FarSense: A Comprehensive Commonsense Benchmark and Evaluation Framework for the Farsi Language

Kamyar Zeinalipour, Neda Jamshidi, Seyedehbahareh Hejazi, Marco Maggini, Monica Bianchini, Simone Paoletti, Marco Gori


Abstract
Although Farsi is widely spoken, no comprehensive benchmark exists for assessing commonsense reasoning in language models. We therefore present FarSense, a 6‐task benchmark for Farsi covering True/False judgment, multiple-choice questions, Explanation, Cause‐Effect inference, Counterfactual reasoning, and Knowledge Completion. Starting from Farsi‐Wikipedia, we filtered noise and retained ~4,210 passages, rewrote them into realistic daily scenarios, and derived the above tasks from each scenario. Scenario and task generation quality was first judged via native‐speaker annotations on outputs from five major LLMs—GPT‐4o, Gemini-2.5-Flash, Mistral-Large, Qwen‐Plus, and DeepSeek‐Chat. Gemini-2.5-Flash demonstrated the highest performance, leading to its use in generating a large-scale dataset, subsequently finalized through meticulous two-step human validation. Using FarSense, we measured the commonsense ability of the same five flagship LLMs and also fine‐tuned six compact models (1B–24B parameters) before re‐evaluating them. To ensure broad applicability, task wording was designed to minimize dialectal, cultural, or religious bias. Experiments show that targeted fine‐tuning yields substantial gains, confirming FarSense as a reliable, openly licensed resource for advancing reproducible commonsense understanding research in Farsi NLP. We publicly release all code and data at https://github.com/KamyarZeinalipour/FarSense.
Anthology ID:
2025.ijcnlp-long.187
Volume:
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
Month:
December
Year:
2025
Address:
Mumbai, India
Editors:
Kentaro Inui, Sakriani Sakti, Haofen Wang, Derek F. Wong, Pushpak Bhattacharyya, Biplab Banerjee, Asif Ekbal, Tanmoy Chakraborty, Dhirendra Pratap Singh
Venues:
IJCNLP | AACL
SIG:
Publisher:
The Asian Federation of Natural Language Processing and The Association for Computational Linguistics
Note:
Pages:
3529–3599
Language:
URL:
https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.ijcnlp-long.187/
DOI:
Bibkey:
Cite (ACL):
Kamyar Zeinalipour, Neda Jamshidi, Seyedehbahareh Hejazi, Marco Maggini, Monica Bianchini, Simone Paoletti, and Marco Gori. 2025. FarSense: A Comprehensive Commonsense Benchmark and Evaluation Framework for the Farsi Language. In Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, pages 3529–3599, Mumbai, India. The Asian Federation of Natural Language Processing and The Association for Computational Linguistics.
Cite (Informal):
FarSense: A Comprehensive Commonsense Benchmark and Evaluation Framework for the Farsi Language (Zeinalipour et al., IJCNLP-AACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingest-ijcnlp-aacl/2025.ijcnlp-long.187.pdf