
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 3357–3375

December 20-24, 2025 ©2025 Association for Computational Linguistics

ProST: Progressive Sub-task Training for Pareto-Optimal Multi-agent
Systems Using Small Language Models

Biddut Sarker Bijoy1 Mohammad Saqib Hasan1 Pegah Alipoormolabashi1

Avirup Sil2 * Aruna Balasubramanian1 Niranjan Balasubramanian1

1Stony Brook University 2Oracle Applied Science
1{bbijoy, mdshasan, palipoormola, arunab, niranjan}@cs.stonybrook.edu, 2avi.sil@oracle.com

Abstract

Multi-agent systems with smaller language
models (SLMs) present a viable alternative
to single agent systems powered by large lan-
guage models (LLMs) for addressing complex
problems. In this work, we study how these
alternatives compare in terms of both effective-
ness and efficiency. To study this trade-off, we
instantiate single and multi-agent systems for
the complex problems in the AppWorld envi-
ronment using different sized language models.

We find that difficulties with long-trajectory
learning in smaller language models (SLMs)
limit their performance. Even when trained for
specialized roles, SLMs fail to learn all sub-
tasks effectively. To address this issue, we in-
troduce a simple progressive sub-task training
strategy, which introduces new sub-tasks pro-
gressively in each training epoch. We find that
this novel strategy, analogous to instance level
curriculum learning, consistently improves the
effectiveness of multi-agents at all configura-
tions. Our Pareto analysis shows that fine-tuned
multi-agent systems yield better effectiveness-
efficiency trade-offs. Additional ablations and
analyses shows the importance of our progres-
sive training strategy and its ability to reduce
subtask error rates.

1 Introduction

Solving complex problems requires a wide-range
of capabilities including planning sub-tasks, acting
in an environment via coding, reasoning about the
actions, recovering from errors, as well as tracking
and managing the execution of sub-tasks. LLMs
with their strong coding and reasoning abilities and
advances in handling long contexts have shown
impressive breakthroughs on such complex prob-
lems (e.g., AppWorld (Trivedi et al., 2024) and
SWE-Bench (Jimenez et al., 2024)). However, these
large models incur high computational and API

*Work done while at IBM Research AI.

costs for both training and inference. Another vi-
able alternative is to use multi-agent solutions with
smaller language models1 (SLMs). The core idea
is to identify specialized roles in solving these com-
plex tasks (e.g., orchestration, code writing, and
critiquing) and use separate SLMs (or SLM calls)
for each role. Belcak et al. (2025) argue that SLMs
are much more cost-effective and practical for train-
ing, adapting, and deploying multiple specialized
experts for different agentic routines. Shen et al.
(2024) show these multi-agent solutions with SLMs
can be effective for complex problems requiring
tool use via APIs.

We consider two challenges that arise in this
context. First, for SLMs, even specialized roles
can be difficult to learn. Complex problems often
have multiple subtasks resulting in long trajecto-
ries. Despite their improving capabilities, SLMs
still struggle to learn all subtasks under standard
fine-tuning. Second, while the per-token compute
depends on the size of the models, the overall com-
putational cost also depends upon the nature of
their solutions (e.g., their length). Therefore, it
is important to explicitly consider both the effec-
tiveness and efficiency of these solutions to better
understand the trade-offs.

We address these challenges using AppWorld
benchmark. We design a multi-agent solution with
three agents: an Orchestrator that plans subtasks
incrementally, an Executor that interacts with the
environment via code to solve subtasks, and a Critic
agent that critiques the Executor output. We make
two specific contributions on this multi-agent setup:

1) Progressive Sub-task Training To address
the inconsistent performance on large trajectories,
we introduce a progressive training strategy. We
find that SLMs are unable to solve some sub-
tasks of these complex problems, even in role-

1Small and large are subjective terms. For this paper we
use SLM for models with fewer than 40B parameters.

3357



specialized learning settings. We propose a simple
curriculum-style learning strategy, where we in-
troduce sub-tasks progressively in training epochs.
This allows the small capacity SLMs to gradually
expand their learning, covering all aspects of the
problem trajectories.

2) Pareto Analyses We compare different in-
stantiations of single and multi-agent systems. In
particular, we plot the efficacy of different solutions
against inference-time FLOPs. The Pareto curve for
these solutions helps choose the best solution at
different compute budgets.

We evaluate these ideas using Qwen-2.5 Coder,
Llama-3.1 and Phi-4 models. We distill training
trajectories for a single agent from a frontier model
(Claude-3.7-Sonnet). Then, we translate these
into role-specific multi-agent training trajectories
for three agents, namely, an Orchestrator (plan-
ner), an Executor (coding) agent, and a Critic agent.
Our evaluations yield multiple interesting obser-
vations AppWorld tasks: (i) While larger models
tend to have higher effectiveness, multi-agent solu-
tions can achieve better efficiency versus effective-
ness trade-offs. (ii) Progressive Subtask Training
yields a better Pareto-front compared to standard
fine-tuning. (iii) Stronger (higher compute) agents
for planning are more effective (and efficient) than
using stronger coding and critic agents when fine-
tuning using Progressive Subtask Training.2

2 Related Work

SLM-based Agents SLMs are being used as
agents due to lower computational cost, but strug-
gle with complex planning and tool use (Shen et al.,
2024), skills essential for agents. Hence, many
strategies are proposed: separation of roles to only
tackle small, concrete tasks (Shi et al., 2024; Qiao
et al., 2024); distilling training data from powerful
LLMs(Shi et al., 2024), Direct Policy Optimization
(DPO)(Feng et al., 2025); online learning by gen-
erating data from unsuccessful attempts(Qi et al.,
2025), masking loss from erroneous steps(Fu et al.,
2025); learning only from critical steps (Chen et al.,
2025d). Contrary to these works, we formulate
ProST which optimizes SLMs, as part of multi-
agent design, by initiating with important parts of
the trajectory and iteratively increasing steps, a
strategy never tried for agents.

2Code and data available at
https://github.com/StonyBrookNLP/prost-multiagents

Multi-Agent Optimizations Many works pro-
pose techniques to make multi-agents more robust.
These techniques include dynamically reducing re-
dundant agents and messages (Wang et al., 2025c;
Zhang et al., 2024a), iterative answer refinement
through feedback(Chen et al., 2025b), optimizing
collaboration strategies(Wang et al., 2025a; Zeng
et al., 2025) and communication protocols (Xiao
et al., 2025), and test-time search for effective tool
planning (Chen et al., 2025a). Recent works pro-
pose using cost-effective SLMs for multi-agent se-
tups: Erdogan et al. (2025) uses smaller32-B mod-
els as planning and execution subagents; Belcak
et al. (2025) argue for SLM multi-agents based on
their improved capabilities, cost, ease of adaptabil-
ity, and deployment. Our work introduces ProST, a
training algorithm for SLMs in multi-agent setups
that iteratively trains on subtasks. Unlike previous
works, we show how ProST produce SLMs effec-
tive at solving tasks as well as computationally
efficient.

Efficiency of Multi-agents Recent works have
sought to assess and improve the computational
efficiency of multi-agent systems. For example,
Wang et al. (2025c) use token consumption as a
metric to prune redundancies in multi-agent collab-
orations. Yue et al. (2025) show, via Pareto fronts,
that their language model routing strategy in multi-
agent systems reduces dollar cost while improving
accuracy. Wang et al. (2025a) use token accuracy
ratio to compare multi-agent collaboration strate-
gies. In contrast, we analyze computational cost
against task accuracy to measure Pareto optimality.
Based on this, we design ProST, which gives better
performance accuracy with higher computational
efficiency (more Pareto optimal).

3 Multi-Agent Design for AppWorld

Multi-agent systems using SLMs instead of LLMs
have emerged as an alternative for better cost-
performance trade-off (Erdogan et al., 2025; Bel-
cak et al., 2025). However, optimizing SLMs for
long and complex reasoning tasks remains chal-
lenging(Shen et al., 2024). In this work, we focus
on AppWorld (Trivedi et al., 2024), an agent en-
vironment of complex tasks requiring coding and
ability to interact with APIs. Our method is based
on two considerations: (i) SLMs are less effective
at essential agent skills like coding, long-context
and recovering from errors; (ii) overall computa-
tion cost is based on both solution length and low

3358



Send $59 to Jose via Venmo.

AppWorld 
EnvironmentAgent

AppWorld 
EnvironmentExecutorOrchestrator

User

code or refined code
subtask

report

Send $59 to Jose via Venmo.
User

Single-agent Solution

Multi-agent Solution

refined code

feedback

Got an error
twice!

success or error

Critic

code or refined code

success or error

Figure 1: Comparison of single-agent and multi-agent
architectures for solving complex tasks. The single-
agent approach (top) employs a monolithic LLM that
directly processes user given task and interacts with the
AppWorld environment by generating code and process-
ing the output. The multi-agent approach (bottom) de-
composes this functionality into three specialized com-
ponents: an Orchestrator decomposes the user query
into subtasks (one subtask at a time), an Executor that
solve the given subtask step by step (one step at a time)
by interacting with environment, and a Critic that eval-
uates and provides natural language feedback on the
Executor’s outputs when required.

per-token cost of SLMs.
To address these challenges we: (i) use a tri-

agent system for AppWorld (subsection 3.1), (ii)
introduce Progressive Subtask Training, a novel
training loss that improves SLMs on complex long
trajectory reasoning (section 4), and (iii) use Pareto
analysis to understand the cost-performance trade-
offs in agent systems (section 5).

3.1 Multi-agent Architecture

Solving AppWorld tasks require identifying sub-
tasks that can solve each complex problem via writ-
ing code and self-reflection (Madaan et al., 2023).
Agents in multi-agent systems work in collabora-
tion to solve such tasks, where each has its specific
responsibilities. Such architectures have been used
in Qiao et al. (2024) (plan, tool, and reflect agents)
and Shi et al. (2024) (grounding, execution, and
review agents). Accordingly, our multi-agent sys-
tem (refer to Figure 1) also comprises of similar
elements: an Orchestrator that generates and del-
egates sub-tasks, an Executor that writes code to
interact with AppWorld, and a Critic that provides
feedback to Executor (see prompt in Figure 10).

Orchestrator This agent decomposes the task
into subtasks with specific goals and execution plan.

Orchestrator operates iteratively, executing one sub-
task after another and handling execution failures
by dynamic decomposition strategy,i.e., further de-
composing the subtask (Prasad et al., 2024).

Executor Agent responsible for solving each sub-
task generated by Orchestrator. It does so by
writing code according to the plan, executing in
AppWorld and observing the results (see prompt
in Figure 11). Each subtask may need multiple
iterations of such cycle. In case of error, Execu-
tor refines code. If error still persists it revises the
code with feedback from Critic. Execution stops
when either task is complete or maximum number
of steps is reached.

Critic Agent that acts when Executor fails dur-
ing refinement. When prompted by Executor (see
Figure 12), Critic reviews the main task, subtasks,
and the full trajectory of the Executor so far, as
well as the Executor’s refinement. Critic then pro-
vides natural language feedback on the Executor’s
suggested resolution.

4 Progressive Subtask Training
We fine-tune SLMs using multi-agent training tra-
jectories derived from LLMs (described in subsec-
tion 5.2). Standard fine-tuning trains each agent
to maximize likelihood of the role relevant gold
trajectory. However, as we metioned, the trajec-
tories remain long, even with role specialization.
SLMs’ inability to process long trajectories (Chen
et al., 2025d) limits training them for their respec-
tive roles. In particular, we observe that standard
finetuning leads to higher error rates for the more
difficult middle subtasks compared to first and last
subtasks. This observation motivates our proposed
solution, drawing from curriculum learning.

Our approach is to use incremental curriculum
on subtasks of each training instance. This ensures
models train on subtasks subset in each iteration.
We achieve this by randomly focusing on a set of
subtasks at each epoch. However, later subtasks
often depend on outputs of earlier ones, thereby
requiring either understanding those tasks or ac-
cessing their output. For example, in task to send
text message, selecting contacts presupposes re-
trieval of contact list. This dependency suggests
that introducing subtasks into the curriculum in
their natural order within the tasks is more effec-
tive, where the models learn the earlier subtasks

3359



1

2

5

6

4

epoch 0

Login to the phone app
1

Retrieve all the alarms
2

Set the task as complete
6

3

1

2

5

6

4

3

1

2

5

6

4

3

1

2

5

6

4

3

epoch 1 epoch 3 epoch 4

Subtasks Progressive Subtask Selection Masking Mistakes

Subtask

Step 1

Step 2

error

recover

  Move my wake-up phone alarm to 40 minutes earlier and disable the rest.

Training Input

...

...

...

1

2

5

6

4

3

epoch 2

Figure 2: The figure shows how ProST trains models by progressively increasing the subtasks (highlighted in
green) in training trajectory. The agent is trained on subtasks 2 and 3 in epoch 0, ignoring subtask 1 as it is not
important(login tasks in AppWorld). With each increasing epoch, subtasks presented to the model for training is
increased from subtask 2 onwards. In the final epoch, the full trajectory with all the subtasks are presented. Any
step of a subtask that is erroneous is ommitted during training. In this way, model learns to: i) to solve the most
important subtasks first, ii) sequentially learn to solve the larger problem at hand, and iii) avoid optimizing for
solving subtasks erroneously.

first, followed by the later ones.

J
(e)
O (θ, x)

=

Mx∑

i=1

I(i ∈ S(e)) log(πθ(si|I, {sj , rj}j<i)) (1)

J
(e)
O (θ) = Ex∼DO

[
J
(e)
O (θ, x)

]
(2)

This increment, however, may not be equal at
each iteration as number of subtasks may not be
perfectly distributable across the iterations. Hence,
our algorithm tries to optimize subtask increment at
later epochs. This is highlighted in Figure 2 where
first two epochs have no increment in subtasks but
epochs 2 to 4 do, as 6 subtasks cannot be divide
into 5 epochs for equal increment across epochs.
(Further details about how subtasks are expanded
progressively in Appendix B.3). Below, we for-
mally describe this progressive subtask learning
strategy.

Orchestrator Training The ReAct-style train-
ing instances for the Orchestrator (x ∼ DOrch)
include either (1) task descriptions as inputs
paired with their corresponding initial subtasks
as outputs, or (2) the Executor agent’s latest re-
sponse as input, with the resulting subtasks and
associated plans as the action outputs. Sup-
pose the entire trajectory for the Orchestrator
consists of m steps (i.e., ReAct turns) for task

x, denoted by ({ϕ}, s1), ({(s1, r1)}, s2), · · · ,
({(s1, r1), · · · , (sm−1, rm−1)}, sm). For each turn
i, si denotes the subtask generated at step i, and
the input to this step is the history of subtasks
along with Executor’s final reports {(sj , rj)}j<i

from previous steps. Here, rj represents the final
report about the success/failure of the subtask sj .
Given S(e) the set of subtasks that the model is al-
lowed to train on at epoch e under the progressive
training strategy, we can formally state the training
objective for the Orchestrator (see eq 2). While
standard fine-tuning trains over the entire trajec-
tory at all epochs, our approach is to only train on
progressively increasing parts of this trajectory.

Executor and Critic Training The Execu-
tor agent is trained to take as input a subtask
and the corresponding plan si generated by
the Orchestrator and is expected to generate
the sequence of turns of code. Additionally,
the trajectory for the Executor agent includes
environment feedbacks and interactions with
the Critic. Suppose the entire trajectory for the
overall task x consists of n steps (i.e. ReAct
steps) and is given by ({ϕ}, (T1, A1, O1)),
({(T1, A1, O1)}, (T2, A2, O2)), · · · ,
({(T1, A1, O1), · · · , (Tm−1, Am−1, Om−1)},
(Tm, Am, Om)). For a given subtask si at each
step t, the input is the history of the conversation
so far: {(Tj , Aj , Oj)}j<t. Here T , A, and O

3360



denote thoughts, actions, and observations.
In this learning paradigm, we train agents using

both correct steps and self-corrected steps. This
helps develop a comprehensive understanding of
both successful subtask completion and error cor-
rection patterns. Following (Fu et al., 2025) we
compute the loss function J

(e)
E (eq. 4), J (e)

C (eq. 5)
only on correct and self-refined steps for Executor
and Critic, respectively. In equation 3, Nx is the
total number of turns in a given task x.

J
(e)
EC(θ, x) =

Nx∑

t=1

I(At).I(st ∈ S(e)).

log(πθ(Tt, At|I, subtask, {Tj , Aj , Oj}j<t)) (3)

J
(e)
E (θ) = Ex∼DE

[
J
(e)
EC(θ, x)

]
(4)

J
(e)
C (θ) = Ex∼DC

[
J
(e)
EC(θ, x)

]
(5)

5 Experimental Setup

We evaluate the performance of Progressive Sub-
task Training (§5.4), on AppWorld, a popular agen-
tic benchmark. We first data synthesis to generate
training trajectories for AppWorld and then train
and evaluate models and baselines using AppWorld
established metrics.

5.1 AppWorld

AppWorld offers a testbed of day-to-day digital
tasks that test agent abilities to solve complex
problems using interactive coding, often over long
trajectories. AppWorld’s execution engine simu-
lates 9 day-to-day apps: Amazon, Spotify, Venmo,
Gmail, Todoist, SimpleNote, Splitwise, Phone, and
FileSystem. AppWorld’s benchmark is a dataset
of 750 realistic task instructions across 250 dif-
ferent scenarios/use-cases, divided into 105 train,
60 dev, 105 in distribution test and 417 out-of-
distribution test sets3. AppWorld uses state-based
programmatic evaluation by checking engine’s fi-
nal database state with manually-written assertions
(details in Appendix C).

5.2 Data Synthesis

AppWorld only provides training pairs (input
prompts, output state). Hence, to obtain training
trajectories, we design a data synthesis pipeline
similar to (Erdogan et al., 2025) that first generates

3We found only 90 train and 57 dev tasks are available in
the appworld when we load the datasets.

ReAct (Yao et al., 2023)-style trajectories for sin-
gle agents and then uses a powerful LLM to trans-
late them to multi-agent trajectories. First, we use
Llama-3.3-70B-Instruct (Meta, 2025) to gen-
erate single-agent trajectories (see the prompt in
Figure 13 in Appendix E) from AppWorld train
and dev sets via rejection sampling at different
temperatures (Chen et al., 2025c), obtaining 2, 844
gold trajectories. Then, for each agent (Orchestra-
tor,Executor and Critic) in our multi-agent setup,
we prompt Claude 3.7-Sonnet (Anthropic, 2025)
to convert the single agent trajectories into appro-
priate trajectories for each agent (See the prompt
in Figure 14 in Appendix E). These trajectories
were then validated using AppWorld. We gathered
2, 708 such trajectories for training (see Appendix
A.1 and A.2 for details).

5.3 Models & Setup

We use Qwen2.5-Coder variants (7B,14B, and 32B)
for our experiments due to their strong coding
abilities and Llama-3.1-8B and Phi-4 for their
strong reasoning abilities (Hui et al., 2024), skills
essential for agents. All models are finetuned us-
ing LoRA (Hu et al., 2021) (see Appendix B.1
for more training and evaluation details). We use
the same ReAct (Yao et al., 2023) prompt from
Trivedi et al. (2024) during inference, but we cus-
tomize it to be agent-specific (see Appendix E). For
each variant, we evaluate five different baselines:
single-agent (SA), and fine-tuned version ([FT]),
our multi-agent (MA) system proposed in Section 3
and its fine-tuned version ([FT]) and multi-agent
system trained with Progressive Subtask Training
([ProST]). We denote agents in multi-agent config-
urations using the (Orchestrator-Executor-Critic)
format, where each placeholder indicates the agent
size in billions of parameters (e.g., 7-7-7). We
also evaluate the multi-agent system with different
sized Orchestrator models, such as a 14B Orches-
trator with 7B Executor and Critic (14-7-7), and
a 7B Orchestrator with 14B Executor and Critic
(7-14-14).

5.4 Cost-Performance Pareto Analysis

Performance AppWorld provides two metrics to
measure performance: 1) Task Goal Completion
(TGC) measures percentage of tasks where agent
passes all the human written unit tests for that task.
2) Scenario Goal Completion (SGC) is the percent-
age of scenarios where the agent passes all the unit
tests of each task in that scenario. It measures both

3361



consistency and performance across similar tasks.
Computational Cost We use Floating Point Op-
erations (FLOPs) to measure computational cost4.
We approximate FLOPsper instance as a function
of the model parameters and tokens involved in
the computation. We use the formula from Kaplan
et al. (2020) which is 2×#params×(input tokens+
output tokens).

Our evaluations plot these effectiveness metrics
against FLOPs to show the Pareto curves (Yue et al.,
2025; Pimentel et al., 2020) of different agent se-
tups, thereby providing Pareto-optimal choices at
different cost-performance trade-offs.

6 Results

6.1 Effectiveness
Table 1 shows the effectiveness metrics (TGC and
SGC) for single and multi-agent setups instantiated
with the different size variants of Qwen-2.5-Coder
discussed in Section 5.3. We observe two findings:

1) Multi-agent systems are more effective
than their single-agent counterparts We expect
multi-agent systems with specialized SLMs than
their corresponding single agent versions. This is
observed in Table 1 and 3 as the multi-agent system
(MA) is better than the corresponding single-agent
baseline (SA) for each parameter variant (e.g., MA
14-14-14 [ProST] attains TGC score of 42.3, while
SA 14 [FT] TGC scores 34.5). Furthermore, we
find that multi-agent systems can even be on par
with large single agents (e.g., GPT-4o) in terms of
both effectiveness as well as efficiency5. For exam-
ple, the Phi-4 14B-14B-14B multi-agent gets 46.4,
which is close to GPT-4o gets 48.8 on Test-Normal
TGC) (Trivedi et al., 2024).

2) Finetuning with ProST creates more effec-
tive multi-agent systems To solve AppWorld
tasks, we need models that are good at both com-
plex reasoning as well as coding. Multi-agents
powered by code specialist SLMs as base mod-
els (e.g., Qwen-2.5-Coder) improve when trained
with ProST. However, as shown in Table 1 and 3,
when trained with models that are good at both cod-
ing and complex reasoning, such as Llama-3.1 and
Phi-4 base models, we find that ProST improves

4As we discuss in the limitations section section 8, we only
focus on computational cost and not on memory considera-
tions.

5Here we mean efficiency in terms of overall FLOPs and
not accounting of engineering overheads that can impact both
settings.

Model TGC(%) SGC(%)

Qwen-2.5-Coder-7B
SA 7 3.6 0
SA 7 [FT] 24.4 8.9
MA 7-7-7 5.9 0
MA 7-7-7 [FT] 25.6 8.9
MA 7-7-7 [ProST] 30.4 19.6

Qwen-2.5-Coder-14B
SA 14 14.9 3.6
SA 14 [FT] 34.5 21.4
MA 14-14-14 20.2 8.9
MA 14-14-14 [FT] 35.7 26.8
MA 14-14-14 [ProST] 42.3 26.8

Qwen-2.5-Coder-32B
SA 32 36.3 16.1
MA 32-32-32 39.9 19.6

Table 1: TGC and SGC scores on AppWorld
Test-Normal benchmark for different baselines and our
models. We observe that multi-agent systems trained
with ProST gives best performance across each variant,
even better than much base models of much larger vari-
ants. SA = Single Agent system, MA = Multi-Agent
system, FT = Standard finetune, ProST = Finetune with
Progressive Subtask Training.

SGC scores on three out of four models, demon-
strating its utility for improving robustness as well.
Compared to standard fine-tuning, ProST yields
18.8% and 18.5% relative gains in TGC scores for
the 7B and 14B coding models, respectively. Using
Llama-3.1 and Phi-4, the relative gains are even
larger at 30.8% and 34.5%, respectively.

6.2 Pareto Front Comparisons

Figure 3 shows the computational efficiency (mea-
sured in FLOPs) against task accuracy (TGC) of a
subset of our systems using Qwen-2.5-Coder se-
ries models. It shows three Pareto fronts for non-
finetuned, finetuned, and ProST fine-tuned models.
The figure supports three key findings:

1) ProST improves Pareto optimality of multi-
agent systems Pareto-front is worst for non-
finetuned models. Fine-tuning gives more Pareto-
optimal models, observed by Pareto fronts (2) and
(3), shifting rightwards, i.e., reduces computational
cost while improving effectiveness. However, mod-
els trained using ProST have the best tradeoff be-
tween accuracy and computational efficiency. This
shows the effectiveness of ProST in training more
effective models with lower computation costs.

2) Optimality is not dependent on total parame-
ter size alone One would expect a system with
a larger number of overall parameters to have a

3362



0.51.01.52.02.5
(Tera)FLOPs 1e6

5
10
15
20
25
30
35
40

TG
C 

(%
)

7-7-7

14-14-14

32-32-32
32

7-7-7+FT

14-14-14+FT
14+FT

7-7-7+ProST

14-14-14+ProST

1
2

3

Figure 3: Pareto fronts for three classes of systems: (1)
Non-finetuned models, (2) Standard finetuned models,
and (3) ProST-tuned models.

higher computational cost and to perform better
in general. However, when comparing the non-
fine-tuned 32B single-agent setup to the 14-14-14
ProST multi-agent setup, we observe that the multi-
agent system has more parameters (32B vs 42B),
yet computational cost is lower (1.36 vs 1.06 Ter-
aFLOPs). This is due to the overall computational
cost depending on the overall length of trajecto-
ries produced by the different systems, which in
turn also depends to some degree on their effec-
tiveness. Notably, the fine-tuned 14-14-14 ProST
multi-agent setup achieves a higher score than both
the non-fine-tuned 32B single-agent setup and the
much larger 32-32-32 multi-agent setup (96B pa-
rameters), highlighting that effectiveness is not
solely determined by total parameter size.

3) Stronger Orchestrator is a more optimal
choice Recent work shows that powerful plan-
ning/Orchestrator agents can improve task effec-
tiveness (Erdogan et al., 2025). We study whether
allocating higher capacity to the Orchestrator leads
to more Pareto-optimal solutions with ProST (see
Figure 4.) To this end, we create two system vari-
ants: (i) 7-14-14, which uses a weaker Orches-
trator (7B), and (ii) 14-7-7, which uses a stronger
Orchestrator (14B).

We find that multi-agent systems with a strong
Orchestrator are more optimal than ones with a
weak Orchestrator of the same parameter count
(see Table 5 in Appendix). As shown in the fig-
ure, 14-7-7 + ProST has higher TGC and is also
more efficient than 7-14-14 + ProST. Also, ProST
training reduces the overall FLOPs for all MAS sys-
tems with strong Orchestrators (i.e. 14B) while
improving effectiveness, when compared to their

0.40.60.81.0
(Tera)FLOPs 1e6

5
10
15
20
25
30
35
40

TG
C 

(%
)

7-7-7

7-14-14 14-7-7

14-14-14

7-7-7+ProST
7-14-14+ProST

14-7-7+ProST
14-14-14+ProST

Figure 4: Stronger Orchestrators trained by Progressive
Subtask Training achieve better Pareto optimality in
terms of computation and accuracy. Points closer to the
top-right indicate better trade-offs.

Selection Strategies TGC SGC

Qwen-2.5-Coder-14B MAS [ProST]
- All 35.7 26.8
- Random 34.5 23.2
- Decrement 39.9 26.8
- Ours 42.3 26.8

Table 2: Ablation: Effect of different subtask selection
strategies in ProST.

non-fine-tuned versions. Whereas, ProST training
a weak Orchestrator (i.e. 7B) improves effective-
ness but does not reduce overall FLOPs. This is
likely because poor orchestration (i.e. planning
and guidance) causes more trial and error before
success, leading to longer trajectories.

7 Analysis

Importance of progressive subtask selection
ProST can be seen as training for a subset of tasks
in each epoch using a specific progressive inclusion
strategy. Here we test the necessity of the subset
selection by comparing against including all sub-
sets of tasks in each epoch (ALL), and the necessity
of our specific progressive strategy by comparing
against both (i) random subset selection at each
epoch (Random)6, and (ii) an inverse strategy that
includes all subtasks (full task) first, and removes
subtasks as training progresses(Decrement).

Table 2 shows that random selection yields the
worst performance, whereas progressively learning
more subtasks either via (Decrement or Ours) pro-
vides gains over training on all subtasks from the
start. However, Ours, the progressive curriculum

6Note that this strategy is constructed to ensure that all
subtasks are shown to the model during the training. See
Appendix B.2 for details.

3363



1.1
 Diso

be
y T

ask

Sp
eci

fica
tio

n

1.2
 Diso

be
y R

ole

Sp
eci

fica
tio

n
1.3

 St
ep

Re
pe

titi
on

1.4
 Lo

ss 
of 

Con
ve

rsa
tio

n

Histo
ry

1.5
 Una

ware
 of

 Te
rm

ina
tio

n

Con
dit

ion
s

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

12.3%

2.5%

29.0%

2.5%

9.9%11.4%

1.2%

24.7%

1.8%

9.6%

Standard Total: 56.2%
ProST Total: 48.8%

Specification Issues
(System Design)

2.1
 Con

ve
rsa

tio
n

Re
set

2.2
 Fa

il t
o A

sk 
for

Clar
ific

ati
on

2.3
 Ta

sk

Dera
ilm

en
t

2.4
 In

for
mati

on

With
ho

ldin
g

2.5
 Ig

no
red

 Othe
r

Age
nt'

s In
pu

t

2.6
 Re

aso
nin

g-A
cti

on

Mism
atc

h
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

1.9%

19.1%

11.7%

1.9% 3.1%

17.3%

0.6%

9.0%
5.4%

0.6% 1.8%

10.2%

Standard Total: 54.9%
ProST Total: 27.7%

Inter-Agent Misalignment
(Agent Coordination)

3.1
 Pr

em
atu

re

Ter
mina

tio
n

3.2
 No o

r In
com

ple
te

Ve
rifi

cat
ion

3.3
 In

cor
rec

t

Ve
rifi

cat
ion

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

22.2%

38.9%

9.9%

18.7%

29.5%

6.0%

Standard Total: 71.0%
ProST Total: 54.2%

Task Verification
(Quality Control)

Standard Fine-tuning
ProST Fine-tuning

Figure 5: Failure mode analysis using the MAST (Cemri et al., 2025) taxonomy (Specification Issues, Inter-Agent
Misalignment, Task Verification) and the LLM-as-a-Judge pipeline (Llama-3.3 70B as the judge). Progressive
Subtask Training (ProST) consistently reduces error modes across all categories.

1 2 3 4 5 6
Subtask Position

0

5

10

15

20

25

Er
ro

r R
at

e 
(%

)

5/55
9.1%

9/45
20.0%

7/55
12.7%

7/45
15.6%

5/55
7.3%

1/44
2.3%

5/53
9.4%

5/24
20.8%

2/29
6.9%

1/12
8.3% 1/15

6.7%

1/6
16.7%

PST Fine-tune
Standard Fine-tune

Figure 6: Error rates per subtask position for ProST
Fine-tuning (green) and Standard Fine-tuning (orange),
computed only on successful tasks. The error rate is
defined as (number of successful tasks with at least
one error at subtask i / total number of successful tasks
that reached subtask i) × 100%. We consider only the
subtasks which has more than 5 successful tasks from
both settings. ProST Fine-tuning shows lower error
rates across most subtasks, while Standard Fine-tuning
exhibits significantly higher error rates.

whereby we learn the task-specific subtasks first, is
still substantially better than its inverse Decrement,
likely because it better reflects the natural depen-
dencies between the subtasks. However, we see
that SGC scores are the same for All, Decrement,
and Ours, showing that selection has no affect on
solving tasks across same scenarios.

ProST reduces error rates in subtasks and
MAST taxonomy One of the main motivations
for ProST was our observation that SLMs are un-
able to learn all subtasks effectively under standard
fine-tuning. ProST aims to address this by training
models to incrementally learn more subtasks. Fig-

ure 6 compares the rates of error at each subtask
position from successful completion during infer-
ence for standard finetuning and ProST by count-
ing the number of error messages returned by the
AppWorld environment. We find that ProST has a
lower error rate than standard fine-tuning at most
subtask positions. This shows that, with ProST,
SLMs learn subtasks more effectively.

To analyze the errors further, we adopt MAST
(Multi-Agent System Failure Taxonomy) (Cemri
et al., 2025), an empirically grounded taxonomy for
categorizing errors in multi-agent systems, which
categorizes failures into Specification Issues, Inter-
Agent Misalignment, and Task Verification. We
use their validated LLM-as-a-Judge pipeline (with
Llama-3.3 70B as the judge) to classify errors
across these categories. As shown in Figure 5,
Progressive Subtask Training (ProST) consistently
reduces error rates across all categories and subcat-
egories, with highest improvements in inter-agent
coordination failures.
How do trajectory lengths compare? We com-
pare the trajectory lengths of single and multi-agent
systems. Figure 7 shows the distribution of tokens
for the 14B based systems in successfully com-
pleted test set tasks compared to the unsuccessful
ones (see Figure 9 in the Appendix for the full
results across 7B, 14B, and 32B models) . The tra-
jectory lengths, i.e, the average number of tokens,
for unsuccessful tasks is higher than for successful
ones for all systems with higher variance. Unsuc-
cessful tasks are likely to have more trial-and-error
behavior and more errors, which add to the tra-

3364



Figure 7: Comparison of total tokens across successful
and unsuccessful task completion. Green bars indicate
tokens processed in successful tasks, and red bars repre-
sent tokens processed in failed tasks. Percentage labels
above each bar show the ratio of processed tokens that
resulted in completing tasks.

Model TGC(%) SGC(%)

Llama-3.1-8B
SA 8 6.6 1.8
SA 8 [FT] 26.2 8.9
MA 8-8-8 5.9 0
MA 8-8-8 [FT] 25 7.1
MA 8-8-8 [ProST] 32.7 19.6

Phi-4-14B
SA 14 15.5 3.6
SA 14 [FT] 32.1 14.3
MA 14-14-14 30.9 14.3
MA 14-14-14 [FT] 34.5 19.6
MA 14-14-14 [ProST] 46.4 28.6

Table 3: TGC and SGC scores on AppWorld
Test-Normal benchmark for different baselines and
models (Llama-3.1-8B and Phi-4-14B). We notice simi-
lar performance tradition between Qwen series models
and Llama-3.1-8B & Phi-4-14B. We observe that multi-
agent systems trained with ProST have the best perfor-
mance in all settings. SA = Single Agent system, MA =
Multi-Agent system, FT = Standard finetune, ProST =
Finetune with Progressive Subtask Training.

jectory length. Multi-agent systems have longer
trajectories for successful tasks compared to single-
agent systems in part because of the overheads
involved in separating the roles and the resultant
communication. Fine-tuning, standard, and ProST
have shorter trajectories for successful tasks, likely
due to reduced subtask error rates.

Does ProST generalize to models of different ca-
pabilities? We also used ProST to train two other
non-coding models with different generative capa-
bilities, Llama-3.1-8B and Phi-4-14B and eval-
uated them on both Test Normal (see Table 3)
and Test Challenge (see Table 4) sets. For Test
Normal, Llama-3.1-8B and Phi-4-14B yield sig-
nificant performance improvements. Phi-4-14B
performed even better than Qwen-2.5-Coder-14B.
Phi-4 14-14-14 [ProST] shows 46.4% and 28.6%

Model TGC SGC

Qwen-2.5-Coder-14B
SA 14 4.3 2.2
SA 14 [FT] 16.8 5.8
MA 14-14-14 10.1 3.6
MA 14-14-14 [FT] 13.7 5.0
MA 14-14-14 [ProST] 14.1 5.8

Phi-4-14B
SA 14 6.2 2.2
SA 14 [FT] 14.1 3.6
MA 14-14-14 12.2 4.3
MA 14-14-14 [FT] 12.5 7.2
MA 14-14-14 [ProST] 17.8 8.6

Table 4: Performance comparison in single-agent and
multi-agent settings on Test Challenge (Test-C) set for
Qwen-2.5-Coder-14B and Phi-4-14B.

in TGC and SGC in Test Normal, respectively, and
is the highest among the different sized models.

Can ProST generalize to out-of-distribution
data (OOD)? AppWorld also provides an out-of-
distribution Test-Challenge test set, with tasks
requiring more API calls and use at least one
unseen application. We evaluate ProST on this
test set, presenting results for Qwen-2.5 Coder
14B and Phi-4 14B in Table 4. We find that
Phi-4-14B with ProST outperforms other fine-
tuning and multi-agent baselines with 17.8% in TGC
and 8.6% in SGC. While Qwen-2.5-Coder-14B’s
fine-tuned single-agent achieves the best perfor-
mance in its model family, its ProST variant has
higher accuracy than the corresponding fine-tuned
multi-agent setup. These results show that ProST,
with appropriate base models, can help improve
OOD generalization. More results for this test set
are present in Appendix Table 6.

8 Conclusion
SLM based multi-agents present a viable alter-
native for solving complex problems. However,
the limited capacities of SLMs prevent them from
learning all subtasks in long trajectory problems.
In this work, we introduced a new Progressive Sub-
task Training algorithm that helps address this chal-
lenge. Progressively introducing subtasks during
training allows the limited capacity SLMs to more
effectively learn the subtasks resulting in improved
overall effectiveness. To better understand the cost-
effectiveness trade-offs between single and multi-
agent setups, we conduct pareto analyses which
yield a holistic view of the performance of these
systems. Our experiments on AppWorld, a popu-
lar agentic benchmark demonstrates the utility of
ProST for addressing complex problems.

3365



Limitations

Generalizability We use AppWorld as a test bed
for complex reasoning problems. While our design
for the agents i.e., their roles, and ProST training
paradigm are broadly applicable to many agentic
frameworks, and is not AppWorld specific (detailed
explanation in Appendix D.1), some aspects of
our modeling and agentic design are influenced by
specifics of AppWorld. For example, we showed
through ablation studies that the order of introduc-
ing subtasks in ProST does indeed matter. However,
the choice of introducing the first and last subtasks
at the end of training is specific to AppWorld, and
it may not generalize well to other benchmarks.

Training Data The training dataset is LLM gen-
erated. While we only use successful trajectories,
the overall quality of these trajectories (e.g., diver-
sity) has not been evaluated. Also, some parts of
the multi-agent training instances are created us-
ing a closed-source LLM (Claude-3.7-Sonnet).
LLM generation of synthetic data using frontier
(non open-source) models, while widely used
(Saqib et al., 2025; Wang et al., 2025b; Li et al.,
2023; Tang et al., 2023), has its limitations in terms
of reproducibility. We will release these instances
to ensure replicability and comparisons against
other methods for training agents. However, the
standard issues of using closed-source LLM will
make it difficult to compare against other means
of generating training data, unless the method is
replicated. We will release code and data to support
replicability as much as possible.

Inference-time Computation Cost Progressive
Subtask Training optimizes agents in multi-agent
architectures such that models perform better at
similar inference time cost, measured in FLOPs.
However, our analysis does not include memory
considerations. This can be a significant bottleneck
as we load multiple instantiations of SLMs, leading
to a large GPU overhead. For instance, when load-
ing the 14-14-14 multi-agent system, we need one
H100 GPU (80GB each) for each agent, totaling
around 240GB of memory. While parameter count
is taken into account during inference computation
cost, we do not account actual cost of loading the
whole. We thus carefully scope our claims to only
runtime costs as measured by FLOPs.

Out-of-domain Aspects: Since we finetune mod-
els on training data with limited scope, models may
have learned short-cuts, or overfit to the distribution

of the training data. The mixed results on out-of-
distribution test data in table 4 and 6 and suggests
scope for future work.

Acknowledgements

This work is supported in part by a SUNY-IBM
Artificial Intelligence Collaborative Research Al-
liance grant, an Amazon Research Award 2023,
and a NSF NAIRR compute credits grant #240140.
Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of
the author(s) and do not reflect the views of Ama-
zon.

References
Anthropic. 2025. Claude 3.7 sonnet. Accessed: 2025-

04-28.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu,
Xin Dong, Saurav Muralidharan, Yingyan Celine Lin,
and Pavlo Molchanov. 2025. Small language models
are the future of agentic ai.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A.
Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan
Ramchandran, Matei Zaharia, Joseph E. Gonzalez,
and Ion Stoica. 2025. Why do multi-agent llm sys-
tems fail?

Junzhi Chen, Juhao Liang, and Benyou Wang. 2025a.
Smurfs: Multi-agent system using context-efficient
DFSDT for tool planning. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 3281–3298, Albuquerque, New Mexico.
Association for Computational Linguistics.

Justin Chen, Archiki Prasad, Swarnadeep Saha, Elias
Stengel-Eskin, and Mohit Bansal. 2025b. MAgICore:
Multi-agent, iterative, coarse-to-fine refinement for
reasoning.

Kevin Chen, Marco Cusumano-Towner, Brody Hu-
val, Aleksei Petrenko, Jackson Hamburger, Vladlen
Koltun, and Philipp Krähenbühl. 2025c. Reinforce-
ment learning for long-horizon interactive llm agents.

Zhixun Chen, Ming Li, Yuxuan Huang, Yali Du, Meng
Fang, and Tianyi Zhou. 2025d. Atlas: Agent tuning
via learning critical steps.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong
Moon, Hiroki Furuta, Gopala Anumanchipalli, Kurt
Keutzer, and Amir Gholami. 2025. Plan-and-act:
Improving planning of agents for long-horizon tasks.

Zihao Feng, Xiaoxue Wang, Bowen Wu, Weihong
Zhong, Zhen Xu, Hailong Cao, Tiejun Zhao, Ying

3366

https://www.anthropic.com/claude/sonnet
http://arxiv.org/abs/2506.02153
http://arxiv.org/abs/2506.02153
http://arxiv.org/abs/2503.13657
http://arxiv.org/abs/2503.13657
https://doi.org/10.18653/v1/2025.naacl-long.169
https://doi.org/10.18653/v1/2025.naacl-long.169
https://openreview.net/forum?id=j9wBgcxa7N
https://openreview.net/forum?id=j9wBgcxa7N
https://openreview.net/forum?id=j9wBgcxa7N
http://arxiv.org/abs/2502.01600
http://arxiv.org/abs/2502.01600
http://arxiv.org/abs/2503.02197
http://arxiv.org/abs/2503.02197
http://arxiv.org/abs/2503.09572
http://arxiv.org/abs/2503.09572


Li, and Baoxun Wang. 2025. Empowering llms
in task-oriented dialogues: A domain-independent
multi-agent framework and fine-tuning strategy.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong,
Zhuoma Gongque, Weihao Zeng, Wei Wang, Jin-
gang Wang, Xunliang Cai, and Weiran Xu. 2025.
Agentrefine: Enhancing agent generalization through
refinement tuning.

Alexander Golubev, Sergey Polezhaev, Karina Zainul-
lina, Maria Trofimova, Ibragim Badertdinov, Yury
Anapolskiy, Daria Litvintseva, Simon Karasik, Fil-
ipp Fisin, Sergey Skvortsov, Maxim Nekrashe-
vich, Anton Shevtsov, Sergey Abramov, and Boris
Yangel. 2024. Leveraging training and search
for better software engineering agents. Nebius
blog. Https://nebius.com/blog/posts/training-and-
search-for-software-engineering-agents.

Shivanshu Gupta, Sameer Singh, Ashish Sabharwal,
Tushar Khot, and Ben Bogin. 2025. Leveraging in-
context learning for language model agents. arXiv
preprint arXiv:2506.13109.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yun-
long Feng, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. 2024. Qwen2.5-coder tech-
nical report.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin.
2023. Synthetic data generation with large language
models for text classification: Potential and limita-
tions. arXiv preprint arXiv:2310.07849.

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang,
Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei
Huang, and Yongbin Li. 2024. Lingma swe-gpt: An

open development-process-centric language model
for automated software improvement.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36:46534–46594.

Meta. 2025. Llama-3.3-70b-instruct. Also available
at: https://huggingface.co/unsloth/Llama-3.3-70B-
Instruct. Accessed: 2025-04-20.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2025.
Training software engineering agents and verifiers
with swe-gym.

Tiago Pimentel, Naomi Saphra, Adina Williams, and
Ryan Cotterell. 2020. Pareto probing: Trading off
accuracy for complexity. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3138–3153, On-
line. Association for Computational Linguistics.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. Adapt: As-needed decomposi-
tion and planning with language models.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao
Sun, Wenyi Zhao, Yu Yang, Xinyue Yang, Jiadai Sun,
Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and
Yuxiao Dong. 2025. Webrl: Training llm web agents
via self-evolving online curriculum reinforcement
learning.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and
Huajun Chen. 2024. AutoAct: Automatic agent
learning from scratch for QA via self-planning. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3003–3021, Bangkok, Thailand.
Association for Computational Linguistics.

Mohammad Saqib, Saikat Chakraborty, Santu Kar-
maker, and Niranjan Balasubramanian. 2025. Teach-
ing an old llm secure coding: Localized preference
optimization on distilled preferences. arXiv preprint
arXiv:2506.00419.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024. Small llms are weak tool learners: A
multi-llm agent.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024. Learning
to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 10642–10657, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

3367

http://arxiv.org/abs/2505.14299
http://arxiv.org/abs/2505.14299
http://arxiv.org/abs/2505.14299
http://arxiv.org/abs/2501.01702
http://arxiv.org/abs/2501.01702
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2409.12186
http://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2309.06180
http://arxiv.org/abs/2411.00622
http://arxiv.org/abs/2411.00622
http://arxiv.org/abs/2411.00622
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
http://arxiv.org/abs/2412.21139
http://arxiv.org/abs/2412.21139
https://doi.org/10.18653/v1/2020.emnlp-main.254
https://doi.org/10.18653/v1/2020.emnlp-main.254
http://arxiv.org/abs/2311.05772
http://arxiv.org/abs/2311.05772
http://arxiv.org/abs/2411.02337
http://arxiv.org/abs/2411.02337
http://arxiv.org/abs/2411.02337
https://doi.org/10.18653/v1/2024.acl-long.165
https://doi.org/10.18653/v1/2024.acl-long.165
http://arxiv.org/abs/2401.07324
http://arxiv.org/abs/2401.07324
https://doi.org/10.18653/v1/2024.findings-emnlp.624
https://doi.org/10.18653/v1/2024.findings-emnlp.624


Ruixiang Tang, Xiaotian Han, Xiaoqian Jiang, and
Xia Hu. 2023. Does synthetic data generation of
llms help clinical text mining? arXiv preprint
arXiv:2303.04360.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin
Manku, Vinty Dong, Edward Li, Shashank Gupta,
Ashish Sabharwal, and Niranjan Balasubramanian.
2024. AppWorld: A controllable world of apps and
people for benchmarking interactive coding agents.
In ACL.

Haochun Wang, Sendong Zhao, Jingbo Wang, Zewen
Qiang, Bing Qin, and Ting Liu. 2025a. Beyond
frameworks: Unpacking collaboration strategies in
multi-agent systems. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 21361–
21375, Vienna, Austria. Association for Computa-
tional Linguistics.

Yubo Wang, Xiang Yue, and Wenhu Chen. 2025b.
Critique fine-tuning: Learning to critique is more
effective than learning to imitate. arXiv preprint
arXiv:2501.17703.

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang
Ding, Miao Zhang, Jie Liu, and Min Zhang. 2025c.
Agentdropout: Dynamic agent elimination for token-
efficient and high-performance llm-based multi-agent
collaboration.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystifying
llm-based software engineering agents.

Sibo Xiao, Zixin Lin, Wenyang Gao, Hui Chen, and Yue
Zhang. 2025. Long context scaling: Divide and con-
quer via multi-agent question-driven collaboration.

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai
Lam, Difan Zou, and Kai Chen. 2025. Swe-fixer:
Training open-source llms for effective and efficient
github issue resolution.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024. Swe-agent: Agent-computer interfaces
enable automated software engineering.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

Yanwei Yue, Guibin Zhang, Boyang Liu, Guancheng
Wan, Kun Wang, Dawei Cheng, and Yiyan Qi. 2025.
MasRouter: Learning to route LLMs for multi-agent
systems. In Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15549–15572, Vienna,
Austria. Association for Computational Linguistics.

Yuting Zeng, Weizhe Huang, Lei Jiang, Tongxuan Liu,
XiTai Jin, Chen Tianying Tiana, Jing Li, and Xiaohua

Xu. 2025. S2-MAD: Breaking the token barrier to en-
hance multi-agent debate efficiency. In Proceedings
of the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 9393–9408, Albuquerque, New
Mexico. Association for Computational Linguistics.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun,
Guancheng Wan, Kun Wang, Dawei Cheng, Jef-
frey Xu Yu, and Tianlong Chen. 2024a. Cut the
crap: An economical communication pipeline for
llm-based multi-agent systems.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik
Roychoudhury. 2024b. Autocoderover: Autonomous
program improvement.

3368

https://aclanthology.org/2025.acl-long.1037/
https://aclanthology.org/2025.acl-long.1037/
https://aclanthology.org/2025.acl-long.1037/
http://arxiv.org/abs/2503.18891
http://arxiv.org/abs/2503.18891
http://arxiv.org/abs/2503.18891
http://arxiv.org/abs/2407.01489
http://arxiv.org/abs/2407.01489
http://arxiv.org/abs/2505.20625
http://arxiv.org/abs/2505.20625
http://arxiv.org/abs/2501.05040
http://arxiv.org/abs/2501.05040
http://arxiv.org/abs/2501.05040
http://arxiv.org/abs/2405.15793
http://arxiv.org/abs/2405.15793
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://aclanthology.org/2025.acl-long.757/
https://aclanthology.org/2025.acl-long.757/
https://doi.org/10.18653/v1/2025.naacl-long.475
https://doi.org/10.18653/v1/2025.naacl-long.475
http://arxiv.org/abs/2410.02506
http://arxiv.org/abs/2410.02506
http://arxiv.org/abs/2410.02506
http://arxiv.org/abs/2404.05427
http://arxiv.org/abs/2404.05427


A Data Preparation and Trajectory
Transformation

A.1 Single-Agent Trajectory Generation

AppWorld (Trivedi et al., 2024) provides training
pairs consisting of input prompts and output states.
Specifically, it offers 90 training and 57 develop-
ment tasks, each with its corresponding output state
(i.e., Python solution). We use all 147 tasks to
create a fine-tuning dataset for both single-agent
and multi-agent setups. To increase the dataset
size and introduce solution diversity for each
task, we use Llama-3.3-70B-Instruct (Meta,
2025) as the Re-Act agent across 20 different
temperature settings. We start at a temperature
of 0.05 and increment by 0.05 each time, up
to 1.0. To reflect practical scenarios, we first
attempt to solve all 147 × 20 = 2, 940 tasks
without providing the output state to the agent.
Our base Llama-3.3-70B-Instruct model suc-
cessfully solves 1,034 out of 2,940 candidate
trajectories across the different temperature set-
tings. For the remaining tasks, we provide ab-
stract instructions instead of direct code. We gen-
erate these instructions in natural language using
Llama-3.3-70B-Instruct. By feeding these ab-
stract instructions to the agent for the 1,906 un-
solved candidates, we obtain 1,396 new gold tra-
jectories. For the final 510 candidates, we convert
the Python code solutions into pseudocode using
Llama-3.3-70B-Instruct. We avoid giving di-
rect Python code as hints because the agent tends
to reproduce the code verbatim. Assisting in pseu-
docode format yields 414 additional gold trajec-
tories. In total, we collect 2,844 gold trajectories.
This approach ensures diverse solutions for each
task across different temperature settings. When
our agent fails to solve tasks in the first phase (i.e.,
limit exceeds), we use our curated abstract assis-
tance. We did not generate new training tasks for
AppWorld, since creating and validating new tasks
requires specific environment support, which is
challenging to set up.

A.2 Transformation to Multi-Agent
Trajectories

We ensure that each agent in the multi-agent
system is trained effectively to handle its spe-
cific role while maintaining overall system co-
herence. To achieve this, we have two options
at this point to prepare agent-specific training
data. One option is direct distillation. First,

we use Llama-3.3-70B-Instruct for this pur-
pose. However, open-source models such as
Llama-3.3-70B-Instruct are not trained on such
long-horizon tasks for multi-agent setting, lead-
ing to fragile plans and overall less informative
trajectories. On the otherhand, direct distillation
of multi-agent trajectories from frontier models is
both prohibitively expensive and has fundamental
technical limitations. The costs of direct distillation
exceed well beyond typical research budgets—our
estimate worked out to between 20− 25, 000 USD
just to obtain the trajectories. To obtain around
3000 trajectories we will have to get around 12000
sample generations from the frontier model. With
each generation costing around 2, this works out to
24, 000 dollars.

In contrast, our cost-efficient trajectory trans-
formation approach leverages existing successful
single-agent solutions as a foundation, then system-
atically decomposes them into coordinated multi-
agent workflows. We leverage in-context learning
capabilities of LLMs by providing the teacher LLM
(Claude-3.7-Sonnet) (Anthropic, 2025) with suc-
cessful single-agent trajectories and prompting it
to decompose them into structured multi-agent or-
chestrations. Given a single-agent trajectory that
successfully completes a task in the AppWorld en-
vironment, we prompt the LLM to partition the
sequence of actions into logical subtasks while pre-
serving the exact execution steps that led to success.
Our transformation approach maintains a critical
constraint: each executor step (both the reasoning
and code) must be identical to the original single-
agent trajectory steps. Crucially, we do not allow
the model to invent new code or modify existing ex-
ecution logic - it can only redistribute the original
successful steps across subtasks and add exit com-
mands to signal subtask completion. The teacher
LLM successfully produces valid 2,708 trajectories
from 2844 single agent trajectories. This approach
ensures that the generated multi-agent trajectories
align with the real execution environment and we
further validated these transform actions again by
running into the AppWorld environment. This ap-
proach proved both economically feasible (cost was
only 300 USD) and effective for our purposes.

While the impact of different distillation strate-
gies can add useful knowledge this is somewhat
orthogonal to our key contributions of pareto com-
parisons of single/multiagent systems, improving
multiagents using SLMs through ProST training.
The idea of using synthetically distilled dataset is a

3369



part of our work but not our main focus. We further
analyze error rates for each subtask of the multi-
agent trajectories (depict in Figure 8). It shows our
dataset covers error correction patterns across all
subtasks. We finetune specialized agents of differ-
ent sizes (7B and 14B), as well as single agents as
baselines. Agents in the multi-agent systems are
trained on their respective datasets in two ways: (1)
standard supervised finetuning, and (2) Progressive
Subtask Training (ProST) (details in Section 4.)

A.3 Pipeline Rationale and Verification
The primary reason we used the specific pipeline of
Llama-3.3-70B to generate single-agent trajecto-
ries and frontier model (i.e., Claude-3.7-Sonnet)
to translate into multi-agent trajectories is cost.
While our approach enables cost-effective scaling,
it also introduces variability. These imperfections
can affect fairness by biasing agents toward partic-
ular solution styles, and they limit reproducibility
since other researchers may obtain different trajec-
tories if different LLMs or prompts are used. To
mitigate this, we will release all generated trajec-
tories and prompts, enabling others to train under
identical conditions. Understanding how the LLMs
structure reasoning in natural language is an inter-
esting study that can shed further light on different
reasoning patterns, but one that is beyond the scope
and goals of our work.

Notably, both the single-agent and the multi-
agent trajectories are fully verified. They are gold
trajectories in the sense that using them will solve
the corresponding tasks. Both versions share a bulk
of their trajectories, with the added parts in multi-
agent trajectories being mostly content specific to
multi-agent aspects of the problem. Our generated
trajectories are fully verified — they are actually
validated via execution in the AppWorld environ-
ment. We only retain trajectories that actually work
for the given task. We conducted further sanity
checks on a limited set for prompt engineering to
ensure that there are no formatting or structural
errors and that the steps remain consistent with
the intended task goals. There were no errors in
the sub-task goals or the description, although we
found some cases where the description can be
improved in small ways. The reason for the low-
levels of noise here is that the original single agent
trajectories we use are gold trajectories – actually
are verified. Together, this combination of auto-
matic environment-based validation and manual
spot-checking shows that our dataset is both high-

1 2 3 4 5 6 7 8
Subtask Number

0
2
4
6
8

10
12
14

Er
ro

r R
at

e 
(%

)

5.2%
(144/2750)

9.7%
(266/2750)

13.6%
(372/2728)

8.2%
(154/1876)

4.5%
(25/551)

5.4%
(5/92)

10.0%
(1/10)

0.0%
(0/2)

Figure 8: Error rate percentage for each subtask position
across all training tasks. It shows what percentage of
tasks have at least one error in each subtask position
(1st subtask, 2nd subtask, 3rd subtask, etc.). We define
the error rate function as (number of tasks that have at
least one error in ith subtask position / total number of
tasks that have ith subtask position ) × 100%

quality and task-valid.
We use heterogeneous teachers because gener-

ating high-quality action traces and plan-level ab-
stractions requires models with different strengths.
This approach mirrors Erdogan et al. (2025), which
similarly separates plan and act supervision, em-
ploys open-source models for execution traces, and
frontier models for plan generation and expansion.
Both approaches use synthetic data generation,
annotating ground-truth trajectories with feasible
plans to strengthen the planner – a method shown to
improve planner quality in. Fairness is further pre-
served by applying the same evaluation protocols
and training pipeline components where applicable
across settings, leaving the agent paradigm (single-
agent versus multi-agent) and the multi-agent spe-
cific learning method (ProST) as the sole intended
variables. As reflected by consistent Pareto and
TGC/SGC gains across model scales, our observed
effect comes from ProST and role specialization,
not from differences in teacher models.

B Implementation Details

B.1 Training and Evaluation Configuration

Our base models are finetuned with Low-Rank
Adaptation (LORA) (Hu et al., 2021). We use rank
(r=16), alpha (α=32) and dropout = 0.05. We use
a learning rate of 2.0e-4 with a cosine scheduler.
To stabilize training, we set the gradient clipping
to 1.0 and the weight decay to 0.01. We train the
model for 5 epochs. We use a warm-up ratio of 0.1.
The maximum sequence length is set to 20,480

3370



tokens, as our training trajectories are long. All
of our experiments are conducted on 4 NVIDIA
H100 GPUs with 80GB of memory each. We use
Accelerate integrated with DeepSpeed (ZeRO-3)
for multi-GPU training. This setup provides effi-
cient memory management and optimization. For
both training and evaluation, each agent took 8
GPU hours. For evaluation, we use vLLM (Kwon
et al., 2023) servers. For both single-agent and
multi-agent setups, we perform inference at T=0.1
and T=0.2 for Test Normal set and Test Challenge,
respectively. We set the maximum sequence length
to 65536 and enable prefix caching. For the single-
agent setting, we allow up to 50 turns for evaluation.
For the multi-agent, Orchestrator can plan up to 12
subtasks, and each time Executor allows max 15
turns (for the Test Challenge set, we set max 20
turns) to complete each subtask. A task is consid-
ered failed if an agent calls the task completion
API with a fail status or doesn’t complete the task
within the maximum allotted limits.

B.2 Random Subtask Selection Strategy

To create training data for progressively random
subtask(s) selection finetuning strategy, we employ
a randomized epoch assignment mechanism to en-
sure comprehensive exposure of all subtasks during
model training. For each subtask within a task, we
generate two random integers between 0 and 4,
then create an inclusive range of epochs from the
minimum to the maximum value. This approach
guarantees that every subtask appears in at least one
epoch (when both random numbers are the same)
and can span multiple consecutive epochs (when
the numbers differ). This strategy ensures that all
subtasks receive adequate exposure throughout the
5-epoch training process.

B.3 ProST Details

We always start with at least 2 subtasks. We pro-
gressively add task-specific subtasks, primarily dur-
ing epochs 0–2, and include the first subtask (lo-
gin in AppWorld) and task completion subtasks
in epochs 3–4 if the total number of subtasks is
at most 5. If there are 6 or more subtasks, we
place greater emphasis on task-specific subtasks in
epochs 0–3 and add non-task-specific subtasks in
epoch 4. In general, we do not strictly assign sub-
tasks to specific epochs; instead, our approach adds
subtasks when there are enough available subtasks
to add at each epoch. Otherwise, we add subtasks
after every k epochs (e.g., k = 2, 3). For each task,

we make sure that all subtasks are seen during the
full 5-epoch training.

C Appworld Details

AppWorld (Trivedi et al., 2024) is a framework de-
signed to assess the ability of autonomous agents
in solving real-world problems by interacting with
an environment of everyday applications. The
framework provides the user with two components:
the AppWorld Execution Engine and AppWorld
Benchmark.
AppWorld Execution Engine provides an ex-

ecution environment where agents can interact
with abstract versions of the following nine com-
monly used applications: Amazon, Spotify, Venmo,
Gmail, Todoist, SimpleNote, Splitwise, Phone, and
FileSystem. These applications are simulated us-
ing 457 different APIs and 101 database tables with
370K rows that represent around 100 users. The
execution engine is designed to create a safe and
well-tested (98% coverage with 1, 780 unit tests)
environment for testing agents’ ability to interact
with applications by writing code to invoke APIs.

AppWorld Benchmark provides a dataset con-
sisting of 750 realistic task instructions across 250
different scenarios of app usage in the AppWorld
engine. The tasks are divided into 105 train-set
60 validation set7, 168 in-distribution Test Normal
test set, and 417 out-of-distribution Test Challenge
testbed with unseen apps and APIs. The tasks are
created to utilize, on average, 1.8 apps or make 9.8
API calls by writing ∼ 50 lines of code. The task is
evaluated using State-Based Programmatic Eval-
uation, where the final state of the database is
checked against several manually written assertions
that must pass if the task was completed correctly.

D Extended results

D.1 Generalizability of ProST
The core components of our approach—role spe-
cialization, progressive subtask exposure, and
Pareto-aware optimization—are not tied to App-
World’s specific applications. The Orchestrator-
Executor-Critic architecture is a generalizable de-
composition pattern. Our training strategy, ProST,
targets a universal challenge: SLMs’ inability to
learn long trajectories under standard fine-tuning.
Our ablation studies confirm that the order of sub-
task introduction matters, suggesting that curricu-

7We found only 90 train and 57 dev tasks are available in
the appworld when we load the datasets.

3371



7-
7-

7

7-
14

-1
4

14
-7

-7

14
-1

4-
14

32
-3

2-
32

7-
7-

7+
FT

7-
14

-1
4+

FT
14

-7
-7

+F
T

14
-1

4-
14

+F
T

7-
7-

7+
Pr

oS
T

7-
14

-1
4+

Pr
oS

T
14

-7
-7

+P
ro

ST
14

-1
4-

14
+P

ro
ST 7

7+
FT 14

14
+F

T 32

Experiment

0

50000

100000

150000

200000

250000

300000

350000

400000

450000
Av

er
ag

e 
To

ke
ns

Successful Tasks
Unsuccessful Tasks

Figure 9: Comparison of average tokens across successful and unsuccessful tasks for all experiments. Green bars
indicate average tokens spent on successful tasks, and red bars represent average tokens spend on each failed task.

Model TGC(%) SGC(%)

Qwen-2.5-Coder
MA 14-7-7 15.5 3.6
MA 7-14-14 14.9 3.6
MA 14-7-7 [FT] 30.4 17.9
MA 7-14-14 [FT] 26.8 12.5
MA 14-7-7 [ProST] 36.9 26.8
MA 7-14-14 [ProST] 32.7 16.1

Table 5: Extended results table with different model
sizes multi agent system. TGC and SGC scores on
AppWorld Test-Normal benchmark for different base-
lines and our models. MA = Multi-Agent system, FT =
Standard finetune, ProST = Finetune with Progressive
Subtask Training.

lum design is a critical lever—not just an artifact of
AppWorld’s tasks. Furthermore, we successfully
apply ProST to non-coding models (Llama-3.1-8B,
Phi-4-14B), showing consistent gains across archi-
tectures, and observe performance improvements
on out-of-distribution tasks, where even modest
gains indicate robustness. Using a single, high-
quality benchmark for comprehensive evaluation
is standard practice for complex problems due to
a range of reasons. Firstly, working on complex
task domains often requires significant engineering
effort and environment setup cost. Many promi-
nent works in software engineering and agent eval-
uation use single long horizon domains for this
reason. For instance, the widely-cited SWE-bench
(Jimenez et al., 2024) paper has become the gold

Model TGC(%) SGC(%)

Qwen-2.5-Coder-7B
SA 7 0.2 0.0
SA 7 [FT] 8.9 2.9
MA 7-7-7 1.7 0.0
MA 7-7-7 [FT] 7.2 3.6
MA 7-7-7 [ProST] 10.5 4.3

Qwen-2.5-Coder-14B
SA 14 4.3 2.2
SA 14 [FT] 16.8 5.8
MA 14-14-14 10.1 3.6
MA 14-14-14 [FT] 13.7 5.0
MA 14-14-14 [ProST] 14.1 5.8

Llama-3.1-8B
SA 8 2.2 0.0
SA 8 [FT] 8.9 2.2
MA 8-8-8 2.2 0.0
MA 8-8-8 [FT] 8.9 4.3
MA 8-8-8 [ProST] 10.8 3.6

Phi-4-14B
SA 14 6.2 2.2
SA 14 [FT] 14.1 3.6
MA 14-14-14 12.2 4.3
MA 14-14-14 [FT] 12.5 7.2
MA 14-14-14 [ProST] 17.8 8.6

Table 6: Performance comparison in single-agent
and multi-agent settings on Test Challenge (Test-C)
set for Qwen-2.5-Coder-7B, Qwen-2.5-Coder-14B,
Llama-3.1-8B, and Phi-4-14B.

standard for evaluating coding agents and notable
works (Yang et al., 2024; Zhang et al., 2024b; Ma
et al., 2024; Pan et al., 2025; Golubev et al., 2024;
Xia et al., 2024; Xie et al., 2025) attempt to resolve
programming tasks by interactive coding agents.

3372



Making progress on AppWorld represents useful
advances in the complex problem space. The com-
plex tasks in AppWorld are defined over every-
day apps in the AppWorld benchmark, which is
comparable to SWE-bench in scope and difficulty
(see AppWorld details in Appendix C). This is
a challenging benchmark and there are other re-
cent works that focus exclusively on improving per-
formance on this benchmark as well (Chen et al.,
2025c; Gupta et al., 2025). A recent multi-agent
analysis paper also showed that AppWorld tasks
pose substantial reasoning and coding challenges
(Cemri et al., 2025). Another recent work (Qi
et al., 2025) evaluate solely their method on a long-
horizon Web benchmark WebArena due to the chal-
lenges of complexity of configuring a second long
horizon benchmark. Another limiting factor in ex-
ploring other complex tasks benchmarks is scacity
of training data for multi agent systems. We spent
a significant amount of time creating multi step rea-
soning training data (i.e for AppWorld) following
rigorous processes. Thus, we argue that apply-
ing any other long-horizon benchmark’s tasks to
the ProST training paradigm would also yield sig-
nificant performance improvements compared to
standard fine-tuning.

E Prompts Details

When creating subtasks, follow these guidelines:

• Provide a clear description of the subtask, including the goal. Add
every small detail from the main actual task.

• List the steps in natural language format to achieve the subtask’s goal.
• Specify the apps that can be used to achieve the subtask’s goal. Do not

include any API names, as the orchestrator does not have knowledge
of API names.

• Instruct the Executor agent to find relevant APIs from the API list of
the specified app.

• Suggest checking the detailed documentation of the relevant API us-
ing apis.api_docs.show_api_doc(app_name, api_name) to un-
derstand its arguments and output structure.

• Suggest calling the API using apis.app_name.api_name with the
required parameters to get the desired information or perform the
action. Mention detailed substeps (how to implement the logic) in
natural language to achieve the subtask’s goal.

• If the API requires authentication, suggest using the app’s access token
obtained from the previous authentication step.

Figure 10: Prompt for the Orchestrator agent. Here
we show only the extended part. We customized the
original Re-Act prompt shown in Figure 13.

Key instructions:

• For each step you take to solve the subtask, first write your thought
process, then include code inside a <code> ... </code> block.

• Once you have completed the given subtask, include a summary of
what you accomplished in your response.

– Mention all the variables’ exact names you used to store
information and describe what they contain.

– Must end with the exit command in a <code>exit</code>
block to signal completion. If you cannot solve the
subtask, include a message explaining why and add a
<code>exit</code> block. Do not use any other method
to signal completion of the subtask.

Figure 11: Prompt for the Executor agent. Here we show
only the extended part. We customized the original Re-
Act prompt shown in Figure 13.

Key instructions:

• REVIEW SCOPE: Analyze the most recent step’s code and reasoning
and previous steps in the conversation. Look for:

– Logical flaws that would cause incorrect results with respect
to the subtask.

– Whether the code snippet uses any undefined variables. If the
variable is defined in previous steps, then we can use it.

– Whether the APIs are using correct parameter(s) according
to the API documentation.

– Whether the code uses valid email addresses, access tokens,
and variables from the actual conversation context, not place-
holders.

• When reviewing code, check if variables from previous steps are being
used correctly. Variables defined in earlier code blocks should be
available in subsequent blocks.

• Ensure the code properly utilizes the "supervisor" app for account
information and the "phone" app for contacts/friends/family data when
needed.

• Check that the code examines API specifications using
apis.api_docs.show_api_doc before making API calls, and verify
the API calls match the documented parameters exactly.

• Do not suggest code enhancements or optimizations. Focus solely on
correctness and adherence to the subtask requirements.

• For APIs that return paginated results, verify the code properly loops
through all pages using page_index or a similar mechanism.

• Your role is to review code and provide feedback, not to write code.
Focus on identifying issues as defined in REVIEW SCOPE and
provide brief actionable feedback in natural language.

Figure 12: Prompt for the Critic agent. Here we show
only the extended part. We customized the original
Re-Act prompt shown in Figure 13.

3373



USER:
I am your supervisor and you are a super intelligent AI Assistant whose job is to achieve my day-to-day tasks completely autonomously. To do this, you will need to interact with
app/s (e.g., spotify, venmo, etc) using their associated APIs on my behalf. For this you will undertake a *multi-step conversation* using a python REPL environment. That is, you
will write the python code and the environment will execute it and show you the result, based on which, you will write python code for the next step and so on, until you’ve
achieved the goal. This environment will let you interact with app/s using their associated APIs on my behalf.

To explore available APIs and functionality, following are the key commands:

To get a list of available apps
print(apis.api_docs.show_app_descriptions())

To get the the list of available APIs in a specific app, e.g. supervisor
print(apis.api_docs.show_api_descriptions(app_name=‘supervisor’))

To get the specification of a particular api, e.g. supervisor app’s show_account_passwords
print(apis.api_docs.show_api_doc(app_name=’supervisor’, api_name=’show_account_passwords’))

To call a particular API from an app
print(apis.app_name.api_name(args))

To call the task completion API
print(apis.supervisor.complete_task(answer=<answer>))

Each code execution will produce an output that you can use in subsequent calls. Using these APIs, you can now generate code, that I will execute, to solve the task. Let’s start with
the task

[Re-Act style example trajectory placeholder]

USER:
Congratulations, we solved the example task successfully. Now, before going to the next task, I want you to know the key instructions about solving the subtasks of the next task.

Key instructions:

• Remember that the email addresses, access tokens and variables (e.g. spotify_password, spotify_access_token) in the example above are not valid anymore.

• For each step you take to solve the subtask, first write your thought process, then include code inside a <code> ... </code> block.

• Only generate valid code blocks, i.e., do not put them in “‘...“‘ or add any extra formatting.

• Remember you can use the variables in your code in subsequent code blocks.

• Write small chunks of code and only one chunk of code in every step. Make sure everything is working correctly before making any irreversible change.

• The provided Python environment has access to its standard library. But modules and functions that have a risk of affecting the underlying OS, file system or process are
disabled. You will get an error if do call them.

• Any reference to a file system in the task instructions means the file system *app*, operable via given APIs, and not the actual file system the code is running on. So do not
write code making calls to os-level modules and functions.

• To interact with apps, only use the provided APIs, and not the corresponding Python packages. E.g., do NOT use ‘spotipy‘ for Spotify. Remember, the environment only
has the standard library.

• The provided API documentation has both the input arguments and the output JSON schemas. All calls to APIs and parsing its outputs must be as per this documentation.

• Many APIs return items in "pages". Make sure to run through all the pages by looping over ‘page_index‘. For that use while true loop and check if the API returns any
items. If it does, process them and increment the ‘page_index‘ by 1. If it does not return any items, break the loop.

• If no direct API exists for the information you are looking for, examine all available APIs (relevent APIs first).

• Maintain variable names that are meaningful and relevant to the context of the task. Avoid using generic names like ‘result‘, ‘data‘, or ‘temp‘. Instead, use descriptive
names that reflect the content or purpose of the variable, such as ‘song_list‘, ‘spotify_login_result‘, ‘song_details‘, ‘gmail_password‘, etc.

• To obtain current data or time, use Python functions like ‘datetime.now()‘ or obtain it from the phone app. Do not rely on your existing knowledge of what the current date
or time is.

• For all temporal requests, use proper time boundaries, e.g., if I ask for something that happened yesterday, make sure to consider the time between 00:00:00 and 23:59:59.
All requests are concerning a single, default (no) time zone.

• Any reference to my friends, family or any other person or relation refers to the people in my phone’s contacts list.

• All my personal information, and information about my app account credentials, physical addresses and owned payment cards are stored in the "supervisor" app. You can
access them via the APIs provided by the supervisor app.

• Once you have completed the task, call ‘apis.supervisor.complete_task()‘. If the task asks for some information, return it as the answer argument, i.e. call
‘apis.supervisor.complete_task(answer=<answer>)‘. For tasks that do not require an answer, just skip the answer argument or pass it as None.

• The answers, when given, should be just entity or number, not full sentences, e.g., ‘answer=10‘ for "How many songs are in the Spotify queue?". When an answer is a
number, it should be in numbers, not in words, e.g., "10" and not "ten".

• You can also pass ‘status="fail"‘ in the complete_task API if you are sure you cannot solve it and want to exit.

• You must make all decisions completely autonomously and not ask for any clarifications or confirmations from me or anyone else.

USER:
Using these APIs, now generate code to solve the actual task:

Supervisor name is: <first_name> <last_name>. Email is <email> and phone number is <phone_number>.

Task: <task_instruction>

Figure 13: Prompt for single Re-Act agent inference

3374



I am your supervisor and you are a highly intelligent AI Assistant. Your task is
to transform a single-agent trajectory into a multi-agent trajectory for tasks in the
AppWorld environment. The single-agent trajectory sucessfully resolved the task, so
you need to ensure that the multi-agent trajectory also resolves the task successfully if
I run the steps by order in the environment.

# AppWorld Environment Overview
AppWorld is a simulated environment with 9 day-to-day apps that mimic real-world
applications. This environment provides these following apps through the ‘apis‘ object:

• amazon: Shopping and order management
• spotify: Music streaming and playlist management
• gmail: Email communication and management
• todoist: Task and to-do list management
• simple_note: Note-taking and organization
• venmo: Person-to-person payments
• splitwise: Expense tracking and settlement
• file_system: File operations and management
• phone: Calling and messaging functionality

Additionally, there are 2 helper applications:

• api_docs: Provides interactive documentation lookup for all apps
• supervisor: Provides access to personal information (addresses, payment

cards, account passwords)

# Key API Commands

• ‘apis.api_docs.show_app_descriptions()‘: List available apps
• ‘apis.api_docs.show_api_descriptions(app_name=<app_name>)‘: List APIs

for an app
• ‘apis.api_docs.show_api_doc(app_name=<app_name>, api_name=<api_name>)‘:

Get API details
• ‘apis.app_name.api_name(args)‘: Call an API
• ‘apis.supervisor.complete_task(answer=<answer>)‘: Complete task

# Multi-Agent Framework
Your transformation will involve two agents:
1. **Orchestrator Agent**:

• Reviews the task and determines the next logical subtask
• Provides detailed subtask descriptions to the Executor
• Receives completion reports from the Executor

2. **Executor Agent**:

• Performs the subtasks defined by the Orchestrator
• Not aware of the overall task, only focused on the current subtask
• Works in a Python REPL environment executing code step-by-step to accom-

plish the subtask
• Reports back to the Orchestrator upon subtask completion

# Transformation Guidelines
## Subtask Design

• Create meaningful, logical subtasks that progress toward the overall goal
• Each subtask should be a discrete step toward completing the task
• Supervisor is the user, so use ’user’ when talking about the who is using the

app, for example "Find the song user liked" rather than "Find the song ’I’, or
’you’ liked"

• Authentication/login to an app should always be a separate subtask
• Must ensure the final subtask involves calling the task completion API. Or-

chestrator agent should instruct to call ‘apis.supervisor.complete_task()‘. If
the task requires information, should ask to return it using the answer param-
eter: ‘apis.supervisor.complete_task(answer=<answer>)‘.

## Subtask Description Format

• Begin with a brief description of the subtask’s goal
• List all possible logical steps in details by order to accomplish the subtask.

The order of the steps should be the same as the order of the steps in the
original single-agent trajectory

• For authentication related subtasks, include these specific steps:
– Add supervisor name, email, and phone number to the description

as this info will be helpful for the Executor agent for authentication
– Suggest to explore the API documentation of the app using

‘apis.api_docs.show_api_descriptions (app_name=<app_name>)‘
to find the authentication-related API

– Suggest to check the detailed documentation of the authentication
API using ‘apis.api_docs.show_api_doc (app_name=<app_name>,
api_name=<api_name>)‘ to understand its arguments and output
structure.

– For username, suggest to use username (e.g., email address, phone
number, etc.) given in the subtask description

– For password, suggest to find the account’s password retrieval API
from the "supervisor" app and call the API to retrieve the password

– Suggest to call the login API using ‘apis.<app_name>.<login_api>
(username=<username>, password=<password>)‘ with the col-
lected username and password. And store the token for future
use

• For other subtasks,
– List the steps in natural language format

– Specify the possible apps that can be used to achieve the subtask’s
goal. Don’t include any API names as orchestrator don’t have
knowledge of the API names

– **Don’t include actual API names in the description, in-
stead suggest to explore the API documentation using
‘apis.api_docs.show_api_descriptions (app_name=<app_name>)‘ to
find the relevant API. Then suggest to findout relevent APIs**

– Suggest to check the detailed documentation of the relevent
API using ‘apis.api_docs.show_api_doc (app_name=<app_name>,
api_name=<api_name>)‘ to understand its arguments and output
structure.

• In the subtask description, include actual path, file or people names, if men-
tioned in the task description. For example, mention actual path instead of
saying "...the specified path..."

• For final subtask, **must include a note to call the task comple-
tion API using ‘apis.supervisor.complete_task(answer=<answer>)‘ to sig-
nal that the overall task has been completed. If the task requires
information, should ask to return it using the answer parameter:
‘apis.supervisor.complete_task(answer=<answer>)‘**

• End with instruction to report back upon completion

## Executor Steps Format

• Each step (thought and code) must be identical to the original step in the
single-agent trajectory

• Must include both the thought and the code exactly as in the original step
• Must enclosed on code in <code> </code> tags
• Upon subtask completion, add a summary and exit command:

<code>exit</code>. Summary should include what executor agent has accom-
plished in the subtask and signal to the Orchestrator agent that the subtask is
complete.

## Output Requirements

• IMPORTANT: You must respond ONLY with valid JSON. Do not include
any explanatory text, introductions, or markdown formatting outside of the
JSON object. Your entire response must be parseable as JSON.

• Follow the exact JSON structure shown in the below example. The example
provided below is for illustrative purposes only. In the given example- the
App, and API names were only for demonstration.

• Do not exclude any original step or code
• Do not invent new code except for the final exit command
• Preserve all original steps; it’s thought as well as the code
• Divide into logical subtasks with authentication always as a separate subtask
• Define thought first and then format only code within <code> tags and end

each subtask with <code>exit</code>
• Do not include actual API names in the description, in-

stead suggest to explore the API documentation using
‘apis.api_docs.show_api_descriptions(app_name=<app_name>)‘
to find the relevant API. Then suggest to findout relevent
APIs. Then check the detailed documentation of the relevent
API using ‘apis.api_docs.show_api_doc(app_name=<app_name>,
api_name=<api_name>)‘ to understand its arguments and output struc-
ture.

• Use the placeholder ‘<app_name>‘ and ‘<api_name>‘ in the subtask descrip-
tion, because the orchestrator agent doesn’t know the API names

• In final subtask, include a note to call the task completion API
using ‘apis.supervisor.complete_task(answer=<answer>)‘ to signal that
the overall task has been completed. If the task requires in-
formation, should ask to return it using the answer parameter:
‘apis.supervisor.complete_task(answer=<answer>)‘

Your goal is to transform a single-agent trajectory into a multi-agent trajectory follow-
ing the JSON schema below:

{
"subtasks": [

{
"subtask_number": <integer>,
"subtask_description": <string>,
"executor_steps": [
{

"subtask_number": <integer>,
"step_number": <integer>,
"plan_and_code": <string and <code> code </code> >

},
]

},
]

}

For example, consider the following task and the multi-agent trajectory solution where
two agents are solving the task.

[Example Multi-Agent Trajectory Placeholder]

Now translate the actual single-agent trajectory into a multi-agent trajectory:

Actual task: <task_description>
Supervisor name is: <first_name> <last_name>. Email is <email> and phone number
is <phone_number>.

The single-agent trajectory is as follows: <single_agent_trajectory>

Figure 14: Prompt for Single-agent to multi-agent trajectory transformation

3375


