
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 292–314

December 20-24, 2025 ©2025 Association for Computational Linguistics

Judging the Judges: A Systematic Study of Position Bias in
LLM-as-a-Judge

Lin Shi, Chiyu Ma, Wenhua Liang, Xingjian Diao, Weicheng Ma, Soroush Vosoughi
Dartmouth College
lin.shi.26@dartmouth.edu

Abstract

LLM-as-a-Judge has emerged as a promising
alternative to human evaluators across various
tasks, yet inherent biases—particularly position
bias, the tendency to favor solutions based on
their position within the prompt—compromise
its reliability. This exploratory study evaluates
position bias in LLM judges across pairwise
and list-wise comparison settings, introducing
three metrics: repetition stability, position con-
sistency, and preference fairness. Our experi-
ments, involving 15 LLM judges across MT-
Bench and DevBench with 22 tasks and approx-
imately 40 solution-generating models, result
in over 150,000 evaluation instances. We iden-
tify Judge-Level, Candidate-Level, and Task-
Level factors contributing to bias. The findings
confirm that position bias is not due to random
chance and varies significantly across judges
and tasks. While position bias is weakly influ-
enced by the length of prompt components, it is
strongly affected by the quality gap between so-
lutions. Our agreement and disagreement anal-
ysis among judges further provides insights into
the distribution of judging difficulty across the
dataset, and highlights the potential for dataset
modifications.

1 Introduction

In recent years, Large Language Models (LLMs)
have emerged as evolutionary technologies, gath-
ering global interest and stimulating substantial
research into their applications. Evaluating LLMs
has received increasing attention due to their ad-
vancing capabilities across diverse fields. While
human assessment is considered the gold standard
for aligning with human preferences, it lacks scal-
ability in extensive evaluations (Zeng et al., 2023;
Karpinska et al., 2021). To automate evaluations
and reduce reliance on costly human evaluators,
the LLM-as-a-Judge methodology emerged as a
promising alternative across various tasks. Despite
a high level of agreement with human judgments

(Zheng et al., 2024b; Li et al., 2024a; Zhu et al.,
2023), inherent biases, especially position bias,
have undermined the accuracy, fairness, and relia-
bility of these LLM evaluators.

Position bias refers to the tendency of LLM
judges to favor certain positions within prompt
components rather than evaluating content objec-
tively, as shown in Fig. 1 (a). This bias has been
observed across various types of LLM judges (Qin
et al., 2024; Li et al., 2023c), raising concerns about
their reliability. Prior studies have identified posi-
tion bias alongside other biases and assessed its im-
pact (Zheng et al., 2024a,b; Zeng et al., 2023), but
these investigations remain largely preliminary and
lack a focused, systematic exploration. Although
mitigation strategies have been proposed, they of-
ten suffer from incomplete bias removal (Guo et al.,
2024), added complexity (Li et al., 2024b; Khan
et al., 2024; Chua et al., 2024), the introduction of
new biases (Ohi et al., 2024), inconsistent effec-
tiveness (Gallegos et al., 2024), or impracticality
for closed-source models requiring access to model
internals (Wang et al., 2025; Yu et al., 2025). More-
over, most empirical studies primarily examine po-
sition bias in pairwise settings (Wang et al., 2023;
Zheng et al., 2024b), leaving its underlying factors
and behavior in more complex list-wise paradigms
underexplored. These gaps underscore the need
for a more systematic, in-depth exploratory analy-
sis of position bias to better understand its origins,
manifestations, and implications.

In this study, we provide an in-depth and sys-
tematic investigation into position bias within the
context of LLM-as-a-Judge. While evaluating with
Position Consistency (Zheng et al., 2024b), we
further introduce two novel metrics: Preference
Fairness and Repetition Stability. Specifically,
we move beyond simply assessing Position Consis-
tency by incorporating Preference Fairness, which
provides deeper insights into the specific answer
directions where models exhibit unfair preferences.

292

The same prompt

[Judgment]: {A}

Solution [1] is better.

[Reasons]: Solution [1]…

LLM Judge

[Question]: Compute 1+...+100

[System Prompt]: Please act as an
impartial judge and choose the better…

[Solution [1] - Candidate Model 1]:
5050
[Solution [2] - Candidate Model 2]:
1+...+100=(1+100)100/2=5050

[Option Mode]: Choose {A} if Solution
1 is better, {B}…, and {C} for a tie

[Judgment - Coriginal]: {B}

Solution [2] is better.

[Reasons]: Solution [2] …

Original Prompt

[Question]: Compute 1+...+100

[Solution [1] - Candidate Model 2]:
1+...+100=(1+100)100/2=5050

[Solution [2] - Candidate Model 1]:
5050

Swapped Prompt

[Judgment - Cswapped]: {B}

Solution [2] is better.

[Reasons]: Solution [2]…

[Judgment]: {B}

Solution [2] is better.

[Reasons]: Solution[2]…

Repeated
Original
Prompt

The same prompt

Repeated
Swapped
Prompt

LLM Judge

Repetition
Instability

Repetition
Stability

LLM Judge LLM Judge

Position BiasPairwise Comparative LLM-as-a-Judge(a)

[System Prompt + Question]
[Candidate Model 1]
[Candidate Model 2]

Permutation 1

[Candidate Model 3]

[System Prompt + Question]
[Candidate Model 2]
[Candidate Model 3]

Permutation 2

[Candidate Model 1]

[System Prompt + Question]
[Candidate Model 3]
[Candidate Model 1]

Permutation 3

[Candidate Model 2]

[Option Mode]

{A}: Solution [1] is the best
{B}: Solution [2] is the best
{C}: Solution [3] is the best
...
{X}: None of the above

Position Consistent & Fairly Prefered: Always same winner Candidate Model

Position Inconsistent & Primacy-prefered: Prefer Solution [1] over the others

Position Inconsistent & Recency-prefered: Prefer Solution [> 1] over [1]

Pairwise → Listwise Comparative LLM-as-a-Judge

+

(c)

[...] [...] [...]

...

[Option Mode]: Choose {A} if Solution
1 is better, {B}…, and {C} for a tie

[System Prompt]: Please act as an
impartial judge and choose the better…

Position Consistent
Fairly Preferred

A B

Choice Pair
{ Coriginal Cswapped } Preference Fairness

(b)

B A

C C

Position Inconsistent
Primacy Preferred

A A

C A

A C

Position Inconsistent
Recency Preferred

B B

C B

B C

Figure 1: Overview of our experiment settings: (a) Position bias is observed when LLM judges consistently favor a
specific position rather than evaluating the content, with repeated trials ensuring the deviations are not due to random
variations. (b) Preference fairness is defined and measured through the distribution of choice pairs to assess the
fairness of judgments. (c) The settings are extended from pairwise comparisons to list-wise comparisons, involving
evaluations of more than two candidate models.
Additionally, the measurement of Repetition Sta-
bility ensures that the observed position bias in
the given model and tasks is not due to random
variations, thus strengthening the reliability of the
findings.

To investigate the underlying factors contribut-
ing to position bias, we categorized these factors
into three levels: Judge-Level, Candidate-Level,
and Task-Level. Our experiments are primar-
ily conducted on pairwise comparisons, as LLM
judges demonstrate superior performance in this
setting. We further extend our study to more com-
plicated list-wise comparison settings, involving
evaluations of more than two candidate models by
LLM judges. Our findings reveal several key in-
sights: 1. The position bias of capable LLM judges
is not a result of random variations. 2. There is a
high volatility in the direction of preference, even
within the same LLM judge when applied to differ-
ent tasks. 3. Differences in answer quality among
candidate models significantly influence position
consistency. 4. Position bias is very weakly corre-
lated with the length of prompts generated by the
candidate models.

Building on these findings, we conduct an agree-
ment analysis among the LLM judges. The results
reveal that, although measures of position consis-
tency may appear similar in general, judgments on
specific instances vary significantly among LLM
judges, even when they demonstrate comparable
capabilities. Instances where numerous LLMs
agree are generally easier to judge, whereas in-

stances with disagreements are more challeng-
ing to evaluate and more prone to position bias.
This analysis provides insights into the distribution
of judging difficulty across the dataset and high-
lights the potential for dataset modifications by in-
corporating more instances that are either easier or
more difficult to judge. Future work could explore
how to measure the likelihood of position bias arise
from the datasets by identifying and quantifying
such hard-to-judge instances before implementing
LLM judges.

2 Evaluation Settings & Definitions

We begin by outlining the settings for pairwise and
list-wise comparisons employed in our experiments
for LLM-as-a-Judge. Following this, we define
the three metrics used in our evaluation: Position
Consistency (PC), Preference Fairness (PF), and
Repetition Stability (RS). Finally, we provide a de-
tailed description of the factors we found that are re-
lated to position bias at the Judge-Level, Candidate-
Level, and Task-Level. Our exploratory study was
conducted post hoc, meaning the LLM judgments
were collected first, and the factors influencing po-
sition bias were then identified and analyzed.

2.1 Pairwise & List-wise Comparison

Pairwise Comparison: In the context of pairwise
comparison, LLM judges are tasked with select-
ing the better solution provided by two candidate
models in response to a given task question. As
shown in Fig. 1 (a), the system prompt, option

293

choices, task question, and solutions from two can-
didate models (original prompt) are presented to
the LLM judges to select the better solution. The
experiment is conducted in a double-blind setting.
The identities of the candidate models are hidden
from the LLM judges, and the candidate models
are unaware that their solutions will be compared to
another model when answering the question. Then,
the prompt with solutions in a swapped position
(swapped prompt) is given to the same LLM judge
again, which results in a judgment pair. If the
LLM judge consistently favors the same solution
regardless of the swapped position, it is consid-
ered position consistent. Conversely, if the LLM
judge selects different winners, position bias is ob-
served, with the preference direction being either
primacy (e.g. always choose {A}) or recency (e.g.
always choose {B}). Example of measuring prefer-
ence fairness with specific choice pairs is shown in
Fig. 1 (b). To accommodate the possibility of ties,
various option modes are employed: Two-Option
mode restricts LLM judges to choosing between
two options, labeled A for the first candidate and
B for the second. Three-Option mode introduces
an additional choice, C, allowing LLM judges to
indicate a tie if neither solution is preferable, as
illustrated in Fig. 1 (a). These option modes were
explicitly specified in the system prompts to ensure
clear guidance for the decision-making process of
the LLM judges.

List-wise Comparison: Unlike pairwise set-
tings, where LLM judges select the superior so-
lution from two candidates, list-wise comparative
approaches involve evaluating three or more candi-
dates simultaneously, as shown in Fig. 1 (c). For
efficiency, we prompt LLM judges to select the
best candidate rather than ranking the entire list.
The “swapped setting" used in pairwise evaluations
is generalized to order permutations for list-wise
judgments, ensuring that each candidate appears in
every possible position exactly once. For a list of p
candidates, this results in p permutations. In the ith

permutation, the ith candidate is set to appear in the
first position. Additionally, an option is provided to
account for ties, allowing LLM judges to indicate
if there is no certainly superior solution.

2.2 Evaluation Metrics
In our study, we first verify whether capable LLM
judges exhibit high repetition stability and then
evaluate their position bias in terms of position
consistency and preference fairness. The metrics

are introduced as follows:
Repetition Stability (RS) evaluates the reliabil-

ity of LLM judges when presented with identical
queries multiple times. It is essential to determine
whether the judgments of LLMs, and consequently
the observations of position bias, stem from a con-
sistent evaluation pattern or by random variations.
We measure this by calculating the percentage of
the most frequent selections across multiple trials
for each query, aggregated from all queries within
each dataset. This metric is formalized as

RC =
1

N

N∑

j=1

1

nj
max
k∈S

{
|Cj

k|
}
, (1)

where S = {A,B,C, . . . } refers to the set of
choice options depending on the option mode, |Cj

k|
denotes the counts of each choice option selected
by the judge for the jth query, nj represents the
total number of repeating trials for that query, and
N is the total number of queries. The value of
RS ranges from a small positive value depending
on the option mode, indicating completely random
decisions, to 1.0, indicating perfect stability.

Position Consistency (PC) quantifies how fre-
quently LLM judges prefer the same solution after
the order of solutions is permuted. It is calculated
as the ratio of consistent evaluation series to the
total number of valid evaluations, where a series
is deemed consistent if the LLM judge prefers the
same winning solution across permutations. For-
mally, it is calculated as

PC =
1

n

n∑

j=1

1{(Cj
1 ,...,C

j
p,)∈V }, (2)

where V is the set of choices that correspond to
position consistency, and (Cj

1 , . . . , C
j
p) denotes the

judgment series for the jth query when there are
p candidate solutions in the list, and n represents
the number of prompt series. An example of such
series of choices under pairwise comparison setting
can be found in Fig. 1 (b). This formula aims to
provide a direct measure of a LLM judge’s position
bias and has been widely used in previous studies
for its simplicity.

Preference Fairness (PF) measures the extent
to which LLM judges favor certain solution po-
sitions. In pairwise comparisons, an LLM judge
may exhibit a preference for either primacy or re-
cency. These terms replace the more verbose “pref-
erence/bias for the first/second candidate model"

294

used in previous studies (Zheng et al., 2024b), en-
suring clarity and generalization for future research.
The examples of such preferences are demonstrated
in Fig. 1 (b). Previous studies proposed two com-
mon ways to measure the preference fairness. One
way is to count the primacy-preferred and recency-
preferred judgment pairs, which we termed as
primacy-count-number (pcn) and recency-count-
number (rcn). The counts are then normalized
by the total number of prompt pairs (Zheng et al.,
2024b; Zhu et al., 2023). However, the sensitivity
of this measurement highly depends on the size
of dataset, making comparisons across datasets un-
reliable, especially when the number of questions
and instances varies for each task.

Alternatively, instead of normalizing over the
complete dataset, studies like (Li et al., 2023b;
Liusie et al., 2024) treat position inconsistent eval-
uation instances independently. They calculate
the percentages of primacy-preferred and recency-
preferred judgment pairs relative to the total num-
ber of position inconsistent pairs. We denote these
as inconsistent primacy rates (ipr) and inconsistent
recency rates (irr), where ipr+irr = 1. However,
this approach overlooks the fact that “position con-
sistent judgments are also preference fair”, which
leads to overly penalizing highly consistent LLM-
judges.

To overcome these limitations, we introduce a
more granular and scalable measurement that com-
bines the strengths of both methods, to assess pref-
erence fairness. The PF score is formally calcu-
lated by

PF =
PFraw − S−

min

S+
max − S−

min

× 2− 1,

PFraw = (rcn× irr)− (pcn× ipr).

(3)

where S−
min and S+

max are the minimum and maxi-
mum achievable PFraw scores for each judge on
each task, respectively. This min-max scale en-
sures comparability across datasets by accounting
for the range of achievable scores and centering the
scale around zero. The PF score is interpreted as
follows:

PF =





1, if PC = 0 and entirely recency-preferred
x ∈ (0, 1), Recency-preferred
0, Preference Fair
x ∈ (−1, 0), Primacy-preferred
−1, if PC = 0 and entirely primacy-preferred

To extend this metric to list-wise comparisons,
we employed a ‘one vs. all’ approach, defining

primacy preference as favoring the first candidate
solution while classifying all others as recency-
preferred. This straightforward extension of the
PF computation maintains consistency with pair-
wise setups. By providing a single and comprehen-
sive metric that applies to all evaluation instances
and list-wise settings, our proposed PF score en-
sures sensitivity across datasets, regardless of varia-
tions in the number of questions or instances, offer-
ing a significant improvement over previous meth-
ods.

2.3 Factors Affecting Position Bias
To investigate the factors influencing position bias
in LLM judges, we categorized these factors into
three groups: Judge-level, Candidate-level, and
Task-level factors. Each group includes specific
factors, that we hypothesize, may impact position
bias, which we explore through a series of experi-
ments. Table 1 lists the five factors we analyzed in
this study.

Among the influencing factors, we selected “fa-
milial property” for Judge-level factors, as it re-
flects similar model sizes or training specifics,
which are often proprietary and not publicly ac-
cessible for closed-source capable models. The
familial categories of the models used in our stud-
ies are (1) GPT, (2) Claude, (3) Gemini, and (4)
Llama allowing for straightforward grouping by
company and version. More details and discus-
sions about the familial property can be found in
Appendix Sec. C.

Answer quality gap: While prior studies (Wang
et al., 2023) explored quality disparities using
"score gaps" in score-based LLM-as-a-Judge, this
factor remains under-explored in comparative set-
tings, which we address by introducing "answer
quality gap" for both pairwise and list-wise eval-
uations. We define the quality of a candidate’s
solution by how effectively it addresses the ques-
tion. Consequently, the answer quality gap refers to
the disparity in quality between the solutions from
one candidate model and the others to the same
question and hence considered the Candidate-level
factor. Ideally, when a reliable LLM judge is pre-
sented with a question and corresponding answer
pairs or series, it would prefer the highest-quality
answer, where the corresponding candidate is de-
noted as the winner selected by the LLM judge.

Following this assumption, we measure the an-
swer quality gap by the win rates of candidates over
an expected baseline on a set of tasks and questions.

295

However, if position bias occurs, the winner may
be inconsistent when the order of candidate so-
lutions is permuted in the query. Therefore, we
categorize the LLM judgments into three groups:
cases where the same winner is consistently chosen
across all permutations (termed “consistent wins”),
cases where there is no certain winner (termed
“consistent ties”), and cases where different win-
ners are selected after the solutions are permuted in
the queries (termed “inconsistent judgment series").
We denote these counts as the number of consistent
wins (Cw), consistent ties (Ct), and inconsistent
judgment series (CI), respectively. Inspired by
Zheng et al., we count inconsistent judgment pairs
as ties for all candidate models, which is later cal-
culated as a down-scaled win rate depending on the
number of candidate models.

To calculate the win rates of candidate mod-
els for all three cases, we define the overall win
rate (owr) of a model’s solution over the other
as: owr = 1

n [Cw + 1
p(Ct + CI)], where we have

p candidates in the list and n judgment series.
Then the answer quality gap (δq) is calculated
as δq = |owr − 1/p|, where 1/p is the expected
baseline when all judgments are “ties”. In contrast
to using only consistent win rate (calculated as Cw

nc
,

where nc is the number of position consistent judg-
ment series) to quantify δq (Zheng et al., 2024b;
Li et al., 2023a; Raina et al., 2024), the adoption
of overall win rate incorporates all data points and
captures the “comparable quality” cases, where re-
sponses in similar quality might lead to position
biased judgments, a scenario that the consistent
win rate might overlook.

3 Experiment

3.1 Experiment Settings

In this study, we evaluated position bias of 15
models from the GPT (OpenAI, 2023), Claude
(Anthropic, 2024), Gemini (Gemini Team, 2024),
and Llama (Touvron et al., 2023) series using our
framework. For datasets, we adopted the modified
MTBench (Zheng et al., 2024b) and DevBench
(Li et al., 2024a) due to their demonstrated high
human-LLM agreement and the validated reliabil-
ity of state-of-the-art LLM judges on the evaluation
tasks. For pairwise comparisons, We fixed one of
the candidates as vicuna-13b-v1.3 for MTBench
and human for DevBench to serve as baselines, en-
suring decent quality of solutions to the given ques-
tions. MTBench consists of 30 candidate models,

8 tasks, and 10 questions per task; for DevBench,
we divide the general metric into more detailed
ones and consider them as different tasks, resulting
in 10 candidate models, 14 tasks, and 8 questions
per task. We then paired solutions of these candi-
date models with that of the baseline candidate for
evaluation by the LLM judges.

We adopted Two-option mode for MTBench,
and Three-option mode for DevBench. For list-
wise experiments, we randomly sampled 9 models
to form three triple-candidate lists and evaluated
four representative LLM judges on MTBench. The
prompt templates we used are identical to those
in the benchmarks for pairwise comparisons, with
minor modifications to accommodate list-wise eval-
uations. More details about the models, tasks, and
prompts can be found in Appendix. Sec. F.

To compute repetition stability, we sampled 3
questions per task and 4 candidate models, paired
with baseline candidates, for each LLM judge to
evaluate across 3 repetitive trials. This resulted in
576 instances per judge for MTBench and 432 in-
stances per judge for DevBench. The temperature
hyperparameter was set to 1 for all LLM judges
to generate nontrivial results. To compute position
consistency and preference fairness, the number of
instances increased to 4,800 and 2,240, covering
the entire MTBench and DevBench datasets. In
total, more than 100,000 evaluation instances were
analyzed in this study.

To identify significant factors contributing to po-
sition bias, we performed bidirectional stepwise
regression on data from the two benchmarks. We
used variables such as average lengths of input, out-
put, and prompt; answer quality gap; LLM judge se-
ries; candidate identities; and task categories to pre-
dict PC and PF , respectively. Each model prunes
non-significant variables based on the Akaike In-
formation Criterion (AIC) score. This process in-
volves both forward selection and backward elimi-
nation, with each "step" testing whether including
or excluding a variable improves the model’s AIC
value. Further details about the process can be
found in Appendix. Sec. E.

3.2 Empirical Results
The evaluation results of 12 close-source and 3
open-source LLM judges in terms of repetition sta-
bility, position consistency, and preference fairness
on MTBench and DevBench are listed in Table 2.
For each judge, we calculate its average RS, PC,
and PF across all candidates and tasks. For RS

296

Factor Judge-level Candidate-level Task-level

Familial Property ✓* × ×
Answer Quality Gap × ✓* ×
Task Input Length × × ✓
Task Output Length × ✓* ✓*
Prompt Length × ✓ ✓

Table 1: Factors influencing position bias. Significant
factors, identified via bidirectional stepwise regression,
are marked with * and highlighted in red based on
empirical findings on both MTBench and DevBench
results. Task Input refers to the question itself, while
Task Output denotes the candidate model’s answers,
serving as both Candidate-level and Task-level factors.
Prompt includes the full query presented to LLM judges:
Task Input, Task Output, and system prompts.

and PC, higher values are preferable. A high RS
value is particularly important as a prerequisite for
meaningful computations of PC and PF , ensur-
ing the LLM judge’s choice patterns are not due
to random variations. Fig. 2 (a)(b) demonstrate
that position bias varies by judges and tasks signifi-
cantly. Fig. 2 (c) explores the correlation between
the metrics PC and PF . Fig. (d) to (f) further
investigate the impact of the answer quality gap on
position bias. These analyses were conducted by
considering all judges together on MTBench. More
analyses can be found in Appendix. Sec. D.

Through bidirectional stepwise regression, as
shown in Table 1, LLM judge series, candidate
identities, and task categories significantly impact
Position Consistency among all variables. Simi-
larly, these factors also contribute significantly to
Preference Fairness. Additionally, we found that
average output length is a statistically significant
predictor of PF . This finding is not surprising, as
longer outputs are generally perceived as higher
quality and more preferred. Quantitative results
and more discussions can be found in Appendix.
Sec. E.

4 Main Findings

Position Bias of Capable Judges are not Mere
Random Variations: As shown in Table 2, the
capable judges on the benchmark tasks, supported
by minimal "Error" rates, generally exhibit RS val-
ues above 0.85. The most capable models, such
as Claude-3.5-Sonnet, GPT-4, and Llama-3.3-70B,
all achieve near-perfect RS scores over 0.95 on
both benchmarks. These results confirm that judg-
ments from capable LLM judges, and the resulting
position bias, are not due to random variations.
This strengthens confidence that one-time gener-
ated judgments by these validated LLMs accurately

reflect their judging capabilities.
Position Bias Varies by Judge & Task: As

shown in Fig. 2(a), position bias among LLM
judges varies significantly across different judges
and tasks. For instance, GPT-4o demonstrates
higher position consistency when evaluating cod-
ing tasks but performs less consistently on other
tasks compared to GPT-4. Similarly, Gemini-1.5-
pro, while achieving higher PC than other Gemini
models in most tasks, exhibits comparable con-
sistency when judging extraction tasks. Similar
findings can be observed in the DevBench results,
as detailed in Appendix.Sec. D.2.

Variations in preference fairness are also evi-
dent. As shown in Table 2, GPT-4 and GPT-3.5-
Turbo display different preference biases across
datasets and tasks—being recency-preferred on
MTBench but primacy-preferred on DevBench.
Likewise, Claude-3.5-Sonnet, which is nearly
preference-fair on MTBench (PF = 0.01), ex-
hibits a strong recency-preferred position bias on
DevBench (PF = 0.22).

While higher position consistency generally
correlates with improved preference fairness (as
demonstrated by the regression curve in Fig. 2(c)),
consistency alone does not guarantee fairness. Cer-
tain LLM judges, despite achieving high PC, still
exhibit significant and varied preference directions
across different tasks, underscoring the need to
evaluate both consistency and fairness when assess-
ing LLM judges.

In list-wise comparisons, similar variations in
position bias were observed across judges and tasks.
Furthermore, Table 2 highlights that more capable
models, such as GPT-4o and Claude-3.5-Sonnet,
maintain high consistency when transitioning from
pairwise to list-wise evaluations, while less capable
models, such as GPT-3.5-Turbo, exhibit greater
sensitivity to the increased number of candidates
in list-wise tasks.

Therefore, the position bias of LLM judges is
both judge-dependent and task-dependent. This ob-
servation is further confirmed by the bidirectional
stepwise regression where judge identities and task
categories are statistically significant predictors of
PC and PF . In practice, when evaluating LLM
judge’s reliability or selecting suitable LLM judges,
considering the balance between consistency and
fairness, as well as accounting for task-specific
variations, may be beneficial.

Position Bias Correlates to Answer Quality
Gap: Intuitively, the difficulty of judging a pair

297

Judge
MTBench Pairwise DevBench Pairwise MTBench List-wise

RS PC PF Error RS PC PF Error PC PF Error
Claude-3.5-Sonnet 0.96 ± 0.07 0.82 ± 0.14 0.01 0.00 0.95 ± 0.09 0.76 ± 0.16 0.22 0.00 0.67 ± 0.19 0.17 ± 0.19 0.00
Claude-3-Opus 0.95 ± 0.08 0.70 ± 0.19 0.22 0.00 0.96 ± 0.07 0.69 ± 0.20 0.29 0.00
Claude-3-Sonnet 0.93 ± 0.11 0.59 ± 0.22 0.32 0.01 0.95 ± 0.09 0.71 ± 0.22 0.23 0.00
Claude-3-Haiku 0.89 ± 0.18 0.57 ± 0.18 0.18 0.00 0.90 ± 0.17 0.23 ± 0.14 0.75 0.00

Gemini-1.5-pro 0.97 ± 0.09 0.62 ± 0.19 0.23 0.03 0.87 ± 0.17 0.84 ± 0.17 0.03 0.13 0.55 ± 0.20 0.33 ± 0.18 0.00
Gemini-1.0-pro 0.89 ± 0.18 0.57 ± 0.18 0.30 0.00 0.85 ± 0.26 0.66 ± 0.20 -0.05 0.00
Gemini-1.5-flash 1.00 ± 0.00 0.67 ± 0.17 0.07 0.00 0.04 ± 0.08 0.92 ± 0.39 0.00 0.96

GPT-4 0.97 ± 0.05 0.82 ± 0.15 0.02 0.00 0.97 ± 0.05 0.83 ± 0.15 -0.13 0.00
GPT-4-Turbo 0.94 ± 0.10 0.75 ± 0.16 0.02 0.00 0.97 ± 0.06 0.79 ± 0.18 0.16 0.00
GPT-4o 1.00 ± 0.02 0.76 ± 0.18 -0.12 0.00 0.98 ± 0.03 0.80 ± 0.16 -0.12 0.00 0.68 ± 0.22 0.18 ± 0.22 0.00
GPT-3.5-Turbo 0.96 ± 0.07 0.70 ± 0.18 0.06 0.00 0.99 ± 0.02 0.76 ± 0.18 -0.02 0.00 0.34 ± 0.17 -0.05 ± 0.30 0.12
o1-mini 0.90 ± 0.07 0.76 ± 0.15 -0.04 0.00 0.93 ± 0.12 0.84 ± 0.13 -0.07 0.00

Llama-3.3-70B 0.96 ± 0.06 0.80 ± 0.16 -0.05 0.00 0.99 ± 0.01 0.89 ± 0.12 -0.03 0.00
Llama-3.1-405B 0.93 ± 0.10 0.77 ± 0.16 0.10 0.02 0.94 ± 0.10 0.79 ± 0.15 0.01 0.00
Llama-3.1-8B 0.75 ± 0.32 0.69 ± 0.23 -0.03 0.25 0.79 ± 0.36 0.47 ± 0.18 0.25 0.00

Table 2: Evaluation results for Repetition Stability (RS), Position Consistency (PC), and Preference Fairness (PF)
are presented for both pairwise and list-wise evaluation approaches, with the top 5 performances marked in bold.
Errors arise from judgment failures (e.g., exceeding context window, not following output format). High error rates
and low RS are marked red, rendering further evaluations invalid due to insufficient data. List-wise evaluation is
conducted on four representative judges to validate scalability.

of candidate answers is largely reflected by their
difference in quality. In this study, as defined in
Section 2.3, we quantify the quality gap (δq) be-
tween candidate solutions and expected baseline
(calculated by 1/p for a p-candidate list) by the
overall win rate (owr). Therefore, δq increases as
owr extends from baseline to 0 or 1. Fig. 2 (e)
and (f) exhibit significant parabolic shapes, indicat-
ing that PC is positively proportional to δq. This
aligns with our intuition that the answer pairs or
series with larger quality disparities are easier to
achieve judgment consistency, whereas those of
similar quality are difficult to judge, increasing the
likelihood of position bias that leads to lower PC.
The same relationship is observed for each individ-
ual judge and across benchmarks, as demonstrated
in Appendix.Sec. D.

Similarly, as shown in Fig. 2 (d), judgments gen-
erally become more preference fair as δq increases.
However, the extent is not as significant as for PC.
Also, the relationship varies by judge, as some
LLMs maintain preference fairness regardless of
δq. For example, as shown in Appendix.Fig. 5,
PF of GPT models centered closely around 0 con-
sistently, whereas that of Claude and Gemini-pro
models exhibit a conspicuous proportional relation-
ship on MTBench. These observations align with
the right-arrow shape as demonstrated in Fig. 2
(c), where there is a general trend that judgments
become preference fairer as position consistency
increases. It also justifies the reasonableness of
our quantification of preference fairness, as highly
position consistent judges are not overly penalized

and a perfect PC should result in PF = 0.

Together, we conclude that as the answer quality
gap enlarges, judges generally become more posi-
tion consistent and preference fair according to the
regression curves. However, exceptions are com-
mon, as shown by the individual scatter points of
these figures. This indicates that though the answer
quality gap significantly influences the position
bias of LLM judges, other factors also play impor-
tant roles. Therefore, built on our findings, future
studies may have better control over the answer
quality gap when evaluating LLM judges, explor-
ing other impacting factors on position bias, and
seeking potential mitigation strategies.

Position Bias is weakly Length-dependent We
investigate the impact of three different lengths on
the position bias of LLM judges: the length of the
question (task input length), the solution length
of candidate models (task output length), and the
length of the entire prompt (prompt length). By
stepwise regression, we discovered that average
task output length is only significant in predicting
PF , adding a minimal change in AIC as shown in
Appendix Table. 5. In other words, there is a very
weak relationship between the lengths of prompt
components and position bias.

LLM Agreement Analysis: We complement
our investigation of position bias with an agreement
and disagreement analysis among LLM judges.
Rather than focusing exclusively on overall con-
sistency or fairness, we examine how LLM judges
converge and diverge in their assessments of in-
dividual instances. Agreement analysis quantifies

298

(a) (b)

(c) (e) (f)(d)

Figure 2: Judge performances on MTBench. Fig. (a)(b) are the radar charts for the PC comparison by family,
judge, and task. Fig. (c) leverages linear regression to explore the general relationship between PC and PF . Fig.
(d) to (f) investigate the impact of answer quality gap on position bias using overall win rates. Fig. (a) to (e) are for
pairwise comparative settings, while Fig. (f) are obtained under list-wise evaluations.

the percentage of instances where two LLM judges
mutually agree on the outcome. Disagreement anal-
ysis counts the number of choices deviating from
the mode for each instance among all judges. This
further complies a “distribution of disagreement”
across the dataset.

Our findings reveal that, despite exhibiting simi-
lar overall PC and PF scores, judges vary signif-
icantly in their judgments on individual instance.
Disagreement analysis, in particular, highlights in-
stances where consensus is either easily or diffi-
cultly achieved, reflecting the inherent complexity
of the judgment task. For example, as shown in Fig.
3, more than half of the dataset can be considered
relatively easy to judge, as over 80% of all 15 LLM
judges agree with each other on these instances
(disagreement ≤ 3). Conversely, fewer than 2%
of instances represent the likely especially-hard-to-
judge cases where a majority of LLM judges fail
to reach consensus (disagreement ≥ 8).

Based on our observations of answer quality
gaps and LLM agreement/disagreement patterns,
this study offers practical insights for designing
evaluator benchmarks that account for the varying
difficulty levels of judgment tasks. Specifically, the
most challenging instances to evaluate are charac-
terized by: (1) frequent disagreements among LLM
judges, (2) closely matched win rates and minimal
quality gaps among candidate models, and (3) sig-
nificant position bias exhibited by the majority of
LLM judges. Further discussions and analyses can
be found in Appendix Sec. C.

Figure 3: Distribution of disagreement on MTBench.
The y-axis indicates the proportion of the dataset where
the level of disagreement among LLM judges does not
exceed a specific threshold.

5 Conclusion

In conclusion, this paper provides an in-depth anal-
ysis of position bias in LLM judges, a critical chal-
lenge in automated evaluation. Using metrics such
as repetition stability, position consistency, and
preference fairness, we identify significant vari-
ations in position bias across judges and tasks, con-
sistent across pairwise and list-wise comparison
settings. Our findings show that position bias is
weakly influenced by prompt length but strongly
impacted by the quality gap between solutions. Fur-
thermore, agreement and disagreement analysis
highlights variability in judgment reliability, pro-
viding valuable insights for refining benchmarks.
This study enhances understanding of position bias
and contributes to the development of fairer and
more reliable LLM evaluation frameworks.

299

6 Limitations

Despite proposing scalable metrics and investigat-
ing key factors influencing position bias, our study
has several limitations.

First, we evaluated only 12 commercial closed-
source LLM judges for pairwise settings and 4 for
list-wise paradigms across two benchmarks, lim-
iting the list-wise comparisons to three-candidate
lists. Among open-source models, we assessed
only three Llama 3.1+ models of varying sizes,
as earlier versions or other smaller models lacked
sufficient context window lengths, making them
unsuitable given the length of evaluation instances
in our study. Additionally, while we used original
benchmark prompt templates, exploring alternative
prompting techniques could offer further insights.
Future work could expand on this by incorporat-
ing more models, tasks, prompting strategies, and
larger list-wise candidate pools to enhance the gen-
eralizability of our findings.

Second, data accessibility limitations prevented
a direct analysis of Judge-level factors like archi-
tecture and parameter size of closed-source mod-
els. Instead, we approximated these factors by
grouping models by family properties. While open-
source models offer accessible architectural details
for deeper analysis, our assessment of only three
Llama models may not provide sufficient evidence
for broader conclusions. Additionally, our analy-
ses were conducted post hoc, relying on completed
judgments before analysis. Future work could ex-
plore methods to estimate or control these factors
pre-judgment, reducing computational costs and
enabling proactive mitigation strategies.

Lastly, our focus was on evaluating and under-
standing position bias rather than mitigating it.
While our findings provide a foundation for ef-
fective mitigation, further research is needed to
address issues like maintaining consistency and
fairness when answer quality gaps are minimal,
where position bias is most pronounced. Multivari-
ate analyses exploring interactions between factors
like prompt length, task complexity, and answer
quality gaps could also yield deeper insights and
enhance mitigation approaches.

References
Anthropic. 2024. The claude 3 model family: Opus,

sonnet, haiku.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,

Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. 2023. Chateval: Towards better llm-based
evaluators through multi-agent debate. Preprint,
arXiv:2308.07201.

Dongping Chen, Ruoxi Chen, Shilin Zhang, Yinuo Liu,
Yaochen Wang, Huichi Zhou, Qihui Zhang, Pan Zhou,
Yao Wan, and Lichao Sun. 2024. Mllm-as-a-judge:
Assessing multimodal llm-as-a-judge with vision-
language benchmark. Preprint, arXiv:2402.04788.

Cheng-Han Chiang and Hung-yi Lee. 2023a. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631, Toronto,
Canada. Association for Computational Linguistics.

Cheng-Han Chiang and Hung-Yi Lee. 2023b. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607–15631.

James Chua, Edward Rees, Hunar Batra, Samuel R.
Bowman, Julian Michael, Ethan Perez, and Miles
Turpin. 2024. Bias-augmented consistency train-
ing reduces biased reasoning in chain-of-thought.
Preprint, arXiv:2403.05518.

Isabel O Gallegos, Ryan A Rossi, Joe Barrow,
Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed.
2024. Bias and fairness in large language models: A
survey. Computational Linguistics, pages 1–79.

Google Gemini Team. 2024. Gemini: A family
of highly capable multimodal models. Preprint,
arXiv:2312.11805.

Yufei Guo, Muzhe Guo, Juntao Su, Zhou Yang,
Mengqiu Zhu, Hongfei Li, Mengyang Qiu, and
Shuo Shuo Liu. 2024. Bias in large language models:
Origin, evaluation, and mitigation. arXiv preprint
arXiv:2411.10915.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.
2024. Large language models are zero-shot rankers
for recommender systems. In European Conference
on Information Retrieval, pages 364–381. Springer.

Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
2021. The perils of using mechanical turk to evaluate
open-ended text generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1265–1285.

Akbir Khan, John Hughes, Dan Valentine, Laura
Ruis, Kshitij Sachan, Ansh Radhakrishnan, Edward
Grefenstette, Samuel R Bowman, Tim Rocktäschel,
and Ethan Perez. 2024. Debating with more per-
suasive llms leads to more truthful answers. arXiv
preprint arXiv:2402.06782.

300

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2308.07201
https://arxiv.org/abs/2308.07201
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://arxiv.org/abs/2402.04788
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://arxiv.org/abs/2403.05518
https://arxiv.org/abs/2403.05518
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805

Tom Kocmi and Christian Federmann. 2023. Large lan-
guage models are state-of-the-art evaluators of trans-
lation quality. In Proceedings of the 24th Annual
Conference of the European Association for Machine
Translation, pages 193–203, Tampere, Finland. Euro-
pean Association for Machine Translation.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John
Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan
Hui, Qicheng Zhang, et al. 2024a. Devbench: A
comprehensive benchmark for software development.
arXiv preprint arXiv:2403.08604.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan,
Pengfei Liu, et al. 2023a. Generative judge for evalu-
ating alignment. In The Twelfth International Con-
ference on Learning Representations.

Ruosen Li, Teerth Patel, and Xinya Du. 2023b.
Prd: Peer rank and discussion improve large lan-
guage model based evaluations. arXiv preprint
arXiv:2307.02762.

Yuran Li, Jama Hussein Mohamud, Chongren Sun,
Di Wu, and Benoit Boulet. 2025. Leveraging llms as
meta-judges: A multi-agent framework for evaluating
llm judgments. Preprint, arXiv:2504.17087.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan
Wu, Shuai Wang, Cuiyun Gao, and Yang Liu. 2023c.
Split and merge: Aligning position biases in large
language model based evaluators. arXiv preprint
arXiv:2310.01432.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan
Wu, Shuai Wang, Cuiyun Gao, and Yang Liu. 2024b.
Split and merge: Aligning position biases in llm-
based evaluators. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 11084–11108.

Adian Liusie, Potsawee Manakul, and Mark Gales. 2024.
Llm comparative assessment: Zero-shot nlg evalua-
tion through pairwise comparisons using large lan-
guage models. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 139–151.

Chiyu Ma, Enpei Zhang, Yilun Zhao, Wenjun Liu, Yan-
ing Jia, Peijun Qing, Lin Shi, Arman Cohan, Yujun
Yan, and Soroush Vosoughi. 2025. Judging with
many minds: Do more perspectives mean less preju-
dice? arXiv preprint arXiv:2505.19477.

Masanari Ohi, Masahiro Kaneko, Ryuto Koike,
Mengsay Loem, and Naoaki Okazaki. 2024.
Likelihood-based mitigation of evaluation bias
in large language models. arXiv preprint
arXiv:2402.15987.

OpenAI(2023). 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael
Bendersky. 2024. Large language models are effec-
tive text rankers with pairwise ranking prompting.
Preprint, arXiv:2306.17563.

Vyas Raina, Adian Liusie, and Mark Gales. 2024. Is
llm-as-a-judge robust? investigating universal adver-
sarial attacks on zero-shot llm assessment. Preprint,
arXiv:2402.14016.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu,
Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. 2023. Large language models are not
fair evaluators. Preprint, arXiv:2305.17926.

Ziqi Wang, Hanlin Zhang, Xiner Li, Kuan-Hao Huang,
Chi Han, Shuiwang Ji, Sham M. Kakade, Hao Peng,
and Heng Ji. 2025. Eliminating position bias of lan-
guage models: A mechanistic approach. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu,
Yuandong Tian, Jiantao Jiao, Jason Weston, and Sain-
bayar Sukhbaatar. 2024. Meta-rewarding language
models: Self-improving alignment with llm-as-a-
meta-judge. Preprint, arXiv:2407.19594.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen,
Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer,
Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and
Xiangliang Zhang. 2024. Justice or prejudice?
quantifying biases in llm-as-a-judge. Preprint,
arXiv:2410.02736.

Yijiong Yu, Huiqiang Jiang, Xufang Luo, Qianhui
Wu, Chin-Yew Lin, Dongsheng Li, Yuqing Yang,
Yongfeng Huang, and Lili Qiu. 2025. Mitigate posi-
tion bias in large language models via scaling a single
dimension.

Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya
Goyal, and Danqi Chen. 2023. Evaluating large lan-
guage models at evaluating instruction following. In
The Twelfth International Conference on Learning
Representations.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou,
and Minlie Huang. 2024a. Large language models
are not robust multiple choice selectors. Preprint,
arXiv:2309.03882.

301

https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://aclanthology.org/2023.eamt-1.19
https://arxiv.org/abs/2504.17087
https://arxiv.org/abs/2504.17087
https://arxiv.org/abs/2504.17087
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2306.17563
https://arxiv.org/abs/2306.17563
https://arxiv.org/abs/2402.14016
https://arxiv.org/abs/2402.14016
https://arxiv.org/abs/2402.14016
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2305.17926
https://arxiv.org/abs/2305.17926
https://openreview.net/forum?id=fvkElsJOsN
https://openreview.net/forum?id=fvkElsJOsN
https://arxiv.org/abs/2407.19594
https://arxiv.org/abs/2407.19594
https://arxiv.org/abs/2407.19594
https://arxiv.org/abs/2410.02736
https://arxiv.org/abs/2410.02736
https://openreview.net/forum?id=t717joHHSc
https://openreview.net/forum?id=t717joHHSc
https://openreview.net/forum?id=t717joHHSc
https://arxiv.org/abs/2309.03882
https://arxiv.org/abs/2309.03882

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024b.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and
Jiantao Jiao. 2024. Starling-7b: Improving helpful-
ness and harmlessness with RLAIF. In First Confer-
ence on Language Modeling.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang.
2023. Judgelm: Fine-tuned large language
models are scalable judges. arXiv preprint
arXiv:2310.17631.

302

https://openreview.net/forum?id=GqDntYTTbk
https://openreview.net/forum?id=GqDntYTTbk

Appendix Table of Contents

A Reproducibility 12

B Related Work 12
B.1 LLM-as-a-Judge 12
B.2 Position Bias 12
B.3 Evaluating Position Bias Eval-

uation 13
B.4 Factors influencing Position Bias 13

C LLM Agreement Analysis 13
C.1 Mutual Agreement & Familial

Property 14
C.2 Disagreement & Benchmark

Design Insight 15

D More Results of Position Bias and
Answer Quality Gap Measurement 15
D.1 MTBench 16
D.2 DevBench 16

E Variable Selection and Tests 16
E.1 Bidirectional Stepwise Regres-

sion with AIC 16
E.2 Test results 17

F Experiment Settings 18
F.1 Judges, Candidates, and Tasks 19
F.2 Prompt Settings 19

A Reproducibility

Our experiments were conducted primar-
ily using API access, with a total cost of
approximately 3,000 USD. The code repos-
itory for reproducing our results is avail-
able:https://anonymous.4open.science/r/
Position-Bias-Analyzer-Demo-F7E3

B Related Work

B.1 LLM-as-a-Judge
Large Language Models (LLMs) have become a
transformative tool in automating evaluative tasks,
offering scalability and reproducibility advantages
over human assessments (Zheng et al., 2024b).
The methodology of using LLMs as evaluators
("LLM-as-a-Judge") has been widely used for tasks
such as open-ended story generation (Chiang and
Lee, 2023a), adversarial attacks (Chiang and Lee,
2023b), summarization (Karpinska et al., 2021),
machine translation (Kocmi and Federmann, 2023),
and instruction following (Zeng et al., 2023), where
models are tasked with scoring or ranking outputs.
LLM-as-a-Judge paradigms range from pointwise,
pairwise, and list-wise ranking approaches (Qin
et al., 2024; Zhu et al., 2024) to score-based and
relation-based (comparative or ranking) settings
(Li et al., 2024b). Furthermore, explorations into
multi-agent frameworks (Li et al., 2023b; Chan
et al., 2023) and meta-thinking or meta-judge sys-
tems (Wu et al., 2024; Li et al., 2025) have emerged
to enhance reliability of LLM evaluations. Despite
their potential, inherent biases—particularly posi-
tion bias—pose significant challenges to their reli-
ability and fairness (Zheng et al., 2024b; Ye et al.,
2024; Ma et al., 2025), even in the most effective
pairwise comparative settings.

B.2 Position Bias
Position bias, the tendency of LLMs to favor certain
positions within the prompt irrespective of actual
content, is a pervasive issue observed across vari-
ous domains and tasks (Zheng et al., 2024b; Qin
et al., 2024; Li et al., 2024a,b). In the context of
LLM-as-a-Judge, it typically refers to the position
inconsistent scenarios where a LLM judge prefers
different candidate solutions to a given question
when the order of solutions in the prompt is per-
muted. To deal with such bias, the naive way is to
exclude the position inconsistent judgments, which
does not solve the fundamental issue and would
likely result in data sparsity when position bias is

303

https://anonymous.4open.science/r/Position-Bias-Analyzer-Demo-F7E3
https://anonymous.4open.science/r/Position-Bias-Analyzer-Demo-F7E3

frequently exhibited. Then, researchers proposed
‘inconsistency-as-a-tie’ for both candidate models
in pairwise comparative settings to consider all
judgments for further analysis (Zheng et al., 2024b;
Li et al., 2023b). This approach, while practically
useful for evaluations, does not mitigate position
bias.

Given the significance of position bias, re-
searchers have developed debiasing strategies, in-
cluding bootstrapping (Hou et al., 2024), split-and-
merge techniques (Li et al., 2023c), and multi-agent
discussions (Li et al., 2023b; Khan et al., 2024).
While these methods demonstrate potential, they
are often costly, time-consuming, or insufficient to
eliminate position bias. More recently, mechanistic
approaches have been explored to address position
bias by modifying model internals like positional
embeddings and causal attention mechanisms (Yu
et al., 2025; Wang et al., 2025). These methods,
while effective in eliminating position bias, lack ap-
plicability to state-of-the-art closed-source models,
which are frequently used in practice but model
internals are inaccessible. Therefore, position bias
remains a complex and challenging issue to fully
resolve.

B.3 Evaluating Position Bias Evaluation
Parallel to developing debiasing strategies, a cru-
cial line of research focuses on comprehensively as-
sessing position bias and identifying its influencing
factors, thereby fostering a deeper understanding
of this phenomenon. The evaluation of position
bias typically concentrates on two main aspects:
the consistency of judgments when the order of
candidate solutions in the prompt is changed, and
the preference direction (e.g., primacy or recency
bias) when inconsistencies arise. Metrics for these
aspects in pairwise comparisons are relatively es-
tablished; however, their extension to, and rigorous
measurement in, list-wise settings remain less ex-
plored.

While prior works (Qin et al., 2024; Zhu et al.,
2024) introduced list-wise ranking settings, they
often become computationally expensive due to
exponentially increasing number of pairs in the
list or encounter significant degradation of perfor-
mance due to ranking complexity. Moreover, the
traditional preference direction measurement of po-
sition bias becomes increasingly complicated in
list-wise paradigms (i.e., preferring the ith can-
didate solution for all i’s). However, practically,
“choosing the best out of an n-item list” is a simpler

but common need compared to exhaustive ranking
of the entire list, which is not yet fully explored by
prior works. A unified single metric for effectively
measuring preference direction is therefore neces-
sary to facilitate position bias evaluation in a more
comprehensive manner.

B.4 Factors influencing Position Bias

Position bias may be influenced by several factors,
including judge attributes, task types, candidate
solution lengths and qualities, and more. For exam-
ple, (Wang et al., 2023) discovered that judgment
conflict rate (i.e., frequency where position bias
exhibits across the dataset) is negatively correlated
with the score gap between the two candidate re-
sponses. However, quantifying and understanding
the impact of this “answer quality gap" in compara-
tive settings (both pairwise and list-wise) is an area
that requires further investigation.

Besides, prior works often observe position bias
and conduct subsequent analyses based on single-
instances judgments. However, observed biases
might stem from random variations rather than sys-
tematic tendencies, hence compromising the reli-
ability of downstream bias analyses. To mitigate
this, researchers have employed multiple repeti-
tions and used the mode judgment, an approach
that, while robust, can be computationally expen-
sive (Chen et al., 2024). In this sense, validating
that position bias emerges from positional informa-
tion rather than randomness becomes a crucial yet
insufficiently-explored area.

These identified gaps - spanning from the vali-
dation of judgments to the evaluation of list-wise
settings - highlight the need for a more comprehen-
sive framework to evaluate and understand position
bias. By addressing these dimensions collectively,
our work provides a foundation for a deeper under-
standing of the consistency, fairness, and reliability
of LLM evaluators.

C LLM Agreement Analysis

Besides the exploration of position bias with a
broad lens by average PC and PF , instance-wise
agreement between LLM judges is also insightful.
Even two judges with the same PC and PF scores
may not reach consensus on each instance. There-
fore, this session investigates (1) what percentage
of a set of evaluations do two LLM judges agree
on each other? (2) how do the choices of all judges
on an instance vary?

304

(a) (b)

(c) (d)

Figure 4: Figures (a) to (c) are mutual agreement heatmap of LLM judges on MTBench and DevBench, where (b) is
the agreement computation excluding the tie option {C}. Higher mutual agreement between two LLM judges is
marked with brighter color. Figure (d), like Figure 3, is the distribution of disagreement on DevBench.

C.1 Mutual Agreement & Familial Property

We compute the LLM judges’ mutual agreement
on the instances to explore how “alike” or con-
sistent they are across a set of evaluations. We
denote two judges agree on an instance if their
judgment choices are identical. Then the mutual
agreement between two LLM judges on a bench-
mark is defined as the proportion of their agreed
instances. Figs. 4(a) and (c) displays the mutual
agreement heatmap for all judges on MTBench and
DevBench, respectively. For MTBench that utilizes
the 3-option mode, we also consider the “without
tie" agreement since two judges are less disagreed
when one chooses {C} while the other prefers a
certain solution, compared to the case when they
prefer different solutions. The “without tie” agree-
ment heatmap of the twelve judges on MTBench is
explored in Fig. 4(b).

The heatmaps reveal clear “familial patterns” in
the judgment choices of these LLM judges. For

instance, the GPT-4, GPT-4-Turbo, and GPT-4o
series exhibit high agreement on MTBench, achiev-
ing over 70% with ties included and over 85% with-
out. GPT-3.5-Turbo didn’t agree with the GPT-4
series and o1-mini for around 40% of the instances,
indicating that they are considerably different in
judging capabilities.

For Claude-3 models, similar familial patterns
could be observed. Claude-3-Opus highly agrees
with Claude-3.5-Sonnet, probably due to their sim-
ilar capabilities, while it also highly agrees with
Claude-3-Sonnet, likely due to their similar model
structure within the same series. Interestingly,
Claude-3.5-Sonnet and Claude-3-Sonnet do not ex-
hibit a significantly high agreement, indicating that
the upgrade from series 3 to 3.5 considerably im-
pacts their judging capabilities.

Gemini models exhibit rather low mutual agree-
ment and “familial property" is minimal, but the
most capable Gemini-1.5-pro aligns more closely

305

with other capable models like the GPT-4 series
and Claude-3-Opus.

Llama models demonstrate a high agreement
among capable family members (Llama-3.3-70B
and Llama-405B) and with GPT series. However,
significantly smaller and less capable model like
Llama-3.1-8B does not strong agree with them.

These patterns suggest that familial similarities,
possibly stemming from analogous model sizes,
training data, and strategies, influence the posi-
tional preferences of these judges. In particular, the
LLM judges could be primarily grouped by their
capabilities; when judging capabilities are compa-
rable, models within the same family series share a
higher mutual agreement than across families.

Identifying such groupings provides valuable in-
sights, as comparisons between judges from differ-
ent groups, both adept at assessing LLM-generated
content, can reveal distinct position biases and en-
rich our understanding of this phenomenon.

C.2 Disagreement & Benchmark Design
Insight

Since the mutual agreement between LLM judges
is not perfect and usually a considerable proportion
of instances are difficult for them to reach a con-
sensus, disagreement analysis becomes crucial and
insightful. Therefore, we define the disagreement
of an evaluation instance to be the number of judg-
ments different from the majority. By this defini-
tion, an instance with all judges reaching a consen-
sus on the better solution will have a disagreement
of 0; in contrast, an instance where judgments are
widely varied will result in a high disagreement.
For our study where 15 judges are investigated, the
maximum disagreement of an MTBench instance
is 10, accounting for the 5{A}-5{B}-5{C} choice
pattern by 3-option mode. On the other hand, for
DevBench instances, since Gemini-1.5-flash is ex-
cluded due to insufficient data (as shown by high
error rates in Tabel 2), the maximum possible dis-
agreement for the remaining 14 judges is 7, repre-
senting the 7{A}-7{B} judgment distribution for
the 2-option mode.

The distributions of instances with different dis-
agreement values on MTBench and DevBench are
shown in Fig. 3 and Fig. 4(d), respectively. From
our disagreement analysis, at least 75% of the
judges reached a choice consensus on more than
half of the instances on both benchmarks. These are
likely easy-to-evaluate instances, and the reliability
of LLM judgments is enhanced by majority voting.

In comparison, the instances with the highest dis-
agreement are likely the ones that are difficult to
evaluate and where the position bias is most likely
to occur. However, luckily, these instances are rare,
occupying only less than 5% for both benchmarks
respectively. In other words, majority voting of
multiple capable LLM judges could be practically
useful for over 95% of evaluation instances on both
benchmarks.

Moreover, if we roughly consider the disagree-
ment value of instances as their difficulty for judg-
ing, then Fig. 3 and Fig. 4(d) exhibit a balanced
distribution of instances with varied difficulty. This
is because, except for the instances with the high-
est disagreement, the numbers of other instances
with varied disagreement do not vary significantly,
indicating a smoothly increasing difficulty curve
across the benchmark datasets.

To summarize, the practical implications of the
disagreement analysis are three-fold. First, it helps
identify the instances that are difficult or trivial to
judge, benefiting benchmark designs to control the
difficulty of evaluation by managing the number
of these instances across the dataset. Second, it
assists in filtering out instances where majority vot-
ing of LLM evaluators are likely to offer reliable
judgments without direct comparison with human-
annotated evaluations, enhancing the scalability of
LLM judges especially when human evaluations
are costly. In other words, if one-shot judgments
from only one LLM judge are not enough reliable,
multiple capable LLMs and the majoring voting
strategy could be employed to make the evaluation
more convincing. Last but not least, disagreement
analysis provides a convenient way to make the
difficulty variance of instances varied across the
dataset tangible. Since the difficulty of an evalua-
tion instance is closely related to the quality gap
between the two solutions and hence position bias,
the investigation of the instances where most judges
particularly disagree with one another could pro-
vide more insights and inspiration for future bench-
mark designs and potential mitigation strategies for
position bias.

D More Results of Position Bias and
Answer Quality Gap Measurement

Table 3 presents additional evaluation results for
more open-source models, reinforcing our earlier
observations. The scores consistently show that
position bias varies across judges and tasks, while

306

high repetition stability confirms that such biases
are systematic rather than random. These extended
results further validate our evaluation findings.

D.1 MTBench
As shown in Fig. 2(c), considering all judges to-
gether, a larger answer quality gap generally leads
to better position consistency and preference fair-
ness. In this session, we explore whether the discov-
ery is consistent for each individual judge. Same as
Section 2.3, we apply the overall win rate to reflect
the answer quality gap for visualization.

As shown in Fig. 5 (a), the “parabolic shape" is
observed for all individual judges, indicating that
the argument “a higher answer quality gap gener-
ally results in higher position consistency applies to
all models. However, Fig. 5 (b) reveals that prefer-
ence fairness is more judge-dependent and the im-
pact of the answer quality gap is neglectable for cer-
tain judges. For example, while Claude-3-opus and
Claude-3-sonnet exhibit conspicuous “parabolic
shape", GPT-4 and GPT-3.5 present nearly linear
curves. In other words, while the former models
align with the general tendency that a larger answer
quality gap improves preference fairness, the lat-
ter ones preserve fairness regardless of the answer
quality gap. This further demonstrates the neces-
sity to investigate preference fairness in addition
to consistency when evaluating a judge model’s
position bias.

D.2 DevBench
This session includes a similar baseline compari-
son analysis on DevBench as on MTBench. As
shown in Fig.6, position bias is judge-dependent
and task-dependent on DevBench as well, as PC
and PF vary significantly across judges and tasks.
Similarly, although GPT-4 stands as the baseline
model with a generally high PC across tasks, cer-
tain models achieve comparable or superior perfor-
mances on certain tasks. For instance, for archi-
tecture design evaluations, GPT-4-Turbo, GPT-4o,
and Gemini-1.5-pro all surpass GPT-4. Gemini-
1.5-pro is especially outstanding, also exceeding
GPT-4 in uml class evaluations. However, GPT-4 is
still the best-performing model on UML sequence
evaluations, with only GPT-3.5-Turbo can achieve
comparable performance regarding certain detailed
metrics (e.g., interaction complexity). These dis-
coveries, aligning with the findings on MTBench,
further necessitate the need to consider the trade-
offs between positional consistency and fairness

when selecting the optimal judge model for certain
tasks.

E Variable Selection and Tests

E.1 Bidirectional Stepwise Regression with
AIC

Bidirectional stepwise regression is a combination
of forward selection and backward elimination tech-
niques. It iteratively refines the model by adding
or removing predictors based on a statistical crite-
rion—commonly the Akaike Information Criterion
(AIC). The objective is to select a model that bal-
ances goodness of fit and complexity, aiming for
the lowest AIC value.

The AIC is given by:

AIC = 2k − 2 log(L), (4)

where L is the likelihood of the model and k is
the number of parameters in the model, including
the error variance σ2. For a linear regression model
with independent and identically distributed (iid)
errors, N(0, σ2), fitted to n observations, the log-
likelihood can be written as:

log(L) = −n
2 log(2π)− n

2 log(σ
2)− 1

2σ2

∑n
i=1 ê

2
i , (5)

where êi is the residual for the ith observation,
and σ2 is the variance of the errors. The AIC, in
this context, becomes:

AIC = 2k + n log(2π) + n log(σ2) + 1
σ2

∑n
i=1 ê

2
i . (6)

This form of the AIC balances the goodness of
fit (as reflected by the residual sum of squares) and
model complexity (as represented by k).

The operation of Bidirectional stepwise regres-
sion starts with either no predictors (forward se-
lection) or all predictors (backward elimination),
where the model iteratively adds or removes vari-
ables. Each step evaluates the impact on the AIC
score. In forward selection, variables are added
one by one, starting from the null model, such that
the addition of each variable results in the largest
decrease in AIC. In backward elimination, all vari-
ables are included in the model initially, and vari-
ables are removed one at a time, with the variable
whose removal causes the smallest increase in AIC
being dropped.

At each iteration, the change in AIC is computed
as ∆AIC = AICnew − AICcurrent, where AICnew

307

Model
MTBench Results DevBench Results

PC PF RS Error PC PF RS Error
GPT-OSS-20B 0.79 ± 0.16 -0.04 ± 0.13 0.89 ± 0.17 0.06 0.84 ± 0.16 -0.04 ± 0.14 0.81 ± 0.25 0.08
Gemma-3n-E4B 0.68 ± 0.17 -0.07 ± 0.18 0.90 ± 0.17 0.00 0.41 ± 0.24 0.40 ± 0.35 0.93 ± 0.12 0.08
Llama-4-Scout-17B 0.79 ± 0.16 0.05 ± 0.15 0.95 ± 0.08 0.00 0.12 ± 0.18 0.88 ± 0.18 0.98 ± 0.03 0.00
Mistral-Small-24B 0.72 ± 0.19 -0.02 ± 0.17 0.87 ± 0.20 0.05 0.57 ± 0.18 0.27 ± 0.19 0.82 ± 0.31 0.02
Qwen2.5-72B 0.77 ± 0.17 -0.01 ± 0.16 0.94 ± 0.09 0.00 0.81 ± 0.15 0.11 ± 0.16 0.93 ± 0.13 0.00
Qwen2.5-Coder-32B 0.74 ± 0.18 0.01 ± 0.17 0.91 ± 0.14 0.00 0.81 ± 0.16 0.09 ± 0.17 0.92 ± 0.13 0.03
Qwen2.5-7B 0.55 ± 0.18 -0.21 ± 0.23 0.87 ± 0.22 0.00 0.54 ± 0.21 -0.45 ± 0.21 0.93 ± 0.12 0.00

Table 3: More evaluation results for Position Consistency (PC), Preference Fairness (PF), and Repetition Stability
(RS) across MTBench and DevBench datasets.

(a) (b)

Figure 5: Position Consistency and Preference Fairness vs. overall win rate for each judge on MTBench. Figure (a)
refers to the relationship investigation of PC and figure (b) for PF .

refers to the AIC after adding or removing a vari-
able, and AICcurrent is the AIC of the current model.
If ∆AIC < 0, the model is improved by the addi-
tion or removal of the variable. The process termi-
nates when neither adding nor removing variables
results in a lower AIC, signifying that the most par-
simonious model, based on AIC, has been reached.

E.2 Test results

We operated bidirectional stepwise regression on
both benchmarks individually and together to iden-
tify the factors that are significantly contributing
to position bias. Specifically, the variables include
lengths (input, output, and prompt), answer qual-
ity gap, LLM judges, candidate models, and task
categories to predict position consistency and pref-
erence fairness respectively. Table 6, 7 records the
results of final step in stepwise regression for pre-

dicting PC and PF , respectively. Table 8, 9 serves
for DevBench, and Table 4, 5 is conducted on the
integrated set of both benchmarks. The impact of
variables on the model is ranked from highest to
lowest, from bottom to top. Removed variables
listed as None indicate the full model at this given
step.

Through benchmark testing, we verified that
LLM judges, task categories, and the answer qual-
ity gap significantly contribute to position bias in
terms of both position consistency and preference
fairness. These findings align with our empirical
results, showing that position bias varies notably by
judge and task, with the answer quality gap being a
key influencing factor. The extent of this impact is
reflected by the magnitude of change in AIC when
the given variable is removed. It is worth noting
that while task output length remains a significant

308

(a)

(b)

Figure 6: Baseline comparisons of position bias of LLM judges across tasks on DevBench. An asterisk marks the
statistical significance by Student’s t-tests. Figure (a) selects GPT-4 as the baseline, where asterisk demonstrates
signficantly better or worse PC of other models compared to it. Figure (b) utilizes an absolute PF baseline of 0
and depicts preference fairness performances of LLM judges across tasks. Similar to findings on MTBench, position
bias is significantly judge-dependent and task-dependent on DevBench as well.

predictor for PF and PC in both benchmarks, the
change in AIC magnitude after removing this vari-
able is very minimal. This is consistent across
both benchmarks individually and combined. We
therefore conclude that, although position bias is
influenced by task output length, this dependency
is minimal.

Removed Variables DF Sum of Sq RSS AIC

None 163.75 -18370
Task 20 2.832 166.59 -18319

Candidate 38 4.472 168.23 -18303
Quality gap 1 21.953 185.71 -17703

Judge 13 55.417 219.17 -16846

Table 4: Final results of stepwise model selection for
both benchmarks: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 254.28 -16103
Task output length 1 0.836 255.12 -16088

Quality gap 1 11.339 265.62 -15873
Task 21 16.177 270.46 -15817

Judge 13 82.069 336.35 -14641

Table 5: Final results of stepwise model selection for
both benchmarks: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 61.974 -13312
Task output length 1 0.0553 62.029 -13311

Candidate 29 1.6474 63.621 -13282
Task 7 1.5304 63.504 -13244

Judge 13 15.3637 77.338 -12594
Quality gap 1 15.6206 77.594 -12559

Table 6: Final results of stepwise model selection for
MTBench: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 129.00 -10909.2
Quality gap 1 1.931 130.93 -10861.3

Task 7 9.295 138.29 -10689.4
Judge 13 58.847 187.85 -9672.5

Table 7: Final results of stepwise model selection for
MTBench: Preference Fairness

F Experiment Settings

This session specifies more detailed information
about the judges, answer-generating models, tasks,
and prompt templates used in this study. We choose
to evaluate MTBench and DevBench for the follow-
ing reasons: (1) all necessary information about the
benchmark models, tasks, and questions is publicly
available, making modifications convenient (2) they

309

Removed Variables DF Sum of Sq RSS AIC

None 55.382 -6940.2
Task output length 1 0.257 55.638 -6933.2

Candidate 9 1.514 56.896 -6905.4
Quality gap 1 13.128 68.510 -6525.3

Judge 13 84.760 140.141 -5146.6

Table 8: Final results of stepwise model selection for
DevBench: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 60.104 -6753.9
Task output length 1 0.061 60.165 -6753.9

Candidate 9 0.731 60.834 -6748.2
Task 13 1.305 61.408 -6737.8

Quality gap 1 1.783 61.886 -6698.6
Judge 13 80.875 140.979 -5108.9

Table 9: Final results of stepwise model selection for
DevBench: Preference Fairness

include a wide variety of answer-generating mod-
els, tasks, and task questions for a comprehensive
evaluation (3) their human evaluations validated the
reliability of state-of-the-art judging models (GPT-
4 and GPT-4-Turbo) on their evaluation instances,
hence model untested by prior work, if reaching
high agreement with these validated judges, can be
perceived reliable as well.

F.1 Judges, Candidates, and Tasks

Judge In this study, we choose seven GPT, four
Claude, and three Gemini models as the judges.
The specific versions for API call are specified
as follows: o1-mini-2024-09-12 for o1-mini, gpt-
4o-2024-05-13 for GPT-4o, gpt-4-1106-preview
for GPT-4-Turbo, gpt-4-0613 for GPT-4, and
gpt-3.5-turbo-1106 for GPT-3.5-turbo; claude-
3-5-sonnet-20240620, claude-3-opus-20240229,
claude-3-sonnet-20240229, and claude-3-haiku-
20240307 for Claude series. The other model
names and versions are as they are.

Model The reference (or baseline) answer-
generating models are vicuna-13b-v1.3 for MT-
Bench and human for DevBench. They are chosen
to ensure a baseline quality of responses and an
expected widely spread quality gap across evalua-
tions. The other models that are compared to the
reference models, namely “Model" in our context,
are listed as follows.

• MTBench (30): alpaca-13b, baize-v2-13b,
chatglm-6b, claude-instant-v1, claude-v1, dolly-

v2-12b, falcon-40b-instruct, fastchat-t5-3b, gpt-
3.5-turbo, gpt-4, gpt4all-13b-snoozy, guanaco-
33b, guanaco-65b, h2ogpt-oasst-open-llama-
13b, koala-13b, llama-13b, mpt-30b-chat,
mpt-30b-instruct, mpt-7b-chat, nous-hermes-
13b, oasst-sft-4-pythia-12b, oasst-sft-7-llama-
30b, palm-2-chat-bison-001, rwkv-4-raven-14b,
stablelm-tuned-alpha-7b, tulu-30b, vicuna-33b-
v1.3, vicuna-7b-v1.3, wizardlm-13b, wizardlm-
30b

• DevBench (10): codellama-7b-instruct,
codellama-13b-instruct, codellama-34b-instruct,
deepseek-coder-1.3b-instruct, deepseek-coder-
6.7b-instruct, deepseek-coder-33b-instruct,
gpt-3.5-turbo-1106, gpt-4-0125-preview,
gpt-4-0613, gpt-4-1106-preview

The model names are exactly what MTBench
(Zheng et al., 2024b) and DevBench (Li et al.,
2024a) used in their studies. That is why for GPTs,
DevBench specifies the exact version (e.g., gpt-4-
0613) while MTBench doesn’t (e.g., gpt-4). In
this study, we directly use the provided answers of
these models to the task questions to form answer
pairs and queries for the LLM judges.

Task For tasks, we also follow the original stud-
ies of these two benchmarks, except for DevBench
we separate the gerenal metrics into detailed ones
and considered them as different tasks. In this
sense, our study experiments on the following tasks
to provide a comprehensive study on the positon
bias of LLM-as-a-Judge:

• MTBench (8): coding, extraction, humanities,
math, reasoning, roleplay, stem, and writing.

• Devbench (14):

– UML class (4): cohesion_and_decoupling,
complexity, practicability, and faithfulness

– UML sequence (5): cohe-
sion_and_decoupling, interac-
tion_complexity, practicability, uni-
formity_and_integration, and faithfulness

– architecture design (5): conformance,
design_and_coding, practicability, unifor-
mity_and_integration, and faithfulness

F.2 Prompt Settings
We follow the original prompt settings of MTBench
and DevBench in our study of pairwise comparative
LLM-as-a-Judge.

310

Though written differently, these prompts all
share same key components:

• A system prompt explaining the judging task and
the role the LLM should be playing.

• Emphasized “should" and“shouldn’t"s.

• A prompt structure with placeholders for specific
questions and model answers

• A specified output format for later judgment ex-
traction

• Chain-of-Thought (Wei et al., 2022) prompts re-
quiring the LLM judge to provide reasons for its
judgment

The detailed prompt templates are specified be-
low.

311

312

313

314

