DSBC : Data Science task Benchmarking with Context engineering

Ram Mohan Rao Kadiyala !, Jebish Purbey 2, Siddhant Gupta >3,
Giulio Martini !, Suman Debnath 4, Hamza Farooq '

'Traversaal.ai, 2Cohere Labs Community,
3IIT Roorkee, * Amazon, "'UCLA,

¥ ram@traversaal.ai
S Benchmark & Data

Abstract

Recent advances in large language models
(LLMs) have significantly impacted data sci-
ence workflows, giving rise to specialized data
science agents designed to automate analyti-
cal tasks. Despite rapid adoption, systematic
benchmarks evaluating the efficacy and limi-
tations of these agents remain scarce. In this
paper, we introduce a comprehensive bench-
mark specifically crafted to reflect real-world
user interactions with data science agents by ob-
serving usage of our commercial applications.
We evaluate three LLMs: Claude-4.0-Sonnet,
Gemini-2.5-Flash, and OpenAl-04-Mini across
three approaches: zero-shot with context engi-
neering, multi-step with context engineering,
and with SmolAgent. Our benchmark assesses
performance across a diverse set of eight data
science task categories, additionally exploring
the sensitivity of models to common prompting
issues, such as data leakage and slightly am-
biguous instructions. We further investigate the
influence of temperature parameters on overall
and task-specific outcomes for each model and
approach. Our findings reveal distinct perfor-
mance disparities among the evaluated models
and methodologies, highlighting critical factors
that affect practical deployment. The bench-
mark dataset and evaluation framework intro-
duced herein aim to provide a foundation for
future research of more robust and effective
data science agents.

1 Introduction

Large Language Models (LLMs) have recently
gained prominence due to their capability to auto-
mate and enhance various data science tasks. This
growing capability has led to increased adoption
of specialized data science agents across multiple
domains. Despite widespread usage, there is a
clear gap in comprehensive evaluations that accu-

rately reflect practical user interactions and realistic
task scenarios. This gap makes it challenging for
practitioners and researchers to understand the true
efficacy and limitations of these agents in applied
settings.

In response to this, we introduce a detailed
benchmark tailored to reflect actual usage patterns
of data science agents, derived from observations
of end-user behavior. We evaluate three leading
LLMs, Claude-4.0-Sonnet (Anthropic, 2025), Gem-
ini 2.5 Flash (Team, 2025), and OpenAl-04-Mini
(OpenAl, 2025), using three distinct methodolo-
gies: zero-shot with context engineering, multi-
step with context engineering, and using SmolA-
gent (Roucher et al., 2025). Our benchmark cov-
ers diverse and practical data science tasks while
also examining how sensitive these models are to
common prompting issues like data leakage and
instruction ambiguity.

The performance of agents or Large Language
Models (LLMs) critically depends on the context
provided during inference, including both the max-
imum context length available and the efficiency
of its utilization. (Mei et al., 2025). While most
benchmarks come with a manually written or syn-
thetically generated summary or a description of
the datasets used, we use a standardized context
through context engineering.

Additionally, we analyze the impact of varying
temperature settings on both overall performance
and task-specific effectiveness. Our findings under-
score significant differences in the capabilities of
evaluated models and strategies, identifying crucial
considerations for practical deployment. Through
this work, we aim to provide a foundational re-
source for furthering the development of more reli-
able and effective data science agents.

3392

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 3392-3424
December 20-24, 2025 ©2025 Association for Computational Linguistics

mailto:contact@rkadiyala.com
https://huggingface.co/collections/large-traversaal/dsbc

Other Domain

Spider (Yu et al., 2018a) Text-to-SQL N/A - - - No No 1,034
MLAgentBench (Huang et al., 2024a) ~ Machine learning N/A - - - No No 13

SWE-Bench (Jimenez et al., 2024) Software engineering N/A - - - No No 2,294

Same Domain

DS-1000 (Lai et al., 2023) Data Science Manually N/A N/A No Yes No 1,000
QRData (Liu et al., 2024) Data Science Manually 15,186 46 Yes No No 411

Arcade (Yin et al., 2023) Data Science Notebook Cells N/A N/A - No No 1,078
Spider2V (Cao et al., 2024) Data Science Manually N/A N/A - - Yes 494
DSEval (Zhang et al., 2024) Data Science Manually 1,544 12 - No Partial 827
DSBench (Jing et al., 2025) Data Science Data Files N/A N/A - No No 466
DA-Code (Huang et al., 2024b) Data Science Manually 9,639 11 No No No 500
DataSciBench (Zhang et al., 2025) Data Science Manually N/A N/A - No No 222
DABstep (Egg et al., 2025) Data Science Manually N/A N/A - No No 450
Ours (DSBC) Data Science Structured 7,793 10 Yes Yes Yes 303

Table 1: Overview of some similar prior works in other domains and other existing Data Science benchmarks.

2 Related Works

An overview of key differences between our bench-
mark and other benchmarks of the same domain
can be seen in Table 1. Examples of samples for
each of the benchmarks can be seen in Figure 1.

Other similar domain benchmarks: Several
prior works exist that benchmark code generation
and other closely related tasks. One such promi-
nent one is HumanEval (Chen et al., 2021) for code
generation from text descriptions, along with Spi-
der (Yu et al., 2018b), MBPP (Austin et al., 2021),
and APPS (Hendrycks et al., 2025). Other similar
works include software engineering task bench-
marks like automating code/PR review (Yang et al.,
2016; Li et al., 2022; Tufano, 2023), bug localiza-
tion (Kim et al., 2019; Chakraborty et al., 2018),
testing (Kang et al., 2023; Xia et al., 2024; Wang
et al., 2024), program repair (Xia and Zhang, 2022;
Fan et al., 2023; Sobania et al., 2023), and guiding
code-editing (Chakraborty and Ray, 2021; Zhang
et al., 2022; Fakhoury et al., 2023).

Data-Science Benchmarks: DS-1000 (Lai et al.,
2023) is one of the earliest works for data sci-
ence task evaluation with simple data analysis
tasks sourced from StackOverflow; however, these
questions lack usage of data files and require sim-
pler 1-2 lines of code for many samples. DAB-
step (Egg et al., 2025) contains a fixed set of data
files used for all samples of the benchmark with
manually written data description. DataSciBench
(Zhang et al., 2025) consists of prompts that re-
semble text-to-code instructions, with the query
itself providing context on necessary data file in-
formation. DA-Code (Huang et al., 2024b) also
consists of queries that resemble text-to-code tasks,

One task categories 63
Two task categories 154
Three task categories 86

Table 2: Multi-label task category statistics of the
queries (303) in our benchmark

as the queries themselves provide step-by-step in-
structions to solve the given query. DS-Bench
(Jing et al., 2025) contains tasks that are primar-
ily designed for Excel-based workflows sourced
from Modeloff competitions. DSEval (Zhang et al.,
2024) covers queries whose solutions mostly range
from 1 to 3 lines of code, with a subset of questions
being Leetcode problems. Arcade (Yin et al., 2023)
consists of tasks in a notebook environment, while
the previous cell of code provides the required con-
text. QRData (Liu et al., 2024) is a benchmark
that closely resembles our benchmark with manu-
ally written data file descriptions appended to input
prompts to provide the models with context. How-
ever, most questions were multiple-choice ques-
tions.

3 Our Benchmark

Most prior benchmarks either have sourced or man-
ually created descriptions of the data files used for
the task, which are passed along with the query to
the evaluation models. Few other works use data
files of limited size that can be directly added in
the context. This introduces randomness in the
results based on how the data files’ descriptions
are written, what information is added, and what is
withheld.

The benchmark consists of 303 questions, which

3393

DS Eval

~

How many days is the plant operational in
Q4 2023?
A72 B.73 C.74 D.75 E.76
F.77 G.78 H.79 1.80

\. AN

> Manually written Data description
= Multi-Turn

Lets set the values of the rows 10 to 29 of the
column ‘petal_length’ to NaN

Good, now lets substitute the NaN values to 1.0

= Context Engineering with pre-
defined functions

DS 1000

If it has been raining for 3 hours,

> Manually written Data description

“A survey was conducted to study the smoking habits of
UK residents. The data is in the CSV file smoking.cav”

How many participants were included in the survey?

\. /.

> Dataframes are part of query

| have a simple dataframe which | would like to bin for every
3 rows from back to front.
It locks like this:
col 0211233140
and | would like to turn it into this:

coll 01511333 _ -

~ what is the probability that it will
continue to rain for an additional
2 hours?

/

AN

Figure 1: An example each from our benchmark along with some works cited above which were published less than

2 years ago.

span 8 categories of tasks, with most questions
covering more than one type of task. The cate-
gories and their descriptions, as well as their sam-
ple counts in the benchmark, can be seen below.
Table 2 shows the number of task categories that
each sample in the benchmark spans.

* Correlation Analysis (44) : Computing and
interpreting relationships between variables
using correlation coefficients, covariance ma-
trices, and statistical significance testing.

* Statistics (172) : Performing descriptive and
inferential statistical operations including con-
fidence intervals, probability calculations, and
computing mean, min, max, median etc.

* Data Parsing & Understanding (113) : In-
terpreting data structure, content patterns, and
contextual meaning to infer data origins, iden-
tify column semantics, and extract implicit
information from datasets.

* Data Pre-processing (69) : Cleaning and
preparing raw data through handling missing
values, removing duplicates, removing empty
rows and columns, removal of redundant fea-
tures, outlier detection and basic data quality
assurance.

* Feature Engineering (91) : Creating new
variables and features from existing data
through mathematical transformations, aggre-
gations, binning, cumulative and rolling fea-
tures, and domain-specific feature construc-
tion.

Annotators group 1

Annotators group 2)

nnetators observe how clients are using
the Orgunlzntlon s Data Science Agent

Another set of annotators rephrase
the Raw queries to Clean queries

Annotators create similar questions
spanning 8 task categories

-

nnotators create code to answer created
«queries and label the created qu

Verify the correctness of the code and
i inthe k
v

ategorize questions based on task type in (ategorize questions based on lﬂlk)

SN ERYER
\—/

(= 2)
2/

amulti-label way (I 3 per query) type in a multi-label way (1to 3}

Discuss cases with no consensus K

Figure 2: An overview of the annotation process used
in our benchmark construction

)
3/

)

* Feature Transformation (85) : Applying
scaling, normalization, encoding categorical
variables, dimensionality reduction, rounding
and mathematical transformations.

* Distribution Analysis (33) : Examining
data distributions through descriptive statis-
tics, probability density functions, normality
tests, and distributional property assessment.

* Data Visualization (22) : Creating charts,
plots, and visual representations to explore
patterns, communicate insights, and present
analytical findings effectively.

Annotation : The overview of the annotation pro-
cess can be seen in Figure 2. The annotators have

3394

created the dataset samples by observing how the
clients were using the organization’s data science
agents. The distribution of task types was made to
be close to the observed task type usage distribu-
tion. Queries were annotated, with their solutions
manually coded and verified. Additionally, a copy
of the raw queries was made to avoid data leak-
age, i.e., the clean queries. During annotation of
task types for each query, the annotators were in-
structed to assign 1-3 task category tags to each
query. In case the query appeared to be spanning
more than 3 categories, they were instructed to as-
sign the closest three. Samples where there was
no consensus among the 2 sets of annotators were
later manually verified after further discussion. The
samples with no consensus were 26 out of 303, i.e.,
approximately 8.5%. More details about annotator
guidelines can be found in Appendix C.

4 Context Engineering

Organizations handling sensitive data face signifi-
cant challenges when working with externally de-
ployed or proprietary models. Direct file sharing
raises privacy and security concerns, making it im-
practical to include raw data files in model contexts
(even if they fit within the context limit). A struc-
tured approach that extracts only essential meta-
data, such as column counts, data types, categori-
cal values, and temporal ranges, provides necessary
context while maintaining data confidentiality and
compliance requirements.

Further, manual dataset documentation becomes
increasingly burdensome as organizations scale
their data operations. Writing detailed descrip-
tions for hundreds or thousands of data files is
time-consuming and resource-intensive. While au-
tomated description generation using LLMs offers
a potential solution, it often produces incomplete
or inaccurate characterizations that can mislead
downstream analysis and compromise benchmark
reliability.

We hence use context engineering to provide
the models with the data files’ description in a
structured format covering several features like row
and column count, column names, and data types,
among other features. This can be seen in detail in
Table 3, which describes the features used in the
context as a nested JSON dictionary.

5 Datasets used

The benchmarks utilize 11 different data files
sourced from Kaggle, each of which covers a differ-
ent domain: Farm produce data (Hirapara, 2023),
Walmart sales (Mikhail, 2024), COVID-19 mortal-
ity data (Nizri, 2022), weather datasets (Biswas,
2024), insurance claims dataset (Choi, 2021), stock
price datasets (Crow, 2020), food inflation data
(Tanwar, 2023), world population stats (DS, 2024),
air quality data (Jha, 2024), electricity load data
(Shahane, 2023), and life expectancy datasets (Ped-
ersen, 2023). The statistics about the data files can
be seen in Table 4.

Key differences : The data files chosen for the
benchmarks have tricky features, which would
make the benchmarks’ samples more challenging
compared to the rest. For instance, 8 of the 11
data files have a date or time column but not in a
date-time datatype. The models/agents were pro-
vided with the first 5 rows of the data file through
context engineering and are required to compre-
hend and figure out whether they need to perform
a datatype conversion to successfully solve a query.
One such tricky feature is the change of data fre-
quency. The frequency of data for the population
dataset changes midway from once every 5 years to
yearly. Using the provided unique values list, the
model/agent is required to figure out the necessary
changes in the approach towards solving a query.
Issues like these make the current benchmark more
challenging than prior works.

6 Query Types

The raw (original) queries were rewritten (referred
to as clean queries) to ensure no data leakage oc-
curs even though the impact is negligible. Though
the effect could be negligible, this was done to com-
pare the change in results with both sets of queries.
Most queries of usage of our commercial agents re-
sembled the format of raw queries. Table 5 shows
an example for the raw and clean query of one
of the samples. Another difference between Raw
and Clean queries is that Clean prompts require an
SQL-like approach, as demonstrated in Table 6.

7 Evaluation

We evaluate the samples using 3 models (Claude-4-
Sonnet, Gemini-2.5-Flash, and OpenAlI-04-Mini)
in 3 settings (directly with context engineering with

3395

Rows
Columns
Data Types
Null Counts
Numeric Summary

Number of Rows whether index is correctly ordered
Numbers of Columns and names of columns
Data types of each of the columns
Null value counts of each of the columns
If the column is Numeric then the Minimum, Maximum, Mean,

Median, 25th percentile value, 75th percentile value

Categorical Summary

If the column is Categorical or has low unique

count (i.e <20), then the unique value counts

DateTime Summary

If the column is already DateTime type, then

the start and end dates and whether the
column values’ frequency is uniform

Sample rows **

First 5 rows’ data of each data file

Table 3: Features and description of info added through Context engineering

** If the data file is of private nature, this is excluded

Insurance 1,200 7 0 0
Weather 8,616 8 0 0
Power 3,624 17 0 0
COVID 10,000 21 0 0
AQI 8,737 23 21 0
Inflation 4,548 8 5 0
Sales 409,695 5 0 0
Health 13,942 5 0 0
Stocks 4,932 7 0 0
Population 3,290 14 3 0
Production 9,464 9 6 0

71.78
53.02
48.06
45.31
41.60
40.33
36.92
34.78
33.08
3091
27.34

— AR — W — — N W

W= =N WG WWw W

OO0 RO WO N

N~ —~ oo B whn

U NI I G A L N N O
— W

Table 4: Features of datasets used for our benchmark : Row Count (ROW), Column Count (COLS), No.of columns
with at least one null value (NULL.COLS), No.of Datetime (DT),String (STR), Categorical (CAT), Boolean (BOOL),
Integer (INT) and float (FLT) columns respectively and the average score obtained from all attempts and temperature

values over the queries using that dataset (AVG)

Raw Among those who have died,
how many deaths were not
attributed to COVID-19 ?

Clean Did any deaths occur not due to

COVID-19? If so, how many?

Table 5: An example of Raw and Clean prompts : The
raw prompt assumes deaths occurred (data leakage),
while the clean prompt requires the model to check if
deaths happened first.

Raw Which three countries have had
the most stable fertility rates ?
Which countries have had the
most stable fertility rates?
List the top 3.

Clean

Table 6: An example of Raw and Clean prompts : The
raw prompt directly requests the top 3 countries, while
the clean prompt follows a SQL-like approach of first
identifying all stable countries, then selecting the top 3.

3396

1007

1D
Total Quene ‘HHHHH [Success (Yes)
11 R I
Avg Success Rate: 40. 8% == Failure (No)
|
| ‘ ‘
4 ‘ ‘
2 ‘

O A0 90 20 1O «© P 10 O 90 ,\9(3 \}0 ,\}0 ,\30 '&D‘Q ,\'50 ’\66 \'10 ,\’%0 ,\90 ’1—00 ,7}0 ’1,7«0 ,2:50 1&0 150 ’1—60 ,):\0 ,L%Q ,290 ,500
Query ID

Success Rate (%)
o o

o

o

o

Figure 3: Success rates for each sample (303) of our benchmark over several (165) attempts. No query could be
answered every time and no query remained unanswered across sufficiently large number of attempts. This suggests

that employing an ensemble sampling strategy with temperature-based diversity and best-of-n selection yields
optimal results for such use-cases.

Accuracy variations across temperatures for each set of (query, approach, LLM)

70
SD: 1.81 SD: 1.67
SD: 1.62
60,
SD: 2.16 SD: 3.49 * =
SD: 1.62 SD: 3.45
7 i i SD: 1.91 SD: 1.93
> 40
g SD: 1.87 SD: 2.42
3
o SD: 1.56 SD: 1.59
< 301 SD: 1.86 i SD: 1.89
20 * T
10
01— . . ‘ ‘ ‘ . . . ‘ ‘ ‘ . . .
& & & b3 & & 5 & & & & & 5 & &
& & §F & & 5§ &g & §F &£ & 5 & & 5
g g g % 3 g <5 § g 5 ¥y 4 $ X
< ¥ 3§ & ¥ o & ¥ ¥ & be ¢ & ¥ ¥
§ & 5 § 4 § s ¥ 5 § & § S & &
F3 R & & K3 & & R rd & K3 & & 5 &
g g 9 ¢ ¢ &£ ¢ & & ¢ g & ¢ F P
: oM L e = 7 ; < &
g g & 3 g & g & & & <
§ g & 5 & i & o & 3 & &
S & & & & ¢ & & ¢ e & & & &
Attempt

Figure 4: Variation in Accuracies through each set of (LLM, query type and approach). A standard deviation of
1-3% was observed between each approach, with higher deviations observed with Gemini-2.5-Flash. Multiple code

sections approach produced the highest deviation compared to using an LLM directly or SmolAgent. Prompt type
(Raw/Clean) did not affect the deviation in results.

3397

LLMs (ReACt), multi-step with context engineer-
ing using LLMs (ReAct), and SmolAgent) and
through 2 query types (raw and clean). These 15
unique setups | were tested over 11 temperature
values ranging from 0.0 to 1.0 in 0.1 increments.
This resulted in a total of 165 attempts over each
of the samples whose results are described below.

The generated output and explanation/rationale
by the model/agent were evaluated using VLM-
as-Judge using Gemini-2.5-Flash. Three of the
165 attempts (one from each LLM) were checked
manually to see whether the VLM-as-a-judge is
indeed evaluating the responses accurately. JSON
schema was used for the VLM-as-a-judge setup,
where the VLM responds with a single word, either
’Yes’ or No,” based on whether the response is
accurate. To account for noise, these responses
were parsed through regex as a final step.

The success rate (the percentage of attempts
(165) that resulted in an accurate response) had a
mean of 40.8% and a median of 41.21%. No ques-
tion was answered correctly in all attempts. Only
two questions were answered incorrectly in all at-
tempts, both of which are reasonably hard ques-
tions. These samples and why the models/agents
always resulted in an incorrect response were elab-
orated in detail in Appendix D. The maximum
success rate was 93.33%, and only 23 samples had
a success rate > 80%. More can be seen in Figure 3.

7.1 Using LLMs Directly with Context
Engineering

In this approach, the execution was done in a single-
step ReAct (Yao et al., 2023) loop with sandboxed
code execution, where the LLM generates code
that takes the query and added context as input; the
code is then executed locally, which becomes the
final output. When generating the code, the LLM is
also instructed to add its rationale for the generated
code. The rationale and code were returned as a
JSON, which are then individually parsed through
predefined functions.

7.2 Using LLMs in multiple steps with
Context Engineering

This approach is similar to the previous approach,
but with one minor change: the code and explana-

'SmolAgent was initially tested with 1 randomly chosen
temperature value over all 3 models; no change was observed
in results between the Raw and Clean queries. Hence, due to a
limited compute budget, SmolAgent was only tested on clean
queries for all temperature values.

tions generated were divided into 2-3 steps. Unlike
the traditional ReAct workflow, in this approach
the LLM generates 2-3 code snippets (one for each
step) to solve the query in one go, which are then ex-
ecuted one by one. The rationale is generated sepa-
rately for each snippet, which are then appended to
one another in the end.

7.3 Using SmolAgent

In this approach, we use SmolAgent’s CoderAgent
out of the box with minor changes: adding the data
files to the execution environment’s runtime and
adding the path to the files in the query. No addi-
tional context is provided to the agent. The agent
then uses some of its multiple steps allowed to iter-
atively gain context on what the data files contain
and answers the query in subsequent attempts. A
computational and time limit was assigned at 8
steps and 90 seconds, respectively, for each sample.
None of the samples’ 33 attempts (3 LLMs * 11
temperature values) resulted in a timeout error.

8 Results

Effect of temperature on results : Results from
each of the 15 attempts can be seen in Table 7,
which combines all samples across each tempera-
ture value. No significant pattern was seen among
the change in accuracies versus each temperature
value for all sets of prompt, model, and approach,
as seen in Figure 5. Claude-4-Sonnet, through
multiple code snippets in a single step, clearly out-
performed the rest, including SmolAgent with sev-
eral steps, irrespective of temperature. Multi-step
and SmolAgent performed significantly better than
single-cell direct use of LLMs when looking at the
overall results. However, when looking at the same
results for each task category separately, there is a
large variation in the same plot. This can be seen
in Appendix F.

Variations in results with Model and approach :
Gemini-2.5-Flash demonstrated greater sensitivity
to temperature compared to the other two LLMs
tested, especially with the multi-code-cell approach
and through SmolAgent. For single code cell imple-
mentation, 04-mini clearly outperformed the other
two LLMs, but the performance of o4-mini was
closer to SmolAgent and lower than Gemini-2.5-
Flash in multi-code-cell implementation, as seen in
Figure 4.

3398

Claude-4-Sonnet SmolAgent Clean 57.756 0.0 52.475 0.5 55.236 1.625
OpenAl-04-Mini SmolAgent Clean 51.485 0.7 45.215 1.0 49.385 1.618
Gemini-2.5-Flash SmolAgent Clean 54.455 0.0 46.535 0.1 49415 2.162
Claude-4-Sonnet Multi-Code Clean 61.056 0.9 54.785 0.1 58.356 1.812
Claude-4-Sonnet Multi-Code Raw 62.376 0.2 55.776 0.5 59.916 1.673
OpenAl-04-Mini Multi-Code Clean 44.554 0.4 39.274 0.8 41.524 1.913
OpenAl-04-Mini Multi-Code Raw 45.545 0.9 38.944 0.7 43.054 1.931
Gemini-2.5-Flash Multi-Code Clean 54.785 0.9 42.244 0.7 49.055 3.488
Gemini-2.5-Flash Multi-Code Raw 50.165 0.7 39.274 0.5 44.164 3.452
Claude-4-Sonnet Single-Code Clean 29.043 0.3 23.762 0.4 26.163 1.561
Claude-4-Sonnet Single-Code Raw 29.703 0.3 24.422 0.8 25.953 1.594
OpenAl-04-Mini Single-Code Clean 33.663 0.1 26.733 0.4 31.443 1.873
OpenAl-04-Mini Single-Code Raw 33.993 0.1 26.403 0.2 30.633 2.420
Gemini-2.5-Flash Single-Code Clean 26.733 0.0 20.462 1.0 23.792 1.859
Gemini-2.5-Flash Single-Code Raw 27.393 0.7 19.802 0.5 23.342 1.889

Table 7: Results from each of the 15 attempts : Overall Accuracy and Standard Deviation with varying temperature

70

Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models

60

Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet

Clean-SMOL-OpenAl-04-Mini
—— Clean-Multi-Gemini-25-Flash
—— Clean-Multi-Claude-4-Sonnet
—— Clean-Multi-OpenAl-04-Mini
**** Clean-LLM-Gemini-25-Flash
fffff Clean-LLM-Claude-4-Sonnet

Clean-LLM-OpenAl-04-Mini
—— Raw-Multi-Gemini-25-Flash
—— Raw-Multi-Claude-4-Sonnet
—— Raw-Multi-OpenAl-04-Mini
***** Raw-LLM-Gemini-25-Flash
fffff Raw-LLM-Claude-4-Sonnet
ffff Raw-LLM-OpenAl-04-Mini

Variations in results with Model and approach :
Certain domains’ samples had higher accuracy than
the rest irrespective of model, approach, or query
type despite the code complexity and task difficulty
being the same. The temperature values that pro-
duced the better results in each of the domains also

Among the unsuccessful cases, roughly 70% were
due to incorrect final responses, another 20% were
due to other errors in code, 6% were due to data

a0
>
3
i
3
g 30
20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Temperature
Figure 5: Results from each attempt over each temperature value used
100 Accuracy by Number of Tasks
--e- Clean|LLM|Claude-4-Sonnet
-.e- Clean|LLM|Gemini-25-Flash
-~ Clean|LLM|OpenAl-04-Mini
—e— Clean|Multi|Claude-4-Sonnet
80 —e— Clean|Multi|Gemini-25-Flash . .
—e— Clean|Multi|OpenAl-04-Mini
o7 Sembutiopenstoa ol varied by a considerable extent.
= Clean|SMOL|Gemini-25-Flash
- Clean|SMOL|OpenAl-04-Mini
3 60 Raw|LLM|Claude-4-Sonnet
< - Raw|LLM|Gemini-25-Flash .
> - Raw|LLM|OpenAl-04-Mini
E Raw|Multi|Claude-4-Sonnet 9 Error AnalySlS
3 . —e— Raw|Multi|Gemini-25-Flash
& 40 - —e— Raw|Multi|OpenAl-od-Mini
:
20
0

2
Number of Tasks

Figure 6: Average accuracy with each attempt VS num-
ber of task categories the query covers

error from not being able to access the data, and
the rest were due to formatting errors by the LLM
in returning the code. This can be seen in Figure 7
for all attempts combined for each temperature
value used. The formatting errors did not occur
through SmolAgent due to the use of ReAct and
are from the rest of the approaches. Formatting
errors disproportionately occurred while using 04-

3399

Error Analysis by Temperature

3000
------110 ----*
120 104 108 104 116 104 82 93 109
2500 | ! | / | I
605 608
585 634 601 585 599 608 610 631 02
2000 1
€
2 1500
o
1000 1
500l = Incorrect Answer
Other Code Errors
Data related Errors
[Formatting Errors

0.0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 7: Error cause distribution overall - temperature wise. Apart from incorrect answers, major cause of errors
occur during code execution i.e the Code generated by the LLM itself having errors.

mini as the LLM as compared to the other two
LLMs. In the single-code-cell approach, the count
of code errors outnumbered the count of instances
where an incorrect response was generated. More
on this can be seen in Appendix H.

Error rate on single and multi-task samples :
The overall accuracy, including all attempts with
all temperature values over samples that cover 1,
2 and 3 task categories, is 55.86%, 43.13%, and
25.46%, respectively; i.e., the accuracy drops sig-
nificantly if the query requires code that spans more
than one task type, as in section 3. The compar-
ison of accuracies for each attempt over samples
that span varying numbers of task types can be
seen below in Figure 6. Reasoning models like
OpenAl-04-mini have observed smaller drops in
performance with increasing complexity of queries,
i.e., queries that span several task types, while a
non-reasoning model might be an efficient choice
for simpler queries. Additionally, we have also
seen that certain tasks benefit from expensive ap-
proaches (SmolAgent or multi-cell code), while
many other tasks do not, as seen in Appendix F.
This hints that an efficient query-based model rout-
ing could be built that can reduce costs incurred
while retaining similar performance by solving sim-

pler queries with a less expensive approach and
LLM.

10 Conclusion

Through this paper, we introduce DSBC, a data
science agent benchmark with a structured frame-
work with context engineering and additional paral-
lel prompts. The benchmark closely resembles the
type of usage of the organization’s commercial data
science agent in terms of both task type distribution
as well as difficulty of queries. The benchmark is
being released through the CC-BY-NC-4.0 license
2 to facilitate further research in the domain of data
science and agents.

Limitations

The benchmark does not include multilingual or
multi-modal questions and is limited to text based
queries. Multilingual queries can work through
agents with additional steps for translation and back
translation, however they haven’t been tested. Cur-
rent benchmark does not include forecasting and
classification task categories.

%creativecommons.org/licenses/by-nc/4.0/deed.en

3400

https://creativecommons.org/licenses/by-nc/4.0/deed.en

References

Anthropic. 2025. Introducing the next generation of
claude.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Bhanu Pratap Biswas. 2024. Weather data.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-
chong Zhang, Wenjing Hu, Yuchen Mao, et al. 2024.
Spider2-v: How far are multimodal agents from au-
tomating data science and engineering workflows?
Advances in Neural Information Processing Systems,
37:107703-107744.

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha,
and Baishakhi Ray. 2018. Entropy guided spec-
trum based bug localization using statistical language
model. arXiv preprint arXiv:1802.06947.

Saikat Chakraborty and Baishakhi Ray. 2021. On multi-
modal learning of editing source code. In 2021 36th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 443—-455. IEEE.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Miri Choi. 2021. Insurance.
Jackson Crow. 2020. Stock market dataset.
Anxo DS. 2024. World population and forecast dataset.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, An-
dreu Mora, Leandro von Werra, and Thomas Wolf.
2025. Dabstep: Data agent benchmark for multi-step
reasoning. arXiv preprint arXiv:2506.23719.

Sarah Fakhoury, Saikat Chakraborty, Madan Musuvathi,
and Shuvendu K Labhiri. 2023. Towards generating
functionally correct code edits from natural language
issue descriptions. arXiv preprint arXiv:2304.03816.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roy-
choudhury, and Shin Hwei Tan. 2023. Automated
repair of programs from large language models.
In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pages 1469-1481.
IEEE.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2025.
Measuring coding challenge competence with apps.
In Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track.

Aradhana Hirapara. 2023. Farm produce data 80 years.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2024a. Mlagentbench: Evaluating language agents
on machine learning experimentation. In Inter-
national Conference on Machine Learning, pages

20271-20309. PMLR.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang,
Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang, Xiao
Liu, Jun Zhao, et al. 2024b. Da-code: Agent data sci-
ence code generation benchmark for large language
models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 13487-13521.

Abhishek Jha. 2024. Time series air quality data of
india (2010-2023).

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues?

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2025. Dsbench: How far
are data science agents from becoming data science
experts? In The Thirteenth International Conference
on Learning Representations.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 2312-2323. IEEE.

Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moon-
zoo Kim. 2019. Precise learn-to-rank fault localiza-
tion using dynamic and static features of target pro-
grams. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(4):1-34.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319-18345. PMLR.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh
Jannu, Grant Jenks, Deep Majumder, Jared Green,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. Au-
tomating code review activities by large-scale pre-
training. In Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 1035-1047.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei
Chang, and Yansong Feng. 2024. Are LLMs capable
of data-based statistical and causal reasoning? bench-
marking advanced quantitative reasoning with data.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 9215-9235, Bangkok,
Thailand and virtual meeting. Association for Com-
putational Linguistics.

3401

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://www.kaggle.com/datasets/bhanupratapbiswas/weather-data
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset
https://www.kaggle.com/datasets/anxods/world-population-and-forecast-dataset
https://www.kaggle.com/datasets/aradhanahirapara/farm-produce-data-80-years
https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023
https://www.kaggle.com/datasets/abhisheksjha/time-series-air-quality-data-of-india-2010-2023
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2310.06770
https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548
https://aclanthology.org/2024.findings-acl.548

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Bao-
long Bi, Yujun Cai, Jiazhi Liu, Mingyu Li, Zhong-Zhi
Li, Duzhen Zhang, Chenlin Zhou, Jiayi Mao, Tianze
Xia, Jiafeng Guo, and Shenghua Liu. 2025. A survey
of context engineering for large language models.

Mikhail. 2024. Walmart sales.

Meir Nizri. 2022. Covid-19 dataset.

OpenAl. 2025. 04-mini system card.

Ulrik Thyge Pedersen. 2023. Life expectancy.

Aymeric Roucher, Albert Villanova del Moral, Thomas
Wolf, Leandro von Werra, and Erik Kaunismaki.
2025. ‘smolagents‘: a smol library to build great
agentic systems.

Saurabh Shahane. 2023. Electricity load forecasting.

Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. 2023. An analysis of the auto-
matic bug fixing performance of chatgpt. In 2023
IEEE/ACM International Workshop on Automated
Program Repair (APR), pages 23-30. IEEE.

Ansh Tanwar. 2023. Monthly food price estimates.

Gemini Team. 2025. Gemini 2.5: Pushing the fron-
tier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities.

Rosalia Tufano. 2023. Automating code review. In
2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings
(ICSE-Companion), pages 192-196. IEEE.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu,
Song Wang, and Qing Wang. 2024. Software testing
with large language models: Survey, landscape, and
vision. IEEE Transactions on Software Engineering,

50(4):911-936.

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian,
Michael Pradel, and Lingming Zhang. 2024.
Fuzz4all: Universal fuzzing with large language mod-
els. In Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering, pages
1-13.

Chungiu Steven Xia and Lingming Zhang. 2022. Less
training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceed-
ings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 959-971.

Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and
Hajimu Iida. 2016. Mining the modern code review
repositories: A dataset of people, process and product.
In 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR), pages 460—-463.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
et al. 2023. Natural language to code generation in
interactive data science notebooks. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 126-173.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018a. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911-3921.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li,
Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu Hu,
Jie Tang, and Yisong Yue. 2025. Datascibench: An
IIm agent benchmark for data science.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie,
Junyi Jessy Li, and Milos Gligoric. 2022. Coditt5:
Pretraining for source code and natural language edit-
ing. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 1-12.

Yuge Zhang, Qiyang Jiang, XingyuHan XingyuHan,
Nan Chen, Yuqing Yang, and Kan Ren. 2024. Bench-
marking data science agents. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5677-5700.

3402

http://arxiv.org/abs/2507.13334
http://arxiv.org/abs/2507.13334
https://www.kaggle.com/datasets/mikhail1681/walmart-sales
https://www.kaggle.com/datasets/meirnizri/covid19-dataset
https://cdn.openai.com/pdf/4375e605-f9a6-438d-bcc8-190599c183a6/o3_cua_system_card.pdf
https://www.kaggle.com/datasets/ulrikthygepedersen/life-expectancy
https://www.kaggle.com/datasets/saurabhshahane/electricity-load-forecasting
https://www.kaggle.com/datasets/anshtanwar/monthly-food-price-estimates
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
http://arxiv.org/abs/2507.06261
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A Prompts Used

INSTRUCTIONS : the final answer must contain the answer mentioned explicitly whether
if it is a text, list of answers, something numeric or text in the desired format.

QUERY :
{question}.

DATASET PATH :
{dataset_path}

You are a data analyst. The user asked: "{user_query}"
Dataset information:

- First 5 rows: {sample_rows}
- Dataset description: {dataset_description}

1. Generate COMPLETE, STANDALONE code snippets (2-3 steps) that
could each run independently. For each step, provide:

1. A text explanation of what this step does

2. The Python code snippet that implements this step

Format your response as JSON with this structure:

{{
"steps”: [
{{
"explanation”: "Detailed explanation of what this step accomplishes”,
"code": "Complete Python code with imports, analysis, and output”
13
1
13
REQUIREMENTS:

- Use pandas to load and analyze the data: pd.read_csv('{filepath}"')
- MUST include at least one visualization using matplotlib/seaborn

- Include necessary imports in each relevant snippet

- Complete analysis logic

- Clear visualization code when applicable

- Proper print() statements to show results

- Don't use markdown formatting, just pure JSON

3403

A user submitted the following question about their dataset: "{user_question}”

Dataset Context:
{dataset_info}
Generated Analysis Code:
{code}

Execution Results:
{answer}

Please provide a clear, comprehensive explanation that:
. Directly addresses the user's original question
Interprets the results in the context of the dataset
Explains what the findings mean in practical terms
Highlights any key insights or patterns discovered
Always use first-person when speaking.

g~ w N =

Your explanation should be written in plain language that a business
stakeholder could easily understand.

You are a data analyst. Generate Python code to analyze a CSV file and answer
the following query: {user_query}

Dataset information:
{dataset_description}
HHHEHHBFHEHSHEHAHEHASREHHRHH
Requirements:
- Use pandas to load and analyze the data: pd.read_csv('data.csv')
- Include necessary imports
- Use print() statements to show results
- For visualizations, use matplotlib/seaborn
- Handle data type conversions if needed
- Return ONLY executable Python code, no markdown formatting
- The dataframe is already loaded in a variable called 'data'. Do not re-read it
- Have the answer ready in a variable called 'answer'.
Just declare and add your values there.
- Do not have subplots, only main plots
Generate clean, executable Python code
For the Explination, it should describe why a step was taken and not whats done.
Use this format for the response :

{{
"explanation”: "...",
"COde”: H. . ."

13

3404

Respond in this exact JSON format:

{
{

"Evaluation”: 'Yes' 'No' 'The Evaluation should be Yes only when the response is
technically correct. Sometimes the answer might be of a different format but
still correct (Ex : March , 3 when asked the month etc..). For numerical values,
the rounded .2f values should match to be considered correct.'
}
}

You are being used for LLM-as-judge. In numeric solutions an error beyond the 2nd
decimal point after rounding can be ignored.

H#HHH
The Query by the user is :
{Q3

The Ground Truth for the query is :
{A}

The Code Snippet to obtain the ground truth was :
{C}

The Response by the model is :
{R}

The Code Snippet in the submission was :

1S3

The Reasoning given with the submission was :

N}

B Reproducibility

The hyperparameters not specified or tested with multiple values through the paper are all use through
their default values. A max token limit of 8192 was used. All experiments were done on Google Cloud.
All inference runs combined have cost approx. 12008, 200$ and 700$ respectively for Claude-4-Sonnet,
Gemini-2.5-Flash and OpenAl-04-Mini respectively. For VLLM-as-a-judge experiments, it cost us around
1508 using Gemini-2.5-Flash. For SmolAgent, we used a time limit of 90 seconds and step limit of 5
for each query during inference. Additional allowed imports were constrained to a few packages that
should be enough to solve the queries of the benchmarks : pandas, numpy, scipy, scikitlearn, matplotlib,
seaborn, re, math, datetime. For the same amount of inference samples, compared to single-code-cell,
multi-code-cell was 1.8x expensive and SmolAgent was 3.2x expensive when averaging costs across all
LLMs tested. All LLMs were used with a seed value of 1024.

3405

C Annotation Guidelines

When creating training samples, focus on generating simple, realistic queries that
reflect actual user interactions you've encountered in client work or observed in
system usage logs. mirror the natural language patterns, terminology, and problem
types that real users typically present. Draw from common scenarios you've
witnessed, such as troubleshooting requests, feature questions, or workflow
clarifications, ensuring that each sample captures the authentic tone and
complexity level of genuine user inquiries rather than overly polished or
artificial examples.

| V

When creating clean queries, remove language that leaks information or makes
assumptions about the data. The query "Among those who have died, how many deaths
were not attributed to COVID-19?" assumes non-COVID deaths exist in the dataset.
A cleaner version asks "Did any deaths not occur due to COVID-19? If so, how many?”
This removes the data leakage while keeping the same core question. Make sure that
the exact meaning of both the Clean query and Raw query is the same.

| r

Categorize the queries based on what tasks they require to be performed to be
able to answer the queries. A query can be categorizied as atleast one category
and at most 3 categories. If the sample seems close to more than three categories,
assign the best matching three categores, use the below examples for reference :
{examples}.

3406

D Unsolved Samples

The two unsolved samples, its solution and the common errors made by the LLMs/agents were :

If it rains today, what is the likelihood that it will rain tomorrow as well?

import pandas as pd
Convert to datetime
df_AQI['From Date'] = pd.to_datetime(df_AQI['From Date'])
df_AQI['Date'] = df_AQI['From Date'].dt.date
Daily rainfall sums
daily_rain = df_AQI.groupby('Date')['RF (mm)'].sum().reset_index()
daily_rain = daily_rain.sort_values('Date').reset_index(drop=True)
Binary rain indicators (>@.1mm = rain)
daily_rain['Rain_Today'] = (daily_rain['RF (mm)'] > @)
daily_rain['Rain_Tomorrow'] = daily_rain['Rain_Today'].shift(-1)
Remove last row (no tomorrow data)
daily_rain = daily_rain[:-1]
Calculate probability
rain_today_count = daily_rain['Rain_Today'].sum()
rain_both_days = ((daily_rain['Rain_Today'] == 1)
& (daily_rain['Rain_Tomorrow'] == 1)).sum()
probability = rain_both_days / rain_today_count if rain_today_count > @ else @
print(f"P(Tomorrow | Today) = {probability:.3f} ({probability*100:.1f3}%)")

Mistakes made by the LLLMs and Agents include, A) blind trust in '"From Date' column
to be a date-time column without verifying, B) assuming '"From Date' to cover daily data
rather than hourly data without verifying, C) using rainfall >0.1 mm as rain rather than
directly using 0.0, incorrectly assuming all rows are of .1f type
Which of the calendar months typically experience the highest sales in an year ? List top 2
df_SALES['Date'] = pd.to_datetime(df_SALES['Date'])
df _SALES['Month'] = df_SALES['Date'].dt.month
monthly_sales = df_SALES.groupby('Month')['Weekly_Sales'].mean()
sorted_monthly_sales = monthly_sales.sort_values(ascending=False)
top_2_months = sorted_monthly_sales.head(2)
month_names = { 1: 'January', 2: 'February', 3: 'March', 4: 'April',

5: 'May', 6: 'June', 7: 'July', 8: 'August',

9: 'September', 10: 'October', 11: 'November', 12: 'December'}

top_2_month_names = [month_names[month] for month in top_2_months.index]
print(f"{top_2_month_names[@]} and {top_2_month_names[1]}")

Mistakes made by the LLLMs and Agents include, A) grouping 2 month periods from start
rather than considering all possible rolling 2 month periods B) assuming dataset starts
and ends in same month. i.e if it starts in May for example and ends in July of a different
year. There is more data for June and hence considering sum() instead of mean() leads to a
incorrect response. C) assuming the question meant which 2 months despite being asked for
""calendar months'"'

3407

E Task wise Success Rates

The task wise success rates of each query spanning 165 attempts used can be seen in Figure 16, Figure 17,
Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 respectively for each task category
separately. The overall success rates for the several task categories ranged from a lowest value of of 29.1%
for Feature engineering to a highest value of 46.9% for Correlation analysis. the distributions of each of
the tasks’ success rates are considerably skewed half each of either direction with differences between
mean and median ranging from 4-15% among the samples of the same task category.

Success Rate - Correlation Analysis

100 I ——
(otai Queries: 44] [
[] [] []

Avg Success Rate: 46.9%

U Success (Yes)
B Failure (No)

80

60

40

Success Rate (%)

20

Query ID

Figure 8: Success rates for each sample over several (165) attempts - Correlation Analysis

Success Rate - Statistics
Query ID

Figure 9: Success rates for each sample over several (165) attempts - Statistics

1007

o

Total Queries: 172 HHHH

[N NNANENNY]

Avg Success Rate: 38.8%

[Success (Yes)
BN Failure (No)

8|

o

6|

o

Success Rate (%)

4

o

2

o

o

3408

Success Rate (%)

Success Rate (%)

Success Rate (%)

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

Success Rate - Data Parsing

Total Queries: 113 | | | | | W Success (Yes)
OO BB Failure (No)
Avg Success Rate: 36.3%

Query ID
Figure 10: Success rates for each sample over several (165) attempts - Data Parsing
Success Rate - Data Pre-processing

[fotai Queries o5 [J
[|

I Success (Yes)
W Failure (No)

Query ID

Figure 11: Success rates for each sample over several (165) attempts - Data Pre-processing

[Success (Yes)
W Failure (No)

Figure 12: Success rates for each sample over several (165) attempts - Feature Engineering

Success Rate - Feature Engineering

[
Avg Success Rate: 29.1%

Query ID

3409

Success Rate (%)

Success Rate (%)

Success Rate (%)

100

80

60

40

20

100

80

60

40

20

Success Rate - Feature Transformation

100

80

60

40

20

Total Queries: 85 | | | | l [Success (Yes)
e W Failure (No)
Avg Success Rate: 41.2%

Query ID

Figure 13: Success rates for each sample over several (165) attempts - Feature Transformation

Success Rate - Distribution Analysis

Query ID

—
[fotai Queries 53) [l |
a

I Success (Yes)
W Failure (No)

Figure 14: Success rates for each sample over several (165) attempts - Distribution Analysis

Success Rate - Data Visualization
Total Querles 22 I Success (Yes)
B Failure (No)
Avg Success Rate 33. 1%

Query ID

Figure 15: Success rates for each sample over several (165) attempts - Data Visualization

3410

F Accuracies over Each Task

The task wise accuracies of each attempt compared to the temperature used can be seen in Figure 16,
Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23 respectively for each task
category separately. Some of the tasks had less variance between the accuracies obtained through each
attempt while the rest had very high variance. This hints that certain tasks might perform more or less
the same with any set of (temperature, LLLM, approach, query type) while others perform clearly
better with a certain set of the same features. This is especially important as costs incurred can vary a
lot between using multi-code-cell approach or by SmolAgent compared to generating them directly by
an LLM in a single step. Though the difference in costs is only a few cents per sample, it can make a
difference when dealing with a large number of samples.

Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Correlation Analysis

80
- Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
17N N LN L T O e Clean-SMOL-OpenAl-04-Mini
—— Clean-Multi-Gemini-25-Flash
60 —— Clean-Multi-Claude-4-Sonnet

—— Clean-Multi-OpenAl-04-Mini
Clean-LLM-Gemini-25-Flash
————— Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
—— Raw-Multi-Gemini-25-Flash
— Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-04-Mini
----- Raw-LLM-Gemini-25-Flash
————— Raw-LLM-Claude-4-Sonnet
----- Raw-LLM-OpenAl-04-Mini

Accuracy (%)
B w
o o

w
o

20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Temperature
Figure 16: Results from each attempt over each temperature value used - Correlation Analysis
80 Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Statistics

- Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
----- Clean-SMOL-OpenAl-04-Mini
—— Clean-Multi-Gemini-25-Flash
60 —— Clean-Multi-Claude-4-Sonnet
—— Clean-Multi-OpenAl-04-Mini
Clean-LLM-Gemini-25-Flash
————— Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
—— Raw-Multi-Gemini-25-Flash
— Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-04-Mini
----- Raw-LLM-Gemini-25-Flash
————— Raw-LLM-Claude-4-Sonnet
----- Raw-LLM-OpenAl-04-Mini

70

Accuracy (%)
B w
o o

w
o

20

10

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 17: Results from each attempt over each temperature value used - Statistics

3411

80 Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Data Parsing

--------- Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
LA N I R Clean-SMOL-OpenAl-04-Mini
Clean-Multi-Gemini-25-Flash
60 —— Clean-Multi-Claude-4-Sonnet
—— Clean-Multi-OpenAl-04-Mini
***** Clean-LLM-Gemini-25-Flash
fffff Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
Raw-Multi-Gemini-25-Flash
Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-o4-Mini

w
1=}

Accuracy (%)
N
o

7,3 S S ettt N /it I [et Raw-LLM-Gemini-25-Flash
————— Raw-LLM-Claude-4-Sonnet
***** Raw-LLM-OpenAl-o4-Mini
20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 18: Results from each attempt over each temperature value used - Data Parsing

80 Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Data Pre-processing

Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet

70 Clean-SMOL-OpenAl-04-Mini

—— Clean-Multi-Gemini-25-Flash

60 Clean-Multi-Claude-4-Sonnet
—— Clean-Multi-OpenAl-04-Mini
***** Clean-LLM-Gemini-25-Flash
50

»»»»» Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
—— Raw-Multi-Gemini-25-Flash
—— Raw-Multi-Claude-4-Sonnet
—— Raw-Multi-OpenAl-04-Mini

Accuracy (%)
IS
o

703 M e ST SO SO R ANY) A S R b Raw-LLM-Gemini-25-Flash
»»»»» Raw-LLM-Claude-4-Sonnet
----- Raw-LLM-OpenAl-04-Mini
20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 19: Results from each attempt over each temperature value used - Data Pre-processing

80 Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Feature Engineering

------- Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
L Clean-SMOL-OpenAl-04-Mini
Clean-Multi-Gemini-25-Flash
60 —— Clean-Multi-Claude-4-Sonnet
Clean-Multi-OpenAl-04-Mini
fffff Clean-LLM-Gemini-25-Flash
fffff Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
—— Raw-Multi-Gemini-25-Flash
—— Raw-Multi-Claude-4-Sonnet
—— Raw-Multi-OpenAl-04-Mini

50

Accuracy (%)
N
o

304 T SN el e TR T N S Raw-LLM-Gemini-25-Flash
----- Raw-LLM-Claude-4-Sonnet
***** Raw-LLM-OpenAl-o4-Mini
20
10
0
0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Figure 20: Results from each attempt over each temperature value used - Feature Engineering

3412

70

60

Accuracy (%)
B w
o o

w
=}

20

10

0 Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Feature Transformation

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

- Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
Clean-SMOL-OpenAl-04-Mini
Clean-Multi-Gemini-25-Flash

—— Clean-Multi-Claude-4-Sonnet
—— Clean-Multi-OpenAl-04-Mini

- Clean-LLM-Gemini-25-Flash
- Clean-LLM-Claude-4-Sonnet

Clean-LLM-OpenAl-04-Mini
Raw-Multi-Gemini-25-Flash
Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-o4-Mini

***** Raw-LLM-Gemini-25-Flash
————— Raw-LLM-Claude-4-Sonnet
***** Raw-LLM-OpenAl-o4-Mini

Figure 21: Results from each attempt over each temperature value used - Feature Transformation

Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Distribution Analysis

70

60

50

Accuracy (%)
IS
o

30

20

10

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
Clean-SMOL-OpenAl-04-Mini
Clean-Multi-Gemini-25-Flash
Clean-Multi-Claude-4-Sonnet
Clean-Multi-OpenAl-04-Mini
Clean-LLM-Gemini-25-Flash
Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
Raw-Multi-Gemini-25-Flash
Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-o4-Mini
Raw-LLM-Gemini-25-Flash
Raw-LLM-Claude-4-Sonnet
Raw-LLM-OpenAl-04-Mini

Figure 22: Results from each attempt over each temperature value used - Distribution Analysis

80

Accuracy vs. Temperature for Different Prompt Types, Approaches, and Models - Data Visualization

70

60

50

Accuracy (%)
N
o

30

20

10

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

Clean-SMOL-Gemini-25-Flash
Clean-SMOL-Claude-4-Sonnet
Clean-SMOL-OpenAl-04-Mini
Clean-Multi-Gemini-25-Flash
Clean-Multi-Claude-4-Sonnet
Clean-Multi-OpenAl-04-Mini
Clean-LLM-Gemini-25-Flash
Clean-LLM-Claude-4-Sonnet
Clean-LLM-OpenAl-04-Mini
Raw-Multi-Gemini-25-Flash
Raw-Multi-Claude-4-Sonnet
Raw-Multi-OpenAl-04-Mini
Raw-LLM-Gemini-25-Flash
Raw-LLM-Claude-4-Sonnet
Raw-LLM-OpenAl-o4-Mini

Figure 23: Results from each attempt over each temperature value used - Data Visualization

3413

G Variation in Accuracies : task wise

The task wise variations in accuracies of each attempt can be seen in Figure 24, Figure 25, Figure 26,
Figure 27, Figure 28, Figure 29, Figure 30, Figure 31 respectively for each task category separately. Some
task categories are less sensitive to temperature, while other tasks are more sensitive to changes in
temperature. The accuracy ranges for each task types can be seen to vary between each task category i.e
some LLMs and approaches perform better in some task categories while some other LLM and approach
might be better at other task categories. Hence, Model and approach routing could be implemented by
identifying the task category based on the input query.

Accuracy Variance across Temperatures for Each Attempt - Correlation Analysis

SD: 6.93
801 SD: 7.72 SD: 4.00
sD: 5.97
SD:7.27
70 SD: 4.77
SD: 2.82
60
SD: 4.26
SD: 4.95
F 309 SD: 6.51
< sD:3.01 SD: 4.49
z
g
5 40
3 SD: 3.47
B SD: 4.55 SD: 3.41]
30 ? ﬁ #
204 I
10
" & < N N " N o 5 N N . .
P P T P S I
e 5 & & N & e I & R4 g X s o ~°
S S ¥ & S S S
eé(‘ & \;QQ & & R o‘f & ‘KOQ & & & (,0@ & K
& & & @o\ S8 @ & & 9& gs‘ S»
§ & 3 S < £ 2 3 N &
e S S A O S S
Attempt
Figure 24: Variation in Accuracies through - Correlation Analysis
Accuracy Variance across Temperatures for Each Attempt - Statistics
80 1
704
SD: 2.42 SD:1.21
60 SD: 1.73
SD: 3.60 &
SD: 2.53 % SD: 2.06
— SD:4.11
5 501 %] % SD: 2.64 SD: 2.35
=
9
S a0 ?
2 SD:3.22
< SD: 2.53
30 SD: 1.90
SD: 1.53 sD: 1.79
SD: 1.78 -
20 1 % &=
10
0 . — : . — . . — . .
& & & & & F & &
o e & o 23 & & o o & a I3 &
0 » & & B & R IS & ,s 5
& & & & o & S g & & & &
& o \;()Q & o ,NOQ & o N & o Q\,o“
j P ¢ ¥ S : & ‘ ‘
R A A A A A A
¢ ‘ & 3 : ; ; & &
O@”e e@q’e I & o‘f S o " @ <€ <€ ¢
Attempt

Figure 25: Variation in Accuracies through - Statistics

3414

80

70

60

o
5

IS
S

Accuracy (%)

w
S

20

Accuracy Variance across Temperatures for Each Attempt - Data Parsing

SD: 2.86 SD: 3.00

SD: 3.01
SD: 3.56
SD: 2.68 SD: 4.84

s gl

SD: 4.32 SD: 3.59
SD: 3.53

SD: 3.28

SD: 4.74
SD: 2.56

Accuracy (%)

Attempt

Figure 26: Variation in Accuracies through - Data Parsing

80

70

60

50

40

Accuracy Variance across Temperatures for Each Attempt - Data Pre-processing

SD: 3.29
SD: 3.22

SD: 5.68
SD: 6.13

SD: 6.32

SD: 4.60
SD: 2.95

SD: 2.93

SD: 2.90

SD: 4.66 SD: 3.72
SD: 2.90 SD: 3.56

Attempt

Figure 27: Variation in Accuracies through - Data Pre-processing

Accuracy (%)

Accuracy Variance across Temperatures for Each Attempt - Feature Engineering

80

70

60

o
=3

IS
S

SI

w
S

20

SD: 2.60

SD: 2.36 ? SD: 4.09
SD: 3.75
* SD: 4.02

SD: 3.14
SD: 2.74

=

SD:

:3.37
i T spi2as

i SD: 2.65

SD: 3.87
D: 2.65

SD: 3.44
SD: 2.65

SD: 2.62 ;

Attempt

Figure 28: Variation in Accuracies through - Feature Engineering

3415

Accuracy Variance across Temperatures for Each Attempt - Feature Transformation

80

70 SD: 3.86
SD: 1.95

SD:3.115D: 3.72 SD: 6.80 SD: 5.48

SD: 3.26
SD: 4.12
T ? SD: 3.44

SD: 3.61 SD: 2.32

ilﬁ +

60

o
5

IS
S

Accuracy (%)
»
=)
w
~
=

w
S

20

Attempt

Figure 29: Variation in Accuracies through - Feature Transformation

Accuracy Variance across Temperatures for Each Attempt - Distribution Analysis

80

70

60 SD: 4.8
SD: 5.69 SD: 2.92 SD: 6.47

_ SD: 5.52 SD:5.78
£ 50 1sp: 4.30 SD: 1.95
< SD:3.37 SD: 7.62
g a SD: 5.5
S i
8 SD: 5.52
< SD: 4.97
30 SD:5.17 SD:3.37
20 - *
10

Attempt

Figure 30: Variation in Accuracies through - Distribution Analysis

Accuracy Variance across Temperatures for Each Attempt - Data Visualization

80

70
SD: 8.77
SD: 8.06

SD: 6.21 SD: 9.26
SD: 7.75
SD: 7.35 SD: 7.37 SD: 5.81
SD: 7.75 SD: 7.37
SD: 4.92 SD: 5.84
SD: 3.88 SD: 8.24

s 1!

60

o
=3

IS
S

Accuracy (%)

w
S

Attempt

Figure 31: Variation in Accuracies through - Data Visualization

3416

H Error Analysis : Approach wise

Error Analysis by Temperature - Clean, SMOL, Gemini-25-Flash

B Incorrect Answer
250 | [Other Code Errors
Data related Errors
[Formatting Errors
200 1
=2 150
3
o
@]
100 -
50 +
0 p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 32: Incorrect response cause distribution -

Error Analysis by Temperature - Clean, SMOL, Claude-4-Sonnet

B Incorrect Answer
250 | [Other Code Errors
Data related Errors
[Formatting Errors
200 +
£ 150+
3
(o]
Q
100
50
0 ,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 33: Incorrect response cause distribution -

3417

Count

Error Analysis by Temperature - Clean, SMOL, OpenAl-04-Mini

2504

200+

150

100

50

0.0

0.1

0.2 0.3 0.4 0.5 0.6 0.7
Temperature

Figure 34: Incorrect response cause distribution -

B Incorrect Answer
[Other Code Errors

Data related Errors

[Formatting Errors

0.8

0.9 1.0

Error Analysis by Temperature - Clean, Multi, Gemini-25-Flash

250

200

100

50+

W Incorrect Answer
[Other Code Errors

Data related Errors
Formatting Errors

0.0

0.1

0.2 0.3 0.4 0.5 0.6 0.7
Temperature

Figure 35: Incorrect response cause distribution -

3418

0.8

0.9 1.0

Count

Error Analysis by Temperature - Raw, Multi, Gemini-25-Flash

B Incorrect Answer
250 - [Other Code Errors
Data related Errors
[Formatting Errors
200 +
e T =
150 1
100
50 1
0,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 36: Incorrect response cause distribution -

Error Analysis by Temperature - Clean, Multi, Claude-4-Sonnet

W Incorrect Answer
250 | [Other Code Errors
Data related Errors

[0 Formatting Errors
200 +
150
100
50
0 p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 37: Incorrect response cause distribution -

3419

Error Analysis by Temperature - Raw, Multi, Claude-4-Sonnet

2504

200+

150

Count

100

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Temperature

Figure 38: Incorrect response cause distribution -

B Incorrect Answer
[Other Code Errors

Data related Errors

[Formatting Errors

0.8

0.9 1.0

Error Analysis by Temperature - Clean, Multi, OpenAl-o04-Mini

250

200

100

50+

I Incorrect Answer

[Other Code Errors
Data related Errors

[Formatting Errors

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Temperature

Figure 39: Incorrect response cause distribution -

3420

0.8

0.9 1.0

Error Analysis by Temperature - Raw, Multi, OpenAl-o4-Mini

[Incorrect Answer
2501 [Other Code Errors
Data related Errors
[Formatting Errors
200 4
£ 150+
2
o
100
50 1
0 p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature
Figure 40: Incorrect response cause distribution -
Error Analysis by Temperature - Clean, LLM, Gemini-25-Flash
250
[I 14
19 — 13 15 14
200
£ 150
3
]
100
50 - [Incorrect Answer
" Other Code Errors
Data related Errors
[Formatting Errors

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 41: Incorrect response cause distribution -

3421

Error Analysis by Tem

perature - Raw, LLM, Gemini-25-Flash

250
23
200 4
£ 150+
2
o
100
504 BEE Incorrect Answer
[Other Code Errors
Data related Errors
[0 Formatting Errors
0 p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature
Figure 42: Incorrect response cause distribution -
Error Analysis by Temperature - Clean, LLM, Claude-4-Sonnet
W Incorrect Answer
250 | [0 Other Code Errors
Data related Errors
[0 Formatting Errors
17 18
18 9 13 9 11
15
200
£ 150
3
]
100
50 +
0 p
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 43: Incorrect response cause distribution -

3422

2504

200+

100

50

Error Analysis by Temperature - Raw, LLM, Claude-4-Sonnet

[Incorrect Answer
[Other Code Errors
Data related Errors

4 E Formatting Errors
21

11 15

16

18
17

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 44: Incorrect response cause distribution -

Error Analysis by Temperature - Clean, LLM, OpenAl-04-Mini

250

200

100

50+

W Incorrect Answer

[0 Other Code Errors
Data related Errors

[0 Formatting Errors

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

Figure 45: Incorrect response cause distribution -

3423

Count

2504

200+

150

100

50

Error Analysis by Temperature - Raw, LLM, OpenAl-04-Mini

0.0

0.1

B Incorrect Answer
[Other Code Errors

Data related Errors
[Formatting Errors

11

92
13

10

0.2 0.3 0.4 0.5
Temperature

0.6 0.7 0.8

0.9 1.0

Figure 46: Incorrect response cause distribution -

3424

