimental
results in the experiment section.

4 Experiments

4.1 Datasets

We use the widely adopted Embedding Language
Model (ELM) (Tennenholtz et al., 2024) and
OpenP5 (Xu et al., 2023) benchmarks to evaluate
recommendation tasks.

ELM 24 Tasks are derived from the MovieLens
25M dataset, including single movie tasks, e.g.
summarizing a movie, and movie pair tasks, e.g.
comparing characteristics of movies. The training
targets are generated by prompting the PaLM 2-L
model with a movie’s title and task-specific infor-
mation. For training inputs, the same task-specific
prompts are used, with the movie title replaced
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Table 1: Performance comparison results of ILM with two SOTA baselines on ELM 24 Tasks.

Model Sum. Pos. Rev. Neu. Rev. 5Pos Ch. 5Neg Ch. Long Desc. Fun. Sad.

ELM (Tennenholtz et al., 2024) 81.53 88.12 84.41 86.41 84.89 80.81 75.52 77.86
LLaRA (Liao et al., 2024) 80.32 86.65 81.87 85.34 85.26 78.15 73.68 76.33
CoLLM (Zhang et al., 2025) 78.44 85.25 81.47 85.06 86.77 77.83 73.42 76.06
ILM 82.66 87.89 85.48 91.19 93.89 81.58 76.78 79.39

Model Scare Imp. M2V Pitch Crit. Conv1 Conv2 Conv3

ELM (Tennenholtz et al., 2024) 76.77 83.30 84.72 87.96 83.04 83.02 81.82 80.54
LLaRA (Liao et al., 2024) 75.16 79.51 81.39 86.54 78.75 81.25 80.10 78.56
CoLLM (Zhang et al., 2025) 75.24 77.94 80.70 85.26 79.30 80.74 79.62 77.69
ILM 78.50 84.67 88.44 89.01 85.01 83.60 84.97 85.14

Model Diss1 Diss2 Sim. Interp. WhyNN DiffNN CommNN All

ELM (Tennenholtz et al., 2024) 80.97 80.69 84.53 75.94 82.22 84.70 79.71 82.15
LLaRA (Liao et al., 2024) 78.22 79.34 83.72 74.26 80.21 85.24 80.18 80.46
CoLLM (Zhang et al., 2025) 79.72 80.22 83.51 73.86 79.33 85.09 80.85 80.27
ILM 81.84 85.77 90.48 78.38 88.72 93.28 88.90 85.44

by the movie embedding. We use semantic em-
beddings provided in the ELM dataset, which are
generated by PALM2-XS LLM on item descrip-
tions. We use behavioral embeddings trained on
user ratings in the MovieLens 25M dataset with
Matrix Factorization computed using Weighted Al-
ternating Least Squares (WALS) (Hu et al., 2008).

OpenP5 is a dataset designed for LLM-based
recommendation development, fine-tuning, and
evaluation. It includes 10 preprocessed public
datasets, each supporting two types of tasks: Se-
quential Recommendation and Straightforward
Recommendation. For our benchmarks, we select
the MovieLens-1M, Beauty, and Clothing datasets,
using random indexing item representations, which
can be viewed as a simple generative retrieval setup.
The training target for each example is the ground
truth item id. The training input consists of each
item’s random indexing ID, appended with its be-
havioral embedding, which is computed using the
iALS matrix factorization algorithm (Rendle et al.,
2021) on the user sequence training set. We follow
the provided train, development, and test splits in
OpenP5, where the last item is used for testing with
the second-to-last item used for development.

4.2 Evaluation Metrics

For ELM 24 tasks, we report the Semantic Consis-
tency (SC) (Tennenholtz et al., 2024) on the test
set. For SC, we use the cosine similarity of se-
mantic embeddings of the original and decode tar-
gets from the Sentence-T5 11B model (Ni et al.,
2022). For OpenP5 tasks, we report top-k Hit Rate
(HR@K) and Normalized Discounted Cumulative
Gain (NDCG@K) with K = 5, 10 to evaluate the
recommendation performance. To compute those

metrics, we use beam search to generate 10 outputs
for each example, and remove invalid outputs that
do not match the regular expression.

4.3 Results on ELM 24 Tasks
We compare ILM with the three SOTA baselines
on ELM 24 tasks, including CoLLM (Zhang et al.,
2025), LLaRA (Liao et al., 2024) and ELM (Ten-
nenholtz et al., 2024). CoLLM uses a two layer
MLP with intermediate size 10 times the input em-
bedding size to map the input behavioral embed-
ding to LLM token embedding space. During train-
ing, both the LLM and the MLP parameters are
trained. LLaRA derives the textual and behavioral
tokens from the ID-based item embedding learned
by traditional recommender models and use them
for item representations. There is no item-text rep-
resentation stage. ELM uses a MLP adapter to
adapt the item embeddings to language space. A
two-stage training strategy is used. In stage-1 it
trains only the adapter and keep the LLM frozen.
In stage-2 it fully finetunes all the parameters in
the LLM and the MLP adapter.

For ILM encoder, we use a Q-Former (Li et al.,
2023) with 8 transformer layers. During item-
language representation learning stage, we pair the
item with a concatenation of a) the prompt original
used by ELM to generate the target, i.e. title(s) and
task specific information, and b) the target as the
item-text pairs. For the ELM 24 tasks benchmark,
we only train the ILM encoder with item-text data.
In the item-language co-training stage, we fully
finetune both the ILM encoder and the LLM. In
all experiments, we use PaLM 2-S (Google, 2023)
as the LLM backbone. We train the models for
100k steps using a batch size 32 and learning rate
5× 10−4 with a cosine decay.
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Table 2: Performance comparison results of ILM with two SOTA baselines on OpenP5 tasks.

Setting Method ML1M Beauty Clothing

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Seen

OpenP5-R (Xu et al., 2023) 0.0688 0.0455 0.1033 0.0566 0.0208 0.0162 0.0254 0.0177 0.0015 0.0010 0.0030 0.0015
LLaRA (Liao et al., 2024) 0.0723 0.0478 0.1084 0.0576 0.0206 0.0154 0.0259 0.0171 0.0026 0.0017 0.0038 0.0021
CoLLM (Zhang et al., 2025) 0.0692 0.0459 0.1041 0.0572 0.0199 0.0150 0.0255 0.0168 0.0015 0.0010 0.0022 0.0012
ILM 0.0724 0.0485 0.1064 0.0595 0.0213 0.0164 0.0270 0.0182 0.0041 0.0025 0.0065 0.0033

Unseen

OpenP5-R (Xu et al., 2023) 0.0696 0.0449 0.1041 0.0560 0.0206 0.0161 0.0253 0.0176 0.0016 0.0010 0.0034 0.0016
LLaRA (Liao et al., 2024) 0.0710 0.0477 0.1033 0.0581 0.0206 0.0157 0.0263 0.0175 0.0023 0.0015 0.0037 0.0019
CoLLM (Zhang et al., 2025) 0.0716 0.0470 0.1045 0.0576 0.0203 0.0151 0.0255 0.0168 0.0016 0.0011 0.0026 0.0014
ILM 0.0717 0.0481 0.1086 0.0600 0.0213 0.0162 0.0269 0.0181 0.0038 0.0024 0.0062 0.0032

The comparison results are presented in Table 1.
It can be seen that our approach consistently out-
performs both strong baselines on almost all tasks.
This observation validates the effectiveness of ILM
in bridging the item-language gap in LLM learning
for recommendation. We further report the mean
and standard deviation results in Table 11.

4.4 Results on OpenP5

In OpenP5, each task contains 10 prompt templates
used for training with one prompt template used for
unseen testing. For the baselines, we compare ILM
with an additional method, OpenP5-R (Xu et al.,
2023). OpenP5-R stands for the OpenP5 random
indexing method, i.e., using the backbone model
directly without any embedding inputs, where same
LLM backbone as our ILM approach is used.

For item-language representation learning stage,
we generate the item-text pair data by extracting
item metadata from (1) movie title and genres
from the original Movielens-1M dataset (Harper
and Konstan, 2015) for the ML1M task (2) prod-
uct metadata including title, description, features,
brand, etc. from the original Amazon Review 2014
Metadata (He and McAuley, 2016) for Beauty and
Clothing tasks. Since the inputs of OpenP5 tasks
contain both user id and item id, we generate user-
item pairs using the training set of OpenP5’s user
sequence data, and conduct user-item contrastive
learning *. For the co-training stage, we use an 8
layer transformer model as the LLM backbone, and
pretrain the backbone on the OpenP5 data using
random item indexing to enable the model gener-
ative retrieval (Geng et al., 2022; Xu et al., 2023;
Rajput et al., 2023; Sun et al., 2023) ability. ILM
approach can be integrated with any other type of
item token id based encoding such as sequential
indexing and collaborative indexing in the OpenP5
dataset as well as other more advanced semantic

*Here we simply take user CF embedding as input to the
ILM encoder, so user-item and item-item contrastive learnings
are using exactly the same setup.

id based methods (Rajput et al., 2023; Sun et al.,
2023). Training hyperparameters can be found in
Section B. We present the statistics of data used in
both stages in Table 6.

For each dataset, we select the checkpoint with
the best NDCG@10 metric on the development set.
The test results on both seen and unseen OpenP5
MovieLens-1M, Beauty, and Clothing tasks are re-
ported in Table 2. From the results we can observe
that our method consistently outperforms other
baselines across all tasks and settings, demonstrat-
ing the effectiveness and generalization of ILM on
various recommendation tasks. We report the mean
and standard deviation results in Table 12.

5 Analysis and Discussion

5.1 Impact of Item Embedding Types

Items in a recommender system can have both se-
mantic and behavioral embeddings, both of which
can be used as inputs to the item encoder in our
framework. In this study, we examine three types of
embeddings and evaluation the ILM performance:
a) Semantic embedding from the ELM dataset,
which consists of content embeddings generated by
the PaLM2-XS LLM on item descriptions. b) Be-
havioral embedding, generated through collabora-
tive filtering trained with Alternating Least Squares
(ALS) (Rendle, 2022) on the MovieLens-25M user-
item interaction data. c) Combined embedding,
which is generated by concatenating an item’s se-
mantic and behavioral embeddings.

The performance comparison results on a repre-
sentative subset of the ELM 24 tasks are shown in
Table 3 (full results are presented in Table 13 in the
Appendix). It is unsurprising that the ILM perfor-
mance of using semantic embeddings outperforms
behavioral embeddings, as many of the ELM 24
tasks assess content understanding of items. How-
ever, when combining semantic and behavioral em-
beddings, ILM achieves the best performance, in-
dicating that behavioral embeddings learned from
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Table 3: ILM performance on ELM 24 tasks with different item embedding types.

Sum. Pos. Rev. Long Desc. Funnier Sim. Interp. WhyNN All

ILM-Semantic 82.15 87.70 81.15 76.10 90.16 77.85 87.61 85.08
ILM-Behavioral 74.06 79.09 72.58 69.43 80.87 71.92 80.57 78.43
ILM-Combined 82.66 87.89 81.58 76.78 90.48 78.38 88.72 85.44
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Figure 3: Effects of LLM training strategies in item-
language co-training stage on ELM benchmark.

the interaction data contribute complementary in-
formation to the content embeddings.

5.2 Freezing v.s. Finetuning LLM

In the item-language co-training stage, we have
the option to either freeze the LLM or fine-tune
the LLM. To assess the effectiveness of LLM co-
training, we conduct an experiment by freezing the
LLM during this stage. The comparison results of
freezing versus fine-tuning the LLM using com-
bined item embeddings on the ELM 24 tasks are
presented in Figure 3(a). It is evident that full fine-
tuning the LLM consistently leads to better model
performance. Similar patterns have been observed
in previous works (Lin et al., 2024a; Tennenholtz

et al., 2024). The reason is that fine-tuning the
LLM facilitates better alignment between the item
and language embedding spaces. Interestingly, we
also observe that when using behavioral item em-
beddings alone, freezing the LLM results in better
performance as shown in Figure 3(b). Our hypoth-
esis is that the modality gap between behavioral
embeddings and the LLM’s knowledge is too large,
making it difficult for the LLM to be effectively
optimized during fine-tuning.

5.3 Impact of Item-Language Representation
Learning

To evaluate the overall effectiveness of item-
language representation learning, we conduct an ab-
lation study by removing the ILM encoder training
stage—i.e., directly using the original item embed-
dings in the item-language co-training. To isolate
the effect of item encoder representation learning,
we freeze the LLM in the co-training stage for both
settings (with and without the first stage). The per-
formance comparison results are presented in Fig-
ure 4. The results show a significant performance
drop across all tasks when the item-language repre-
sentation learning stage is removed. This highlights
the importance of the ILM encoder in learning bet-
ter item representations and effectively bridging the
modality gap between user-item interaction signals
and LLM knowledge.

Table 4: Impact of item-item and item-text losses on
OpenP5 ML1M benchmark.

Setting Methods HR@5 NDCG@5 HR@10 NDCG@10

seen
ILM-IT 0.0719 0.0474 0.1088 0.0594
ILM 0.0724 0.0485 0.1064 0.0595

unseen
ILM-IT 0.0700 0.0470 0.1071 0.0589
ILM 0.0717 0.0481 0.1086 0.0600

5.4 Impact of Different Losses in ILM
Encoder Learning

In item-language representation learning, the ILM
encoder is trained using two types of training losses:
item-text and item-item contrastive losses. To bet-
ter understand the impact of these training tasks
on ILM encoder learning, we conduct experiments

321



Su
m

Pos
. R

ev

Lon
g D

esc

Fun
nie

r
Sim Int

erp

Why
NN All

65

70

75

80

85

90

95
SC

(%
)

76.09

78.81
80.79

82.75

75.02

77.98

71.41
73.50

80.50

84.00

71.61

74.75

77.52

81.06

78.92
80.87

Without item-language representation learning
With item-language representation learning

Figure 4: Impact of item-language representation learn-
ing stage on representative tasks on ELM benchmark.

Table 5: Effects of stage-1 item-item and user-item
contrastive losses on OpenP5 stage-1 final train and eval
item-grounded text generation losses.

Methods
ML1M Beauty Clothing

Train Eval Train Eval Train Eval

ILM-IT 0.0000 4.1699 1.0441 4.2643 0.2114 2.0530
ILM 0.0089 4.0663 2.3420 3.3724 0.5498 1.6358

with different loss combinations: (1) Only using
item-text losses (refer to as ILM-IT). (2) Combine
item-text losses with the item-item contrastive loss,
i.e. our (ILM) approach.

The comparison results on the OpenP5 ML1M
benchmark are presented in Table 4. The re-
sults indicate that introducing item-item contrastive
loss generally leads to performance improvements,
highlighting its effectiveness in enhancing item rep-
resentations. To further demonstrate the benefits
of item-item contrastive loss, we examine the final
training and evaluation losses for item-grounded
text generation, as shown in Table 5. The results
reveal that incorporating item-item contrastive loss
indeed helps to reduce evaluation loss and narrow
the train-eval gap, reinforcing its role in improving
generalization during ILM encoder learning.

5.5 Impact of Item Token Numbers

Another key aspect of our ILM approach is the
use of multiple learned queries to generate multi-
ple embeddings as item representations as the ILM
encoder output, which are then fed into the LLM.
In contrast, existing methods (Tennenholtz et al.,
2024; Zhang et al., 2025) typically use a single
embedding to represent an item within the LLM.
We analyze the impact of using different numbers

of query tokens in Figure 5. To better understand
the advantages of our approach, we also compare
against an MLP baseline, where the input embed-
ding is projected into the same number of embed-
dings as in our ILM method. For both approaches,
performance initially improves as the number of
query tokens increases, but then declines, with the
best performance observed around 4-8 query to-
kens. Our hypothesis is that with an excessively
large number of query tokens, the input sequence
length to the LLM becomes too long (since each
item in the input sequence is represented by this
number of query tokens), making it difficult to ef-
fectively fine-tune the model during the second
stage. Additionally, across different query lengths,
our ILM approach consistently outperforms the
MLP baseline in most cases, highlighting the effec-
tiveness of our multi-query token strategy for item
representation.

6 Conclusion

In this work, we propose ILM, a novel approach for
integrating collaborative filtering knowledge into
large language models (LLMs) for conversational
recommendation tasks. Our method follows a two-
stage training paradigm. We first trains an ILM
encoder to generate item-language aligned repre-
sentations from semantic and behavioral embed-
dings, which are then interleaved with text token
embeddings and fed into an LLM for co-training
on recommendation tasks. We conduct extensive
benchmark evaluations across various recommen-
dation datasets and tasks. Our results demonstrate
that incorporating item-item and user-item interac-
tion data significantly enhances performance, ef-
fectively integrating traditional interaction signals
into LLMs. The findings show that ILM consis-
tently outperforms existing methods for integrat-
ing collaborative filtering embeddings into LLMs,
achieving state-of-the-art performance.

Limitations

We evaluate ILM on the ELM 24 tasks and OpenP5
dataset, showcasing its effectiveness as a unified
item-language modeling approach for recommen-
dation tasks with interleaved item-text inputs. This
setup is widely applicable in real-world scenar-
ios, such as conversational recommendation, where
users engage in multi-turn interactions, and LLM-
based agent systems, where models must reason
over retrieved items while incorporating collabo-
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Figure 5: Impact of Number of Query Tokens on the ILM model performance on OpenP5 benchmark.

rative filtering information. One future direction
is to benchmark ILM on additional recommenda-
tion tasks to assess its generalization, exploring
more challenging recommendation scenarios with
refined evaluation metrics. Another potential direc-
tion is to develop a unified framework that com-
bines the two-stage training, which could help re-
duce the complexity of the training and improve
the consistency of the learned representations.
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A OpenP5 Training Data Statistics

In Table 6, we show the dataset statistics for
OpenP5 stage-1 and stage-2 training. As can be
seen, comparing with Amazon Review datasets,
Beauty and Clothing, the ML1M dataset con-
tains much fewer number unique users and items,
but much larger number of user-item interactions.
ML1M items also contain very limited text fea-
tures, i.e. title and genres, while Amazon Review
datasets contain much rich text features, i.e. ti-
tle, descriptions, product features, etc. We classify
ML1M dataset as user interaction rich, and Ama-
zon Review datasets as item content feature rich.
Behavioral embeddings play a more important role
in our ILM approach for ML1M dataset.

Table 6: OpenP5 stage-1 and stage-2 dataset statistics.

Datasets
stage-1 stage-2

Item-text Item-item User-item Train Test # Users # Items

ML1M 3079 479664 888696 19629820 12080 6040 3416
Beauty 10879 103268 138521 2628260 44726 22363 12101
Clothing 20750 142427 180128 3210280 78774 39387 23033

B Hyperparameters

The hyper-parameters for stage-1 and stage-2 train-
ings on the ELM benchmark are presented in Ta-
ble 7.

Table 7: Hyper-parameters for ELM 24 tasks.

stage-1

ILM encoder 8 layers, 168M params
batch size 256

learning rate 3× 10−5

schedule cosine decay
optimizer AdaFactor

# steps 259K
hardware 16 Cloud V5 TPUs

stage-2

LLM PaLM 2-S
batch size 32

learning rate 5× 10−4

schedule linear decay
optimizer AdaFactor

# steps 100K
hardware 64 Cloud V5 TPUs

The hyper-parameters for stage-1 and stage-2
trainings on the OpenP5 benchmark are presented
in Table 8. For OpenP5 benchmark, we use a 8
layer transformer decoder as the LLM backbone.
We add an extra stage of pretraining the LLM back-
bone using text only OpenP5 data to enable gener-
ative retrieval. For the ML1M dataset, we pretrain
for 100K steps. For the Beauty dataset, we pretrain

for 20K steps. For the Clothing dataset, we pretrain
for 10K steps.

Table 8: Hyper-parameters for OpenP5 tasks.

stage-1

ILM encoder 8 layers, 168M params
batch size 256

learning rate 3× 10−5

schedule cosine decay
optimizer AdaFactor

# steps 40K for ML1M, 10K for
Beauty, 15K for Clothing

hardware 16 Cloud V5 TPUs

stage-2

LLM Transformer decoder 8
layers, 128M params

batch size 32
learning rate 5× 10−4

schedule linear decay
optimizer AdaFactor

# steps 50K for ML1M, 20K for
Beauty, 20K for Clothing

hardware 64 Cloud V5 TPUs

Table 9: Training and Inference costs of both stages on
all tasks. All inferences are using 4 Cloud V5 TPUs.

Stage Training Time Hardware Inference Latency

ELM 24
stage-1 45 hours 16 Cloud V5 TPU NA
stage-2 115 hours 64 Cloud V5 TPUs O(1s)

ML1M
stage-1 0.5 hours 16 Cloud V5 TPU NA
stage-2 0.5 hours 64 Cloud V5 TPU O(100ms)

Beauty
stage-1 0.9 hours 16 Cloud V5 TPU NA
stage-2 0.2 hours 64 Cloud V5 TPU O(100ms)

Clothing
stage-1 1.3 hours 16 Cloud V5 TPU NA
stage-2 0.2 hours 64 Cloud V5 TPU O(100ms)

C Training and Inference Cost

We summarize the training time and inference
latency in the Table 9. For ELM 24 tasks, the
stage-1 computation is relatively lightweight com-
pared with stage-2. Since in stage-1, a small sized
ILM encoder is enough for the purpose of item-
text alignment, while in stage-2, we need a LLM
(PaLM-2S) to generate long and complex outputs.
For OpenP5 tasks, the stage-1 and stage-2 com-
putations are on-par. Since in stage-1, we need a
similar sized ILM encoder for item-text alignment,
while we found in stage-2, a larger LLM backbone
will degrade the performance. And for Beauty and
Clothing tasks, item descriptions are much longer
than the ML1M task, so we observed more com-
putation cost in stage-1 for Beauty and Clothing
tasks.

The inference cost is a sum of ILM encoder
cost and backbone LLM cost. For ELM 24 tasks,
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the ILM encoder cost is negligible compared with
backbone LLM cost. For OpenP5 tasks, the ILM
encoder cost is comparable with backbone LLM
cost. Since most of the computation happens in
matrix multiplications, we can estimate the infer-
ence FLOPs for backbone LLM by 2N*D, where
N is the number of input and output tokens, and D
is the number of model parameters, and estimate
the inference FLOPs for ILM encoder by 2Ni*D,
where Ni is the number of input tokens.

Table 10: Model Generalization: performance results
on LLaMa 3.3 and Qwen 2.5.

LLaMa 3.3 8B ML1M Beauty Clothing

OpenP5-R 0.0631 0.0239 0.0036
CoLLM 0.0645 0.0266 0.0053

ILM 0.0673 0.0296 0.0087

Qwen 2.5 7B ML1M Beauty Clothing

OpenP5-R 0.0647 0.0244 0.0042
CoLLM 0.0662 0.0271 0.0061

ILM 0.0695 0.0298 0.0094

D Model Generalization on More LLM
Backbones

Our ILM encoder is a general method to align
item CF embeddings with text, and our method can
be integrated to a LLM trained for any purposes,
including general dialogue (Llama 3.3, Qwen
2.5, GPT-4o, etc.), complex reasoning (OpenAI-
O3, DeepSeek-R1, etc.), or for recommendation
(OpenP5, Tigar, etc.), and inherit the LLM’s origi-
nal ability. To demonstrate the generalizability of
our approach, we conduct additional experiments
on LLaMa 3.3 and Qwen 2.5 and present the re-
sults in Table 10. It can be seen that the results are
consistent with those on PaLM.

E Standard Derivation of ILM Result

We present the mean and standard error of the mean
(SEM) of ILM results on ELM benchmark in Ta-
ble 11 and on OpenP5 benchmark in Table 12. All
results are computed using 3 runs with different ran-
dom number seeds. As can be seen, the standard
error of the mean is about 1-2 orders of magnitude
smaller than gains by our results.

F Full Results on ELM 24 Tasks

We present the full results of ILM with fully fine-
tuned LLM in co-training stage and different item
embedding types on ELM benchmark in Table 13.

Table 11: The mean and standard error of the ILM
metrics on ELM 24 tasks.

Tasks SC(%) Log pplx

summary 0.7318 ± 0.00359 0.6250 ± 0.00134
positive review 0.7832 ± 0.00246 0.5711 ± 0.00211
neutral review 0.7680 ± 0.00584 0.5759 ± 0.00345
five pos char. 0.8631 ± 0.00320 0.5960 ± 0.00556
five neg char. 0.9225 ± 0.00017 0.4029 ± 0.00845
long description 0.7258 ± 0.00411 0.6622 ± 0.00130
funnier 0.6891 ± 0.00358 0.5394 ± 0.00085
sadder 0.7181 ± 0.00267 0.5152 ± 0.00112
scarier 0.7241 ± 0.00261 0.5251 ± 0.00104
improve 0.7759 ± 0.00293 0.5123 ± 0.00264
movie to viewer 0.8008 ± 0.00313 0.6005 ± 0.00425
pitch 0.8370 ± 0.00341 0.5181 ± 0.00198
criticize 0.7894 ± 0.00356 0.5504 ± 0.00406
convince1 0.7881 ± 0.00353 0.6176 ± 0.00353
convince2 0.7957 ± 0.00523 0.7795 ± 0.00533
convince3 0.7949 ± 0.00421 0.8900 ± 0.00714
dissuade1 0.7909 ± 0.00203 0.6076 ± 0.00381
dissuade2 0.8386 ± 0.00167 0.7278 ± 0.00609

similarities 0.8422 ± 0.00585 0.3993 ± 0.00842
interpolation 0.7300 ± 0.00363 0.5310 ± 0.00238
why like nn 0.8030 ± 0.00367 0.6452 ± 0.00556
diff than nn 0.8891 ± 0.00198 0.5111 ± 0.00941
common with nn 0.8433 ± 0.00182 0.5393 ± 0.00817

all 0.7939 ± 0.00317 0.5813 ± 0.00415

Table 12: The mean and standard error of ILM metrics
on OpenP5 datasets.

Setting Dataset HR@5 NDCG@5

seen
ml1m 0.0715 ± 0.00051 0.0476 ± 0.00047
beauty 0.0210 ± 0.00018 0.0160 ± 0.00020
clothing 0.0040 ± 0.000085 0.0025 ± 0.000014

unseen
ml1m 0.0720 ± 0.00044 0.0478 ± 0.00052
beauty 0.0214 ± 0.00019 0.0162 ± 0.000090
clothing 0.0038 ± 0.000037 0.0025 ± 0.000041

Set Dataset HR@10 NDCG@10

seen
ml1m 0.1072 ± 0.00043 0.0591 ± 0.00020
beauty 0.0265 ± 0.00036 0.0177 ± 0.00025
clothing 0.0061 ± 0.00022 0.0032 ± 0.000051

unseen
ml1m 0.1069 ± 0.00095 0.0591 ± 0.00049
beauty 0.0266 ± 0.00020 0.0179 ± 0.000099
clothing 0.0059 ± 0.00015 0.0032 ± 0.000029

We present full results of ILM with different stage-1
and stage-2 training strategies on ELM benchmark
in Table 15.

We further present the task-level analysis on
ELM 24 tasks in Table 14. We summarize the
gains of our method v.s. the two baselines in the
table. The task descriptions are from the original
ELM paper. As can be seen, for tasks more related
to user’s references, e.g. 5Neg Ch., Conv3, etc.,
or tasks related to item relationships, e.g. Sim.,
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Table 13: Full results on effects of embedding types.
LLM is fully finetuned in co-training stage.

Tasks ELM ILM-
Semantic

ILM-
Behavioral

ILM-
Combined

Sum. 81.53 82.15 74.06 82.66
Pos. Rev. 88.12 87.70 79.09 87.89
Neu. Rev. 84.41 85.10 79.44 85.48
5Pos Ch. 86.41 90.99 82.73 91.19
5Neg Ch. 84.89 93.64 84.70 93.89
Long Desc. 80.81 81.15 72.58 81.58
Fun. 75.52 76.10 69.43 76.78
Sad. 77.86 78.66 72.04 79.39
Scare 76.77 77.96 71.99 78.50
Imp. 83.30 84.34 79.50 84.67
M2V 84.72 88.01 79.38 88.44
Pitch 87.96 88.92 83.60 89.01
Crit. 83.04 84.78 80.21 85.01
Conv1 83.02 83.66 79.20 83.60
Conv2 81.82 85.07 78.00 84.97
Conv3 80.54 84.97 77.07 85.14
Diss1 80.97 81.77 78.57 81.84
Diss2 80.69 85.64 79.12 85.77

Sim. 84.53 90.16 80.87 90.48
Interp. 75.94 77.85 71.92 78.38
WhyNN 82.22 87.61 80.57 88.72
DiffNN 84.70 92.57 86.51 93.28
CommNN 79.71 88.32 80.01 88.90

All 82.15 85.08 78.43 85.44

CommNN., etc., our ILM approach can achieve
larger gains. For tasks that are more about item con-
tent understanding, e.g. Sum., Long Desc., ILM
achieves marginal gains compared with ELM, but
still quite significant gain compared with CoLLM,
which only uses item behavioral embedding.

G Preserving Pretrained Ability

In conversational recommendation, often the user
and the system will conduct multiple turns of con-
versations, and for the system to achieve a cer-
tain goal, tool use may be employed (Feng et al.,
2023; Gao et al., 2023; Liu et al., 2023; Fang et al.,
2024). There is often no constraint on the topics
of the conversations, so the pretrained abilities of
the LLM could be important. For example, the
user may ask the LLM to perform certain oper-
ations such as adding or removing certain items
from the recommended items, or conducting cer-
tain filtering based on a criteria. Those operations
require certain reasoning ability from LLM pre-
training. For another example, to use LLMs as an
automatic agents (Zhang et al., 2024; Wang et al.,
2024c) for conversational recommendation, they
may require certain broad knowledge to perform

tool use (Schick et al., 2023) to achieve a task. If
the LLM is later fully finetuned only using the task
specific data, it is likely that those pretrained abil-
ities will be lost or hidden. In our ILM approach,
a frozen LLM can be used, when the inputs don’t
contain items, the behavior of the model will be
exactly the same as the original LLM. This means
all pretrained knowledge can be preserved, which
is crucial for multi-turn conversations and tool use
in automatic agents.

H More OpenP5 Results

For OpenP5, we experiment with different combi-
nations of stage-1 training losses: (1) Only using
item-text losses (ILM-IT). (2) Combine (1) with an
item-item contrastive loss (ILM-IT-II). (3) Com-
bine (1) with an user-item contrastive loss (ILM).
We generate item-item pair data by using two con-
secutive items in the history sequence as a positive
pair, then we perform de-duplication. The results
are in Table 16. For ML1M, introducing II or UI
contrastive losses can lead to performance gains,
while for Beauty and Clothing there are no obvious
gains. We hypothesize this is due to ML1M hav-
ing richer user interactions and scarcer item text
features than the other two datasets, Table 6. This
supports our hypothesis, and suggests exploring
user-interaction signals in the stage-1 representa-
tion learning can be beneficial for tasks like ML1M.

328



Table 14: Task-level analysis on ELM 24 tasks.

Task Description SC gain v.s. CoLLM SC gain v.s. ELM

Sum. One paragraph summarizing of movie plot. 4.22 1.13
Pos. Rev. A positive review of the movie. 2.64 -0.23
Neu. Rev. A negative review of the movie. 4.01 1.07
5Pos Ch. Listing five positive characteristics of the movie. 6.13 4.78
5Neg Ch. Listing five negative characteristics of the movie. 7.12 9.00

Long Desc. A long exhaustive description of the movie plot. 3.75 0.77
Fun. A plot for a funnier version of the movie. 3.36 1.26
Sad. A plot for a sadder version of the movie. 3.33 1.53
Scare A plot for a scarier version of the movie. 3.26 1.73
Imp. An improved version of the movie (as generated by an LLM) 6.73 1.37
M2V Describing a viewer that would like to watch this movie, including characteristics. 7.74 3.72
Pitch A pitch for the movie. 3.75 1.05
Crit. Criticizing the movie. 5.71 1.97

Conv1 Convincing to watch the movie. 2.86 0.58
Conv2 Convincing in detail to watch the movie. 5.35 3.15
Conv3 Convincing briefly to watch the movie. 7.45 4.60
Diss1 Dissuading to watch the movie (version 1 prompt). 2.12 0.87
Diss2 Dissuading in detail to watch the movie. 5.55 5.08
Sim. List three similarities between the movies. 6.97 5.95

Interp. Interpolate the plots of two movies. 4.52 2.44
WhyNN Explain why someone would like a nearest neighbor movie. 9.39 6.5
DiffNN Three major differences between two nearest neighbor movies. 8.19 8.58

CommNN Three similarities between two nearest neighbor movies. 8.05 9.19

Table 15: Full results on ELM 24 tasks using semantic and behavioral embeddings.

Tasks Item Semantic Embeddings Item Behavioral Embeddings

ELM CoLLM ILM-RF ILM-F ILM CoLLM ILM-RF ILM-F ILM

Sum. 81.53 77.42 81.35 80.98 82.15 71.47 76.09 78.81 74.06
Pos. Rev. 88.12 84.67 86.12 86.14 87.70 76.39 80.79 82.75 79.09
Neu. Rev. 84.41 80.16 84.12 83.80 85.10 73.85 79.99 82.54 79.44
5Pos Ch. 86.41 85.02 85.58 86.17 90.99 80.20 83.26 84.98 82.73
5Neg Ch. 84.89 86.14 84.43 84.66 93.64 83.43 84.46 83.70 84.70
Long Desc. 80.81 76.76 80.37 80.21 81.15 70.71 75.02 77.98 72.58
Fun. 75.52 72.41 75.89 75.37 76.10 68.73 71.41 73.50 69.43
Sad. 77.86 74.90 78.17 77.82 78.66 70.32 73.73 75.90 72.04
Scare 76.77 74.61 77.15 77.01 77.96 70.26 73.31 75.21 71.99
Imp. 83.30 79.46 83.08 82.97 84.34 75.60 79.43 81.44 79.50
M2V 84.72 80.05 84.19 84.40 88.01 75.71 79.97 82.20 79.38
Pitch 87.96 85.35 88.24 88.17 88.92 80.52 84.51 86.29 83.60
Crit. 83.04 79.41 83.10 82.86 84.78 76.21 80.38 81.89 80.21
Conv1 83.02 79.86 83.31 83.23 83.66 75.60 80.87 82.69 79.20
Conv2 81.82 79.71 82.41 82.19 85.07 75.31 79.94 81.77 78.00
Conv3 80.54 77.57 81.20 80.60 84.97 73.88 78.47 80.35 77.07
Diss1 80.97 79.36 81.33 81.08 81.77 76.15 79.50 80.23 78.57
Diss2 80.69 80.17 81.25 81.03 85.64 77.36 80.58 80.92 79.12

Sim. 84.53 82.67 85.86 85.66 90.16 79.05 80.50 84.00 80.87
Interp. 75.94 73.68 76.79 76.74 77.85 71.14 71.61 74.75 71.92
WhyNN 82.22 76.95 84.15 83.97 87.61 75.76 77.52 81.06 80.57
DiffNN 84.70 82.68 84.38 85.47 92.57 80.59 81.89 84.10 86.51
CommNN 79.71 79.22 82.02 82.23 88.32 76.51 78.76 80.57 80.01

All 82.15 79.60 82.44 82.37 85.08 75.59 78.92 80.87 78.43
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Table 16: More results on effects of stage-1 item-item and user-item contrastive losses on OpenP5 benchmarks.

Set Methods
ML1M Beauty Clothing

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Seen
ILM-IT 0.0719 0.0474 0.1088 0.0594 0.0212 0.0160 0.0262 0.0177 0.0044 0.0029 0.0061 0.0035
ILM-IT-II 0.0712 0.0479 0.1093 0.0602 0.0210 0.0160 0.0261 0.0177 0.0040 0.0027 0.0060 0.0033
ILM-IT 0.0724 0.0485 0.1064 0.0595 0.0213 0.0164 0.0270 0.0182 0.0041 0.0025 0.0065 0.0033

Unseen
ILM-IT 0.0700 0.0470 0.1071 0.0589 0.0218 0.0163 0.0275 0.0182 0.0039 0.0025 0.0056 0.0031
ILM-IT-II 0.0701 0.0472 0.1078 0.0594 0.0216 0.0162 0.0269 0.0180 0.0037 0.0024 0.0054 0.0030
ILM 0.0717 0.0481 0.1086 0.0600 0.0213 0.0162 0.0269 0.0181 0.0038 0.0024 0.0062 0.0032
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