
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 3376–3391

December 20-24, 2025 ©2025 Association for Computational Linguistics

Rethinking Large Language Model Architectures for Sequential
Recommendations

Hanbing Wang1, Xiaorui Liu3, Wenqi Fan4, Xiangyu Zhao5, Venkataramana Kini2,
Devendra Pratap Yadav2, Fei Wang2, Zhen Wen2, Hui Liu1

1Michigan State University, 2Amazon, 3North Carolina State University
4The Hong Kong Polytechnic University, 5City University of Hong Kong

{wangh137,liuhui7}@msu.edu, {venkini,feiww,yaddevn,zhenwen}@amazon.com
xliu96@ncsu.edu, wenqifan03@gmail.com, xy.zhao@cityu.edu.hk

Abstract

In recent times, there has been a shift to-
wards adapting sequential recommendation to
LLM paradigm to harness the capabilities of
LLMs. These methods typically formulate
recommendation data into natural language
and train the model to forecast the subsequent
item in an auto-regressive manner. Despite
their notable success, the significant compu-
tational burden during inference poses a ma-
jor challenge to their practical implementa-
tion. In this study, we aim to streamline cur-
rent LLM-based recommendation models and
introduce a straightforward yet highly effec-
tive model LITE-LLM4REC. The primary ob-
jective of LITE-LLM4REC is to ensure effi-
cient inference for the sequential recommen-
dation task. LITE-LLM4REC circumvents
the step-by-step beam search decoding by em-
ploying a direct item projection head to pro-
duce ranking scores in one step. This de-
sign arises from our empirical finding that
beam search decoding is ultimately unneces-
sary for sequential recommendations. Addi-
tionally, LITE-LLM4REC introduces a hier-
archical LLM structure crafted to efficiently
handle the extensive contextual information of
items and redundant computation issue, thus di-
minishing computational overhead while enjoy-
ing the power of LLMs. Experiments on four
publicly available datasets validate the efficacy
of LITE-LLM4REC in enhancing both perfor-
mance and inference efficiency (notably 46.8%
performance improvement and 99.48% effi-
ciency improvement on ML-1m) compared to
existing LLM-based methods. Our implementa-
tions are available at: https://github.com/
HanbingWang2001/Lite-LLM4Rec-PyTorch.

1 Introduction

Sequential recommendation is to predict next item
a user will interact with based on his/her interac-
tion history. Because user interests are dynamic
and evolving over time, it is important to capture

the sequential pattern, leading to accurate recom-
mendations. Traditional methods model the item
transition patterns based on Markov Chain (He
et al., 2018; Rendle et al., 2010; He and McAuley,
2016). With the development of deep learning, a
variety of deep neural networks, such as Trans-
former (Kang and McAuley, 2018; Sun et al.,
2019), RNN (Wu et al., 2019; Hidasi and Karat-
zoglou, 2018) and CNN (Tang and Wang, 2018),
have been proposed to advance the task, achiev-
ing remarkable performance. Furthermore, side
information (e.g., attributes, titles) has been incor-
porated (Hidasi et al., 2016; Huang et al., 2019;
Zhang et al., 2019), which helps achieve remark-
able improvement, demonstrating its importance
and potential.

Recently, the widespread success of large lan-
guage models (LLMs) (Yang et al., 2025; Achiam
et al., 2023; Touvron et al., 2023), has demonstrated
their exceptional ability of contextual understand-
ing and offers a promising direction to improve
recommendation systems with heightened person-
alization and adaptability. Existing LLM-based rec-
ommendation algorithms (Cao et al., 2024; Zhang
et al., 2023; Bao et al., 2023) mainly adapt recom-
mendation tasks to the LLM paradigm by formulat-
ing relevant information, i.e., interaction informa-
tion, meta data, or candidate items through various
indexing strategies into natural language. As shown
in Figure 1, such information will be wrapped in a
prompt template and transformed into informative
latent representations before being fed into trans-
former. Finally, the model will auto-regressively
generate the recommendations in natural language
through decoding with beam search (Yang et al.,
2023).

Although existing LLM-based methods have
achieved remarkable success, the exorbitant cost of
inference hinders their real-world applications and
poses a formidable obstacle to seamless, real-time
user experiences (Rajput et al., 2023; Yue et al.,

3376

https://github.com/HanbingWang2001/Lite-LLM4Rec-PyTorch
https://github.com/HanbingWang2001/Lite-LLM4Rec-PyTorch

2023; Mei and Zhang, 2023). To gain deeper in-
sights into this efficiency challenge, we perform a
preliminary study in Section 2.2 and pinpoint two
primary performance bottleneck:

• The Decoding Bottleneck. We observe that
the step-by-step beam search decoding is the
most time-consuming component. This pro-
cess is employed to generate k recommenda-
tions for a user, leading to k times greater
model computation complexity.

• The Input Bottleneck. We find that repre-
senting items as raw text or simple indices is
highly inefficient. This approach suffers from
two key problems: (i) tokenizing item identi-
fiers unnecessarily inflates the input sequence
length, and (ii) it forces redundant computa-
tions every time a frequently-occurring item
appears in the data.

Crucially, our further study in Section 2.3 sug-
gests that these computationally burdensome com-
ponents—both complex decoding and verbose tex-
tual item representations—are ultimately unneces-
sary for achieving high performance in sequential
recommendation. This finding motivates our work
to design an architecture that bypasses these bottle-
necks entirely.

Grounded on our preliminary studies, we aim
to streamline the model architecture of existing
LLM-based recommendations, introducing LITE-
LLM4REC as an efficient solution for sequen-
tial recommendation. We identified that the auto-
regressive beam search decoding is is a primary
source of inefficiency and is unnecessary for this
task. Therefore, LITE-LLM4REC pivots from
a slow, token-by-token generative paradigm to a
rapid, discriminative one. Instead of generating
item identifiers, it circumvents the entire decod-
ing process by projecting the final sequence repre-
sentation directly into the item embedding space.
This allows it to compute a full ranking over all
candidate items in a single step, drastically cut-
ting down inference latency. Additionally, treating
items as long strings of text create massive compu-
tational overhead. To tackle this challenge, LITE-
LLM4REC employs a hierarchical LLM structure
composed of an Item LLM and a Recommenda-
tion LLM. This design is grounded on the finding
that LLMs are powerful enough to interpret the
semantic information encoded directly within la-
tent representations. This architecture significantly

A User has purchased: item_1,item_2,…,
predict next possible item to be
purchased by the user.

Text Prompt

Transformer Encoder

Auto-regressive Decoder

Beam Search Decoding

item_123,item_234…,</s>

LLM tokenizer & Embedding

Specific item index method

Figure 1: An Illustration of LLM-based sequential rec-
ommendations.

shortens the effective input length and alleviates re-
dundant computation while still harnessing the core
strengths of large language models. Experimental
results indicate that LITE-LLM4REC significantly
improves not only the inference efficiency but also
the overall performance. The main contributions of
this paper are summarized as follows: (1) We pro-
pose LITE-LLM4REC, a streamlined architecture
for sequential recommendation that challenges the
standard LLM paradigm. By replacing the compu-
tationally expensive auto-regressive decoder with a
direct projection head, LITE-LLM4REC simulta-
neously boosts inference speed and improves rec-
ommendation accuracy. (2) We introduce a novel
hierarchical LLM structure designed to efficiently
manage long item contexts. This architecture disen-
tangles rich item-level feature encoding from user-
sequence modeling, significantly reducing compu-
tational overhead while preserving the powerful
representation capabilities of LLMs. (3) We con-
duct extensive experiments on several benchmark
datasets, demonstrating the effectiveness and effi-
ciency of LITE-LLM4REC.

2 Preliminaries

In this section, we empirically study the inference
bottlenecks of existing LLM-based recommenda-
tions. To establish a clear framework for this anal-
ysis, we begin by formally defining the sequen-
tial recommendation problem and introducing the
key notations used throughout this work. Then we
quantify the inference overhead by benchmarking
modern LLM-based methods against a traditional
sequential model, BERT4Rec (Sun et al., 2019).
Subsequently, we dissect the primary components

3377

of these LLM recommenders, analyzing their indi-
vidual contributions to both computational latency
and overall recommendation performance. The in-
sights gained from this detailed analysis directly
motivate the novel architectural designs proposed
later in this paper.

2.1 Problem Statement and Notations

We denote u ∈ U and i ∈ I for a user and an item,
where U and I indicate the user set and the item set,
respectively. The interaction history of a user u can
be organized as a sequence Iu = (i1, i2, ..., it) in a
chronological order, where t is the length of Iu and
each item i is associated with textual information
Ti (e.g., title and genre). Given the interaction
history Iu of user u, sequential recommendation
algorithms aim to predict next item it+1 the user
is most likely to interact with from I\Iu, which
represents the item set formed by excluding the
items already interacted with the user from the
complete set of items I.

2.2 Efficiency Analysis

In this subsection, we will explore the following
questions: 1) In terms of inference efficiency, how
do LLM-based recommendation algorithms per-
form compared with traditional recommendations;
and 2) Why do they face such serious inference
efficiency problem. To answer these questions,
we first demonstrate the huge inference efficiency
gap between LLM-based and traditional sequential
recommendation systems and then investigate the
inference time cost of each component, and the re-
lation between input length and inference time. In
this study, we focus on two typical LLM-based rec-
ommendation algorithms, i.e., P5 and POD (Geng
et al., 2022; Li et al., 2023b), and one representa-
tive traditional sequential recommendation system,
i.e., BERT4Rec (Sun et al., 2019).

For all the following experiments, we use the im-
plementations released by POD (Li et al., 2023b)1

and we keep the same experimental settings. Our
analysis is based on ML-1m and Movies, two pop-
ular publicly-available datasets. Please refer to
Appendix G for more results on Toys and Kin-
dle. More details of the datasets can be found in
Section 4.1.1. We calculate the inference time by
measuring the total time of all the test data going
through each component during inference, and then
we can obtain the average inference time for a batch

1https://github.com/lileipisces/POD

0.4%

39.0%

59.3%

1.3%

(a) POD

0.4%

46.4%
51.9%

1.4%

(b) P5

Encoding
Beam_search
Decoding
Others

Figure 2: Inference time of different components for a
batch of 32 users. ’Beam_search’ refers to the beam
search decoding process, ’Decoding’ transfers the latent
representation to token IDs, and ’Others’ includes data
preparation, metrics calculations etc.

of users. We denote the length of the input as the
number of tokens of the tokenized context (e.g.,
’item_1234’ will be tokenized as ’item’ ’_’ ’12’
’34’ by the tokenizer of T5, and the input length
will be 4).

The results are shown in Table 1. We can make
the following observations: 1) Compared with
BERT4Rec, the efficiency of P5 and POD has been
significantly compromised, experiencing a slow-
down of nearly a thousand times; and 2) POD is
more efficient than P5 via reducing the input length
which can lead to the decrease of the computational
costs. To further explore why LLM-based meth-
ods face such formidable inference problem, we
conduct time analysis on the inference time cost of
each component in P5 and POD (Geng et al., 2022;
Li et al., 2023b). Figure 2 demonstrates the aver-
age inference time cost of each component. From
the figure, we note that the beam search decoding
process is most time-consuming which takes ap-
proximately 98.2% on P5 (Geng et al., 2022) and
98.3% on POD (Li et al., 2023b) of the inference
time.

Table 1: Inference time (ms) and input length

Method Avg length Time/Batch

BERT4Rec 21.0 2.37

P5 112.2 1,646
POD 85.0 1,468

2.3 Effectiveness Analysis

In the previous subsection, we have demonstrated
that the inefficiency of LLM-based recommenda-
tions comes from the beam search decoding pro-
cess and input length. In this subsection, we in-
vestigate how the beam search decoding and item
indexing affect the inference efficiency and the per-
formance. We implement two variants of P5 and

3378

https://github.com/lileipisces/POD

POD as follows: (1) w/o_d. It eliminates the de-
coder and uses an item projection head to perform
the recommendation task (Details in Section 3.3).
(2) w/o_d_TID. On the basis of eliminating the de-
coder, it represents items with their titles instead of
random numbers.

We report the performance and inference effi-
ciency in Table 2. We can make the following
observations: (1) eliminating the beam search de-
coding can significantly improve the inference effi-
ciency; (2) although representing items with their
titles can improve the performance due to the in-
corporation of contextual information, it impairs
the inference efficiency because the length of input
becomes longer (increases to 297.4 on ML-1m),
resulting in more computational costs.

Table 2: Performance of P5 and POD and their two
variants

Datasets ML-1m Movies
Methods R@20 N@20 Time R@20 N@20 Time

P5 0.2985 0.1442 2,280 0.1080 0.0761 1,770
w/o_d 0.3109 0.1459 40.06 0.1217 0.0794 37.01
w/o_d_TID 0.3354 0.1586 95.40 0.1401 0.0905 99.02

POD 0.2992 0.1403 2,170 0.1089 0.0761 1,400
w/o_d 0.3022 0.1416 35.21 0.1330 0.0866 32.13
w/o_d_TID 0.3339 0.1567 90.26 0.1406 0.0908 80.38

2.4 Discussion
In this subsection, we summarize key findings from
the preliminary studies as follows: (1) Compared
with BERT4Rec, LLM-based recommendations are
much more time-consuming. (2) Reducing the in-
put length will improve the inference efficiency.
(3) Beam search decoding will have negative im-
pacts on the efficiency of sequential recommen-
dation. (4) Compared with random number, item
title can better represent items and achieve better
performance due to the incorporation of contextual
information. (5) Despite the advantages of item
title, they are usually very long and will increase
computational costs. These findings provide the
groundwork for us to simplify existing LLM-based
recommendations and propose a simple but effec-
tive framework LITE-LLM4REC for sequential
recommendations.

3 The Proposed Framework

Motivated by our findings, in this section, we aim
to simplify the architecture to obtain a better se-
quential recommendation system, which is easier
to train and can achieve low-latency inference and
better performance. In this section, we introduce

Context-aware embeddings

 Item Projection Head

……

Recommendation LLM

Timeline

The whole item set

Scores

Mean-pooling Layer

Item LLM

Nadine
Comedy

Carmen
Drama

Poison
Drama

Item LLM Item LLM

Meta Data

……

Figure 3: An overview of the architecture of LITE-
LLM4REC.

the proposed framework LITE-LLM4REC. We
first give an overview of LITE-LLM4REC. Then
we detail its key components and finally give its
training details.

3.1 An Overview

Figure 3 demonstrates the whole architecture of
LITE-LLM4REC. To mitigate redundant com-
putation and enhance inference efficiency, LITE-
LLM4REC proposes a hierarchical LLM struc-
ture which contains two LLM components: Item
LLM and Recommendation LLM. The Item LLM
first distills verbose item contexts into compact se-
mantic vectors. The Recommendation LLM then
processes this sequence of vectors, bypassing the
need to handle lengthy raw text. Finally, LITE-
LLM4REC replaces the iterative beam search pro-
cess with a direct item projection head, enabling
the instantaneous generation of recommendation
scores. The design of each component is detailed
in the following subsections.

3.2 Hierarchical LLM Structure

To harness the power of LLMs, existing LLM-
based recommendation methods typically formu-
late items into natural language using various in-
dexing strategies. These strategies fall into two
main categories. The first category encodes item
relationships through indexing methods like seman-
tic IDs (Hua et al., 2023; Li et al., 2023b; Mei and
Zhang, 2023). These methods capture item rela-
tions via shared tokens but the indexing by itself

3379

doesn’t contain any semantic information, which
may not be able to fully explore the potential of
LLMs. The second category denotes items us-
ing metadata such as titles or genres (Bao et al.,
2023; Li et al., 2023a). This approach incorporates
contextual information but often results in long in-
puts, which needs more time to process or even
worse they need truncation or special architectures
to process when they exceed the length limitation
of LLMs.

In addition, both types of item indexing undergo
tokenization before being fed into the LLM, in-
creasing computational complexity, as each item
will be represented by multiple tokens. Moreover,
redundant computations occur when the same item
appears multiple times in the input. For example, in
the ML-1m dataset, the movie ’Star Wars: Episode
I - The Phantom Menace (1999)’ will be tokenized
into 11 tokens by T5 (Raffel et al., 2020), and ap-
pears 539 times during inference, leading to severe
redundant computations and hurting the inference
efficiency.

LITE-LLM4REC aims to simplify existing item
indexing while leveraging the power of LLMs. Par-
ticularly, we propose a hierarchical LLM structure
comprising two distinct LLM components: Item
LLM and Recommendation LLM. The Item LLM
encodes extensive context information of an item
into a compact, context-aware vector representa-
tion. Leveraging its capabilities, the Item LLM
can effectively capture the contextual nuances and
dependencies within the input sequence, facilitat-
ing the creation of a context-aware vector for each
item. Then, the Recommendation LLM processes
the sequence of context-aware vectors rather than
the original lengthy context sequences. Thus the in-
put length of LLM can be significantly reduced. In
the following, we will give the details about acquir-
ing context-aware vectors for items and sequence
representations.

We represent the context information of item
i (e.g., title, genre) after tokenization by T e

i =
(w1, w2, ..., wL), where w denotes tokens of the
context information and L is the length of the con-
text. Then, we input T e

i into the item LLM which
can be denoted as:

Input(T e
i) = (w1, w2, ..., wL). (1)

Through the model, we can obtain the output repre-
sentation for each token:

Output(T e
i) = (hw1 , hw2 , ..., hwL). (2)

Then we can obtain the context-aware embedding
for the item:

hi = Mean_pooling(hw1 , hw2 , ..., hwL), (3)

where hwi ∈ R1×d is the representation for the
corresponding token wi. Notice that deriving high
quality item representation is not our focus, so we
just apply a simple mean-pooling over all tokens’
representation to get the final context-aware em-
bedding for each item. More complicated repre-
sentation methods will be explored as one future
work.

After obtaining context-aware embeddings for
items. The Recommendation LLM will take a se-
quence of context-aware embeddings as input in-
stead of the lengthy natural language input. Sim-
ilarly, we also apply a simple mean-pooling func-
tion to the output of the Recommendation LLM to
obtain the representation of sequence:

hu = Mean_pooling(Rec_LLM(h1, h2, ..., ht)),
(4)

where h represents the context-aware embedding
for an item, Rec_LLM indicates the Recommen-
dation LLM with per-trained weights.

This architecture has several advantages: First,
the Item LLM condenses an item’s long-context
information into a single embedding, preserving
its meaning while shortening the input sequence.
Second, it avoids redundant computations by di-
rectly using the precomputed item representation
instead of recalculating it each time the item ap-
pears. Thus, LITE-LLM4REC enhances inference
efficiency via reducing computational costs.

3.3 Item Projection Head
Our preliminary studies confirm that the beam
search decoding in auto-regressive generation, in-
herited from natural language generation, is the
the principal computational bottleneck in LLM-
based recommenders. This operation is ill-suited
for the sequential recommendation task, as it re-
quires generating item identifiers (e.g., a string
like ’item_1123’) token-by-token. This leads to
several critical inefficiencies: (1) Vocabulary Mis-
match: The model’s final layer computes a proba-
bility distribution over the entire LLM vocabulary,
which can contain thousands of tokens. This is
profoundly wasteful, as valid item tokens represent
only a tiny fraction of this space. Invalid Genera-
tion: The generative process may produce syntac-
tically plausible but non-existent item identifiers

3380

or yield repetitive outputs, necessitating complex
and costly post-processing filters. Compounded
Latency: Generating a slate of k recommendations
requires k separate, sequential decoding operations,
which multiplies the inference time and exacerbates
the efficiency problem.

To circumvent these issues entirely, LITE-
LLM4REC replaces the auto-regressive generation
process with a direct item projection head. This
design re-frames recommendation from a slow gen-
eration task to a rapid ranking task. The projec-
tion head takes the final user representation and
directly computes a probability distribution over
the entire valid item set. These probabilities are
treated as ranking scores, from which the top items
are selected as the final recommendations. In par-
ticular, we implement this head as a computation-
ally lightweight one-layer Multi Layer Perceptron
(MLP) (Kang et al., 2023), which can be formu-
lated as follows:

logits = Wprojhu, (5)

where hu stands for sequence representation for
user u obtained by Eq. 4, Wproj is the projection
matrix of the MLP, and logits represents the output
scores over the whole item set.

3.4 Model Training
For the training phase, we consider all items that
a user has not interacted with as negative sam-
ples. We train the hierarchical model with a cross-
entropy loss as shown below:

LCE = −
N∑

i=1

yilogri, (6)

where N is the number of items, yi represents the
ground-truth for item i, which is 1 if item i is the
ground-truth item, otherwise 0; and ri is the pre-
dicted score of item i. We provide the training
procedure in Appendix B. The time complexity
of the algorithm can be found in Appendix F.
We adopt two training strategies which are de-
noted as ’LITE-LLM4REC _sampling’ and ’LITE-
LLM4REC _all’ in Table 3 and their details are
given in 4.1.4.

4 Experiment

In this section, we conduct comprehensive exper-
iments to verify the effectiveness and efficiency
of the proposed LITE-LLM4REC. In particu-
lar, we try to answer the following questions: (1)

Can the proposed LITE-LLM4REC achieve bet-
ter overall performance? (Section 4.2); (2) Can
the proposed LITE-LLM4REC improve inference
efficiency? (Section 4.3); (3) How does LITE-
LLM4REC perform on Top-N recommendation
task? (Appendix I); (4) How do different compo-
nents of LITE-LLM4REC affect the recommenda-
tion performance? (Section 4.6)

4.1 Experimental Settings

4.1.1 Datasets
To evaluate the effectiveness of LITE-LLM4REC,
we conduct a series of experiments on four real-
world benchmark datasets, including ML-1m2

(Harper and Konstan, 2015), Amazon-Movies and
TV, Amazon-Toys&Games and Amazon-Kindle
Store3 (Ni et al., 2019). We partition them into
training, validation and test sets with the commonly
used leave-one-out strategy. It takes the second-to-
last item as the validation item, the last item as the
test item and all other items as training items in
each user’s interaction history. Additional details
of the datasets can be found in the Appendix C.

4.1.2 Evaluation protocols
We adopt two widely used metrics Recall@k and
NDCG@k, where k = 10, 20. Recall@k repre-
sents the coverage of ground-truth items that ap-
pear in the final recommendation list. NDCG@k
measures the ranking quality of the final recom-
mendation items. For both metrics, a larger value
indicates better performance. For our method and
the baselines, we evaluate the performance on the
whole item set, and the reported results are the
average values over all users.

4.1.3 Baselines
We choose representative methods from three
groups as baselines, i.e., traditional ID-based se-
quential models, Context-aware ID-based models,
LLM-based recommendation models. We con-
sider the following tradition ID-based sequential
models: GRU4Rec (Hidasi et al., 2015), SAS-
Rec (Kang and McAuley, 2018), BERT4Rec (Sun
et al., 2019), NARM (Li et al., 2017), STAMP (Liu
et al., 2018). The context-aware ID-based sequen-
tial models include: S3-Rec (Zhou et al., 2020),
FDSA (Zhang et al., 2019). We choose the follow-
ing LLM-based sequential models: P5 (Geng et al.,

2https://grouplens.org/datasets/movielens/1m/
3https://cseweb.ucsd.edu/~jmcauley/datasets.

html#amazon_reviews

3381

https://grouplens.org/datasets/movielens/1m/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews

Table 3: Overall performance comparison of on ML-1m, Movies, Toys and Kindle with conventional sequential
baselines and LLM-based sequential methods. R denotes Recall, and N denotes NDCG. Improv. indicates the
improvements over the best baseline models. Boldface represents the best results. Underscore indicates the second
best results. A significant improvement over the best baseline is marked with * (p < 0.05)

Datasets ML-1m Movies
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

GRU4Rec 0.1876 0.2833 0.0999 0.1241 0.1153 0.1495 0.0808 0.0894
BERT4Rec 0.1981 0.2892 0.1093 0.1323 0.0761 0.1048 0.0493 0.0565

SASRec 0.1834 0.2785 0.0801 0.1040 0.1082 0.1449 0.0714 0.0807
NARM 0.1803 0.2717 0.0917 0.1146 0.1137 0.1483 0.0795 0.0882
STAMP 0.1579 0.2325 0.0828 0.1015 0.0937 0.1203 0.0682 0.0749
S3-Rec 0.1776 0.2733 0.0882 0.1123 0.0764 0.1074 0.0481 0.0560
FDSA 0.1962 0.2854 0.1058 0.1283 0.1151 0.1500 0.0804 0.0891

P5 0.2149 0.2985 0.1232 0.1442 0.0905 0.1080 0.0718 0.0761
POD 0.2185 0.2992 0.1201 0.1403 0.0904 0.1089 0.0715 0.0761

LightLM 0.1705 0.2531 0.0928 0.1135 0.0751 0.0958 0.0521 0.0574
LLM2Rec 0.2225 0.3165 0.1137 0.1374 0.0731 0.0878 0.0443 0.0480

Lite-LLM4Rec_sampling 0.2733* 0.3770* 0.1518* 0.1780* 0.1156 0.1447 0.0856* 0.0929*
Lite-LLM4Rec_all 0.3209* 0.4255* 0.1866* 0.2129* 0.1253* 0.1596* 0.0906* 0.0992*

Improv. 44.22% 34.43% 51.46% 47.64% 8.67% 6.4% 12.12% 10.96%

Datasets Toys Kindle
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

GRU4Rec 0.0506 0.0772 0.0264 0.0331 0.1132 0.1524 0.0695 0.0794
BERT4Rec 0.0352 0.0543 0.0179 0.0227 0.0801 0.1143 0.0445 0.0531

SASRec 0.0561 0.0776 0.0312 0.0366 0.1009 0.1416 0.0586 0.0688
NARM 0.05 0.0791 0.0249 0.0323 0.1161 0.1565 0.0693 0.0794
STAMP 0.0494 0.0735 0.0275 0.0336 0.1077 0.1339 0.0747 0.0814
S3-Rec 0.0538 0.0811 0.0276 0.0345 0.0408 0.0684 0.0198 0.0266
FDSA 0.0568 0.0860 0.0344 0.0417 0.1170 0.1640 0.0646 0.0764

P5 0.0543 0.0661 0.0356 0.0416 0.0748 0.0955 0.0484 0.0534
POD 0.0565 0.0690 0.0421 0.0452 0.0624 0.0813 0.0399 0.0444

LightLM 0.0509 0.0721 0.0302 0.0355 0.0571 0.0806 0.0323 0.0382
LLM2Rec 0.0486 0.0698 0.0244 0.0298 0.0695 0.0846 0.359 0.0397

Lite-LLM4Rec _sampling 0.0682* 0.0927* 0.0426 0.0488* 0.1351 0.1673 0.0905 0.0986
Lite-LLM4Rec _all 0.0627* 0.0894 0.0382 0.0449 0.1314 0.1686 0.0863 0.0957

Improv. 20.07% 7.79% 1.18% 7.96% 15.47% 2.80% 30.21% 21.13%

2022), POD (Li et al., 2023b), LightLM (Mei and
Zhang, 2023), LLM2Rec (He et al., 2025). Since
llamaRec (Yue et al., 2023) is a two-stage frame-
work while LITE-LLM4REC is single-stage, we
do not choose it as one baseline. The details of
baselines can be found in Appendix D.

4.1.4 Implementation details
We use T5-small from Huggingface4 as our back-
bone in the main experiments. Following (Li
et al., 2023b), we randomly sample a segment
of no more than 21 items from a user’s interac-
tion history for each iteration which is denoted as
’LITE-LLM4REC _sampling’ in Table 3. We also
implement another training strategy where we tra-
verse all the training data without sampling which
is represented as ’LITE-LLM4REC _all’. Further
implementation details can bu found in Appendix E.
The encoder and decoder in this model both have 6
layers, each of which is an 8-headed attention layer.
We find that after training, further fine-tuning the

4https://huggingface.co/t5-small

context-aware embeddings and the Recommenda-
tion LLM will result in better performance. We
investigate the impact of different Item LLM back-
bones in Section 4.4, while in Section 4.5, we
explore the scaling behavior of Recommendation
LLM.

4.2 Effectiveness Comparison

The performance comparison is shown in Table 3.
From the results, we can make the following obser-
vations: 1) LITE-LLM4REC exhibits significantly
better performance than LLM-based recommenda-
tion baselines. Notably, the average Recall@10
improvements over the best results of LLM-based
recommendation baselines are 44.22% on ML-1m,
38.4% on Movies, 20.7% on Toys and 80.61% on
Kindle, highlighting the effectiveness of our design.
The potential reasons for the performance improve-
ment are two-fold. First, the item projection head
in LITE-LLM4REC is more efficient, as it scores
only valid items. This avoids the wasted computa-
tion of standard beam search, which must consider

3382

https://huggingface.co/t5-small

the entire, much larger LLM vocabulary. Second,
our hierarchical structure encodes items into dense
vectors, which provide a more flexible and effec-
tive input for the recommendation model than the
original natural language text. 2) LITE-LLM4REC

consistently outperforms the best performance over
baselines. The improvement on NDCG@20 is ap-
proximately 51.4% on ML-1m, 11.3% on Movies,
7.9% on Toys and 29.05% on Kindle, which can
be attributed to the power of LLMs. Notice that
traditional ID-based and context-aware recommen-
dation algorithms are still competitive.

4.3 Efficiency Comparison

In this subsection, we analyze the inference effi-
ciency of LITE-LLM4REC. Since training and op-
erations like obtaining context-aware embeddings
can be done off-line, we just consider the time be-
tween inputting the data to the model and obtaining
the final recommendations as the inference time.
The time comparison for a batch of 32 users are
shown in Table 4. Apparently, LITE-LLM4REC

can achieve superior inference efficiency. The im-
provement over LightLM is approximately 99.48%
on ML-1m, 99.57% on Movies, 99.57% on Toys
and 99.47% on Kindle. We contribute the ef-
ficiency improvements to the following reasons.
First, we remove the most time-consuming part -
beam search decoding. Second, the hierarchical
LLM structure we propose to process long context
can mitigate the redundant computation problem
and reduce the computational costs. We also re-
port the comparison of input length in Table 5. As
can be seen, the advantage of LITE-LLM4REC

is evident, as the improvement of input length is
75.2%, 76.7%, 75.0% and 78.0% over POD on four
datasets, respectively.

Table 4: Comparison of inference time (ms)
Datasets ML-1m Movies Toys Kindle

P5 1,646 1,596 1,620 1,549
POD 1,468 1,400 1,490 1,468
LightLM 1,196 1,209 1,190 1,131

LITE-LLM4REC 6.13 5.14 5.03 5.95

Improv. 99.48% 99.57% 99.57% 99.47%

4.4 Impact of Item LLMs

In order to explore whether the performance gains
come from the alignment between the Item LLM
and the Recommendation LLM (both of them
are T5), we conduct experiments with other Item

Table 5: Comparison of average input length.
Datasets ML-1m Movies Toys Kindle

P5 112.2 112.1 107.1 117.1
POD 85.0 89.1 83.5 94.67
LightLM 170.8 174.3 166.6 194.3

LITE-LLM4REC 21 20.7 20.8 20.8

Improv. 75.2% 76.7% 75.0% 78.0%

LLM backbones like Bert (Devlin et al., 2018),
Sbert (Reimers and Gurevych, 2019) and T5-
base (Raffel et al., 2020). For Bert, we use ’bert-
base-uncased’ version and take the output of the
pooler layer as the sequence representation. For
Sbert, we use ’all-MiniLM-L6-v2’ version. Since
the dimension of hidden state is not matched, one-
layer MLP is adopted to transform the dimension.
The results are reported in Table 6. We can find
that other Item LLMs can also achieve satisfying
performance, which indicates that the influence of
the backbones of Item LLMs is limited.

Table 6: Impact of Item LLMs
ML-1m R@10 R@20 N@10 N@20

LITE-LLM4REC 0.2733 0.3770 0.1518 0.1780

T5-base 0.2728 0.3742 0.1512 0.1767
Bert 0.2706 0.3749 0.1529 0.1793
Sbert 0.2668 0.3707 0.1486 0.1748

4.5 Scaling Capabilities
In this section, we evaluate the scalability of LITE-
LLM4REC by experimenting with larger Recom-
mendation LLM backbones, namely T5-base5 and
T5-large6. The results, presented in Table 7, con-
firm LITE-LLM4REC’s scaling capabilities, show-
ing that performance improves as the backbone size
increases.

Table 7: Impact of Item LLMs

ML-1m R@10 R@20 N@10 N@20

T5-small 0.2733 0.3770 0.1518 0.1780
T5-base 0.2761 0.3771 0.1572 0.1827
T5-large 0.2824 0.3773 0.1577 0.1816

4.6 Ablation Study
In this section, we aim to analyse how different
components influence the overall performance. We
conduct experiments on ML-1m and Toys datasets

5https://huggingface.co/google-t5/t5-base
6https://huggingface.co/google-t5/t5-large

3383

https://huggingface.co/google-t5/t5-base
https://huggingface.co/google-t5/t5-large

ML-1m Toys0.0

0.1

0.2

0.3

0.4

R@
10

ML-1m Toys0.0

0.1

0.2

0.3

0.4

R@
20

ML-1m Toys0.00

0.05

0.10

0.15

N@
10

ML-1m Toys

0.05

0.10

0.15

N@
20

LITE_LLM4REC fixRecLLM fixHead Scratch

Figure 4: Ablation study results of R@10, R@20, N@10 and N@20 on ML-1m and Toys dataset.

with LITE-LLM4REC _sampling strategy to assess
each component. The results on Movies and Kin-
dle can be found in Appendix H.1. We design the
following variants of our model: (1) fixT5: Recom-
mendation LLM (the encoder of T5) is fixed. (2)
fixHead: item projection head is fixed. (3) Scratch:
the parameters of the Recommendation LLM is
randomly initialized instead of loading pre-trained
weights.

From the results shown in Figure 4, we can have
the following observations. First, each component
in our framework contributes to the overall per-
formance since fixing any one of the components
results in a performance drop. Second, LLM’s
knowledge helps the recommendation tasks since
training a T5 from scratch instead of using the pre-
trained weights leads to a drop in performance.

5 Conclusion

In this work, we propose LITE-LLM4REC, an ef-
fective and efficient LLM-based model for sequen-
tial recommendation. We found that the standard
beam search decoding process is an unnecessary
bottleneck, so we replace it with a direct item pro-
jection head for faster ranking. To handle long
item descriptions without high computational cost,
we also introduce a novel hierarchical LLM struc-
ture. These two innovations solve key inference
problems in LLM-based recommenders. Experi-
ments on four real-world datasets show that LITE-
LLM4REC significantly improves both inference
speed and overall performance. Future work will
explore inductive learning, the impact of item in-
dexing during training, and how the model’s back-
bone size affects performance.

6 Limitations

This work has several limitations that should be
considered when interpreting the results: (1) Lack
of Inductive Learning Ability: Due to the existence

of the item projection head, our model cannot adapt
to new items that do not appear in the training data.
As a result, the model is unable to generalize to un-
seen items effectively, which could be a limitation
in real-world recommendation systems where new
items are constantly introduced. (2) Exclusion of
Larger Language Models: Our experiments did not
test larger LLMs, such as those with 70B parame-
ters, which could offer superior performance due
to their increased capacity to process and generate
predictions. The exclusion of these models limits
the generalizability of our findings, as larger mod-
els may be able to handle more complex patterns,
nuances, and domain-specific knowledge. Further-
more, there may be diminishing returns for ex-
tremely large models, and understanding the trade-
offs between model size and performance is crucial.
(3) High Training Costs: Compared to traditional
sequential recommendation models, the proposed
hierarchical LLMs face high training costs. These
costs arise not only from the large number of pa-
rameters in LLMs but also from the extensive com-
putational resources required for both training and
inference.

7 Acknowledgements

Hanbing Wang and Hui Liu are supported by the
National Science Foundation (NSF) under grant
numbers CNS2321416, IIS2212032, IIS2212144,
IIS 2504089, DUE2234015, CNS2246050,
DRL2405483 and IOS2035472, the Michigan
Department of Agriculture and Rural Develop-
ment, US Dept of Commerce, Gates Foundation,
Amazon Faculty Award, Meta, NVIDIA, Microsoft
and SNAP.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,

3384

Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,
Fuli Feng, and Xiangnan He. 2023. Tallrec: An effec-
tive and efficient tuning framework to align large lan-
guage model with recommendation. arXiv preprint
arXiv:2305.00447.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan
Keshavan, Lukasz Heldt, Lichan Hong, Ed H Chi,
and Maheswaran Sathiamoorthy. 2024. Aligning
large language models with recommendation knowl-
edge. arXiv preprint arXiv:2404.00245.

Jiaxin Deng, Shiyao Wang, Kuo Cai, Lejian Ren, Qigen
Hu, Weifeng Ding, Qiang Luo, and Guorui Zhou.
2025. Onerec: Unifying retrieve and rank with gen-
erative recommender and iterative preference align-
ment. arXiv preprint arXiv:2502.18965.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and
Hao Wang. 2021. Zero-shot recommender systems.
arXiv preprint arXiv:2105.08318.

Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu,
Xiaowei Mei, Yiqi Wang, Jiliang Tang, and Qing
Li. 2023. Recommender systems in the era of
large language models (llms). arXiv preprint
arXiv:2307.02046.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge,
and Yongfeng Zhang. 2022. Recommendation as
language processing (rlp): A unified pretrain, person-
alized prompt & predict paradigm (p5). In Proceed-
ings of the 16th ACM Conference on Recommender
Systems, pages 299–315.

F Maxwell Harper and Joseph A Konstan. 2015. The
movielens datasets: History and context. Acm trans-
actions on interactive intelligent systems (tiis), 5(4):1–
19.

Jesse Harte, Wouter Zorgdrager, Panos Louridas, As-
terios Katsifodimos, Dietmar Jannach, and Marios
Fragkoulis. 2023. Leveraging large language models
for sequential recommendation. In Proceedings of
the 17th ACM Conference on Recommender Systems,
pages 1096–1102.

Ruining He, Wang-Cheng Kang, Julian J McAuley, et al.
2018. Translation-based recommendation: A scal-
able method for modeling sequential behavior. In
IJCAI, pages 5264–5268.

Ruining He and Julian McAuley. 2016. Fusing similar-
ity models with markov chains for sparse sequential
recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM), pages 191–200.
IEEE.

Yingzhi He, Xiaohao Liu, An Zhang, Yunshan Ma, and
Tat-Seng Chua. 2025. Llm2rec: Large language mod-
els are powerful embedding models for sequential
recommendation. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining V. 2, pages 896–907.

Balázs Hidasi and Alexandros Karatzoglou. 2018. Re-
current neural networks with top-k gains for session-
based recommendations. In Proceedings of the 27th
ACM international conference on information and
knowledge management, pages 843–852.

Balázs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2015. Session-based
recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939.

Balázs Hidasi, Massimo Quadrana, Alexandros Karat-
zoglou, and Domonkos Tikk. 2016. Parallel recurrent
neural network architectures for feature-rich session-
based recommendations. In Proceedings of the 10th
ACM conference on recommender systems, pages
241–248.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang
Li, Bolin Ding, and Ji-Rong Wen. 2022. Towards
universal sequence representation learning for recom-
mender systems. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 585–593.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and
Yongfeng Zhang. 2023. How to index item ids for
recommendation foundation models. arXiv preprint
arXiv:2305.06569.

Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He,
Ji-Rong Wen, and Daxiang Dong. 2019. Taxonomy-
aware multi-hop reasoning networks for sequential
recommendation. In Proceedings of the twelfth ACM
international conference on web search and data
mining, pages 573–581.

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197–206. IEEE.

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Mah-
eswaran Sathiamoorthy, Lichan Hong, Ed Chi, and
Derek Zhiyuan Cheng. 2023. Do llms understand
user preferences? evaluating llms on user rating pre-
diction. arXiv preprint arXiv:2305.06474.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin
Shen, Jingbo Shang, and Julian McAuley. 2023a.
Text is all you need: Learning language representa-
tions for sequential recommendation. arXiv preprint
arXiv:2305.13731.

3385

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao
Lian, and Jun Ma. 2017. Neural attentive session-
based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge
Management, pages 1419–1428.

Lei Li, Yongfeng Zhang, and Li Chen. 2023b. Prompt
distillation for efficient llm-based recommendation.
In Proceedings of the 32nd ACM International Con-
ference on Information and Knowledge Management,
pages 1348–1357.

Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi
Zhang, and Fajie Yuan. 2023c. Exploring the upper
limits of text-based collaborative filtering using large
language models: Discoveries and insights. arXiv
preprint arXiv:2305.11700.

Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang,
and Chunxiao Xing. 2023d. E4srec: An elegant
effective efficient extensible solution of large lan-
guage models for sequential recommendation. arXiv
preprint arXiv:2312.02443.

Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan
Zhang. 2023. Is chatgpt a good recommender? a
preliminary study. arXiv preprint arXiv:2304.10149.

Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang
Wang. 2016. Context-aware sequential recommenda-
tion. In 2016 IEEE 16th International Conference on
Data Mining (ICDM), pages 1053–1058. IEEE.

Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin
Zhang. 2018. Stamp: short-term attention/memory
priority model for session-based recommendation. In
Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining,
pages 1831–1839.

Qidong Liu, Xian Wu, Wanyu Wang, Yejing Wang,
Yuanshao Zhu, Xiangyu Zhao, Feng Tian, and Yefeng
Zheng. 2025. Llmemb: Large language model can
be a good embedding generator for sequential recom-
mendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, pages 12183–
12191.

Jarana Manotumruksa, Craig Macdonald, and Iadh Ou-
nis. 2018. A contextual attention recurrent architec-
ture for context-aware venue recommendation. In
The 41st international ACM SIGIR conference on re-
search & development in information retrieval, pages
555–564.

Kai Mei and Yongfeng Zhang. 2023. Lightlm:
A lightweight deep and narrow language model
for generative recommendation. arXiv preprint
arXiv:2310.17488.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In Proceedings of
the 2019 conference on empirical methods in natural
language processing and the 9th international joint
conference on natural language processing (EMNLP-
IJCNLP), pages 188–197.

Junyan Qiu, Haitao Wang, Zhaolin Hong, Yiping Yang,
Qiang Liu, and Xingxing Wang. 2023. Controlrec:
Bridging the semantic gap between language model
and personalized recommendation. arXiv preprint
arXiv:2311.16441.

Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan.
2021. U-bert: Pre-training user representations
for improved recommendation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 4320–4327.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghu-
nandan H Keshavan, Trung Vu, Lukasz Heldt, Lichan
Hong, Yi Tay, Vinh Q Tran, Jonah Samost, et al.
2023. Recommender systems with generative re-
trieval. arXiv preprint arXiv:2305.05065.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Steffen Rendle, Christoph Freudenthaler, and Lars
Schmidt-Thieme. 2010. Factorizing personalized
markov chains for next-basket recommendation. In
Proceedings of the 19th international conference on
World wide web, pages 811–820.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie
Ren, Dawei Yin, and Zhaochun Ren. 2023. Is
chatgpt good at search? investigating large lan-
guage models as re-ranking agent. arXiv preprint
arXiv:2304.09542.

Yuqi Sun, Qidong Liu, Haiping Zhu, and Feng Tian.
2025. Llmser: Enhancing sequential recommenda-
tion via llm-based data augmentation. arXiv preprint
arXiv:2503.12547.

Jiaxi Tang and Ke Wang. 2018. Personalized top-n se-
quential recommendation via convolutional sequence
embedding. In Proceedings of the eleventh ACM
international conference on web search and data
mining, pages 565–573.

Paul Thomas, Seth Spielman, Nick Craswell, and
Bhaskar Mitra. 2023. Large language models can ac-
curately predict searcher preferences. arXiv preprint
arXiv:2309.10621.

3386

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing
Xie, and Tieniu Tan. 2019. Session-based recommen-
dation with graph neural networks. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 33, pages 346–353.

An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting
Wan, and Julian McAuley. 2019. Cosrec: 2d convo-
lutional neural networks for sequential recommenda-
tion. In Proceedings of the 28th ACM international
conference on information and knowledge manage-
ment, pages 2173–2176.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.

Zhengyi Yang, Jiancan Wu, Yanchen Luo, Jizhi Zhang,
Yancheng Yuan, An Zhang, Xiang Wang, and Xiang-
nan He. 2023. Large language model can interpret la-
tent space of sequential recommender. arXiv preprint
arXiv:2310.20487.

Weihua Yuan, Hong Wang, Xiaomei Yu, Nan Liu, and
Zhenghao Li. 2020. Attention-based context-aware
sequential recommendation model. Information Sci-
ences, 510:122–134.

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen
Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023.
Where to go next for recommender systems? id-
vs. modality-based recommender models revisited.
arXiv preprint arXiv:2303.13835.

Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira
Moreira, Dong Wang, and Even Oldridge. 2023.
Llamarec: Two-stage recommendation using large
language models for ranking. arXiv preprint
arXiv:2311.02089.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin
Zhao, Leyu Lin, and Ji-Rong Wen. 2023. Recom-
mendation as instruction following: A large language
model empowered recommendation approach. arXiv
preprint arXiv:2305.07001.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S
Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, Xi-
aofang Zhou, et al. 2019. Feature-level deeper self-
attention network for sequential recommendation. In
IJCAI, pages 4320–4326.

Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin,
Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu, Hui
Wang, Changxin Tian, et al. 2021. Recbole: Towards
a unified, comprehensive and efficient framework for
recommendation algorithms. In proceedings of the
30th acm international conference on information &
knowledge management, pages 4653–4664.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
international conference on information & knowl-
edge management, pages 1893–1902.

A Background

Sequential Recommendation Sequential recom-
mendations (Kang and McAuley, 2018; Sun et al.,
2019) leverage user historical interactions to infer
the next item the user will interact with. Since
user interests are dynamic and evolving over time,
it is important to capture this sequential pattern
and provide appropriate recommendations. Early
studies mainly depend on Markov Chain to model
item transition patterns (Rendle et al., 2010; He
and McAuley, 2016). Recently, deep-learning
based methods have dominated the area. For ex-
ample, GRU4rec (Hidasi et al., 2015) proposes
to use RNN in session-based recommendation.
Some approaches introduce CNN into sequen-
tial recommendation (Tang and Wang, 2018; Yan
et al., 2019). SASrec and BERT4Rec (Kang and
McAuley, 2018; Sun et al., 2019) employ the self-
attention mechanism into sequential recommenda-
tion and achieve excellent performance. However,
these methods neglect rich contextual information
about items, which is important for item model-
ing. To tackle this problem, several algorithms are
proposed (Yuan et al., 2020; Liu et al., 2016; Man-
otumruksa et al., 2018; Zhang et al., 2019; Zhou
et al., 2020). For example, FDSA (Zhang et al.,
2019) proposes a self-attention block to leverage
item attribute information. S3-rec (Zhou et al.,
2020) maximizes the mutual information of con-
text information in different forms to improve se-
quential recommendation. Despite the remarkable
improvements made by these methods, they can
still be further improved via the excellent world
knowledge and context understanding ability of
LLMs.
LLM-based Recommendation The prevalence of
LLMs has introduced a paradigm shift into recom-
mender systems (Fan et al., 2023; Liu et al., 2025;
Sun et al., 2025). Early approaches investigate
the practicality of textual representations generated
by a language model for recommendations (Yuan
et al., 2023; Li et al., 2023c; Qiu et al., 2021; Harte
et al., 2023). By pre-training and then fine-tuning
on downstream datasets, enhanced representations
can be obtained (Li et al., 2023a; Ding et al., 2021;

3387

Hou et al., 2022). The emergence of generative
LLMs shifts recommendation system towards gen-
erative paradigm (Rajput et al., 2023). Early at-
tempts explore the potential of LLMs on recom-
mendation via prompt or in-context learning (Sun
et al., 2023; Liu et al., 2023; Thomas et al., 2023).
TallRec (Bao et al., 2023) trains the LLM to predict
whether a user will like a new item given users’
interaction history, underscoring the importance of
instruction tuning. P5 (Geng et al., 2022) reformu-
lates several recommendation tasks into a natural
language generation task via personalized prompts.
Refer to Figure 1 for an overall understanding of
its architecture.

In order to leverage the power of LLMs, items
are usually represented in natural language form
via specific item indexing methods, which can be
roughly divided into two categories. The first cat-
egory proposes to reflect item relations via shared
tokens, such as semantic IDs (Hua et al., 2023;
Mei and Zhang, 2023; Deng et al., 2025). Given
the continued significance of ID information, re-
cent studies keep the IDs and represent items as
’item_1234’, which will be tokenized into a token
sequence ’item’,’_’,’12’,’34’ before being input to
LLMs (Li et al., 2023b; Qiu et al., 2023; Geng et al.,
2022). The second category represents items via
context information. Tallrec (Bao et al., 2023) uses
item title to represent items. RECFORMER (Li
et al., 2023a) flattens the key-value attribute pairs
of the item as a sequence to accommodate more tex-
tual information, and employs a Longformer (Belt-
agy et al., 2020) to process the long context.

Although these methods have achieved remark-
able improvements, they still face slow inference
problem. Recent studies have delved into this issue.
POD (Li et al., 2023b) improves P5 (Geng et al.,
2022) by distilling discrete prompt into continu-
ous prompt to reduce the input length, thus reduc-
ing inference time. llamaRec (Yue et al., 2023)
proposes a two stage framework. Specifically, it
retrieves candidate items via traditional ID-based
methods, and designs a verbalizer approach for re-
ranking. E4SRec (Li et al., 2023d) proposes to in-
tegrate ID embeddings extracted from a pre-trained
SASRec with instruction prompt but neglects the
rich context information of items. LightLM (Mei
and Zhang, 2023) proposes a tailored transformer-
based architecture to achieve effective recommen-
dations. It improves the inference efficiency by
reducing the number of neurons thus reducing the
computation demands. However, the modification

of architecture may destroy the pre-trained knowl-
edge of LLMs, leading to sub-optimal performance.
Despite the strides made in improving inference ef-
ficiency, these methods still fall short in addressing
the most time-consuming component and the issue
of redundant computation.

B Training Algorithms

In this section, we provide the training algorithm
of LITE-LLM4REC in Algorithm 1.

Algorithm 1: Training Process of LITE-
LLM4REC
Input: The sequential data D, Context

information of items T ,
hyper-parameter settings;

Output: Model parameters θ;
1 while not coverage do
2 Draw a batch of data B from D;
3 for (u, Iu) in B do
4 Sample an item segment Isegu from

I |su|−2
u ;

5 for i in Isegu do
6 Acquire context information Ti;
7 Calculate context-aware

embeddings hi through Eq. 1 -
Eq. 3;

8 end
9 Acquire the user representation hu

through Eq. 4;
10 end
11 Compute logits through Eq. 5 ;
12 Compute LCE through Eq. 6;
13 Update the parameters θ of the model

through LCE ;
14 end

C Datasets

Table 8 shows the statistics of these datasets. Addi-
tional details of datasets are as follows:

• The MovieLens-1m dataset is an open dataset
for movie recommendations7. There are ap-
proximately 100k interactions. We adopt 5-
core filtering strategy where we filter out users
and items with less than 5 interactions.

• We consider three categories of Ama-
zon dataset corpora: Movies and TV,

7https://movielens.org/

3388

Table 8: Statistics of the datasets after pre-processing.

Dataset Users Items Interact Sparsity(%)

ML-1M 6,040 3,706 994,169 0.0446
Movies 79,276 29,946 1,775,011 0.0007
Toys 11,803 8,569 206,103 0.0020
Kindle 40,981 39,520 1,149,411 0.0007

Toys&Games (denoted as Toys for clarity)
Kindle Store (denoted as Kindle for clar-
ity). These datasets are collected from the e-
commerce platform Amazon8 with item meta
data, user reviews and ratings. We adopt 10-
core filtering strategy to filter the users and
items with less than 10 interactions to ensure
data quality.

D Baselines

In this section, we provide details concern-
ing the baseline models. We consider the
following tradition ID-based sequential models:
(i) GRU4Rec (Hidasi et al., 2015) adapts the
RNN models to the recommender setting by in-
troducing a new ranking loss function. (ii) SAS-
Rec (Kang and McAuley, 2018) proposes an unidi-
rectional attention-based sequential model which
can capture long-term semantics to predict the next
item. (iii) BERT4Rec (Sun et al., 2019) intro-
duces a bidirectional attention-based transformer
to model user behavior sequences. It introduces
the Cloze objective into sequential recommenda-
tions. (iv) NARM (Li et al., 2017) considers both
the user’s sequential behavior and main purpose
in the current session, and calculate recommenda-
tion scores by using a bi-linear matching approach.
(v) STAMP (Liu et al., 2018) introduces a short-
-term attention and memory priority model that
learns a unified embedding space for items across
sessions, coupled with an innovative neural atten-
tion mechanism for next-click prediction.

The context-aware ID-based sequential models
include: (i) S3-Rec (Zhou et al., 2020) applies
self-supervised learning to the sequential recom-
mendation task. It proposes four self-supervised
optimization objectives to maximize the mutual
information of context information to learn the cor-
relation between items. (ii) FDSA (Zhang et al.,
2019) proposes to model feature transitions through
different self-attention blocks. It integrates with
item-level transitions for modeling user’s sequen-
tial intents.

8https://www.amazon.com/

We choose the following LLM-based sequen-
tial models: (i) P5 (Geng et al., 2022) transforms
various recommendation tasks into the conditional
natural language generation task via personalized
prompts and integrates them into a unified frame-
work. (ii) POD (Li et al., 2023b) proposes to
distill knowledge in the discrete prompt into con-
tinuous prompt vectors, which is more flexible
and expressive and can reduce the inference time.
(iii) LightLM (Mei and Zhang, 2023) proposes a
tailored Transformer-based recommender, which is
effective and efficient for generative recommenda-
tions. (iv) LLM2Rec (He et al., 2025) proposes to
integrate the rich semantic understanding of LLMs
with collaborative filtering awareness. Since lla-
maRec (Yue et al., 2023) is a two-stage framework
while LITE-LLM4REC is single-stage, we do not
choose it as one baseline.

E Implementation Details

We set the batch_size for three datasets to 256 and
the learning rate to 0.0005. The embedding dimen-
sion is set to 512. The dropout rate is 0.8 and the
weight_decay is 0.1 for Movies and Toys. The
dropout rate is 0.7 for ML-1m. The dropout rate is
0.5 for Kindle. The warm_up rate is set to 0.1 for
Movies and Toys, 0 for ML-1m and Kindle respec-
tively. The adam_eps is set to 1e-6. All methods
are implemented using Pytorch with an AdamW op-
timizer. For GRU4Rec, NARM, STAMP, S3- Rec
and FDSA, we implement them using the public
resources released by their authors. For other mod-
els, we adopt a popular open-source recommen-
dation library RecBole9 (Zhao et al., 2021). We
check the validation performance every epoch and
adopt early-stop when the validation performance
of R@10 doesn’t improve for 10 consecutive times.

F Time Complexity Analysis

The section gives time complexity analysis to
demonstrate the efficiency of our method which
is additional to our empirical observations:

• The time complexity of self-attention based
methods is O(n2d+ ndffd), where n repre-
sents the input length, dff and d represent
the dimension of feed forward layers and em-
bedding dimension respectively. In recom-
mendation, the total inference cost scales as∑

u{(
∑

i∈Nu
ni)

2d+(
∑

i∈Nu
ni)d

2}, where

9https://www.recbole.io/

3389

https://www.amazon.com/
https://www.recbole.io/

Movies
Kindle

0.00

0.05

0.10

0.15

0.20

R@
10

Movies
Kindle

0.00

0.05

0.10

0.15

0.20

R@
20

Movies
Kindle

0.00

0.02

0.04

0.06

0.08

0.10

N@
10

Movies
Kindle

0.02

0.04

0.06

0.08

0.10

N@
20

LITE_LLM4REC fixRecLLM fixHead Scratch

Figure 5: Ablation study results of R@10, R@20, N@10 and N@20 on Movies and Kindle dataset.

u and i represent user u and item i, and Nu

and ni represent the interaction history of user
u and the number of tokens to represent item i.
LITE-LLM4REC can compress the input and
reduce it to

∑
u{|Nu|2d + |Nu|d2}, where

|Nu| denotes the length of Nu and is much
smaller than

∑
i∈Nu

ni.

• The model will redundantly compute the over-
all representation of an item every time it ap-
pears, which scales as

∑
i(Aini), where Ai

denotes the number of appearance of item i. It
will be reduced to

∑
i(Ai) since ni is reduced

to 1.

• The time complexity of auto-regressive de-
coding is O(n3d), where n denotes the in-
put length and d is the embedding dimension.
Since we totally remove it, it is reduced to
O(1).

G Additional Preliminary Results

In this section, we provide additional preliminary
results which are reported in Table 9. We can reach
the same conclusions as Section 2.4: (1) Reducing
the input length will improve the inference effi-
ciency. (2) Beam search decoding will have nega-
tive impacts on the efficiency of sequential recom-
mendation. (3) Compared with random numbers,
item titles can better represent items and achieve
better performance due to the incorporation of con-
textual information. (4) Despite the advantages
of item titles, they are usually very long and will
increase computational costs.

H Additional Ablation Study

H.1 Additional Datasets
In this section, we give additional results of abla-
tion experiments conducted on Movies and Kindle
dataset. The results are reported in Figure 5. The
observations align with Section 4.6. First, each

Table 9: Performance of P5 and POD and their two
variants

Datasets Toys Kindle
Methods R@20 N@20 Time R@20 N@20 Time

P5 0.0661 0.0416 1,620 0.0955 0.0534 1,247
w/o_d 0.0711 0.0370 52.61 0.1082 0.0554 28.03
w/o_d_TID 0.0886 0.0460 148.61 0.1288 0.0691 113.20

POD 0.0690 0.0452 1,490 0.0813 0.0444 1,209
w/o_d 0.0679 0.0345 43.54 0.0908 0.0497 22.50
w/o_d_TID 0.0911 0.0468 134.11 0.1284 0.0687 109.16

component in our framework contributes to the
overall performance since fixing any one of them
results in the performance drop. Second, if we
train a T5 from scratch instead of using the pre-
trained weights for the recommendation LLM, the
performance will drop which demonstrates that the
pretrained knowledge stored in LLM is of help to
the recommendation task.

R@5 R@10 R@200.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Re
ca

ll

N@5 N@10 N@200.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ND
CG

LITE-LLM4REC P5 POD

Figure 6: Results of Top-N recommendation on ML-
1m.

I Top-N Recommendation

Besides sequential recommendation, we also apply
LITE-LLM4REC to Top-N recommendation task.
We follow the setting of POD (Li et al., 2023b). We
input one ground-truth item along with 99 negative
items to the LLM and fine-tune the model to predict
the ground-truth item. Finally, We test the model
over the 99 negative examples. The results are
reported in Figure 6.

From the figure, we can find that LITE-
LLM4REC can also perform well on this task. Our
method can achieve much better performance on

3390

NDCG than P5 (Geng et al., 2022) and POD (Li
et al., 2023b). This indicates that our method
can greatly improve the ranking quality especially
when candidates are given. For Recall, our method
can perform better when k is small. This is because
the leave-one-out strategy we adopt where we only
have one ground-truth item and our method can al-
ready rank the ground truth item in high position.

3391

