
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 3600–3617

December 20-24, 2025 ©2025 Association for Computational Linguistics

GL-CLiC: Global-Local Coherence and Lexical Complexity for
Sentence-Level AI-Generated Text Detection

Rizky Adi1, Bassamtiano Renaufalgi Irnawan1, Yoshimi Suzuki2, Fumiyo Fukumoto2

1Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences
2Graduate Faculty of Interdisciplinary Research

{g24tka03,g23dtsa2,ysuzuki,fukumoto}@yamanashi.ac.jp
University of Yamanashi, Kofu, Japan

Abstract
Unlike document-level AI-generated text
(AIGT) detection, sentence-level AIGT detec-
tion remains underexplored, despite its impor-
tance for addressing collaborative writing sce-
narios where humans modify AIGT sugges-
tions on a sentence-by-sentence basis. Prior
sentence-level detectors often neglect the valu-
able context surrounding the target sentence,
which may contain crucial linguistic artifacts
that indicate a potential change in authorship.
We propose GL-CLiC, a novel technique that
leverages both Global and Local signals of
Coherence and Lexical Complexity, which we
operationalize through discourse analysis and
CEFR-based vocabulary sophistication. GL-
CLiC models local coherence and lexical com-
plexity by examining a sentence’s relationship
with its neighbors or peers, complemented with
its document-wide analysis. Our experimental
results show that GL-CLiC achieves superior
performance and better generalization across
domains compared to existing methods.1

1 Introduction

The widespread adoption of large language mod-
els (LLMs) introduces significant social challenges,
such as academic dishonesty and misinformation,
indicating the need for robust AI-generated text de-
tectors (Liang et al., 2025; Pudasaini et al., 2025).
Although there is extensive research on document-
level detection (Gui et al., 2025; Valdez-Valenzuela
et al., 2025; Wang et al., 2024b; Verma et al., 2024;
Yadagiri et al., 2024), these methods falter in real-
world scenarios of collaborative human-AI writing,
where documents are a mixture of human-written
and machine-generated content (Yang et al., 2022;
Dugan et al., 2023; Lee et al., 2022). This lim-
itation highlights the need for AI-generated text
(AIGT) detection at a finer granularity, as illus-
trated in Figure 1.

1Our code is available at https://github.com/
adirizq/gl-clic

Figure 1: Sentence-level AIGT detection task in a
human-AI collaborative writing scenario. The detec-
tor analyzes a document from an unknown source and
assigns an authorship label (Human, AI, or Human-AI)
to each sentence.

Although there has been previous work on
sentence-level AIGT detection (Nguyen-Son et al.,
2024; Zeng et al., 2024; Wang et al., 2023), cur-
rent methods tend to focus on features of the tar-
get sentence alone (local features) (Zeng et al.,
2024; Nguyen-Son et al., 2024) or the entire doc-
ument without explicit sentence separation mod-
eling (global features) (Wang et al., 2023). These
approaches overlook the benefits of combining the
global context with local details.

To address the limitations of current methods
that rely solely on the global context of the doc-
ument or local sentence details, we propose GL-
CLiC, a sentence-level detector that incorporates
linguistic signals from global and local perspec-
tives. The core idea of GL-CLiC is to analyze two
fundamental properties of text: coherence and lexi-
cal complexity from both local and global scopes.
Specifically, our model analyzes local features by
examining the narrative flow between adjacent sen-
tences (local coherence) and the consistency of the
lexical complexity of a sentence against its lexical
group (local lexical complexity). This local analy-
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Figure 2: Analysis of CEFR level characteristics in the
CoAuthor dataset. The top chart shows the distribution
of CEFR levels across all words. The bottom chart
shows a box plot of the standard deviation of CEFR
levels within each writing session.

sis is complemented by a document-wide analysis,
assessing the overall structural integrity of the text
(global coherence) and its complete lexical pro-
file (global lexical complexity). We operationalize
these lexical features using the Common European
Framework of Reference for Languages (CEFR),
as it provides a robust proxy for vocabulary sophis-
tication (Owen et al., 2021), allowing us to quantify
the complexity of both local and global text spans.

Our focus on coherence and lexical complexity
is motivated by the well-known linguistic differ-
ences between human and AI text. Previous work
indicates that AIGT exhibits distinct coherence pat-
terns (Liu et al., 2023; Sui et al., 2024) and often
lacks the stylistic variation of human writing (Rein-
hart et al., 2025). Our CEFR level analysis on the
CoAuthor dataset confirms that AI tends to gen-
erate text using simpler vocabulary and exhibits
less stylistic variety than human writers. Our anal-
ysis, shown in Figure 2 (top), reveals that AI tends
to use the A1-level vocabulary more frequently
than humans. In contrast, humans use a broader
range of more sophisticated vocabulary (A2-C2
levels). Furthermore, Figure 2 (bottom) also shows
that AIGT exhibits a lower median standard devi-
ation (SD) of CEFR levels, indicating a smaller
lexical variation in AIGT. This suggests that AI

generates text using a more consistent CEFR level,
whereas human writing is more stylistically var-
ied. This finding aligns with Reinhart et al. (2025),
who report that AI prefers specific grammatical
structures and struggles to replicate the stylistic
diversity inherent in human text. Furthermore, by
focusing on these basic linguistic features rather
than topic-specific cues, GL-CLiC can learn more
domain-agnostic authorship signals, improving its
generalization across domains.

The main contributions of this paper can be sum-
marized as follows:
(1) We propose GL-CLiC, a novel architecture

that effectively integrates coherence and lexical
complexity features at both local and global
scopes for sentence-level AIGT detection, and

(2) We demonstrate that GL-CLiC consistently
outperforms sentence-level AIGT detector
baselines on both in-domain and cross-domain
evaluation benchmarks.

2 Related Work

Sentence-Level AIGT Detection The growing
trend of human-AI collaborative writing highlights
the need for fine-grained detectors capable of oper-
ating at the sentence level (Zeng et al., 2024; Dugan
et al., 2023; Lee et al., 2022). Existing methods
can be broadly categorized by their focus on either
global, document-level features or local, sentence-
intrinsic features.

Early attempts at sentence-level AIGT detection
relied solely on global features. For example, Se-
qXGPT (Wang et al., 2023) operates by modeling
sequences of word log-probabilities from an open
source LLM, treating the entire sequences as a sig-
nal for a transformer-based classifier, similar to
speech processing. This reliance on log-probability
features requires access to the source or a substitute
LLM and incurs additional computational cost dur-
ing feature generation. Furthermore, later work
criticized the synthetic nature of its benchmark
dataset (Zeng et al., 2024), advocating for more
realistic data, e.g., the CoAuthor dataset (Lee et al.,
2022). Crucially, SeqXGPT analyzes the document
as a whole, without explicitly modeling sentence
boundaries.

In contrast, newer attempts focus on local fea-
tures. For instance, SimLLM (Nguyen-Son et al.,
2024) measures the textual shift of a sentence after
proofreading by LLM, hypothesizing that an AI-
generated sentence will change less than human
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Figure 3: Overview of GL-CLiC framework, which consists of six modules: Global Coherence (GC), Local
Coherence (LC), Global Lexical complexity (GL), Local Lexical complexity (LL), Sentence Representations (SR),
and Classifier (C).

writing. However, this approach is computation-
ally expensive and ignores the surrounding context,
which is often vital for distinguishing human and
AI writing. Recognizing the importance of con-
text, Li et al. (2024) proposed the Paraphrased Text
span Detection (PTD) framework, which analyzes
the full text to assign a paraphrasing score to each
sentence, demonstrating the value of surrounding
context for this task. Despite these advances, we
argue that existing approaches remain insufficient,
as they either rely solely on isolated sentences, an-
alyze the entire document without sentence separa-
tion, or depend on costly LLM inference. Instead,
we propose a method that captures both local and
global linguistic properties, such as coherence and
lexical complexity.

Coherence Modeling Coherence modeling aims
to assign a coherence score to an input text. Vari-
ous works leverage contrastive learning to tackle
this task (Cui et al., 2023; Jwalapuram et al., 2022)
and the sentence disordering technique to produce
the negative samples (Cui et al., 2023; Jwalapuram
et al., 2022; Muangkammuen et al., 2020). Ad-
ditionally, it is also known that AIGT exhibits a
unique coherence pattern compared to human writ-
ing (Liu et al., 2023; Sui et al., 2024).

Lexical Complexity Modeling The analysis of
lexical complexity, one of the components of sty-

lometry (the study of writing style), has long
been a focus of authorship attribution research that
seeks to identify authors based on their unique lin-
guistic habits (Sari et al., 2018; Kumarage et al.,
2023). Such an analysis often examines lexical fea-
tures such as word choice and vocabulary richness
(Petukhova et al., 2024). Moreover, a recent study
highlighted that LLMs exhibit a less varied style
than humans, indicating that analyzing these lexi-
cal signals is a promising approach for AI detection
tasks (Reinhart et al., 2025).

3 GL-CLiC Framework

The GL-CLiC framework integrates global and
local features to distinguish AIGT, human-written,
and human-AI collaboration sentences. As shown
in Figure 3, GL-CLiC is built on a shared pre-
trained language model that serves as a backbone
encoder. We design two parallel feature extrac-
tion modules that operate on the backbone outputs:
coherence and lexical complexity modeling. The
features produced by coherence and lexical com-
plexity modeling are combined with direct sentence
representation and fed into a final classification
head, which is trained using a multi-task learning
objective. Furthermore, we employ additional train-
ing techniques such as partial fine-tuning and the
differential learning rate (DLR) training technique.
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3.1 Task Definition
Let D = (s1, s2, ..., sn) be an input document com-
posed of a sequence of n sentences. The task of
detecting AI-generated text at the sentence level is
to classify each sentence si ∈ D into a label l̂i from
the predefined set Y = {Human,AI,Human−
AI}. The objective is to learn a model f that, for
a given sentence si and its surrounding context D,
predicts the corresponding label:

l̂i = f(si, D), where l̂i ∈ Y. (1)

3.2 Coherence Modeling
Prior work observation shows that AIGT tends to
have distinct coherence patterns (Liu et al., 2023;
Sui et al., 2024). We hypothesize that these pat-
terns are more pronounced as disruptions in tex-
tual coherence at both the document and sentence
levels, particularly in texts with mixed authorship.
Our GL-CLiC framework exploits this signal by
incorporating a dedicated coherence component,
illustrated on the left-hand side of Figure 3. This
component comprises two parallel modules to learn
the representation of global coherence (rgci ) and lo-
cal coherence (rlci ).

GC: Global Coherence (rgci ) The goal of this
module is to capture potential disruptions in the
document’s overall narrative flow, which can be
a strong artifact of mixed human/AI authorship.
To model the global coherence feature, we follow
the previous work (Jwalapuram et al., 2022; Cui
et al., 2023) to define positive and negative samples.
We use the original document as a positive sample
and a sentence-shuffled version, which disrupts the
narrative, as a negative sample. In addition, we
mark the target sentence si by enclosing it with
a special token <hl>. The final input format is
[s1, s2, ...,<hl>si<hl>, ..., sn−1, sn].

LC: Local Coherence (rlci ) This module is de-
signed to detect abrupt coherence breaks between
adjacent sentences, which often signal a localized
change in authorship. To capture the coherence
between the target sentence and its neighboring
sentence, we adapt the technique from Muangkam-
muen et al. (2020). The positive sample is the
original sentence triplet (si−1, si, si+1). Negative
samples are generated by taking the target sentence
si and pairing it with random sentences "before"
(s′i−1) and "after" (s′i+1) from elsewhere in the doc-
ument. Similar to Global Coherence, the input is
formatted as [si−1,<hl>si<hl>, si+1].

Contrastive Learning We train global and local
coherence modules using a contrastive learning ob-
jective, which maps coherent sequences (positive)
to similar representations in embedding space and
pushes them far from incoherent sequences (neg-
ative). For both modules, the coherence represen-
tation (rgci , rlci ) is the [CLS] token representation
obtained from the shared backbone. We denote
this generic representation as rc. These modules
are trained to minimize a margin-based contrastive
loss (Lgc and Llc) introduced by Jwalapuram et al.
(2022). Both global and local coherence losses are
defined as:

Lc = −log(
ef

c
θ (r

+
c )

ef
c
θ (r

+
c ) +

∑B
j=1 e

(fc
θ (r

−
cj
)−T )

), (2)

where f c
θ is a linear projection that yields a coher-

ence score, r+c and r−cj are the embeddings for the
positive and j-th negative samples, respectively.
B is the number of negative samples, and T is a
margin hyperparameter.

3.3 Lexical Complexity Modeling
As mentioned in the Introduction, AI-generated
text is often characterized by simpler, less varied
word choices compared to human writing. Our lexi-
cal complexity module (right-hand side of Figure 3)
is designed to explicitly quantify and capture these
signals. In particular, we aim to capture the stylistic
inconsistencies that arise in mixed-authorship docu-
ments by contrasting the document’s global profile
with the local style of a given sentence group. For
example, if a simple sentence appears in an oth-
erwise complex document, the final classifier can
learn that the mismatch between local and global
lexical complexity is a strong signal of mixed au-
thorship. We use cefrpy2 to extract the CEFR
level of each word, assigning an integer level from
1 (A1) to 6 (C2). Based on these scores, we con-
struct two lexical complexity features: a global
document-level lexical complexity profile (rgli ) and
a group-based local lexical complexity representa-
tion (rlli ).

GL: Global Lexical Complexity (rgli ) This mod-
ule computes the document-wide vocabulary pro-
file. The intuition is that the global profile can help
identify the simpler, less varied word choices of-
ten characteristic of AI text when compared to a
typical human-written document. To represent the

2https://pypi.org/project/cefrpy/
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overall lexical complexity of a document, we use
the sequence of CEFR integer values of each word
of document Dk that contains the target sentence
si, which we denote as Fk. We either truncate
or post-pad this sequence with negative one to a
fixed length L. This fixed-length vector is then
passed through a Multi-Layer Perceptron (MLP)
pϕ to produce the global lexical complexity rep-
resentation rgli = pϕ(Fk). This representation rgli
then fed into a linear projection fgl

θ to compute
the predicted global CEFR score ˆ̄Fk = fgl

θ (rgli ).
This module learns by aligning the predicted score
ˆ̄Fk with the actual average CEFR level of the doc-

ument F̄k through regression. The model learns
by minimizing the mean squared error (MSE) loss
function Lgl given by:

Lgl =
1

N

N∑

i=1

(F̄k − fgl
θ (pϕ(Fk)))

2, (3)

where N is the number of documents, Fk is a se-
quence of CEFR integer values for every word in
the document k, F̄k is the true average CEFR level,
and fgl

θ (pϕ(Fk)) is the model’s predicted CEFR
level for that document.

LL: Local Lexical Complexity (rlli ) This module
calculates a representation of a target sentence’s
"peer group" lexical complexity. The goal is to
learn an embedding rlli that captures the typical
lexical complexity of sentences that are similar in
style (as defined by CEFR level) to the target sen-
tence si. This allows the final classifier to compare
rlli against the rgli to spot inconsistencies. Given
a target sentence si in a document, we first define
its local peer group, Gm. We assume each sen-
tence in the document has a pre-computed integer
CEFR level, C ∈ {1, ..., 6}. The group Gm for si
(which has level Ci) consists of all other sentences
in the same document that also have the CEFR
level Ci. We then obtain a contextualized embed-
ding e for every sentence s in the group Gm. The
local representation rlli for the target sentence si
is the mean-pooled embedding of all sentences in
the group Gm. This representation is then fed to a
linear projection layer f ll

θ to compute the predicted
Gm CEFR score Ĉi = f ll

θ (r
ll
i ). This module learns

through regression by aligning the predicted score
Ĉi with the actual integer CEFR level Ci. This is
achieved by minimizing the MSE loss function Lll:

Lll =
1

M

M∑

i=1

(Ci − f ll
θ (r

ll
i )

2), (4)

where M is the number of sentences, Ci is the true
integer CEFR level for sentence si, and f ll

θ (r
ll
i ) is

the predicted CEFR level for that sentence group.

3.4 Multi-Task Learning

The core idea of GL-CLiC is integrating these
diverse signals of LC, GC, LL, and GL, which al-
lows the model to spot contextual inconsistencies
that a sentence-only model would miss. We im-
plement this integration by jointly optimizing the
main AIGT detection task and the four auxiliary
tasks (GC, LC, GL, LL) using multi-task learning
(MTL). For the main task, we concatenate the four
auxiliary feature representations (rgci , rlci , rgli , rlli )
with a direct sentence embedding rsri (the [CLS]
representation of si). This combined vector is fed
into an MLP classifier, trained to predict the final
label by minimizing a standard cross-entropy loss
(Lcls). All modules are optimized jointly via the
final loss function:

Lfinal = Lcls + α(Lgc + Llc + Lgl + Lll), (5)

where α indicates a hyperparameter to control the
influence of global coherence, local coherence,
global lexical complexity, and local lexical com-
plexity tasks, ensuring the main classification class
remains as the central focus of the optimization
process.

3.5 Additional Training Technique

Shared Backbone Model We used a shared back-
bone model in our global coherence, local coher-
ence, local lexical complexity, and sentence repre-
sentation modules. This shared model is a pre-
trained language model (PLM), we specifically
chose DeBERTaV3 (He et al., 2023) based on find-
ings by Zeng et al. (2024) that indicate its strong
performance in distinguishing between human-
written text and AIGT compared to other PLMs.
Since this model is shared across multiple modules,
we employ the task prefix technique introduced by
Zhang et al. (2022) to facilitate effective multi-task
learning.

Partial Fine-tuning To mitigate overfitting and
prevent catastrophic forgetting of pre-trained
knowledge, we only partially fine-tune the back-
bone model (Muñoz Sánchez et al., 2024). We
freeze the first 11 transformer layers, allowing
only the final layer and the embedding layer to
be trained. The embedding layer should remain
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CoAuthor SeqXGPT-Bench
Total Documents 1,445 30,000
Total Sentences 35,697 341,758
Human 23,183 129,453
AI 6,905 212,305
Human−AI 5,609 –

Table 1: Statistics of the datasets used in our experi-
ments.

trainable to learn representations for our newly in-
troduced task-prefix tokens.

Differential Learning Rate (DLR) We apply the
differential learning rate technique introduced by
Howard and Ruder (2018). In our experiments, we
employ a lower learning rate ηplm for the PLM
shared backbone model, and a higher learning rate
ηmlp for the randomly initialized MLP components.
This allows for slower fine-tuning of the already-
trained PLM for knowledge preservation while
enabling faster learning for the new layers being
trained from scratch.

4 Experiments

4.1 Experimental Setup

Dataset We evaluate GL-CLiC on two sentence-
level AI text detection benchmarks. Our primary
dataset is CoAuthor (Lee et al., 2022), chosen, as
it is, to our knowledge, the only dataset created
through real human-AI collaborative writing inter-
action. It contains 1, 445 essays from 63 human
writers, covering creative (830) and argumentative
(615) writing settings. The dataset is originally
labeled at the character level, so we follow the
same data split and labeling technique as Zeng
et al. (2024) to label the dataset into three classes:
human, AI, and human-AI collaborative sentences.
The second dataset, SeqXGPT-Bench (Wang et al.,
2023) is used to test GL-CLiC generalization capa-
bilities on a varied set of machine-generated texts.
This dataset comprises 30, 000 documents synthe-
sized using GPT-2, GPT-J, GPT-Neo, Llama, and
GPT-3.5-turbo, each contributing 6, 000 docu-
ments. We adopt the original authors’ sentence
splitting and labeling procedure, resulting in a
binary-labeled dataset, categorized as human or
AI sentences. The statistics for both datasets are
summarized in Table 1, while a detailed breakdown
of the train, validation, and test splits is provided
in Appendix A.

Evaluation Metrics Following Wang et al. (2023),
we report per-class precision (P), recall (R), and F1
score, along with macro F1 for the overall perfor-
mance.

Baselines We compare GL-CLiC against five
strong baselines. These include: SeqXGPT (Wang
et al., 2023), a feature-based method using LLM
log-probabilities as input to a Transformer clas-
sifier; PLM Fine-tuning (Zeng et al., 2024), for
which we use DeBERTaV3-base following its re-
ported success on this task; SimLLM (Nguyen-
Son et al., 2024), a recent approach that fine-tunes
a PLM on a target sentence concatenated with
its AI-proofread versions; PTD Framework (Li
et al., 2024), which aims to detect AI paraphrased
text span through sentence score regression; and
Prompted LLMs (Labrak et al., 2024), where we
perform zero-shot and few-shot classification using
both GPT-4o and Llama-4 (details in Appendix C).

Implementation We implement our model GL-
CLiC, and all baselines using PyTorch and Hug-
ging Face Transformers library. All experiments
were conducted on a single NVIDIA RTX 6000
Ada GPU with 48GB of VRAM. To facilitate re-
producibility, we provide comprehensive details on
hyperparameter settings, optimizers, and training
procedures in the Appendix D.

4.2 Main Results

Outperforming Baselines Table 2 shows the per-
formance of our framework, GL-CLiC, compared
against various baselines on the CoAuthor dataset.
As shown in Table 2, our framework achieves a
new state-of-the-art (SOTA) macro F1 score per-
formance of 61.72, a 3.55 point increase from the
second-best model.

Superiority over General-Purpose LLM The
main result clearly shows the inadequacy of
prompt-based LLM methods for this specialized
task. Even a powerful GPT-4o model in a few-shot
setting struggles, reaching only 36.79 of macro
F1. This shows the need for specialized, dedicated
detectors like GL-CLiC.

Effectiveness on Human-AI Class A key strength
of GL-CLiC is its superior performance on the
Human-AI collaboration sentence class, a category
that proves particularly difficult for existing detec-
tion methods. It achieves the highest F1 scores for
both AI and Human-AI classes. Notably, the per-
formance on the Human-AI class marks a 18.23%
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Method
Human AI Human-AI

Macro F1
P R F1 P R F1 P R F1

Zero-shot Llama 4 67.47 88.50 76.57 0 0 0 24.29 20.16 22.03 32.87
Zero-shot GPT-4o 67.83 93.04 78.46 23.33 0.66 1.28 29.18 14.40 19.28 33.01
Few-shot Llama 4 68.65 48.50 56.84 25.46 23.46 24.42 18.17 46.60 26.15 35.80
Few-shot GPT-4o 69.20 59.02 63.71 23.92 20.51 22.08 18.68 35.99 24.59 36.79
SeqXGPT 70.80 95.97 81.49 58.60 11.97 19.88 26.38 8.77 13.16 38.18
PLM Fine-tune 78.70 86.60 82.46 58.68 41.41 48.55 45.74 41.49 43.51 58.17
SimLLM 80.03 80.01 80.02 45.00 52.61 48.51 48.89 37.57 42.49 57.01
PTD 73.09 90.95 81.05 50.57 12.73 20.33 45.44 37.17 40.89 47.42
GL-CLiC Ours 81.93 82.59 82.26 54.08 49.10 51.47 49.40 53.66 51.44 61.72

Table 2: Sentence-level AI detection results on the CoAuthor Dataset. Bold marks the best performance and
underline marks the second best.

Generator Model Method
Human AI

Macro F1
P R F1 P R F1

GPT-2

SeqXGPT 98.00 96.30 97.14 89.10 93.80 91.39 94.27
PLM Fine-tune 79.34 75.09 77.15 92.40 93.93 93.16 85.16
PTD 95.02 92.53 93.76 97.68 98.48 98.08 95.92
GL-CLiC (Ours) 98.99 97.69 98.34 92.87 96.78 94.78 96.56

GPT-3.5-turbo

SeqXGPT 96.30 95.60 95.95 87.60 89.40 88.49 92.22
PLM Fine-tune 97.05 81.06 88.34 93.82 99.15 96.41 92.37
PTD 98.75 93.16 95.87 97.76 99.61 98.68 97.28
GL-CLiC (Ours) 99.42 99.06 99.24 97.21 98.28 97.74 98.49

GPT-Neo

SeqXGPT 97.70 96.60 97.15 89.40 92.70 91.02 94.08
PLM Fine-tune 81.06 79.09 80.06 93.49 94.20 93.85 86.95
PTD 96.09 91.44 93.71 97.45 98.87 98.16 95.93
GL-CLiC (Ours) 98.32 97.67 97.99 92.72 94.69 93.69 95.84

GPT-J

SeqXGPT 97.40 96.90 97.15 89.30 90.80 90.04 93.60
PLM Fine-tune 77.93 70.06 73.78 92.41 94.84 93.61 83.70
PTD 95.53 90.05 92.71 97.08 98.74 97.91 95.31
GL-CLiC (Ours) 98.80 98.18 98.49 94.03 96.01 95.01 96.75

Llama

SeqXGPT 95.60 90.80 93.14 79.80 89.70 84.46 88.80
PLM Fine-tune 70.33 73.60 71.93 88.94 87.24 88.08 80.01
PTD 93.41 91.41 92.40 96.50 97.35 96.92 94.66
GL-CLiC (Ours) 97.58 96.55 97.06 91.82 94.18 92.99 95.02

Table 3: Sentence-level AI detection results on the SeqXGPT-Bench Dataset. Bold marks the best performance and
underline marks the second best within each generator model.

relative F1 score improvement over the next best
baseline (PLM Fine-tune). This highlights that
GL-CLiC architecture, which explicitly models co-
herence and lexical complexity patterns, is highly
effective at capturing the subtle artifacts present in
collaboratively generated text. Furthermore, GL-
CLiC achieves the highest recall for the Human-AI
class and remains highly competitive for the AI
class, indicating its strong ability to retrieve sen-
tences with any machine-generated content com-
pared to other models. For a detailed analysis of
the linguistic characteristics of Human-AI class,
please see Appendix B.

4.3 Robustness Across Diverse Generators

To ensure our findings are not specific to the gener-
ator used in CoAuthor, we evaluated GL-CLiC on

the SeqXGPT-Bench dataset, which contains texts
from five different generator models. For these ex-
periments, we trained and evaluated GL-CLiC and
baselines independently for each generator model.
As shown in Table 3, while the recent baseline
(PTD) demonstrates strong results on the AI class,
our GL-CLiC model consistently outperforms all
baselines on the human class and maintains a com-
petitive second-best on the AI class. This superior
human class performance leads to a more balanced
detection capability, ultimately achieving the high-
est Macro F1 score on 4 out of the 5 generator
models and a very close second-best. These find-
ings confirm that our method is not constrained to a
single generator. By modeling fundamental signals
of machine-generated text, such as coherence and
lexical complexity, the GL-CLiC approach proves
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Method
F1 Score

Macro F1
H AI H-AI

Creative → Argumentative

SeqXGPT 78.72 2.17 14.53 31.81
PLM Fine-tune 78.79 43.26 42.11 54.72
SimLLM 76.71 42.38 32.41 50.50
PTD 77.23 0.75 23.98 33.99
GL-CLiC (Ours) 79.51 46.31 57.37 61.06

Argumentative → Creative

SeqXGPT 81.54 9.48 4.32 31.78
PLM Fine-tune 73.67 42.62 30.60 48.96
SimLLM 69.77 39.36 26.69 45.27
PTD 77.58 0 27.15 34.91
GL-CLiC (Ours) 72.35 43.77 33.47 49.86

Table 4: Cross-domain experiments results, training on
one domain and evaluating on another.

.

Method
F1 Macro

1-5 6-15 16-25 26+
SeqXGPT 39.41 36.01 37.39 36.91
PLM Fine-tune 41.48 50.21 58.86 55.89
SimLLM 27.45 27.98 80.39 47.90
PTD 35.69 42.83 45.19 46.23
GL-CLiC (Ours) 51.97 58.60 59.37 56.58

Table 5: Model performance across sentence lengths,
from 1-5 word sentences to 26+ word sentences.

.

to be a robust and widely applicable framework for
AI text detection.

4.4 Cross-Domain Generalization
To assess GL-CLiC generalization to unseen do-
mains, we conducted a cross-domain experiment,
which involved training in one text domain (e.g.,
Creative Writing) and evaluating in another do-
main (e.g., Argumentative Writing). As shown in
Table 4, GL-CLiC demonstrates superior robust-
ness by achieving the highest Macro F1 score in
both Creative → Argumentative and Argumenta-
tive → Creative directions. One possible reason
for that is GL-CLiC focuses on coherence and
lexical complexity structure, allowing it to learn
domain-agnostic signals. In contrast, baselines that
may overfit topic-specific corpus cues experience
a more significant performance degradation when
the domain changes. Furthermore, GL-CLiC main-
tains a significant advantage in identifying the AI
and Human-AI classes across domains, further val-
idating our architectural design.

4.5 Short Sentence Performance
Our sentence length analysis in Table 5 confirms
the robustness of GL-CLiC, which substantially

Method
F1 Score

Macro F1
H AI H-AI

SeqXGPT 81.47 19.87 13.1 38.17
PLM Fine-tune 79.55 21.52 44.09 48.39
SimLLM 77.42 30.14 42.71 50.09
PTD 80.94 11.08 41.89 44.64
GL-CLiC (Ours) 77.89 27.00 49.07 51.32

Table 6: Paraphrase attack experiments results.
.

outperforms all baselines on short (1-5 words) and
medium-short (6-15 words) sentences. This high-
lights the strength of our local and global feature
combination approach, which is ignored by other
baselines. Additionally, the performance of Sim-
LLM reveals a critical dependency on sentence
length. Its "proofreading" comparison method fails
on short sentences and overly complex long sen-
tences (26+ words), but finds a "sweet spot" in
the 16-25 word range, validating its underlying
hypothesis only works within this specific bracket.
This 16-25 word range also appears to be the perfor-
mance peak for most methods, including PLM Fine-
tune and GL-CLiC, which suggests this length may
represent the majority of instances in the dataset.
For a granular, per-class breakdown of GL-CLiC
performance by sentence length, see Figures 6 and
7 in Appendix H.

4.6 Paraphrase Attack

AIGT detectors are known to be vulnerable to para-
phrase attacks (Wang et al., 2024a; Krishna et al.,
2023). Following Nguyen-Son et al. (2024), we
tested our method and other baselines’ robustness
using GPT-3.5-Turbo paraphrased AIGT test sen-
tences (trained only on the original, unattacked
training data). The results are shown in Table 6,
which confirms that paraphrase attacks remain a
significant threat to sentence-level detector models.
The attacks significantly degrade the performance
of models relying on rich stylistic features, espe-
cially in the AI class. This degradation is caused
by the paraphrase process that modifies the lexical
and syntactic clues these detectors rely on. Notably,
the performance of SeqXGPT remains almost un-
changed (38.18 Macro F1 in Table 2 vs 38.17 in
Table 6). We hypothesize this is because its log-
probability features were already insufficient for
capturing these fine-grained artifacts, as evidenced
by its low baseline F1 scores for the AI and Human-
AI classes. Despite this susceptibility, our method
still achieves the highest Macro F1 score, which
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Method
F1 Score

Macro F1
H AI H-AI

Full Framework 82.26 51.47 51.44 61.72
w/o GC 84.48 49.69 49.26 61.15
w/o LC 84.64 40.22 49.02 57.96
w/o GL 84.40 53.88 45.95 61.41
w/o LL 84.47 49.40 42.68 58.85

Table 7: Ablation study results, through module re-
moval.

indicates the most balanced performance under at-
tack. However, we do acknowledge that GL-CLiC
does not show the smallest relative performance
drop, confirming that while it is comparatively ro-
bust, its features are still susceptible to this form of
adversarial rewriting.

4.7 Ablation Study
Our ablation study, shown in Table 7, validates our
integrated approach, as the full GL-CLiC frame-
work achieves the highest Macro F1 score, and re-
moving any single component leads to a net macro
F1 performance loss. We also have the following
observations:
(1) The results indicate that local features are im-

portant, as removing Local Coherence or Local
Lexical Complexity causes the most significant
macro F1 score drops (3.76 and 2.87 points,
respectively). This highlights that closer con-
text information is essential for sentence-level
detection.

(2) The ablation study also reveals a complemen-
tary nature of feature combinations to the per-
formance of each class. For instance, removing
Global Lexical Complexity improves the F1
scores of Human and AI classes, but it comes
at a steep cost to the detection of Human-AI
class (a drop of 5.49 points). On the other
hand, removing Local Coherence increases the
performance of Human and Human-AI classes,
but severely reduces AI class performance (a
11.25 point decrease).

(3) The result demonstrates that GL-CLiC is not
just a collection of independent features, but a
carefully balanced system. Its strength lies in
integrating global, document-level signals with
local, sentence-level cues to build a comprehen-
sive text representation, allowing it to balance
the performance on all classes, achieving the
best macro F1 score.

For a detailed qualitative analysis of specific
model predictions and learned feature representa-

Figure 4: Confusion matrix of GL-CLiC predictions on
the CoAuthor test set.

tion analysis, see Appendix E and F. In addition to
this module-level analysis, we provide a detailed
ablation study on key hyperparameters, such as
the auxiliary loss weight α, loss function, and the
Differential Learning Rate (DLR) in Appendix G.

4.8 Error Analysis
We conducted an error analysis on the CoAuthor
dataset, as this dataset is the main focus of this re-
search. The analysis reveals a primary bias towards
the Human class. The confusion matrix presented
in Figure 4 shows that most misclassifications of
the rare AI and Human-AI classes are predicted
as Human. This suggests that when the model en-
counters ambiguous signals that do not strongly
point to machine generation, it defaults to the high-
frequency Human class seen during training. This
bias is expected as the training data was unbal-
anced, with the majority of the data being Human
sentences.

5 Conclusion

We presented GL-CLiC, a novel sentence-level
AIGT detector that combines both global and local
features of coherence and writing style. Our exper-
iments showed that GL-CLiC outperforms exist-
ing baselines, proving especially effective for the
human-AI collaboration category. Furthermore, we
demonstrated the robustness of GL-CLiC across di-
verse generator models, sentence-length, and para-
phrase attack. Our ablation study revealed that
while the full framework provides the most bal-
anced results, its strength lies in the complemen-
tary nature of its components, as removing features
often improves one or two classes at the cost of
others. Future work will explore other features and
extend GL-CLiC to document-level detection.
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Limitations

Domain and Language Generalization Our ex-
periments are conducted exclusively on the CoAu-
thor dataset, which is composed of argumentative
and creative essays in English. Consequently, the
generalizability of GL-CLiC to other domains
(e.g., scientific or medical text, news articles), gen-
res (e.g., dialogue, social media), and languages
other than English remains to be explored.

Generalization to Newer LLMs LLMs have im-
proved rapidly since the collection of the CoAu-
thor dataset. The GPT-3 model, which was con-
sidered state-of-the-art at the time, has been sur-
passed by more powerful models. Consequently,
the robustness of GL-CLiC has not yet been evalu-
ated against text generated by newer models such
as GPT-4o, Llama 4, or Google Gemini 2.5 fam-
ily. These advanced models may produce text with
greater human-like coherence and fewer grammati-
cal artifacts, potentially posing a more significant
challenge to our detection method.

Resilience to Adversarial Attack Our paraphrase
attack experiments confirm that while GL-CLiC
achieves the highest and most balanced Macro F1
score among the baselines, its features are still sus-
ceptible to this type of attack. This vulnerability is
shown clearly by the significant performance degra-
dation on the AI class, where the F1 score dropped
from 51.47 to 27.00. Furthermore, this study does
not explore the model’s resilience against other
common adversarial strategies, such as character-
level perturbations, word-level substitutions, or
more advanced style-obfuscation prompts.

Ethical considerations

This research follows the standards in NLP re-
search. The data used in this study is only from
publicly available sources, and personally identifi-
able information was not included.
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Appendix

A Dataset Details

Split Human AI Human-AI Total
CoAuthor

Train 15,969 4,855 3,490 2,8719
Val 3,422 997 883 6,247
Test 3,792 1,053 764 6,632

SeqXGPT-Bench

Train 104,736 171,811 - 276,547
Val 11,315 19,208 - 30,523
Test 13,402 21,286 - 34,688

Table 8: Detailed statistics for the number of sentences
in the train, validation, and test splits.

As mentioned in Section 4.1, we use the CoAu-
thor (Lee et al., 2022) and SeqXGPT-Bench (Wang
et al., 2023) datasets. For CoAuthor, which is orig-
inally labeled at the character level, we follow the
exact data split and sentence-level labeling method-
ology from Zeng et al. (2024) to create three classes
(human, AI, human-AI). For SeqXGPT-Bench, we
adopt the original authors’ sentence splitting, label-
ing, and data splits, resulting in a binary-labeled
(human, AI) dataset. Table 8 provides the detailed
statistics for the training, validation, and test splits
for both datasets.

B Human-AI Class Analysis

To better understand the "Human-AI" class, we
analyzed 50 samples from the CoAuthor dataset.
Our analysis reveals that:

(1) Human edits typically preserve the AI text core
idea but add connectors, context, and details to
improve flow.

(2) This process typically turns shorter, simpler
AI sentences into longer, context-rich, more
natural-sounding ones, increasing character
length by ~60% on average.

(3) Human revisions do not consistently increase
the text’s CEFR level. Instead, the main objec-
tive is to enhance coherence.

These human edits cause PLM baselines to over-
predict human-AI sentences as human. On the
other hand, GL-CLiC remains more conservative
when LL indicates a simpler lexical style relative to
GL, increasing GL-CLiC performance on human-
AI sentences.

Parameter Value
Temperature 0.0

Top P 1.0
Top K 0.0

Frequency Penalty 0.0
Presence Penalty 0.0

Repetition Penalty 0.0
Min P 0.0
Top A 0.0

Table 9: LLM generation parameters. All parameters
except Temperature are the OpenRouter default value.

Parameter Value
Input

Token Max Length 512
Batch Size 2

Learning Rate

ηplm 0.00002
ηmlp 0.0001

Learning Rate Scheduler

Factor 0.1
Patience 2 epochs
Monitor Validation Loss
Interval Epoch

Frequency 1
Early Stopping

Mode "max"
Patience 3 epochs
Monitor Validation Macro F1-score

Training

Max Epochs 10
Accelerator GPU

Deterministic True
α 1.0

Coherence Cost Function

B 3
T 0.1

Table 10: Training hyperparameters.

C LLM Classification Implementation

We use two leading models for our LLM
experiments: the closed-source GPT-4o
(OpenAI et al., 2024) and the open-source
Llama 4 Maverick (Meta, 2025). Both
model accessed via OpenRouter3 using
the model identifiers "openai/gpt-4o" and
"meta-llama/llama-4-maverick", respectively.
The generation parameters for both models
are shown in Table 9, while the Zero-shot and
Few-shot prompts are presented in Figures 8 and 9.
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Model Version Developer
ChatGPT GPT 3.5-turbo OpenAI
GPT-4o GPT-4o 2024-05-13 OpenAI
Yi Yi 34B 01.AI
OpenChat 3.5 1210 7B Alignment AI
Gemini Gemini 1.5 Pro Google
LLaMa LLaMa 2 70B Meta
Phi Phi 2 Microsoft
Mixtral 8x7B Instruct v0.1 Mistral AI
QWen QWen 1.5 72B Alibaba
OLMO 7B Instruct Allen AI
WizardLM 13B V1.2 WizardLM
Vicuna 13B v1.5 LMSYS

Table 11: LLM used as proofread generator on original
SimLLM research (Nguyen-Son et al., 2024).

D Implementation Details

D.1 GL-CLiC Implementation Details

The GL-CLiC framework was optimized using
AdamW (Loshchilov and Hutter, 2019), employing
a differential learning rate scheme for the shared
backbone PLM (ηplm) and randomly initialized
MLP layers (ηmlp). The hyperparameter α was set
to 1.0, which we found to provide the best perfor-
mance after ablation study process. To ensure train-
ing stability and prevent overfitting, we utilized a
ReduceLROnPlateau learning rate scheduler and
implemented early stopping based on the validation
macro F1-score. Our final model achieved a Macro
F1 of 62.52 on the CoAuthor validation set, which
is consistent with our test set performance and in-
dicates no significant overfitting. The complete
configuration of all hyperparameters is detailed in
Table 10.

D.2 SimLLM Implementation Details

Originally, SimLLM uses 12 LLMs as a proofread
generator, shown in Table 11. However, due to
hardware limitations and restricted model access,
we need to alter some of the original generator
choices while choosing the most similar replace-
ment. The LLM used as a proofread generator in
our experiments can be seen in Table 12.

E Qualitative Analysis

To better illustrate how GL-CLiC integrated fea-
tures help it succeed where a standard PLM fine-
tuning baseline fails, we provide a qualitative anal-
ysis of predictions from the CoAuthor test set (Ta-
ble 13). These cases demonstrate that the PLM
baseline often fails due to a lack of information,

3https://openrouter.ai

Model Version Provider
ChatGPT GPT 3.5-turbo OpenRouter
GPT-4o GPT-4o 2024-05-13 OpenRouter
Yi Yi 34B Q8_0 ollama
OpenChat 3.5 1210 7B Q8_0 ollama
Gemini Gemini 1.5 Pro OpenRouter
LLaMa LLaMa 4 Maverick OpenRouter
Phi Phi 2 Chat Q8_0 ollama
Mixtral 8x7B Instruct OpenRouter
QWen QWen 2.5 72B Instruct OpenRouter
OLMO 7B Instruct hf Q8_0 ollama
WizardLM 13B V1.2 Q8_0 ollama
Vicuna 13B v1.5 Q8_0 ollama

Table 12: LLM used as proofread generator.

Case 1: AI text misclassified as Human
Sentence (Session 8462c. . . )

"He’s just here to help."
PLM Baseline Fails (Predicts Human): Likely mis-

classified due to the short and simple,
human-like phrasing.

GL-CLiC Correct (Predicts AI): Leverages con-
text. SR detects generic phrasing. The
LL module identifies the sentence’s sim-
ple style, while the GL module recog-
nizes the document’s complex vocabu-
lary. This stylistic mismatch between
the LL and GL strongly signals author-
ship change, pointing to AI generation
(due to LL being simpler than GL).

Case 2: Human text misclassified as AI
Sentence (Session 5f43b. . . )

"It is not our responsibility to keep up
with what is going on in the world."

PLM Baseline Fails (Predicts AI): Perhaps mistook
the formal, argumentative tone for AI
generation.

GL-CLiC Correct (Predicts Human): SR detects
argumentative phrasing. The LC mod-
ule shows a smooth narrative flow with
neighboring sentences, and the LL mod-
ule finds the sentence’s complex style
matches the document’s overall GL pro-
file. This consistency, combined with
the higher lexical complexity, strongly
suggests human authorship.

Table 13: Qualitative analysis of GL-CLiC’s predictions
compared to a PLM baseline on misclassified examples
from the CoAuthor test set.

as it is isolated to the target sentence only. It is
important to note that these are plausible interpre-
tations of which signals were supportive in these
instances, not deterministic rules. The model learns
the complex interplay between these features dur-
ing training.
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Figure 5: t-SNE Analysis of feature representation for each module of CoAuthor test set.

F Feature Analysis

To better understand the features learned by our
auxiliary tasks, we visualized the feature represen-
tations from the CoAuthor test set using t-SNE
(perplexity=50) and quantified their separability.
We found that the classes form overlapping, non-
convex structures, which is expected for sentence-
level authorship analysis. Despite the visual over-
lap, the local neighborhoods are highly predictive.
The 1-NN accuracy for all individual feature mod-
ules (GC, LC, GL, LL) significantly exceeded the
33% random baseline. Crucially, the final concate-
nated feature vector (used by the classifier) yielded
the best local structure preservation (1-NN accu-
racy: 0.673). This supports our main claim and
ablation study findings, which show the model’s
strength comes from integrating these complemen-
tary feature sets, as the combined representation is
more predictive than any single component.

G Hyperparameter Ablation Study

Beyond the module-removal analysis, we con-
ducted an additional ablation study on key hyperpa-
rameters. We focused on the auxiliary loss weight
(α) from Equation 5, the Differential Learning Rate
(DLR) technique, and alternative loss functions.

α Macro F1
0.1 61.38
0.5 61.33
1.0 61.72

Table 14: Ablation study on the auxiliary loss weight α.

G.1 Auxiliary Loss Weight (α)

The α parameter balances the main classification
loss (Lcls) against the four auxiliary losses. As
shown in Table 14, our ablation study revealed an
interesting non-linear relationship between α and
model performance, α = 0.5 setting performed
worse than both α = 0.1 and α = 1.0. We hy-
pothesize that this non-linear result comes from
the MTL optimization dynamics. The α = 0.5
setting may create gradient conflicts between the
main and auxiliary tasks, leading to a worse result.
In contrast, the other settings provide clearer paths.
α = 1.0 (Strong Emphasis) prioritizes learning
the beneficial auxiliary features, while α = 0.1
(Subtle Guidance) uses them as an effective, non-
conflicting regularizer for the main task. This sug-
gests the "middle-ground" weight is suboptimal,
and the auxiliary tasks are most effective as either
a primary signal or a subtle regularizer.

3614



Loss Function Macro F1
Focal Loss 57.01
Weighted Cross-Entropy Loss 57.96
Cross-Entropy Loss 60.84

Table 15: Ablation study on the loss function.

Figure 6: Impact of sentence length to F1 score perfor-
mance.

Figure 7: Impact of total words with F1 score perfor-
mance on very short sentences.

G.2 Differential Learning Rate (DLR)
We removed DLR and used a single learning rate
for all components, resulting in a significant 2.88
point decrease in Macro F1. This validates our hy-
pothesis that DLR is a crucial component for stably
fine-tuning the shared backbone while allowing the
new, randomly initialized layers to learn quickly.

G.3 Alternative Loss Functions
In response to the data imbalance identified in
the dataset, we experimented with class-balanced
loss functions, including weighted focal loss and
weighted cross-entropy. However, we found that
this approach degraded performance (shown in
Table 15), as it appeared to disrupt the carefully
tuned balance of our multi-task learning objective.
This finding justifies our use of the standard cross-
entropy loss for the main classification task.

H Sentence Length Analysis

Figure 6 shows the performance of GL-CLiC
tested against various sentence lengths, which in-

dicates that GL-CLiC is weak against very short
sentences (1-5 words). Figure 7 provides a more
granular view, revealing a clear trend of perfor-
mance deterioration with shorter sentences, with
Macro F1 dropping from 0.58 (5-word sentences)
to a mere 0.36 (1-word sentences).
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You are an expert text classifier. Your task is to determine if the given sentence was written
purely by an AI, purely by a Human, or through Human-AI collaboration.

Carefully examine the sentence below. Consider its style, complexity, tone, and potential
signs of editing or integration.

* Use "AI" if the sentence appears entirely generated by an AI.
* Use "Human" if the sentence appears entirely written by a human.
* Use "AI-Human" if the sentence shows characteristics of both AI generation and human
writing/editing (e.g., AI text modified by a human, human text with AI-generated parts, or
a blend of styles).

Your response must be *exactly* one of the following labels: "AI", "Human", or "AI-Human".
No other text or explanation is allowed.

Sentence to Classify:
[sentence]

Verdict:

Figure 8: Zero-shot prompt for LLM inference. The "[sentence]" is changed to the target sentence during
inference.
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You are an expert text classifier. Your task is to determine if the given sentence was written
purely by an AI, purely by a Human, or through Human-AI collaboration.

Carefully examine the sentence below. Consider its style, complexity, tone, and potential
signs of editing or integration.

* Use "AI" if the sentence appears entirely generated by an AI.
* Use "Human" if the sentence appears entirely written by a human.
* Use "AI-Human" if the sentence shows characteristics of both AI generation and human
writing/editing (e.g., AI text modified by a human, human text with AI-generated parts, or
a blend of styles).

Your response must be *exactly* one of the following labels: "AI", "Human", or "AI-Human".
No other text or explanation is allowed.

- - -
**Examples:**

Sentence to Classify:
He’s learning that he doesn’t need to change his appearance, but he does need to start
changing his behavior.
Verdict:
AI

Sentence to Classify:
Instead he decides to spend that time at home learning to cook a new recipe.
Verdict:
Human

Sentence to Classify:
Matt is a good sport about it all, and even helps Will Smith with his investigation.
Verdict:
AI-Human

Sentence to Classify:
he wolf totally didn’t know what to make of this house.
Verdict:
AI

Sentence to Classify:
That’s exactly why Donald Trump did not lose by a landslide.
Verdict:
Human

Sentence to Classify:
One walked forward, and to his surprise, began speaking in English.
Verdict:
AI-Human
- - -

**Now, classify the following sentence:**

Sentence to Classify:
[sentence]

Verdict:

Figure 9: Few-shot prompt for LLM inference. The examples provided in the prompt come from the training set.
The "[sentence]" is changed to the target sentence during inference.
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