
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 3324–3345

December 20-24, 2025 ©2025 Association for Computational Linguistics

Learning a Continue-Thinking Token for Enhanced Test-Time Scaling

Liran Ringel*1 Elad Tolochinsky*1 Yaniv Romano1,2

1Department of Computer Science, Technion – Israel Institute of Technology
2Department of Electrical and Computer Engineering, Technion – Israel Institute of Technology

liranringel@cs.technion.ac.il, elad.t@cs.technion.ac.il, yromano@technion.ac.il

Abstract

Test-time scaling has emerged as an effective
approach for improving language model per-
formance by utilizing additional compute at
inference time. Recent studies have shown
that overriding end-of-thinking tokens (e.g.,
replacing </think> with “Wait”) can extend
reasoning steps and improve accuracy. In this
work, we explore whether a dedicated continue-
thinking token can be learned to trigger ex-
tended reasoning. We augment distilled ver-
sions of DeepSeek-R1 with a single learned
<|continue-thinking|> token, training only
its embedding via reinforcement learning while
keeping the model weights frozen. Our exper-
iments show that this learned token achieves
improved accuracy on standard math bench-
marks compared to both the baseline model
and a test-time scaling approach that uses
a fixed token (e.g., “Wait”) for budget forc-
ing. In particular, we observe that in cases
where the fixed-token approach enhances the
base model’s accuracy, our method achieves a
markedly greater improvement. For example,
on the GSM8K benchmark, the fixed-token ap-
proach yields a 1.3% absolute improvement in
accuracy, whereas our learned-token method
achieves a 4.2% improvement over the base
model that does not use budget forcing.

1 Introduction

Language models have demonstrated impressive
reasoning abilities through test-time compute scal-
ing (Snell et al., 2024; Welleck et al., 2024; Ope-
nAI, 2024; Anthropic, 2025). Two dominant
paradigms have emerged for this process (An-
thropic, 2025): parallel and sequential. The paral-
lel approach involves generating multiple samples
and selecting the best response based on a majority
vote (Lewkowycz et al., 2022) or a model-provided
score (Anthropic, 2025). In contrast, the sequential

*Equal contribution.

approach—central to this work and popularized by
OpenAI’s o1 model (OpenAI, 2024)—generates
a single sample and encourages the model to re-
visit, backtrack, validate, and refine its reasoning
before producing a final answer, typically resulting
in a long chain-of-thought output (Wei et al., 2022).
Models that follow this paradigm are commonly
referred to as reasoning models, and they are often
trained using reinforcement learning with verifiable
rewards (Lambert et al., 2024; Guo et al., 2025; Su
et al., 2025; Wang et al., 2025).

A key property of reasoning models is their abil-
ity to decide when to stop thinking, typically by
generating an explicit end-of-thinking token (e.g.,
</think>). However, since this decision is made
by the model, users have no direct control over the
amount of reasoning performed. Recently, budget
forcing was introduced in s1: simple test-time scal-
ing (Muennighoff et al., 2025), a sequential test-
time scaling approach that provides direct control
over the model’s computation time. By replacing
end-of-thinking tokens with “Wait” tokens during
generation, the authors showed that longer chain-
of-thought reasoning could be achieved, resulting
in improved accuracy. Conversely, early termi-
nation can be enforced by appending a </think>
token once the model reaches its compute budget,
prompting it to generate the final answer. Budget
forcing was quickly shown to perform well in vari-
ous settings (Aggarwal and Welleck, 2025; Huang
et al., 2025); see section 3 for a detailed discussion.

In this paper, we introduce a systematic approach
for learning a special <|continue-thinking|>
token as an alternative to the “Wait” or related
fixed tokens such as “Alternatively” or “Hmm” sug-
gested by Muennighoff et al. (2025). Our primary
goal is to rigorously investigate whether the simple
practice of using a fixed “Wait” token for budget
forcing can be improved by learning a dedicated
token embedding. In line with this goal, we de-
liberately constrain ourselves to the same budget

3324

Input token

Embedding

possible solution is 42 </think>

solution is 42 </think> final

final

answer

LLM

Input token

Embedding

possible solution is 42 <|continue-thinking|>

solution is 42 </think> however

LLM

– Trainable token embedding– Frozen token embedding

Figure 1: Text generation with budget forcing: Whenever the model outputs a </think> token, we replace it with a
<|continue-thinking|> token and feed that to the model.

forcing algorithm.
As illustrated in Figure 1, we introduce a spe-

cial, learned <|continue-thinking|> token into
the model’s vocabulary. During generation, we
modify the model’s output generation process to
replace any occurrence of the </think> token with
our <|continue-thinking|> token, as long as
the token budget is not exhausted and the maxi-
mum number of forced continuations has not been
reached. During training, we optimize only the
embedding vector of the <|continue-thinking|>
token while keeping all other model parameters
frozen.

We train this new token using reinforcement
learning (RL), specifically the group relative pol-
icy optimization (GRPO) procedure (Shao et al.,
2024). While supervised fine-tuning is a possible
alternative, designing effective supervised reason-
ing demonstrations is difficult. In contrast, RL
allows the training process to explore novel contin-
uations aimed at improving task accuracy, making
it a more natural fit for our setting. Notably, our
method leverages a frozen model backbone, opti-
mizing only a single parameter vector of the size
of the model’s hidden dimension. As a result, the
optimizer’s additional memory overhead is limited
to just this vector, rather than all model parameters.
This allows us to allocate more GPU memory for
longer context windows during RL training.

We apply our proposed method to investigate the
influence of the learned <|continue-thinking|>

token on the reasoning process. Our results show
that learning this token can significantly enhance
model performance, yielding greater gains than
the “Wait” or related tokens used in s1’s budget-
forcing method. Notably, we find that whenever
budget-forcing with “Wait” provides an improve-
ment over the baseline, our learned token achieves
even greater gains—up to a 320% increase in rela-
tive accuracy improvements, and as much as a 4%
absolute improvement in overall accuracy. Con-
versely, in cases where budget-forcing with a fixed
token (such as “Wait”) does not improve perfor-
mance compared to the baseline, the learned token
similarly does not offer a statistically significant
benefit. Results are reported in Table 1.

To summarize, our contributions have the fol-
lowing key features:

• We introduce the concept of learning a special-
ized <|continue-thinking|> token as an ef-
fective mechanism for budget-controlled com-
pute scaling.

• Our experiments demonstrate that, in cases
where budget-forcing with a fixed token such
as “Wait” improves accuracy, learning the to-
ken yields even greater gains, while requiring
only a single additional token embedding.

• We use an external LLM to compare outputs
with ground truth, mitigating the limitations of
standard math benchmark evaluations that rely

3325

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

DS-R1-Qwen-1.5B

Cmax =3
AIME24 23.85 ± 0.66 23.49 ± 0.69 24.48 ± 0.63 23.91 ± 0.70 23.12 ± 0.71 24.06 ± 0.68
AIME25 23.33 ± 0.52 23.80 ± 0.56 23.85 ± 0.53 23.49 ± 0.49 22.45 ± 0.49 22.40 ± 0.44
GSM8K 78.08 ± 0.36 78.83 ± 0.34 79.47 ± 0.34 80.14 ± 0.24 76.10 ± 0.59 83.68 ± 0.38
MATH500 79.88 ± 0.33 80.33 ± 0.35 80.84 ± 0.39 81.22 ± 0.30 79.49 ± 0.32 82.51 ± 0.34
BBH 45.71 ± 0.60 46.75 ± 0.43 47.06 ± 0.60 47.58 ± 0.52 46.00 ± 0.72 47.70 ± 0.62

DS-R1-Qwen-7B

Cmax =3
AIME24 46.09 ± 0.80 46.46 ± 0.73 47.24 ± 0.71 47.19 ± 0.77 46.41 ± 0.75 46.82 ± 0.76
AIME25 36.41 ± 0.66 36.51 ± 0.57 36.51 ± 0.61 36.77 ± 0.63 37.29 ± 0.71 36.09 ± 0.58
GSM8K 88.81 ± 0.30 89.27 ± 0.27 91.23 ± 0.26 91.74 ± 0.34 88.89 ± 0.39 94.91 ± 0.18
MATH500 89.39 ± 0.31 89.84 ± 0.27 91.74 ± 0.19 92.17 ± 0.17 89.06 ± 0.27 92.89 ± 0.20
BBH 71.05 ± 0.75 72.53 ± 0.72 72.91 ± 0.63 73.85 ± 0.51 71.01 ± 0.76 74.75 ± 0.60

DS-R1-Llama-8B

Cmax =3
AIME24 35.68 ± 0.78 36.93 ± 0.75 38.23 ± 0.73 38.39 ± 0.79 35.73 ± 0.71 41.30 ± 0.91
AIME25 29.32 ± 0.61 29.64 ± 0.57 30.10 ± 0.61 30.26 ± 0.64 29.90 ± 0.58 30.26 ± 0.65
GSM8K 78.43 ± 0.40 79.82 ± 0.41 85.22 ± 0.22 84.90 ± 0.43 77.79 ± 0.65 93.78 ± 0.10
MATH500 79.56 ± 0.31 81.86 ± 0.39 86.21 ± 0.32 86.01 ± 0.32 80.27 ± 0.40 90.04 ± 0.25
BBH 79.73 ± 0.37 81.32 ± 0.30 81.79 ± 0.46 81.97 ± 0.32 80.26 ± 0.42 83.69 ± 0.37

Table 1: Accuracy (pass@1) results for Bmax = 9216 and different numbers of forced thinking continuations Cmax.
Results are obtained via regex-based evaluation and an LLM evaluator if the model fails to generate an answer in
the correct format. See Table 5, Table 6, and Table 7 for the full results.

on rigid answer formats, assuming the final
answer is in \boxed{}. Our experiments show
that this rigid-format evaluation approach can
misrepresent reasoning ability.

The code used for training and evaluation is avail-
able at https://github.com/liranringel/lea
rning-continue-thinking-token.

2 Method

2.1 Single Token Optimization

Let π(x) be a pretrained language model that takes
a prompt x as input and generates an output. Key
to our method is the introduction of a special to-
ken, <|continue-thinking|>, which we add to
the model’s vocabulary to promote longer reason-
ing traces at test time. We denote the embedding
vector of this token by θT ∈ Rd, where d is the
embedding dimension of the model.

We refer to the adapted model with the
new token as πθT . All model parameters are
frozen except for θT , so the embedding of the
<|continue-thinking|> token is the only param-
eter updated during training.

Our objective is to maximize the reasoning per-
formance of πθT by optimizing the embedding vec-

tor θT . Formally, we aim to optimize the following:

θ∗T := argmax
θT

Ex∼Q,o∼BF(πθT
,x)[R(x, o)], (1)

where x is a question sampled from a distribution
Q, and o is the response generated by running the
budget forcing algorithm on x using the model
πθT . Note that o is not a standard sample from
πθT (y | x); rather, its distribution is induced by
the budget forcing algorithm BF(πθT , x), which
we present below. The function R(x, o) represents
the reward associated with the generated output.
For example, for mathematical questions, R(x, o)
could be an indicator function that equals 1 if o
contains the correct answer to question x, and 0
otherwise.

In more detail, the budget forcing algorithm
BF(πθT , x) modifies the generation process by
enforcing additional reasoning steps before pro-
ducing a final answer. During generation,
whenever the model outputs an end-of-thinking
</think> token, it is replaced with the learned
<|continue-thinking|> token, as a way to force
longer reasoning traces. This process repeats until
one of the following conditions is met:

1. The number of forced thinking continuations
reaches the preset maximum Cmax.

3326

https://github.com/liranringel/learning-continue-thinking-token
https://github.com/liranringel/learning-continue-thinking-token

2. The total number of generated tokens reaches
the budget limit Bmax, in which case the rea-
soning process is immediately terminated and
a </think> token is inserted. This ensures
that the model does not generate beyond the
allowed compute budget.

During training, we set Cmax = 1, meaning that
only a single forced continuation is allowed per
input. At test time, however, we also evaluate the
model with Cmax > 1 to assess its ability to gener-
alize to multiple forced continuations.

2.2 Training
Throughout this paper, we apply our method to
distilled versions of DeepSeek-R1, specifically
its Qwen 1.5B, Qwen 7B, and Llama 8B vari-
ants (Dubey et al., 2024; Yang et al., 2024b; Guo
et al., 2025), training only the embedding of a
newly introduced token, while keeping all other
parameters frozen. We set the number of forced
continuations to Cmax = 1 and the budget limit
to Bmax = 8192 for the 1.5B model and Bmax =
10240 for larger models. We initialize the new
token’s embedding using that of the word “Wait.”
The reward function used during training is the
sum of two binary components: (i) a format reward
that verifies whether the answer is in the expected
format (specifically, wrapped in \boxed{}), and
(ii) a correctness reward, which checks whether the
generated answer matches the ground truth. We
implemented our training code on top of Open-
R1 (HuggingFace, 2025) and TRL (von Werra
et al., 2020). For GRPO, we set G = 16 gener-
ations per example and used a batch size of 16.
We performed 64 gradient accumulation steps, re-
sulting in an effective batch size of 1,024 gen-
erations (i.e., 64 examples with 16 generations
each) per optimizer update. The training dataset is
DeepScaleR-Preview-Dataset (Luo et al., 2025),
which is a collection of 40,000 math questions com-
piled from various datasets. We used 8 NVIDIA
A100 GPUs with 80GB memory for training the
1.5B model and 8 NVIDIA H200 GPUs for train-
ing the larger models. The total training time for
each model was about 5 days. See Table 4 for a full
list of parameters and system prompts used during
training.

3 Related Work

Budget forcing, introduced by Muennighoff et al.
(2025), is a simple and effective method for scaling

compute at test time. L1 (Aggarwal and Welleck,
2025) extends this idea using reinforcement learn-
ing to train models that satisfy user-specified rea-
soning lengths, enabling flexible cost-performance
trade-offs. The m1 method by Huang et al. (2025)
further explores the application of budget-forcing
in medical QA. Jin et al. (2025) introduce a variant
of budget forcing for greedy decoding, comparing
multi-word phrases instead of single tokens like
“Wait.” Collectively, these works highlight bud-
get forcing as a promising direction for compute
budget control.

The concept of incorporating additional tokens
has been explored in several prior studies. The
works reported in (Goyal et al., 2024) and (Wang
et al., 2023) introduce learnable tokens into rea-
soning traces to improve the model’s accuracy. In
(Goyal et al., 2024; Pfau et al., 2024), additional
tokens are inserted at random positions during train-
ing and appended to the prompt during inference,
allowing the model to artificially increase the num-
ber of activations at test time. Wang et al. (2023)
included a ‘planning token’ at the start of each rea-
soning step. Unlike our approach, these methods
rely on supervised fine-tuning to learn token repre-
sentations. In contrast, our method utilizes RL to
optimize the new token embedding.

Finally, various works on scaling test time com-
pute motivate our choice of token learning using
RL: (1) Recent empirical findings show that RL-
based fine-tuning leads to better generalization
(Chu et al., 2025); (2) theoretical analysis shows
that RL enjoys higher expected cumulative reward
(Setlur et al., 2025), and (3) learning to use addi-
tional tokens, which is related to our approach of
designing a <|continue-thinking|> token, has
been observed to be a hard learning problem when
using supervised learning (Pfau et al., 2024).

4 Experiments

4.1 Evaluation protocol

We evaluate our model on three widely adopted
mathematical reasoning datasets: GSM8K-
Platinum (Cobbe et al., 2021; Vendrow et al., 2025),
a revised version of the original GSM8K dataset
containing 1209 grade-school level math prob-
lems; MATH500 (Lightman et al., 2023; Muen-
nighoff et al., 2025), a 500-question subset of
the MATH (Hendrycks et al., 2021) dataset; and
AIME24 (Muennighoff et al., 2025) and AIME25
datasets, which contain 30 math problems from the

3327

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

DS-R1-Qwen-1.5B

Cmax = 2
AIME25 23.18 ± 0.50 (86) 23.02 ± 0.49 (85) 23.23 ± 0.51 (86) 23.23 ± 0.50 (87) 22.14 ± 0.49 (85) 22.80 ± 0.47 (86)
GSM8K 66.03 ± 0.40 (84) 64.82 ± 0.25 (82) 64.09 ± 0.38 (80) 64.43 ± 0.48 (79) 69.99 ± 0.44 (88) 78.27 ± 0.58 (94)
MATH500 77.56 ± 0.32 (95) 77.97 ± 0.35 (95) 78.88 ± 0.32 (95) 78.83 ± 0.38 (95) 77.56 ± 0.28 (95) 81.37 ± 0.38 (97)
Cmax = 3
AIME25 23.18 ± 0.50 (85) 23.44 ± 0.56 (87) 23.49 ± 0.49 (86) 23.12 ± 0.46 (86) 22.14 ± 0.46 (86) 22.40 ± 0.44 (86)
GSM8K 66.03 ± 0.40 (83) 63.79 ± 0.57 (80) 64.27 ± 0.28 (79) 62.94 ± 0.50 (77) 69.35 ± 0.56 (87) 80.87 ± 0.42 (96)
MATH500 77.56 ± 0.32 (94) 78.16 ± 0.39 (95) 78.60 ± 0.40 (94) 78.75 ± 0.32 (94) 78.08 ± 0.28 (96) 81.75 ± 0.34 (96)

DS-R1-Qwen-7B

Cmax = 2
AIME24 44.74 ± 0.77 (71) 45.47 ± 0.78 (71) 45.94 ± 0.78 (72) 45.62 ± 0.79 (72) 45.42 ± 0.77 (71) 45.52 ± 0.80 (72)
AIME25 35.47 ± 0.62 (67) 35.68 ± 0.59 (68) 35.00 ± 0.62 (66) 35.62 ± 0.66 (67) 36.82 ± 0.67 (67) 34.90 ± 0.60 (68)
GSM8K 88.81 ± 0.30 (99) 88.82 ± 0.39 (99) 90.58 ± 0.29 (99) 90.85 ± 0.39 (99) 89.12 ± 0.14 (99) 94.64 ± 0.19 (99)
MATH500 88.94 ± 0.30 (97) 88.90 ± 0.24 (97) 91.08 ± 0.19 (97) 91.24 ± 0.20 (97) 88.74 ± 0.26 (97) 92.65 ± 0.18 (97)
Cmax = 3
AIME24 44.74 ± 0.77 (71) 45.52 ± 0.72 (72) 46.15 ± 0.72 (71) 46.30 ± 0.74 (73) 45.21 ± 0.80 (73) 45.94 ± 0.79 (72)
AIME25 35.47 ± 0.62 (67) 35.47 ± 0.57 (66) 35.52 ± 0.62 (67) 35.73 ± 0.64 (66) 36.41 ± 0.68 (67) 35.16 ± 0.58 (66)
GSM8K 88.81 ± 0.30 (99) 89.15 ± 0.25 (99) 90.45 ± 0.24 (98) 91.51 ± 0.35 (99) 88.74 ± 0.38 (99) 94.84 ± 0.18 (99)
MATH500 88.94 ± 0.30 (97) 89.42 ± 0.27 (97) 91.20 ± 0.16 (97) 91.78 ± 0.18 (97) 88.70 ± 0.26 (97) 92.62 ± 0.20 (97)

Table 2: Accuracy (pass@1) results for Bmax = 9216 and different numbers of forced thinking continuations Cmax.
Results are obtained via a regex-based evaluation only. The percentage of final answers enclosed in \boxed{} is
shown in parentheses. See Table 8 and Table 9 for the full results.

3500 40000.78

0.79

0.80

0.81

0.82

0.83

Ac
cu

ra
cy

MATH500

750 1000 12500.78

0.79

0.80

0.81

0.82

0.83
GSM8K

7800 8000 82000.20

0.21

0.22

0.23

0.24

0.25 AIME24

7600 7800 80000.20

0.21

0.22

0.23

0.24

0.25 AIME25

Cmax=1 Cmax=2 Alternatively Hmm Wait Learned Baseline
Average Number of Tokens

Figure 2: Accuracy of different methods as a function of the average number of tokens generated by each method.
Results for all datasets are obtained using DeepSeek-R1-Distill-Qwen-1.5B and Bmax = 8192.

2024 and 2025 American Invitational Mathematics
Examination, a national-level mathematics compe-
tition in the United States. We implemented the
evaluation pipeline using a modified version of the
LM-Evaluation-Harness library (Gao et al., 2024).

To further assess the generalization of our ap-
proach beyond mathematical reasoning, we eval-
uated all models on a subset of 16 tasks from
BIG-Bench Hard (BBH) (Suzgun et al., 2022),
a benchmark comprising challenging problems
that probe symbolic, logical, and commonsense
reasoning abilities. To ensure reliable automatic
evaluation, we restricted BBH to questions with
multiple-choice answers. Importantly, all models
were trained exclusively on math questions, so per-
formance on BBH provides a measure of cross-
domain generalization.

Our method is compared against three fixed to-

kens that have previously demonstrated strong per-
formance (Muennighoff et al., 2025), a baseline
configuration that does not employ budget-forcing,
and an explicit guiding prompt: "Critique your pre-
vious step and try again".

Due to the relatively small size of some of the
datasets, we generate multiple responses per ques-
tion to compute standard error as a way to en-
hance the statistical reliability of the reported re-
sults. Specifically, we found that generating the fol-
lowing number of completions produces error bars
that allow us to distinguish between statistically
significant and insignificant results: 16 samples per
question for MATH500, 64 for AIME, 6 samples
for GSM8K, and 10 samples for BBH. We report
(pass@1) accuracy along with the standard error
for each setting. Accuracy is computed using a
regex-based evaluation script that extracts the final

3328

answer from the model’s output and checks for an
exact match with the ground truth. The evaluation
returns ‘True’ if the extracted answer is correct,
and ‘False’ otherwise—including cases where the
regex fails to match a valid answer. In case the
regex fails to match, we employ an external LLM
to assess if the generated answer was semantically
equivalent to the ground truth. This hybrid eval-
uation strategy was adopted based on our manual
inspection, which indicated that regex matching is
more reliable than LLM-based comparison when
the regex successfully parses the output; see sub-
section 4.2 for a detailed discussion. We utilized
Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a)
as our evaluator LLM. See Table 4 for the instruc-
tion prompt we used for the LLM evaluation.

During inference, we verify the generalization of
our method by also using inference configurations
not used during training. Concretely, we set the rea-
soning budgets Bmax = 8192, 9216 and the maxi-
mal number of forced continuations Cmax = 1, 2, 3.
We also provide an additional 1,024 tokens re-
served for generating the final answer. For infer-
ence, we used the same system prompt as the one
used for training; see Table 4 in the Appendix. Due
to the prolonged length of the generated answers,
evaluation took approximately 370 GPU hours, us-
ing 8 NVIDIA A40 GPUs.

4.2 LLM-Based Verification
It is common practice to use regex-based func-
tions to check the correctness of model outputs
when evaluating language models on mathematical
benchmarks. However, this approach can distort
the evaluation of model performance, as it conflates
output formatting with actual reasoning ability. In
our experiments, evaluating with only regex-based
functions suggested that the learned token led to
substantial performance gains. However, a more
detailed analysis using an evaluator LLM revealed
that much of this improvement was due to better
adherence to formatting rather than genuine reason-
ing improvements. As shown in Table 2, the results
obtained using only regex-based evaluation are sig-
nificantly higher than those reported in Table 1,
which use LLM-based evaluation. For example,
on GSM8K with Cmax = 2 and Bmax = 8192, the
improvement of our method over the baseline is
more than three times higher when using regex-
based evaluation compared to LLM-based evalu-
ation. Similarly, on the MATH500 dataset with
Cmax = 1 and Bmax = 9216, regex-based evalu-

ation indicates a statistically significant improve-
ment, whereas LLM-based evaluation shows that
this improvement is not actually present.

To further assess the trustworthiness of our eval-
uation procedure, we manually inspected answers
generated by DS-R1-Qwen-7B along with their cor-
responding LLM-based evaluation results for 80
randomly selected questions from the MATH500
dataset and found that the LLM evaluation aligned
with human assessment in all cases.

Nonetheless, we acknowledge that LLM-based
verification is itself imperfect. We adopt it as a
more reliable alternative to purely regex-based eval-
uation, improving the robustness and credibility of
our reported results.

4.3 Results
The evaluation results are depicted in Table 1. Our
findings indicate that when budget forcing does
not improve upon the baseline, the learned token
similarly offers no statistically significant advan-
tage. However, on datasets where budget forcing
yields improvements, our learned token demon-
strates a substantial performance increase, achiev-
ing up to a 320% relative gain over the best fixed
token and a 4% absolute improvement in accu-
racy. Notably, although our model was trained
with Cmax = 1, we observe that increasing Cmax
to 2 and 3 during inference often leads to further
improvements in accuracy. This suggests that the
learned <|continue-thinking|> token can gener-
alize to settings with multiple forced continuations,
even though the model was not explicitly trained
for them.

To gain deeper insights into the behavior of the
different methods, we analyzed the generated token
distributions. Figure 2 depicts the accuracy of each
method as a function of the average number of to-
kens generated per dataset. We observed that using
the learned token consistently resulted in longer
reasoning traces, suggesting that the performance
improvement can be attributed to this increased rea-
soning length. Furthermore, Figure 2 shows that
for the AIME datasets, all methods generated a
high average number of tokens. This can likely be
attributed to the significant difficulty of the AIME
problems for our model, which might also explain
why our method did not yield substantial improve-
ments on these datasets.

Indeed, Wu (2025) has also noted that budget
forcing provides inconsistent or minimal benefits
on AIME benchmarks. Since AIME consists of

3329

0 2000 4000 6000 8000
Number of Tokens

lo
g(

Co
un

t)

0.87 0.78 0.59 0.44 0.47 0.31 0.23 0.32 0.38 0.11

0.82

0.71
0.58 0.43 0.30 0.40 0.32 0.17 0.27 0.00

0 2000 4000 6000 8000
Number of Tokens

lo
g(

Co
un

t)

0.87 0.78 0.59 0.44 0.47 0.31 0.23 0.32 0.38 0.11

0.81

0.65
0.49

0.44 0.33 0.41 0.40 0.18 0.55 0.11

2000 4000 6000 8000
Number of Tokens

lo
g(

Co
un

t)

0.00
0.89 0.88 0.87 0.86 0.79 0.74 0.66 0.25

0.11
0.12

0.65
0.87

0.86 0.88 0.71 0.65 0.58
0.16

0.07

2000 4000 6000 8000
Number of Tokens

lo
g(

Co
un

t)
0.00

0.89 0.88 0.87 0.86 0.79 0.74 0.66 0.25
0.11

0.15
0.72

0.90
0.87 0.77 0.66 0.57 0.44

0.18

0.06

GSM8K

AIME24

Distribution of Reasoning Trace Lengths and Their Corresponding Accuracies
(Darker Color = Higher Ratio of Correct Answers) Learned

Alternatively
Baseline

Figure 3: Comparison of generated sequence length distributions and their corresponding accuracies. Stacked
bars represent the logarithmic count of answers within each length bin, with darker segments indicating a higher
proportion of correct answers (fraction shown within each bin). Top row: GSM8K, Bottom row: AIME24. Left:
Learned <|continue-thinking|> token vs. “Alternatively.” Right: Learned <|continue-thinking|> token vs.
baseline model without budget forcing. Data was obtained using DS-R1-Qwen-1.5B and Cmax=2, Bmax=8192.

only 30 challenging questions, each additional cor-
rect answer significantly increases the overall score
(approximately +3.3% per question). Therefore,
the moderate improvements provided by budget
forcing may be insufficient to consistently reach
the threshold required to solve the next level of
question difficulty, which might explain the lim-
ited effectiveness observed both here and in prior
studies.

A comparison of the generated answer length
distributions for the learned token, the baseline,
and the “Alternatively” token is shown in Fig-
ure 3. The accuracy improvements observed with
the learned token are consistent across different
generated lengths, not just on average. This sug-
gests that the enhanced performance is attributable
to a genuine improvement in the model’s reason-
ing capabilities, beyond merely generating longer
responses. In Table 3, we show the probabilities
that a correct answer under the baseline will be
incorrect with the learned token. We can see that,
for both GSM8K and MATH500, it is much more
likely that the learned token leads to improvement.
For the AIME dataset, we see that the learned token
and the baseline are comparable, which is expected,
since both methods have similar accuracy.

To better understand how the learned token

Figure 4: Word cloud of the first token gen-
erated immediately after injecting the learned
<|continue-thinking|> token, across all datasets
from DS-R1-Qwen-1.5B.

influences the model’s reasoning process, we
visualize in Figure 4 a word cloud showing
the first word generated immediately after the
<|continue-thinking|> token. The most com-
mon continuations often prompt the model to self-
verify or reconsider its previous steps, indicating
that the token effectively encourages reflective rea-
soning and backtracking.

The reasoning trace depicted in Figure 5, taken
from the GSM8K dataset, showcases how the
<|continue_thinking|> token influences the fi-
nal answer. The blue portion highlights the
model’s initial reasoning, which leads to an in-

3330

Probabilities AIME24 AIME25 GSM8K MATH500

Cmax = 2, Bmax = 8192
P(Learned ✗, Baseline ✓) 0.01 0.01 0.03 0.02
P(Learned ✓, Baseline ✗) 0.02 0.02 0.07 0.04
Cmax = 3, Bmax = 8192
P(Learned ✗, Baseline ✓) 0.09 0.06 0.02 0.01
P(Learned ✓, Baseline ✗) 0.09 0.06 0.07 0.04
Cmax = 2, Bmax = 9216
P(Learned ✗, Baseline ✓) 0.08 0.06 0.02 0.02
P(Learned ✓, Baseline ✗) 0.08 0.06 0.07 0.04
Cmax = 3, Bmax = 9216
P(Learned ✗, Baseline ✓) 0.09 0.06 0.02 0.02
P(Learned ✓, Baseline ✗) 0.09 0.06 0.07 0.04

Table 3: Probability of observing a correct answer from the learned token and an incorrect answer from the baseline
and vice versa when using DeepSeek-R1-Distill-Qwen-1.5B. See Table 10 in the Appendix for the full results.

Question: Lloyd has an egg farm. His chickens pro-
duce 252 eggs per day and he sells them for $2 per
dozen. How much does Lloyd make on eggs per
week?
<think> First, I need to calculate the daily
revenue from egg sales. [...] Finally, to
determine the weekly revenue, I’ll multiply
the daily revenue by the number of days in
a week, which is 7. So, $1,134 multiplied
by 7 equals $7,938.

<|continue_thinking|> no, let me try that
again. [...] Therefore, the correct answer
is $294 per week.

</think> Lloyd sells his eggs at $2 per
dozen. To determine his weekly revenue:

1. Calculate weekly egg production: - 252
eggs/day * 7 days = 1,764 eggs/week

[...]

Answer: Lloyd makes \boxed{294} dollars per
week from his egg sales.

Figure 5: GSM8K reasoning trace from
DS-R1-Qwen-1.5B demonstrating the positive
impact of <|continue_thinking|> token. Blue
indicates the original reasoning, yielding an incorrect
answer of 7,938. Green shows the continuation after the
special token was added, leading to the correct answer
of 294.

correct result. However, the introduction of
the <|continue_thinking|> token prompts a re-
examination of the solution, guiding the model to
the correct conclusion. See Appendix D for the full
reasoning traces and additional examples.

5 Conclusions

In this work, we have demonstrated that learn-
ing a dedicated <|continue-thinking|> token
yields significant effectiveness, specifically in sce-

narios where the baseline budget forcing method
already provides performance improvements. We
introduced a training methodology for this token
that exhibits promising generalization capabilities
across different inference settings. Our analysis
indicates that the observed performance gains are
not primarily due to better adherence to output for-
matting, but rather stem from the elicited longer
reasoning traces and a genuine enhancement in
the model’s underlying reasoning capabilities. Fur-
thermore, this improvement remains relevant on
average and conditionally across varying reasoning
lengths, suggesting its utility even when generating
shorter completions. While our method of learn-
ing a specialized <|continue-thinking|> token
is relatively simple, practitioners can readily as-
certain its potential benefit for their specific sce-
nario by first employing the vanilla budget-forcing
technique with a fixed token, such as “Wait”;
an observed performance increase with this base-
line strongly suggests that training a dedicated
<|continue-thinking|> token would be worth-
while. Finally, we emphasize the critical impor-
tance of rigorous evaluation for drawing meaning-
ful conclusions and propose a refined evaluation
scheme designed to mitigate some of the inherent
limitations associated with relying solely on regex-
based assessments.

Future Directions One promising future direc-
tion involves exploring the efficacy of learning dis-
tinct <|continue-thinking|> tokens tailored to
different positions within the generated sequence or
investigating the benefits of learning these tokens
jointly. For example, one can add a special token
that will be used for the first forced continuation
and a second new token that will be used for the

3331

second forced continuation. More broadly, an excit-
ing avenue is to train specialized tokens to enable
additional forms of controllable reasoning, such as
controlling answer length or enabling early termi-
nation. Given our focus on the sequential approach
to test-time scaling, another compelling future di-
rection would be to explore the integration of our
learned token methodology with parallel test-time
scaling paradigms. Finally, extending the scope of
this research to diverse domains, potentially even
those lacking explicit verifiable rewards, such as in
the context of LLM alignment, presents an intrigu-
ing area for future exploration. We believe the code
provided with this paper will enable researchers to
pursue these research directions efficiently.

6 Limitations

While our proposed method demonstrates promis-
ing results, it is subject to several limitations. First,
as our analysis indicates, the effectiveness of the
learned token appears to be contingent on the base-
line performance of the budget forcing technique
itself. If standard budget forcing does not yield im-
provements, our learned <|continue-thinking|>
token is unlikely to provide a significant advan-
tage. Second, the process of learning the token
embedding necessitates a training phase, which is
inherently more computationally demanding and
requires access to the model’s weights compared
to simply employing fixed tokens. Finally, our
method requires the addition of a new token to
the model’s vocabulary. This modification might
not be feasible or permitted when utilizing LLMs
through certain API interfaces, which often provide
restricted access to the model’s architecture, thus
preventing vocabulary modifications.

7 Acknowledgments

This research was supported by the European
Union (ERC, SafetyBounds, 101163414). Views
and opinions expressed are however those of the
authors only and do not necessarily reflect those
of the European Union or the European Research
Council Executive Agency. Neither the European
Union nor the granting authority can be held re-
sponsible for them. This research was also partially
supported by the Israel Science Foundation (ISF
grant 729/21). Y. R. acknowledges additional sup-
port from the Career Advancement Fellowship at
the Technion.

References
Pranjal Aggarwal and Sean Welleck. 2025. L1:

Controlling how long a reasoning model thinks
with reinforcement learning. arXiv preprint
arXiv:2503.04697.

Anthropic. 2025. Claude’s extended thinking. https:
//www.anthropic.com/news/visible-extende
d-thinking. Accessed: 2025-05-18.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang
Tong, Saining Xie, Dale Schuurmans, Quoc V Le,
Sergey Levine, and Yi Ma. 2025. SFT mem-
orizes, RL generalizes: A comparative study of
foundation model post-training. arXiv preprint
arXiv:2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv e-prints, pages arXiv–2407.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. The language model evaluation har-
ness.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In International
Conference on Learning Representations.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Neu-
ral Information Processing Systems, Datasets and
Benchmarks Track.

Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang,
and Yuyin Zhou. 2025. m1: Unleash the potential
of test-time scaling for medical reasoning with large
language models. arXiv preprint arXiv:2504.00869.

HuggingFace. 2025. Open R1: A fully open reproduc-
tion of DeepSeek-R1.

3332

https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Hyunbin Jin, Je Won Yeom, Seunghyun Bae, and Taesup
Kim. 2025. “well, keep thinking”: Enhancing llm
reasoning with adaptive injection decoding. arXiv
preprint arXiv:2503.10167.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Nora Kassner, Timo Schick, Marzieh
Saeidi, Noah A. Smith, and Matt Gardner. 2024. Tülu
3: Pushing frontiers in open language model post-
training. arXiv preprint arXiv:2411.15124.

Aitor Lewkowycz, Anders Johan Andreassen,
David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem
Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
2022. Solving quantitative reasoning problems with
language models. In Advances in Neural Information
Processing Systems.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In International
Conference on Learning Representations.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi,
William Y Tang, Manan Roongta, Colin Cai, Jeffrey
Luo, Tianjun Zhang, and Li Erran Li. 2025. Deep-
scaler: Surpassing o1-preview with a 1.5B model by
scaling RL. https://www.notion.so/Deepscal
er-Surpassing-o1-preview-with-a-1-5B-mod
el-by-scaling-RL-<exact-url>. Notion Blog.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

OpenAI. 2024. Learning to reason with llms. https:
//openai.com/index/learning-to-reason-wit
h-llms/. Accessed: 2025-05-18.

Jacob Pfau, William Merrill, and Samuel R Bowman.
2024. Let’s think dot by dot: Hidden computa-
tion in transformer language models. arXiv preprint
arXiv:2404.15758.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and
Aviral Kumar. 2025. Scaling test-time compute with-
out verification or RL is suboptimal. arXiv preprint
arXiv:2502.12118.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi,
Zhaopeng Tu, Min Zhang, and Dong Yu. 2025. Ex-
panding RL with verifiable rewards across diverse
domains. arXiv preprint arXiv:2503.23829.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Joshua Vendrow, Edward Vendrow, Sara Beery, and
Aleksander Madry. 2025. Do large language
model benchmarks test reliability? arXiv preprint
arXiv:2502.03461.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.
GitHub repository.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi
Yuan, William Yang Wang, and Alessandro Sordoni.
2023. Guiding language model reasoning with plan-
ning tokens. arXiv preprint arXiv:2310.05707.

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren,
Lucas Liu, Baolin Peng, Hao Cheng, Xuehai He,
Kuan Wang, Jianfeng Gao, and 1 others. 2025. Re-
inforcement learning for reasoning in large language
models with one training example. arXiv preprint
arXiv:2504.20571.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From de-
coding to meta-generation: Inference-time algo-
rithms for large language models. arXiv preprint
arXiv:2406.16838.

Guojun Wu. 2025. It’s not that simple. an anal-
ysis of simple test-time scaling. arXiv preprint
arXiv:2507.14419.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 23 others.
2024a. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Xingzhang Ren, and Zhenru Zhang.
2024b. Qwen2.5-math technical report: Toward

3333

https://www.notion.so/Deepscaler-Surpassing-o1-preview-with-a-1-5B-model-by-scaling-RL-<exact-url>
https://www.notion.so/Deepscaler-Surpassing-o1-preview-with-a-1-5B-model-by-scaling-RL-<exact-url>
https://www.notion.so/Deepscaler-Surpassing-o1-preview-with-a-1-5B-model-by-scaling-RL-<exact-url>
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://github.com/huggingface/trl

mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122.

3334

A Training and Evaluation Parameters

Table 4 summarizes the full list of parameters we
used for training and evaluation.

GRPO Parameters

G 16
ε 0.2
β 0
µ 4

Training
Parameters

Optimizer AdamW
Learning rate 1e− 4 with cosine scheduler
Temperature 0.9
Training and
Inference Prompt You are a helpful AI Assistant. First,

think through the reasoning inside
<think>...</think>. Then, always
present the final answer in \boxed{}

Evaluation
Parameters

Temperature 0.9
LLM evaluator
prompt Given a math question, a correct an-

swer, and a student’s final answer (which
may include explanations), determine
if the correct answer appears in some
form within the student’s answer (ignor-
ing trivial differences like formatting or
wording). Output True if the student’s
answer is correct, otherwise output False.
Output nothing else.

START-OF-QUESTION

question: %(question)s

END-OF-QUESTION

correct answer: %(correct_answer)s

student’s solution:

START-OF-STUDENT-SOLUTION

%(student_solution)s

END-OF-STUDENT-SOLUTION

Output True if the student’s solution
equivalent the correct answer and False
otherwise.

Table 4: Full list of training and evaluation parameters

B Artifacts Used

The following datasets, software libraries and mod-
els were used during this research, all artifacts were
used in accordance with their respective licenses.

• Datasets: DeepScaleR-Preview Dataset,

licensed under the MIT license.1

GSM8K-Platinum, licensed under CC
BY-SA 4.0.2 AIME24, licensed under
Apache-2.0,3 and AIME25.4

• Models: DeepSeek-R1-Distill-Qwen-1.5B,
DeepSeek-R1-Distill-Qwen-7B and
DeepSeek-R1-Distill-Llama-8B li-
censed under the MIT license.567

Qwen2.5-7B-Instruct, licensed under
the Apache-2.0 license.8

• Software Packages: LM-evaluation-harness
licensed under the MIT license.9 vLLM li-
censed under the Apache-2.0.10 Open r1, li-
censed under the Apache 2.0 license,11 and
trl, licensed under Apache 2.0.12

C Full Experimental Results

We provide the complete set of results for all our
experiments. Table 5, Table 6, and Table 7 show
the complete set of results when using an LLM
evaluator in all configurations (Cmax = 1, 2, 3,
Bmax = 8192, 9216). Table 8 and Table 9 show
the complete set of results for regex-only evalua-
tion. Table 10 reports, for each configuration, the
probability that the learned token yields a correct
answer when the baseline does not, and the proba-
bility that the baseline yields a correct answer when
the learned token does not.

D Generated Answers Examples

We include examples of reasoning traces of cases
when using the learned token resulted in a correct
answer while the baseline did not, and vice versa.
In all figures, blue text indicates the original rea-
soning trace that is common for both the learned
model and the baseline model and green text indi-
cates the reasoning trace that was generated after

1https://hf.co/datasets/agentica-org/DeepScaleR-Preview-
Dataset

2https://hf.co/datasets/madrylab/gsm8k-platinum
3https://hf.co/datasets/simplescaling/aime24_nofigures
4https://hf.co/datasets/math-ai/aime25
5https://hf.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-

1.5B
6https://hf.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-

7B
7https://hf.co/deepseek-ai/DeepSeek-R1-Distill-Llama-

8B
8https://hf.co/Qwen/Qwen2.5-7B-Instruct
9https://github.com/EleutherAI/lm-evaluation-harness

10https://github.com/vllm-project/vllm
11https://github.com/huggingface/open-r1
12https://github.com/huggingface/trl

3335

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

Cmax =1, Bmax =8192
AIME24 23.44 ± 0.73 23.07 ± 0.72 23.07 ± 0.70 23.18 ± 0.69 23.33 ± 0.51 23.07 ± 0.71
AIME25 21.82 ± 0.67 21.98 ± 0.56 22.08 ± 0.53 22.6 ± 0.51 22.76 ± 0.65 21.77 ± 0.55
GSM8K 78.41 ± 0.25 78.43 ± 0.30 79.09 ± 0.42 79.09 ± 0.54 76.76 ± 0.24 81.39± 0.40
MATH500 79.43 ± 0.26 80.26 ± 0.36 80.40 ± 0.29 81.09 ± 0.32 80.35 ± 0.36 82.00 ± 0.29
Cmax =2, Bmax =8192
AIME24 23.44 ± 0.73 23.54 ± 0.82 23.85 ± 0.76 24.06 ± 0.76 23.28 ± 0.62 24.53 ± 0.75
AIME25 21.88 ± 0.67 21.72 ± 0.66 21.61 ± 0.67 21.98 ± 0.68 22.24 ± 0.63 22.34 ± 0.71
GSM8K 78.41 ± 0.25 78.58 ± 0.34 79.09 ± 0.28 79.71 ± 0.31 76.80 ± 0.46 82.63 ± 0.20
MATH500 79.43 ± 0.26 80.00 ± 0.19 80.28 ± 0.29 80.36 ± 0.27 79.62 ± 0.31 81.67 ± 0.21
Cmax =3, Bmax =8192
AIME24 23.44 ± 0.73 23.02 ± 0.58 23.12 ± 0.62 23.49 ± 0.54 23.49 ± 0.75 23.33 ± 0.73
AIME25 21.82 ± 0.67 22.08 ± 0.65 21.67 ± 0.68 22.03 ± 0.61 22.86 ± 0.60 22.03 ± 0.60
GSM8K 78.41 ± 0.25 79.00 ± 0.13 79.65 ± 0.26 80.16 ± 0.32 76.58 ± 0.16 83.17 ± 0.32
MATH500 79.42 ± 0.26 79.60 ± 0.32 80.71 ± 0.30 80.86 ± 0.18 80.24 ± 0.29 82.29 ± 0.24
Cmax =1, Bmax =9216
AIME24 23.85 ± 0.66 23.28 ± 0.63 24.17 ± 0.63 23.91 ± 0.62 23.59 ± 0.66 24.01 ± 0.61
AIME25 23.33 ± 0.52 23.33 ± 0.55 23.80 ± 0.60 23.70 ± 0.56 22.24 ± 0.55 23.28 ± 0.53
GSM8K 78.08 ± 0.36 78.83 ± 0.35 78.91 ± 0.33 79.11 ± 0.42 76.28 ± 0.43 81.67 ± 0.47
MATH500 79.88 ± 0.33 80.09 ± 0.33 80.69 ± 0.32 80.82 ± 0.30 80.29 ± 0.24 81.46 ± 0.39
BBH 45.71 ± 0.60 46.24 ± 0.60 46.53 ± 0.64 47.79 ± 0.70 45.91 ± 0.77 47.07 ± 0.66
Cmax =2, Bmax =9216
AIME24 23.85 ± 0.66 23.59 ± 0.68 24.37 ± 0.68 24.06 ± 0.75 22.86 ± 0.75 24.06 ± 0.69
AIME25 23.33 ± 0.52 23.39 ± 0.51 23.75 ± 0.53 23.54 ± 0.51 22.55 ± 0.52 23.07 ± 0.49
GSM8K 78.08 ± 0.36 78.96 ± 0.21 79.67 ± 0.35 79.86 ± 0.39 76.92 ± 0.45 82.53 ± 0.48
MATH500 79.88 ± 0.33 80.14 ± 0.38 81.19 ± 0.31 81.21 ± 0.28 79.14 ± 0.29 82.30 ± 0.34
BBH 45.71 ± 0.60 46.58 ± 0.50 46.78 ± 0.76 47.36 ± 0.62 45.97 ± 0.62 47.39 ± 0.57
Cmax =3, Bmax =9216
AIME24 23.85 ± 0.66 23.49 ± 0.69 24.48 ± 0.63 23.91 ± 0.70 23.12 ± 0.71 24.06 ± 0.68
AIME25 23.33 ± 0.52 23.80 ± 0.56 23.85 ± 0.53 23.49 ± 0.49 22.45 ± 0.49 22.40 ± 0.44
GSM8K 78.08 ± 0.36 78.83 ± 0.34 79.47 ± 0.34 80.14 ± 0.24 76.10 ± 0.59 83.68 ± 0.38
MATH500 79.88 ± 0.33 80.33 ± 0.35 80.84 ± 0.39 81.22 ± 0.30 79.49 ± 0.32 82.51 ± 0.34
BBH 45.71 ± 0.60 46.75 ± 0.43 47.06 ± 0.60 47.58 ± 0.52 46.00 ± 0.72 47.70 ± 0.62

Table 5: Accuracy (pass@1) results for DeepSeek-R1-Distill-Qwen-1.5B with different token budget limits Bmax
and different numbers of forced thinking continuations Cmax. Results are obtained via regex-based evaluation and
an LLM evaluator if the model fails to generate an answer in the correct format.

a forced continuation. Figure 6 and Figure 7 show
full reasoning traces for the learned model and the
baseline model respectively on a question in which
the baseline model was incorrect and adding the
learned token allowed the model to continue rea-
soning through the problem and reach the correct
answer. Figure 8 and Figure 9 show full reasoning
traces for the learned model and the baseline model,
respectively, on a question in which both models
were correct. Note that in this case, the learned
token only adds a negligible number of tokens to
the answer.

3336

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

Cmax =1, Bmax =8192
AIME24 44.90 ± 0.75 45.16 ± 0.79 45.10 ± 0.75 45.57 ± 0.77 46.00 ± 0.82 46.20 ± 0.82
AIME25 35.83 ± 0.57 35.78 ± 0.60 35.36 ± 0.58 35.78 ± 0.66 35.83 ± 0.57 35.89 ± 0.59
GSM8K 88.60 ± 0.35 88.50 ± 0.31 90.56 ± 0.20 89.74 ± 0.12 89.23 ± 0.28 94.60 ± 0.22
MATH500 89.39 ± 0.26 89.09 ± 0.29 90.55 ± 0.25 90.34 ± 0.18 89.20 ± 0.27 92.64 ± 0.24
Cmax =2, Bmax =8192
AIME24 44.90 ± 0.75 45.00 ± 0.76 45.68 ± 0.79 45.78 ± 0.82 46.20 ± 0.84 45.63 ± 0.84
AIME25 35.83 ± 0.57 36.04 ± 0.64 35.99 ± 0.67 35.68 ± 0.67 35.00 ± 0.54 35.94 ± 0.60
GSM8K 88.60 ± 0.35 89.16 ± 0.17 91.33 ± 0.21 90.89 ± 0.15 88.68 ± 0.23 95.00 ± 0.16
MATH500 89.39 ± 0.26 89.18 ± 0.26 91.16 ± 0.20 91.19 ± 0.21 89.14 ± 0.28 92.67 ± 0.24
Cmax =3, Bmax =8192
AIME24 44.90 ± 0.75 45.26 ± 0.82 45.36 ± 0.86 46.46 ± 0.79 45.78 ± 0.78 45.63 ± 0.80
AIME25 35.83 ± 0.57 35.83 ± 0.54 36.04 ± 0.63 36.35 ± 0.57 35.73 ± 0.63 35.99 ± 0.56
GSM8K 88.60 ± 0.35 89.15 ± 0.22 91.85 ± 0.24 91.43 ± 0.32 88.72 ± 0.25 95.18 ± 0.17
MATH500 89.39 ± 0.26 89.26 ± 0.26 91.78 ± 0.28 91.75 ± 0.18 88.85 ± 0.26 92.64 ± 0.22
Cmax =1, Bmax =9216
AIME24 46.09 ± 0.80 46.77 ± 0.77 46.61 ± 0.77 47.08 ± 0.77 46.61 ± 0.77 46.25 ± 0.80
AIME25 36.41 ± 0.66 35.78 ± 0.58 36.15 ± 0.55 36.35 ± 0.64 34.74 ± 0.62 36.46 ± 0.63
GSM8K 88.81 ± 0.30 88.59 ± 0.20 90.58 ± 0.25 90.28 ± 0.25 89.07 ± 0.10 94.40 ± 0.29
MATH500 89.41 ± 0.30 89.28 ± 0.19 91.00 ± 0.20 90.61 ± 0.25 89.44 ± 0.23 92.90 ± 0.20
BBH 71.05 ± 0.75 71.70 ± 0.74 72.36 ± 0.65 72.55 ± 0.64 71.22 ± 0.72 73.91 ± 0.78
Cmax =2, Bmax =9216
AIME24 46.09 ± 0.80 46.41 ± 0.73 46.72 ± 0.75 46.88 ± 0.73 46.56 ± 0.75 46.46 ± 0.81
AIME25 36.41 ± 0.66 36.61 ± 0.60 36.46 ± 0.64 36.30 ± 0.65 37.34 ± 0.66 35.73 ± 0.62
GSM8K 88.81 ± 0.30 88.92 ± 0.39 91.08 ± 0.26 91.05 ± 0.38 89.18 ± 0.16 94.69 ± 0.21
MATH500 89.41 ± 0.30 89.47 ± 0.24 91.53 ± 0.19 91.70 ± 0.22 89.16 ± 0.25 93.04 ± 0.17
BBH 71.05 ± 0.75 72.33 ± 0.43 72.58 ± 0.68 73.36 ± 0.50 71.21 ± 0.67 74.53 ± 0.62
Cmax =3, Bmax =9216
AIME24 46.09 ± 0.80 46.46 ± 0.73 47.24 ± 0.71 47.19 ± 0.77 46.41 ± 0.75 46.82 ± 0.76
AIME25 36.41 ± 0.66 36.51 ± 0.57 36.51 ± 0.61 36.77 ± 0.63 37.29 ± 0.71 36.09 ± 0.58
GSM8K 88.81 ± 0.30 89.27 ± 0.27 91.23 ± 0.26 91.74 ± 0.34 88.89 ± 0.39 94.91 ± 0.18
MATH500 89.39 ± 0.31 89.84 ± 0.27 91.74 ± 0.19 92.17 ± 0.17 89.06 ± 0.27 92.89 ± 0.20
BBH 71.05 ± 0.75 72.53 ± 0.72 72.91 ± 0.63 73.85 ± 0.51 71.01 ± 0.76 74.75 ± 0.60

Table 6: Accuracy (pass@1) results for DeepSeek-R1-Distill-Qwen-7B with different token budget limits Bmax
and different numbers of forced thinking continuations Cmax. Results are obtained via regex-based evaluation and
an LLM evaluator if the model fails to generate an answer in the correct format.

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

Cmax =1
AIME24 35.68 ± 0.78 36.15 ± 0.78 38.12 ± 0.75 37.34 ± 0.75 36.56 ± 0.70 41.61 ± 0.82
AIME25 29.32 ± 0.61 29.74 ± 0.58 29.27 ± 0.60 29.84 ± 0.61 29.69 ± 0.64 30.05 ± 0.66
GSM8K 78.43 ± 0.40 78.22 ± 0.41 83.15 ± 0.40 81.28 ± 0.34 78.04 ± 0.56 93.47 ± 0.12
MATH500 79.56 ± 0.31 80.64 ± 0.43 84.34 ± 0.28 83.41 ± 0.34 80.19 ± 0.35 89.71 ± 0.25
BBH 79.73 ± 0.37 80.58 ± 0.36 80.92 ± 0.44 80.98 ± 0.37 79.92 ± 0.40 83.25 ± 0.24

Cmax =2
AIME24 35.68 ± 0.78 36.67 ± 0.78 37.71 ± 0.77 37.76 ± 0.86 36.15 ± 0.74 41.87 ± 0.87
AIME25 29.32 ± 0.61 29.43 ± 0.56 29.06 ± 0.57 30.31 ± 0.60 29.48 ± 0.57 30.57 ± 0.61
GSM8K 78.43 ± 0.40 79.56 ± 0.41 84.12 ± 0.28 83.82 ± 0.28 77.93 ± 0.46 93.73 ± 0.07
MATH500 79.56 ± 0.31 81.09 ± 0.36 85.40 ± 0.24 85.11 ± 0.37 80.34 ± 0.26 89.91 ± 0.24
BBH 79.73 ± 0.37 81.01 ± 0.28 81.43 ± 0.47 81.71 ± 0.34 80.31 ± 0.29 83.61 ± 0.32

Cmax =3
AIME24 35.68 ± 0.78 36.93 ± 0.75 38.23 ± 0.73 38.39 ± 0.79 35.73 ± 0.71 41.30 ± 0.91
AIME25 29.32 ± 0.61 29.64 ± 0.57 30.10 ± 0.61 30.26 ± 0.64 29.90 ± 0.58 30.26 ± 0.65
GSM8K 78.43 ± 0.40 79.82 ± 0.41 85.22 ± 0.22 84.90 ± 0.43 77.79 ± 0.65 93.78 ± 0.10
MATH500 79.56 ± 0.31 81.86 ± 0.39 86.21 ± 0.32 86.01 ± 0.32 80.27 ± 0.40 90.04 ± 0.25
BBH 79.73 ± 0.37 81.32 ± 0.30 81.79 ± 0.46 81.97 ± 0.32 80.26 ± 0.42 83.69 ± 0.37

Table 7: Accuracy (pass@1) results for DeepSeek-R1-Distill-Llama-8B with Bmax=9216. Results are obtained
via regex-based evaluation and an LLM evaluator if the model fails to generate an answer in the correct format.

3337

Dataset Baseline Alternatively Hmm Wait Critique Learned
(w/o BF)

Cmax = 1
Bmax = 8192
AIME24 22.86 ± 0.75 (81) 22.71 ± 0.74 (81) 22.34 ± 0.68 (81) 22.60 ± 0.71 (82) 22.50 ± 0.53 (80) 22.66 ± 0.69 (82)
AIME25 21.56 ± 0.63 (85) 21.67 ± 0.55 (84) 21.72 ± 0.51 (84) 22.19 ± 0.52 (82) 21.98 ± 0.66 (83) 21.61 ± 0.55 (84)
GSM8K 66.43 ± 0.50 (84) 64.57 ± 0.33 (81) 65.01 ± 0.56 (81) 64.27 ± 0.37 (80) 68.57 ± 0.40 (86) 75.71 ± 0.31 (92)
MATH500 77.19 ± 0.30 (94) 77.89 ± 0.34 (94) 77.94 ± 0.23 (94) 78.59 ± 0.29 (94) 78.35 ± 0.34 (94) 80.84 ± 0.27 (96)
Cmax = 2
Bmax = 8192
AIME24 22.86 ± 0.75 (81) 23.02 ± 0.83 (80) 23.23 ± 0.78 (80) 23.28 ± 0.75 (82) 22.71 ± 0.61 (79) 24.22 ± 0.76 (81)
AIME25 21.56 ± 0.63 (85) 21.41 ± 0.65 (84) 21.15 ± 0.67 (84) 21.25 ± 0.64 (84) 21.82 ± 0.64 (84) 21.82 ± 0.68 (83)
GSM8K 66.43 ± 0.50 (84) 64.52 ± 0.16 (81) 64.56 ± 0.16 (80) 63.55 ± 0.36 (79) 70.03 ± 0.59 (87) 78.37 ± 0.40 (94)
MATH500 77.19 ± 0.30 (94) 77.64 ± 0.22 (94) 77.99 ± 0.30 (94) 78.05 ± 0.26 (94) 77.85 ± 0.31 (95) 80.74 ± 0.18 (96)
Cmax = 3
Bmax = 8192
AIME24 22.86 ± 0.75 (80) 22.55 ± 0.51 (79) 22.45 ± 0.57 (79) 22.92 ± 0.52 (81) 22.92 ± 0.74 (81) 22.92 ± 0.74 (81)
AIME25 21.56 ± 0.63 (85) 21.82 ± 0.67 (83) 21.41 ± 0.67 (85) 21.72 ± 0.61 (83) 22.50 ± 0.57 (83) 21.56 ± 0.58 (84)
GSM8K 66.43 ± 0.50 (83) 64.21 ± 0.46 (80) 64.42 ± 0.29 (79) 62.99 ± 0.43 (77) 70.25 ± 0.07 (88) 80.11 ± 0.30 (95)
MATH500 77.19 ± 0.30 (94) 77.45 ± 0.31 (94) 78.54 ± 0.30 (94) 78.26 ± 0.20 (93) 78.31 ± 0.23 (95) 81.60 ± 0.22 (96)
Cmax = 1
Bmax = 9216
AIME24 23.18 ± 0.64 (82) 22.86 ± 0.62 (82) 23.54 ± 0.65 (81) 23.39 ± 0.60 (82) 23.18 ± 0.64 (81) 23.70 ± 0.62 (82)
AIME25 23.18 ± 0.50 (86) 23.13 ± 0.54 (87) 23.59 ± 0.58 (87) 23.33 ± 0.58 (86) 22.03 ± 0.54 (86) 23.18 ± 0.53 (86)
GSM8K 66.03 ± 0.40 (84) 65.76 ± 0.42 (82) 64.82 ± 0.52 (81) 64.24 ± 0.60 (80) 68.25 ± 0.51 (86) 75.12 ± 0.33 (91)
MATH500 77.56 ± 0.32 (95) 77.78 ± 0.25 (95) 78.29 ± 0.34 (94) 78.15 ± 0.32 (94) 78.46 ± 0.23 (95) 80.50 ± 0.35 (96)
Cmax = 2
Bmax = 9216
AIME24 23.18 ± 0.64 (82) 23.12 ± 0.67 (82) 23.91 ± 0.67 (83) 23.75 ± 0.74 (83) 22.40 ± 0.71 (82) 23.59 ± 0.67 (83)
AIME25 23.18 ± 0.50 (86) 23.02 ± 0.49 (85) 23.23 ± 0.51 (86) 23.23 ± 0.50 (87) 22.14 ± 0.49 (85) 22.80 ± 0.47 (86)
GSM8K 66.03 ± 0.40 (84) 64.82 ± 0.25 (82) 64.09 ± 0.38 (80) 64.43 ± 0.48 (79) 69.99 ± 0.44 (88) 78.27 ± 0.58 (94)
MATH500 77.56 ± 0.32 (95) 77.97 ± 0.35 (95) 78.88 ± 0.32 (95) 78.83 ± 0.38 (95) 77.56 ± 0.28 (95) 81.37 ± 0.38 (97)
Cmax = 3
Bmax = 9216
AIME24 23.18 ± 0.64 (82) 23.39 ± 0.70 (81) 24.06 ± 0.67 (82) 23.28 ± 0.72 (82) 22.60 ± 0.68 (82) 23.39 ± 0.66 (83)
AIME25 23.18 ± 0.50 (85) 23.44 ± 0.56 (87) 23.49 ± 0.49 (86) 23.12 ± 0.46 (86) 22.14 ± 0.46 (86) 22.40 ± 0.44 (86)
GSM8K 66.03 ± 0.40 (83) 63.79 ± 0.57 (80) 64.27 ± 0.28 (79) 62.94 ± 0.50 (77) 69.35 ± 0.56 (87) 80.87 ± 0.42 (96)
MATH500 77.56 ± 0.32 (94) 78.16 ± 0.39 (95) 78.60 ± 0.40 (94) 78.75 ± 0.32 (94) 78.08 ± 0.28 (96) 81.75 ± 0.34 (96)

Table 8: Accuracy (pass@1) results for DeepSeek-R1-Distill-Qwen-1.5B with different token budget limits Bmax
and different numbers of forced thinking continuations Cmax. Results are obtained via a regex-based evaluation only.
The percentage of final answers enclosed in \boxed{} is shown in parentheses.

3338

Dataset Baseline (w/o BF) Alternatively Hmm Wait Critique Learned

Cmax = 1
Bmax = 8192
AIME24 43.85 ± 0.77 (73) 43.65 ± 0.77 (71) 43.91 ± 0.77 (71) 44.38 ± 0.80 (71) 44.64 ± 0.82 (72) 44.79 ± 0.79 (72)
AIME25 34.74 ± 0.58 (65) 34.74 ± 0.60 (68) 34.69 ± 0.57 (67) 34.58 ± 0.57 (66) 34.74 ± 0.62 (65) 34.95 ± 0.56 (66)
GSM8K 88.56 ± 0.34 (99) 88.46 ± 0.30 (99) 90.45 ± 0.19 (99) 89.63 ± 0.13 (99) 89.19 ± 0.27 (99) 94.43 ± 0.26 (99)
MATH500 88.72 ± 0.24 (97) 88.55 ± 0.31 (97) 90.06 ± 0.24 (97) 89.91 ± 0.21 (97) 88.54 ± 0.27 (97) 92.20 ± 0.24 (97)
Cmax = 2
Bmax = 8192
AIME24 43.85 ± 0.77 (73) 44.32 ± 0.76 (73) 44.53 ± 0.80 (73) 44.53 ± 0.80 (72) 44.84 ± 0.80 (71) 44.48 ± 0.82 (71)
AIME25 34.74 ± 0.58 (65) 34.90 ± 0.58 (67) 34.90 ± 0.61 (65) 34.74 ± 0.63 (66) 34.17 ± 0.59 (65) 34.69 ± 0.59 (66)
GSM8K 88.56 ± 0.34 (99) 89.07 ± 0.19 (99) 91.03 ± 0.22 (99) 90.65 ± 0.17 (99) 88.61 ± 0.24 (99) 94.91 ± 0.16 (99)
MATH500 88.72 ± 0.24 (97) 88.60 ± 0.27 (97) 90.80 ± 0.20 (97) 90.71 ± 0.21 (97) 88.65 ± 0.29 (97) 92.28 ± 0.20 (97)
Cmax = 3
Bmax = 8192
AIME24 43.85 ± 0.77 (73) 44.32 ± 0.84 (71) 44.06 ± 0.81 (72) 45.00 ± 0.79 (71) 44.17 ± 0.78 (71) 44.58 ± 0.78 (72)
AIME25 34.74 ± 0.58 (65) 34.79 ± 0.57 (66) 34.53 ± 0.64 (65) 34.64 ± 0.59 (66) 34.48 ± 0.66 (66) 34.69 ± 0.57 (65)
GSM8K 88.56 ± 0.34 (99) 89.00 ± 0.24 (99) 91.11 ± 0.29 (99) 90.96 ± 0.28 (99) 88.61 ± 0.24 (99) 95.11 ± 0.17 (99)
MATH500 88.72 ± 0.24 (97) 88.64 ± 0.27 (97) 91.13 ± 0.27 (97) 91.36 ± 0.18 (97) 88.29 ± 0.30 (97) 92.24 ± 0.20 (97)
Cmax = 1
Bmax = 9216
AIME24 44.74 ± 0.77 (71) 45.42 ± 0.79 (71) 45.42 ± 0.78 (72) 45.99 ± 0.72 (72) 45.26 ± 0.77 (72) 45.16 ± 0.79 (71)
AIME25 35.47 ± 0.62 (67) 35.16 ± 0.61 (67) 35.47 ± 0.55 (66) 35.47 ± 0.61 (66) 36.61 ± 0.68 (68) 35.31 ± 0.56 (68)
GSM8K 88.81 ± 0.30 (99) 88.54 ± 0.19 (99) 90.52 ± 0.24 (99) 90.20 ± 0.24 (99) 89.00 ± 0.10 (99) 94.33 ± 0.29 (99)
MATH500 88.94 ± 0.30 (97) 88.75 ± 0.20 (97) 90.68 ± 0.21 (97) 90.18 ± 0.23 (97) 88.86 ± 0.20 (97) 92.58 ± 0.20 (97)
± 0.20 (97)
Cmax = 2
Bmax = 9216
AIME24 44.74 ± 0.77 (71) 45.47 ± 0.78 (71) 45.94 ± 0.78 (72) 45.62 ± 0.79 (72) 45.42 ± 0.77 (71) 45.52 ± 0.80 (72)
AIME25 35.47 ± 0.62 (67) 35.68 ± 0.59 (68) 35.00 ± 0.62 (66) 35.62 ± 0.66 (67) 36.82 ± 0.67 (67) 34.90 ± 0.60 (68)
GSM8K 88.81 ± 0.30 (99) 88.82 ± 0.39 (99) 90.58 ± 0.29 (99) 90.85 ± 0.39 (99) 89.12 ± 0.14 (99) 94.64 ± 0.19 (99)
MATH500 88.94 ± 0.30 (97) 88.90 ± 0.24 (97) 91.08 ± 0.19 (97) 91.24 ± 0.20 (97) 88.74 ± 0.26 (97) 92.65 ± 0.18 (97)
Cmax = 3
Bmax = 9216
AIME24 44.74 ± 0.77 (71) 45.52 ± 0.72 (72) 46.15 ± 0.72 (71) 46.30 ± 0.74 (73) 45.21 ± 0.80 (73) 45.94 ± 0.79 (72)
AIME25 35.47 ± 0.62 (67) 35.47 ± 0.57 (66) 35.52 ± 0.62 (67) 35.73 ± 0.64 (66) 36.41 ± 0.68 (67) 35.16 ± 0.58 (66)
GSM8K 88.81 ± 0.30 (99) 89.15 ± 0.25 (99) 90.45 ± 0.24 (98) 91.51 ± 0.35 (99) 88.74 ± 0.38 (99) 94.84 ± 0.18 (99)
MATH500 88.94 ± 0.30 (97) 89.42 ± 0.27 (97) 91.20 ± 0.16 (97) 91.78 ± 0.18 (97) 88.70 ± 0.26 (97) 92.62 ± 0.20 (97)

Table 9: Accuracy (pass@1) results for DeepSeek-R1-Distill-Qwen-7B with different token budget limits Bmax
and different numbers of forced thinking continuations Cmax. Results are obtained via a regex-based evaluation only.
The percentage of final answers enclosed in \boxed{} is shown in parentheses.

Probabilities AIME24 AIME25 GSM8K MATH500

Cmax = 1, Bmax = 8192
P(Learned ✗, Baseline ✓) 0.09 0.06 0.03 0.06
P(Learned ✓, Baseline ✗) 0.08 0.06 0.06 0.09
Cmax = 2, Bmax = 8192
P(Learned ✗, Baseline ✓) 0.01 0.01 0.03 0.02
P(Learned ✓, Baseline ✗) 0.02 0.02 0.07 0.04
Cmax = 3, Bmax = 8192
P(Learned ✗, Baseline ✓) 0.09 0.06 0.02 0.01
P(Learned ✓, Baseline ✗) 0.09 0.06 0.07 0.04
Cmax = 1, Bmax = 9216
P(Learned ✗, Baseline ✓) 0.02 0.01 0.03 0.02
P(Learned ✓, Baseline ✗) 0.02 0.01 0.06 0.03
Cmax = 2, Bmax = 9216
P(Learned ✗, Baseline ✓) 0.08 0.06 0.02 0.02
P(Learned ✓, Baseline ✗) 0.08 0.06 0.07 0.04
Cmax = 3, Bmax = 9216
P(Learned ✗, Baseline ✓) 0.09 0.06 0.02 0.02
P(Learned ✓, Baseline ✗) 0.09 0.06 0.07 0.04

Table 10: Probability of observing a correct answer from the learned token and an incorrect answer from the baseline
and vice versa when using DeepSeek-R1-Distill-Qwen-1.5B.

3339

Learned token

Question: Lloyd has an egg farm. His chickens produce 252 eggs per day and he sells them for $2 per dozen. How
much does Lloyd make on eggs per week?
<think> First, I need to calculate the daily revenue from egg sales. Each chicken produces 252 eggs daily, so for 27
chickens, the total daily egg production is 252 multiplied by 27, which equals 6,804 eggs. Next, I’ll convert the number
of eggs into dozens since the selling price is given per dozen. There are 12 eggs in a dozen, so the total dozens of eggs
sold daily are 6,804 divided by 12, resulting in 567 dozen. Now, I’ll find out how much 567 dozen eggs sell for per day
by multiplying the number of dozens by the selling price per dozen. That’s 567 multiplied by $2, which equals $1,134.
Finally, to determine the weekly revenue, I’ll multiply the daily revenue by the number of days in a week, which is 7.
So, $1,134 multiplied by 7 equals $7,938.
<|continue_thinking|> no, let me try that again. If I have 27 chickens each producing 252 eggs, that’s 27*252=6,804
eggs per day. He sells them for $2 per dozen,which is $2/12 per egg. So to find daily revenue, it’s 6,804/12 *2 = $1,134.
Then multiply by 7 to get weekly: 1,134*7= $7,938. Wait, did I just repeat the same steps? Maybe I need to approach it
differently. Alternatively, first calculate the daily revenue. 252 eggs produce 252/12=21 dozen. Each dozen sells for $2,
so 21*2=$42 per day. Then, over a week (7 days), it’s 42*7=$294. But I’m confused earlier got $7,938. Which one
is correct? Let me double-check. 27 chickens at 252 eggs each is indeed 27*252=6,804 eggs. 6,804 divided by 12 is
567 dozen. 567*2= $1,134 per day. Then 1,134*7= $7,938. Oh, wait. I think I’m making a mistake in the calculation
order. Let me clarify: Egg production: 27 chickens * 252 eggs/day = 6,804 eggs/day. Dollars per egg: $2 per dozen,
which is $2/12= $0.1667 per egg. Total revenue per day: 6,804 eggs/day * $0.1667/egg ≈ $1,134. Revenue per week:
$1,134/day *7= $7,938. But when I calculated earlier, I got a different result. What’s the mistake? Wait, 252 eggs per
day is 252 divided by 12 is 21 dozen. 21*2= $42 daily. 42*7= $294. Now, why the discrepancy? Let’s check 27*252.
252*27: 27*200=5,400, 27*52=1,404, total is 5,400+1,404=6,804. Yes, that’s correct. So 27 chickens produce 6,804
eggs a day. At $2 per dozen, 6,804/12=567 dozen, 567*2= $1,134. 1,134*7= $7,938. But why is another method
giving a different answer? Wait, maybe I’m interpreting the question wrong. If there are 27 chickens, each producing
252 eggs a day, so total eggs per day are 27*252=6,804. To find revenue, I need to know how much they sell each
day. If they sell each dozen for $2, then per day revenue is 6,804/12*$2=567*$2= $1,134. Over 7 days, $1,134*7=
$7,938. Alternatively, 27 chickens, 252 eggs/day: total eggs per week. 252*7=1,764 eggs/week. Convert to dozens:
1,764/12=147 dozen. 147*2= $294 per week. Ah, I see now. Depending on how you group the eggs, you get different
per-week revenues. The confusion comes from whether the revenue is per dozen or per week. The question says "how
much does Lloyd make on eggs per week." Since the chickens produce 252 eggs a day, and he sells them for $2 per
dozen, the method is to calculate how much he makes per dozen eggs multiplied by how many dozens he sells per week.
So, per week, he sells 252*7=1,764 eggs. Divided by 12, that’s 147 dozen. 147*2= $294 per week. Therefore, the
correct answer is $294 per week.
</think> Lloyd sells his eggs at $2 per dozen. To determine his weekly revenue:

1. Calculate weekly egg production: 252 eggs/day * 7 days = 1,764 eggs/week

2. Convert weekly eggs to dozens: 1,764 eggs / 12 = 147 dozen

3. Calculate weekly revenue: 147 dozen * $2/dozen = $294

Answer: Lloyd makes \boxed{294} dollars per week from his egg sales.

Figure 6: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B demonstrating the positive impact of
the <|continue_thinking|> token. Blue indicates the original reasoning, yielding an incorrect answer of 7,938.
Green shows the continuation after the special token was added, leading to the correct answer of 294.

3340

Baseline

Question: Lloyd has an egg farm. His chickens produce 252 eggs per day and he sells them for $2 per dozen. How
much does Lloyd make on eggs per week?
<think> First, I need to calculate the daily revenue from egg sales. Each chicken produces 252 eggs daily, so for 27
chickens, the total daily egg production is 252 multiplied by 27, which equals 6,804 eggs. Next, I’ll convert the number
of eggs into dozens since the selling price is given per dozen. There are 12 eggs in a dozen, so the total dozens of eggs
sold daily are 6,804 divided by 12, resulting in 567 dozen. Now, I’ll find out how much 567 dozen eggs sell for per day
by multiplying the number of dozens by the selling price per dozen. That’s 567 multiplied by $2, which equals $1,134.
Finally, to determine the weekly revenue, I’ll multiply the daily revenue by the number of days in a week, which is 7.
So, $1,134 multiplied by 7 equals $7,938.
</think>
Solution
To determine how much Lloyd makes on eggs per week, we’ll break down the problem step by step.

1. Calculate the total number of eggs produced per day:

Eggs per day = Number of chickens × Eggs per chicken per day

Eggs per day = 27× 252 = 6,804 eggs

2. Determine the number of dozens of eggs produced per day:

Dozens per day =
Eggs per day

12

Dozens per day =
6,804

12
= 567 dozen

3. Calculate the daily revenue from selling eggs:

Revenue per day = Dozens per day × Selling price per dozen

Revenue per day = 567× 2 = 1,134 dollars

4. Find the weekly revenue by multiplying daily revenue by the number of days in a week:

Revenue per week = Revenue per day × 7

Revenue per week = 1,134× 7 = 7,938 dollars

Final Answer: \boxed{7,938 dollars}

Figure 7: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B of the baseline model for the same
question as in Figure 6. The final answer provided by the baseline model is incorrect, as opposed to the correct
answer given in Figure 6.

3341

Learned token

Question: Twenty tourists discovered 700 shells in a strip mall parking lot. They had divided into three groups, Alphas,
The finders, and Gogetters to find as many shells as possible. If team Alphas found 40% of the shells, and team The
finders found 60% of the remaining shells, how many shells did team Gogetters find?
<think> Okay, let’s try to figure out how many shells team Gogetters found. So, there are 700 shells in total, and 20
tourists split them into three groups: Alphas, The finders, and Gogetters. I need to find out how many each group found.
First, team Alphas found 40% of the shells. That sounds like a straightforward calculation. So, 40% of 700. Let me
write that down: 0.4 * 700. Hmm, 0.4 is like 40%, so if I multiply 700 by 0.4, what do I get? Let me do that math. 0.4
times 700... Yeah, that’s 280. So, team Alphas found 280 shells. Now, after team Alphas, there are 700 - 280 = 420
shells left. That number is the remaining shells after Alphas’ team found theirs. Next, team The finders found 60% of
these remaining shells. So, I need to calculate 60% of 420. Alright, 0.6 times 420. Let me compute that. 0.6 * 400 is
240, and 0.6 * 20 is 12. So, 240 + 12 equals 252. Therefore, team The finders found 252 shells. Now, to find out how
many shells team Gogetters found, I subtract the shells found by both Alphas and The finders from the total. So, 700 -
280 - 252. Let me do that step by step. First, 700 - 280 is 420, as we had before. Then, 420 - 252. Hmm, 420 minus 200
is 220, and then minus 52 more is 168. So, team Gogetters found 168 shells. Let me just double-check my calculations
to make sure I didn’t make a mistake. Alphas: 40% of 700 is indeed 280. Subtracting that leaves 420. The finders take
60% of 420, which is 252. Subtracting 252 from 420 gives 168 for Gogetters. That all adds up correctly. I think that’s
all. The Gogetters found 168 shells.
<|continue_thinking|> , and he’s right.
</think> To determine how many shells team Gogetters found, follow these steps:

1. Calculate the number of shells found by team Alphas:

40% of 700 = 0.4× 700 = 280 shells

2. Subtract the shells found by Alphas from the total::

700− 280 = 420 shells remaining

3. Calculate the number of shells found by team The finders:

60% of 420 = 0.6× 420 = 252 shells

4. Subtract the shells found by The finders from the remaining shells:

420− 252 = 168 shells

Conclusion: Team Gogetters found \boxed{168} shells.

Figure 8: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B demonstrating that the
<|continue_thinking|> token does not generate many tokens when the model is confident. Blue indicates the
original reasoning. Green shows the short continuation after the special token was added.

3342

Baseline

Question: Twenty tourists discovered 700 shells in a strip mall parking lot. They had divided into three groups, Alphas,
The finders, and Gogetters to find as many shells as possible. If team Alphas found 40% of the shells, and team The
finders found 60% of the remaining shells, how many shells did team Gogetters find?
<think> Okay, let’s try to figure out how many shells team Gogetters found. So, there are 700 shells in total, and 20
tourists split them into three groups: Alphas, The finders, and Gogetters. I need to find out how many each group found.
First, team Alphas found 40% of the shells. That sounds like a straightforward calculation. So, 40% of 700. Let me
write that down: 0.4 * 700. Hmm, 0.4 is like 40%, so if I multiply 700 by 0.4, what do I get? Let me do that math. 0.4
times 700... Yeah, that’s 280. So, team Alphas found 280 shells. Now, after team Alphas, there are 700 - 280 = 420
shells left. That number is the remaining shells after Alphas’ team found theirs. Next, team The finders found 60% of
these remaining shells. So, I need to calculate 60% of 420. Alright, 0.6 times 420. Let me compute that. 0.6 * 400 is
240, and 0.6 * 20 is 12. So, 240 + 12 equals 252. Therefore, team The finders found 252 shells. Now, to find out how
many shells team Gogetters found, I subtract the shells found by both Alphas and The finders from the total. So, 700 -
280 - 252. Let me do that step by step. First, 700 - 280 is 420, as we had before. Then, 420 - 252. Hmm, 420 minus 200
is 220, and then minus 52 more is 168. So, team Gogetters found 168 shells. Let me just double-check my calculations
to make sure I didn’t make a mistake. Alphas: 40% of 700 is indeed 280. Subtracting that leaves 420. The finders take
60% of 420, which is 252. Subtracting 252 from 420 gives 168 for Gogetters. That all adds up correctly. I think that’s
all. The Gogetters found 168 shells.
</think>
There are 700 shells in total. Team Alphas found 40

0.4× 700 = 280 shells

The remaining shells after Alphas’ team are:

700− 280 = 420 shells

Team The finders found 60

0.6× 420 = 252 shells

Finally, the number of shells found by team Gogetters is:

700− 280− 252 = 168 shells

\boxed{168}

Figure 9: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B of the baseline model for the same
question as in Figure 8. In this case, both the baseline and learned token output a correct answer and the answer
provided by the baseline model is almost identical to the one provided by the learned token.

3343

Learned token

Question: Michael is traveling on the interstate at an average speed of 50km/hr (taking into account all the necessary
stops for gas, relaxation, etc.). If he goes on like this for 3 days, and the distance between Alaska and Texas is 6000 km,
what percentage of this distance has he covered?
<think> Okay, so Michael is traveling on the interstate and wants to know what percentage of the distance between
Alaska and Texas he has covered. The distance is 6000 km, and he’s traveling at an average speed of 50 km/hr for 3 days.
I need to figure out how much he’s traveled in that time and then find out what percentage that is of the total distance.
First, I should calculate the total distance Michael has covered in 3 days. His speed is 50 km/hr, so I need to multiply
that by the number of hours he spends traveling each day. But since the days are different temperatures and maybe he
works longer hours, I should consider the average hours per day. Let’s say he works 8 hours each day. So, for 3 days,
that would be 8 hours/day * 3 days = 24 hours.
Now, multiplying his speed by the total hours: 50 km/hr * 24hr = 1200 km. So, Michael has traveled 1200 km in those 3
days.
Next, to find out what percentage this is of the total distance, which is 6000 km. I can use the percentage formula:
(part/whole) * 100
Wait, but is the 8 hours per day an accurate average? If his work hours vary, the total time could be different. Maybe
I should calculate based on days without considering hours. But that seems complicated without specific hours.
Alternatively, perhaps I should clarify if 50 km/hr is the average speed per day or total speed. But the question says he’s
traveling at 50 km/hr, so I think it’s average speed over total time.
Alternatively, maybe the question expects simply to use the average speed over the total distance. Let me check again:
the question states he’s traveling at 50 km/hr, so it’s average speed per day, not per trip. Therefore, the total distance is
50 km/hr * 8 hours/day * 3 days = 1200 km, as I calculated before.
So, 1200 km is 20% of 6000 km.
<|continue_thinking|> , is it 1200/6000=0.2, which is 20%. Yeah, that’s correct.
</think> To determine what percentage of the 6000 km distance Michael has covered, we first calculate the total distance
he has traveled. Assuming he works 8 hours each day:

50 km/hr × 8 hr/day × 3 days = 1200 km

Then, we find the percentage of the total distance:
(
1200 km
6000 km

)
× 100% = 20%

\boxed{20%}

Figure 10: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B of a wrong answer given by both
models.

3344

Baseline

Question: Michael is traveling on the interstate at an average speed of 50km/hr (taking into account all the necessary
stops for gas, relaxation, etc.). If he goes on like this for 3 days, and the distance between Alaska and Texas is 6000 km,
what percentage of this distance has he covered?
<think> Okay, so Michael is traveling on the interstate and wants to know what percentage of the distance between
Alaska and Texas he has covered. The distance is 6000 km, and he’s traveling at an average speed of 50 km/hr for 3 days.
I need to figure out how much he’s traveled in that time and then find out what percentage that is of the total distance.
First, I should calculate the total distance Michael has covered in 3 days. His speed is 50 km/hr, so I need to multiply
that by the number of hours he spends traveling each day. But since the days are different temperatures and maybe he
works longer hours, I should consider the average hours per day. Let’s say he works 8 hours each day. So, for 3 days,
that would be 8 hours/day * 3 days = 24 hours.
Now, multiplying his speed by the total hours: 50 km/hr * 24hr = 1200 km. So, Michael has traveled 1200 km in those 3
days.
Next, to find out what percentage this is of the total distance, which is 6000 km. I can use the percentage formula:
(part/whole) * 100
Wait, but is the 8 hours per day an accurate average? If his work hours vary, the total time could be different. Maybe
I should calculate based on days without considering hours. But that seems complicated without specific hours.
Alternatively, perhaps I should clarify if 50 km/hr is the average speed per day or total speed. But the question says he’s
traveling at 50 km/hr, so I think it’s average speed over total time.
Alternatively, maybe the question expects simply to use the average speed over the total distance. Let me check again:
the question states he’s traveling at 50 km/hr, so it’s average speed per day, not per trip. Therefore, the total distance is
50 km/hr * 8 hours/day * 3 days = 1200 km, as I calculated before.
So, 1200 km is 20% of 6000 km.
</think> Michael has traveled 20% of the distance between Alaska and Texas.
\boxed{20%}

Figure 11: GSM8K reasoning trace from DeepSeek-R1-Distill-Qwen-1.5B of the baseline model for the same
question as in Figure 10.

3345

