
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 3308–3323

December 20-24, 2025 ©2025 Association for Computational Linguistics

Program Synthesis Dialog Agents for Interactive Decision-Making

Matthew Toles1, Nikhil Balwani1,2*,
Rattandeep Singh1,

Valentina Giulia Sartori Rodriguez1,3, Zhou Yu1

1Columbia University, 2Amazon, 3Sciences Po Paris
Correspondence: m.toles@columbia.edu

Abstract

Many real-world eligibility problems, ranging
from medical diagnosis to tax planning, can be
mapped to decision problems expressed in nat-
ural language, wherein a model must make a
binary choice based on the features of the user.
Large-scale domains such as legal codes or fre-
quently updated funding opportunities render
human annotation (e.g., web forms or deci-
sion trees) impractical, suggesting a need for
agents that can automatically assist in decision-
making. Since relevant information is often
only known to the user, it is important that
these agents can ask the right questions. To
evaluate this task, we propose BeNYfits, a new
benchmark for determining user eligibility for
multiple overlapping social benefits opportuni-
ties through interactive decision-making. Our
experiments show that current language mod-
els struggle with frequent hallucinations, with
GPT-4o scoring only 35.7 F1 using a ReAct-
style chain-of-thought. We therefore introduce
ProADA, a novel approach that uses program
synthesis to assist in decision-making by map-
ping dialog planning to a code generation prob-
lem and using gaps in structured data to deter-
mine the best next action. Our agent, ProADA,
improves the F1 score to 56.2 while using
nearly the same number of dialog turns.

1 Introduction

The improved capabilities of large language mod-
els have refocused attention away from traditional
benchmarks and towards real-world tasks where
automated systems could broadly benefit the pub-
lic, such as improving access to public services.
Many such opportunities require determining the
user’s eligibility based on the user’s features and
the task at hand, formally referred to as decision
problems. In adaptive decision scenarios, where
information is revealed iteratively (e.g., medical di-
agnosis), one also wishes to minimize the number

* This work completed before joining Amazon

of queries. Also, critical information may be user-
specific and known only to certain people, meaning
that it often must be requested through dialog. Fi-
nally, the diversity of problems in the real world
places a premium on whether agents can generalize
information gathering and logical reasoning to new
domains.

User-facing decision problems have tradition-
ally been solved using hard-coded forms (as in the
American tax filing software TurboTax2) or dialog
trees (as in video games). However, hard-coded
solutions struggle to generalize or extend to web-
scale decision problems; opportunities found by
web-scraping, crowd-sourcing, or from extremely
large corpora such as national tax codes may be
challenging to formalize, let alone decide on in
real-time. Methods to approach adaptive decision
problems include multi-armed bandits, reinforce-
ment learning, dynamic programming, and deci-
sion trees, but adapting these strategies to online
natural language tasks is not trivial. Recently, large
language models have improved on a wide range of
related tasks. However, they are known to struggle
with reasoning over long contexts and hallucinate
unstated information.

To evaluate interactive decision-making, in Sec-
tion 2 we introduce BeNYfits, a language model
agent task for determining user eligibility for real-
world public benefits opportunities with overlap-
ping eligibility requirements (Figure 1). In the
single-opportunity scenario, the assistant agent
could simply repeat the requirements and ask the
user if they qualify. However, BeNYfits’ overlap-
ping requirements present an interesting optimiza-
tion challenge for dialog planning: how should
models “merge" eligibility requirements to avoid
duplicating questions and maximize information
gain? We find that current large language models,
including GPT-4o, struggle to perform significantly

2https://turbotax.intuit.com/

3308

mailto:mt3639@columbia.edu

Figure 1: Interactive decision-making dialog loop in
BeNYfits. The agent is initialized with opportunity eli-
gibility requirements for the "Train & Earn" opportunity
(simplified). The agent then asks questions to the user
until the agent answers YES to the READY prompt, at
which point it PREDICTs the user’s eligibility. Note that
the agent skips requirement 3a because youth cannot
register for selective service. Similarly, it skips require-
ment 3c because it becomes irrelevant if the user is a
former foster care youth.

better than chance at determining user eligibility,
suffering from hallucination, poor reasoning under
uncertainty, overconfidence, and lost-in-the-middle
problems observed in prior work (Huang et al.,
2024).

Given these weaknesses, we introduce a method
for an agent that, given a natural language descrip-
tion of the user-facing decision problem, generates
a program to request user input conversationally to
solve the problem. Specifically, we construct an
agent consisting of a code module, which conducts
dialog planning in the form of a Python program,
and a dialog module, which asks questions based
on the program state. The agent then uses the dia-
log module to parse the user’s response into struc-
tured data. This approach exploits code generation
models’ long-range planning and and uncertainty
handling to improve task-oriented dialog, as com-
pared to conventional dialog models. As a key
contribution, in Section 3 we present Program Syn-
thesis Adaptive Decision Agent, or ProADA, an
agent that, given a natural language policy of a de-
cision problem, generates Python code to structure
the decision-making process and request minimal
user input to make the correct decision.

Our main contributions are as follows.
1. A novel agent benchmark for adaptive decision-
making in dialog measuring agent accuracy and
dialog turn efficiency in helping users determine
eligibility for public, real-world opportunities.
2. A general and effective agent for adaptive
decision-making in dialog that exploits program
synthesis and tool use to plan dialog and adaptively
request user information, improving both F1 score
and dialog completion speed. We will release the
model code and maintain a benchmark after publi-
cation.

2 BeNYfits: An Agent Benchmark for
Public Benefit Eligibility Decisions

The determination of eligibility for many public
opportunities, such as tax credits, scholarships, re-
search funding opportunities, business incentives,
charities, job listings, and social services, can be
reduced to a binary decision problem. Since many
requirements, such as age and income, overlap be-
tween programs, this creates an opportunity for
agent assistants to make more efficient and adaptive
decisions as compared to traditional methods like
static web forms. At the same time, determinations
often require domain-specific knowledge to make
accurate determinations, presenting a challenge in
natural language understanding. We present BeNY-
fits, a benchmark for decision-making on public
benefits eligibility. In BeNYfits, the agent’s goal
is to help users navigate complex decision-making
processes and make a final determination on the
user’s eligibility based on the dialog in the mini-
mum number of dialog turns.

2.1 Efficiency, Generalization, and User
Experience

Traditional methods for determining eligibility
present several opportunities for improvement by
intelligent agent assistants. For small numbers of
opportunities, we might convert natural language
requirements into a web form or static chatbot di-
alog tree serving as an interface for hard-coded
checking logic, similar to TurboTax. However, this
approach has several drawbacks. First, many eli-
gibility requirements are updated without notice,
often annually, meaning eligibility performance
will degrade over time without ongoing mainte-
nance. Second, opportunities may be crowdsourced
or scraped from the Web dynamically, rendering
manual coding impractical in favor of more gener-

3309

alizable, lower-latency solutions, such as language
agents. Furthermore, requirements between simi-
lar opportunities frequently overlap, forcing users
to answer the same questions repeatedly. On the
other hand, users may waste a lot of time if they
discover that they are ineligible very late in the ex-
amination process, presenting an opportunity for
adaptive decision-making algorithms. An intelli-
gent agent, however, should adaptively query the
user for only the minimum necessary information,
saving time, and improving user experience.

In BeNYfits, an agent must interact with a simu-
lated user to determine their household’s eligibil-
ity for multiple overlapping benefits opportunities
based only on the opportunity requirements and
conversation with the user. We define the task as
follows. Given a set of opportunities, each with a
unique set of eligibility requirements, determine
whether the user is eligible for each of them in the
minimum number of dialog turns (Figure 1). We
simulate a user by prompting a language model
with detailed information about themselves and
their household. Each simulated user is interested
in a subset of all opportunities. Assistant agents
possess the natural language eligibility require-
ments for those opportunities and must determine
the simulated user’s eligibility by asking a series of
questions. After each dialog turn, the agent deter-
mines whether it is ready to make a decision and,
if so, outputs a final eligibility prediction for each
opportunity.

2.2 Opportunity Requirements

We source the plain English eligibility require-
ments for 82 benefits opportunities from NYC
Open Data3. We minimally edit requirements to
remove ambiguity ("may be eligible"), future ex-
pectations ("can commit to"), and dates ("since
2023"). Opportunities include tax credits, youth
programming, housing, nutrition assistance, health-
care, parental services, and career advancement,
among other categories. Eligibility requirements
range from broad (State ID card: all residents age
10+) to extremely specific (Air conditioner subsidy:
ten independent requirements). Opportunities may
apply to either the individual or the household as a
whole, offering additional logical complexity. Op-
portunities depend on 1-18 unique user features
each (mean: 4.66 standard deviation: 3.56). Each
user feature appears in 1-52 opportunities (mean:

3https://data.cityofnewyork.us/

Figure 2: Number of opportunities dependent on each
household feature. For example, 53 of 82 programs rely
on age to determine eligibility. Top 20 features shown.

3.25, standard deviation: 6.66), falling on a long-
tailed distribution (Figure 2). We define a house-
hold as eligible for an opportunity if any of its
members are eligible.

2.3 User Simulation

For each opportunity, we enumerate relevant user
features (age, income, number of dependents, etc.).
We create simulated user households by randomly
sampling each feature for each member, with up
to 6 members per household. Features are inde-
pendently sampled, except when subject to con-
straints preventing illogical combinations (5-year-
old grandparents, adults in foster care, multiple
spouses, etc.) From these structured feature sets,
we generate a natural language profile for the house-
hold. We prompt Llama 3.1 70B with the natural
language profile to answer questions from the in-
formation seeking agent.

2.4 Eligibility Checker Programs

To determine the ground truth eligibility of sim-
ulated users for specific opportunities, we manu-
ally write an eligibility checker Python program
for each opportunity based on its plain language
requirements. The eligibility checker takes a simu-
lated user’s structured features as input and outputs
the user’s eligibility for the opportunity. We take
care to avoid Python OR and AND keywords and
other patterns such as list comprehension. In this
way, we ensure that if and only if two households
qualify (or fail to qualify) for an opportunity for the
same reasons, they cause the eligibility checker
to execute the same unique set of lines of code, its
trace.

3310

2.5 Diverse Dataset

Due to the time and cost of benchmarking new
models, we attempt to construct the smallest pos-
sible dataset with the most "coverage" of unique
traces to qualification or disqualification using in-
put fuzzing. Each example consists of a simulated
user, a subset of opportunities in which they are
interested, and the ground truth eligibility for those
opportunities. We first randomly generate 10,000
simulated users, sampling each variable from a dis-
tribution chosen to produce a balanced sampling
across traces, typically uniformly, except when eli-
gibility is based on thresholds of numeric features.
We then greedily add households to the dataset
whose trace through all eligibility checkers execute
the most unique lines of code not yet present in the
dataset. Finally, we greedily remove opportunities
from simulated users if the user-opportunity trace
contributes no unique lines. We refer to this dataset
as the Diverse Dataset, which contains only 56 of
the original 10,000 households (305 of 82,000 user-
opportunity pairs) but covers the same traces as the
full set. Each household is interested in between
1-10 opportunities, with a mean of 5.4.

2.6 Representative Dataset

To model a realistic distribution of potential users,
we construct a second Representative Dataset.
Each feature for each user household (e.g., housing
type) is independently sampled from distributions
derived from 78 different sources. We use data
from New York City when available, but fall back
to state- or national-level statistics if necessary. We
assign opportunities to users at random. The repre-
sentative contains 25 user households, each inter-
ested in 6-19 opportunities, with a mean of 9.8.

2.7 Dialog Loop

Agents are provided eligibility requirements and
then must determine simulated user eligibility by
asking questions, one at a time. After each re-
sponse, the agent is prompted with READY, where
it is asked if it has enough information to determine
the eligibility of the user with certainty (Figure 1).
If the agent responds with TRUE, it is prompted to
PREDICT the user’s eligibility for each opportunity.
Otherwise, it asks another question. We limit con-
versations to average 20 questions per opportunity,
to a maximum of 100 questions.

3 ProADA

To solve interactive decision problems, we propose
a Program Synthesis Adaptive Decision Agent, or
ProADA, which uses agent-created Python tools
as reasoning aids for adaptive decision problems
in dialog. State-of-the-art code generation models
often generate code that involves a dozen variables
(Wan et al., 2024), yet the models suffer from basic
reasoning errors and hallucinations when working
in natural language. By offloading dialog plan-
ning and memory into static Python code, ProADA
achieves the flexibility and usability of natural lan-
guage while leveraging the long-range planning
and reasoning of program synthesis. ProADA con-
sists of a code generation module and a dialog
module. The code generation module creates one
Python DECIDE tool per opportunity, formalizing
the logic of the decision problem and deciding the
result. The dialog module serves as an interface
between the user and the DECIDE tool, asking ques-
tions and storing answers in a structured form (Fig-
ure 3).

To best explain ProADA, we instantiate it in
the context of our proposed BeNYfits benchmark.
Before starting a dialog, ProADA uses the code
generation model to convert the eligibility require-
ments in natural language into a Python DECIDE

Checker tool used by the agent (Figure 3). DECIDE

is a Python function that takes a UserFeatures
dictionary containing known user properties (e.g.,
“homeless_or_runaway") as input and outputs the
household eligibility. For each key used to access
UserFeatures, the code generation model defines
a type (int, float, etc.) constraint, or a list of
string choices that the feature can take. At the start
of the dialog, the agent runs the DECIDE tool, pass-
ing in an empty UserFeatures dictionary, since it
knows nothing about the user yet. An empty dictio-
nary would normally cause a key error, which we
exploit by wrapping DECIDE in a try/except block.
In an exception, the agent passes the offending key,
relevant code, eligibility requirements, and dialog
history to the dialog module. The dialog module
constructs a question seeking the necessary infor-
mation (“Are you a homeless or a runaway youth?")
and presents it to the user. The dialog module then
converts the user’s response (“I am a homeless
youth") into a valid value according to the predeter-
mined constraint using constrained generation, stor-
ing the key-value pair (“homeless_or_runaway":
“yes") in UserFeatures. In the case that the

3311

Figure 3: ProADA architecture. ProADA consists of the checker tool created by the code generation module
(left) and the dialog module (center). The checker tool is a Python function that determines user eligibility from
a structured user representation dictionary (right). The ProADA dialog module acts as an interface between the
checker tool and the user. On each dialog turn, the agent runs the checker tool on the user dictionary, which is
initially empty. On a key error, the dialog module fills in a single key-value pair by asking a user a question and
converting the answer to a value consistent with the checker tool logic. The dialog ends once a value is returned by
the checker tool for every opportunity.

user’s response cannot be mapped to a valid value,
ProADA will invoke the CLARITY module, which
will spend up to three turns attempting to clarify
the user’s response (additional details in Appendix
C.12). This module allows ProADA to recover
from unhappy dialog paths and incoherent user in-
put. Finally, the agent repeats running DECIDE

with the updated UserFeatures dictionary until it
returns a value.

4 Experimental Setup

As baselines, we choose Llama 3.1 Instruct 8B and
70B, as well as GPT-4o. In direct prompting, we in-
struct these models to assess readiness and generate
questions at each step in the dialog loop, and finally
to predict eligibility. We also assess prompting
models to conduct ReAct-style chain-of-thought be-
fore each step (Yao et al., 2023). During READLY

and DECIDE, we use constrained decoding to en-
sure ProADA and baseline models generate a valid
output. For ProADA, we choose the same models
for the dialog module and always use GPT-4o for
the code generation module. We choose Llama
3.1 Instruct 70B to implement our simulated user
for all experiments, in order to reduce the halluci-
nations that we observed in smaller 8B parameter
models. To reduce memory usage, we use 4-bit
quantization on all 70B-parameter models. We re-
port three trials for Llama 8B, Llama 70B ReAct,
and ProADA models, and one trial for others due

to resource constraints. To measure human perfor-
mance on this task, two expert authors performed
the role of the agent on 83 user-opportunity pairs
from the Diverse Dataset, achieving 85.6% accu-
racy. Upon review, we find all inaccuracies are
due to human error rather than unfaithful simulated
user responses, suggesting a performance ceiling
near 100% on this benchmark.

5 Experimental Results

Because our datasets are unbalanced (Diverse:
47.9% positive, Representative: 15.5%), we choose
micro F1 as our primary accuracy metric. Let F1
and T be the average F1 score and the number of
turns across both datasets, respectively. To reward
efficient questioning, we define a turn-weighted F1
score as:

Turn-Weighted F1 =
100 · F1

T/100 + 1
(1)

We choose this metric because it increases mono-
tonically from 0 to 1 with respect to F1 and de-
creases monotonically with respect to turns. The in-
clusion of the +1 term prevents small changes in T
from drastically impacting turn-weighted F2 when
T is small. Holding F1 constant, turn-weighted
F1 will range from F1 to 0.5 · F1 as T increases.
Because T ≤ 100, we normalize it by 100.

We find that our method, ProADA, outperforms
all others by a significant margin with a turn-

3312

Figure 4: Average of Representative and Diverse dataset F1 vs. dialog turns to completion for ProADA and baseline
models. Legend follows the format Strategy (Code Model) - Dialog Model.

weighted F1 score of 46.7 (56.2 F1, 20.4 turns, Fig-
ure 4). The turn-weighted F1 score drops to 43.5
without the CLARITY module. However, ProADA
still surpasses the next best strategy, Llama 3.1
70B + ReAct (34.1) and GPT-4o + direct prompt-
ing (29.9), despite using a dialog model with many
times fewer parameters. GPT-4o achieves a rela-
tively high average F1 score (40.8), but uses 27.2
turns per dialog, while Llama 3.1 8B appears to
terminate prematurely after only 6.0 turns, achiev-
ing only 33.6 F1. Claude 3.7 slightly outperforms
GPT-4o when serving as the ProADA code mod-
ule (47.1 vs 46.7 Turn-Weighted F1), likely due to
its internal inference-time scaling. However, GPT-
4o outperforms in the direct prompting and ReAct
conditions, leading us to choose it as our primary
baseline. Dialog completion speed varies widely
across models and strategies, with Llama 3.1 70B
+ direct prompting frequently hitting the turn limit
without terminating, resulting in an average turn
count of 81.7. Program synthesis guidance, and to
a lesser degree ReAct prompting, appear to moder-
ate the number of turns needed without negatively
impacting F1 score. We see significantly higher

accuracy on the Diverse Dataset compared to the
Representative Dataset, possibly because its exam-
ples contain roughly half as many opportunities per
user.

5.1 User Study

We conducted a user survey n=58 community mem-
bers at a New York City University campus. Each
user selected 5 opportunities in which they are per-
sonally interested. Half of participants were as-
signed each to use either ProADA or GPT-4o + Re-
Act. Users then rated the accuracy and subjective
usability on a 5-point likert scale, in accordance
with the NASA Task Load Index (Hart, 2006). We
find that ProADA achieves better usability scores
in metrics as well as significantly higher accuracy
and program discovery with real users (Table 2).

6 Failure Analysis

We observe multiple distinct types of errors that
contribute to poor reasoning and inefficient dialog.
Program synthesis-guided dialog reduces errors
overall, but introduces unique failure modes associ-
ated with code generation. However, several failure

3313

Model Diverse Representative Average Weighted

Strategy Dialog Code F1 ↑ Turns ↓ F1 ↑ Turns ↓ F1 ↑ Turns ↓ F1 ↑

Direct Prompting Llama 3.1 8B GPT-4o 44.6 5.5 22.5 6.4 33.6 6.0 31.7
Llama 3.1 70B GPT-4o 54.3 41.6 27.2 81.7 40.8 61.7 25.2

GPT-4o GPT-4o 31.2 16.8 45.0 37.6 38.1 27.2 29.9
GPT-o3 mini GPT-4o 52.9 20.3 15.6 31.2 34.2 25.8 27.2

Claude 3.7 GPT-4o 43.7 11.9 17.9 8.9 30.8 10.4 27.9
ReAct Agent Llama 3.1 8B GPT-4o 40.4 9.5 26.1 10.9 33.2 10.2 30.2

Llama 3.1 70B GPT-4o 58.3 9.5 26.1 37.9 42.2 23.7 34.1
GPT-4o GPT-4o 50.4 18.4 20.9 13.3 35.7 15.8 30.8

Claude 3.7 GPT-4o 41.3 38.7 16.4 28.4 28.8 33.6 21.6
Random P(True=0.5) - 23.6 0 48.9 0 36.3 0 36.3
ProADA (ours) Llama 3.1 70B GPT-4o 58.7 18.8 53.7 22.1 56.2 20.4 46.7

Llama 3.1 70B Claude 3.7 57.0 21.5 58.0 22.4 57.5 22.0 47.1
Llama 3.1 70B Qwen 32B 21.9 10.1 17.9 11.5 19.9 10.8 17.9

ProADA w/o Clarity Llama 3.1 70B GPT-4o 54.0 18.2 49.7 19.8 51.8 19.0 43.5

Table 1: F1 score and dialog turns to completion for ProADA and baseline models. Average is averaged across
Diverse and Representative Datasets. Weighted F1 score uses equation (1).

modes persist across all strategies, indicating core
weaknesses in foundational model reasoning abil-
ity.
Suggestibility: Models suffer from hallucination
prompted by implications in eligibility require-
ments. For example, when prompted with a child
care program, models ask for the child’s age with-
out checking whether the household contains any
children to begin with.
Domain knowledge & edge cases: Models fail to
account for edge cases, such as 17-year-olds with
work income or adult dependents.

6.1 Baseline Behavior
Although it is difficult to confidently attribute final
predictions to specific mistakes in black-box mod-
els during question generation, we observe several
flawed reasoning patterns when using direct and
ReAct prompting:
Hallucination: Baseline models frequently return
TRUE in READY before collecting all relevant infor-
mation, implying either a logical reasoning failure
or an internal hallucination of relevant facts.
Hyperspecificity: Models ask needlessly specific
questions ("Is your total annual income below
$69,900?") when a more general question ("What
is your total annual investment income?") would
produce information useful elsewhere, resulting in
superfluous dialog turns.
Repetition: Baseline models get stuck in loops,
asking slight variations of the same question.
Multi-Member Households: Baseline models of-
ten inquire only about the user, rather than all
members of the family, despite being specifically
prompted to do so. They rarely ask for the family

size or composition when eligibility is determined
at the individual level, substantially reducing recall.

Conflating Users: Baseline models often conflate
household members or fail to specify which mem-
ber they are asking about.

6.2 ProADA Behavior

Program synthesis-guided dialog introduces several
distinct new failure modes:

Code Generation: Logical or domain-specific rea-
soning errors can create flawed code that propa-
gates errors through subsequent conversations.

Code to Question: Although the code generated
for the DECIDE tool usually represents multiple
family members correctly as a list, the dialog mod-
ule struggles to track and specify which member
is being discussed at any time. Interestingly, we
observe improved performance when users provide
the names of their family members.

To investigate bias arising from the mapping of
user responses to structured data, we conduct the
following study: We analyze 17 questions gener-
ated by ProADA and provide 6 perturbed versions
of the same answer. Across all 102 trials, we find
that overall, user responses are rarely mapped in-
correctly, in only 2% (n=2) of cases.

3314

Figure 5: ProADA program synthesis errors

ProADA GPT-4o + React

Accuracy ↑ 81.3%† 42.1%
Discovered Opportunity ↑ 80.0%† 50.0%

Clarity ↑ 4.80† 4.14
Ease of Use ↑ 4.53* 3.96
Could Save Time ↑ 4.47† 3.39
Question Appropriateness ↑ 4.43† 3.54
Task Complexity ↓ 1.73† 1.89
Workload ↓ 1.33† 2.04
Irritation ↓ 1.50† 2.71

Table 2: User-reported accuracy, usability, and frequency of
discovery of at least one opportunity for which the user is
eligible. * p<0.05, † p<0.01

6.3 Errors by Simulated Users

Authors annotated 61 simulated user responses for
faithfulness to the user profile, finding 60 (98.4%)
of questions are answered faithfully (Figure 5).
The simulated user tends towards verbosity, provid-
ing additional unrequested information in 5 cases
(8.2%). We find unnatural but faithful responses in
2 cases (3. 3%), indicating that the frequency of
errors due to simulated user misbehavior is low. In
qualitative probing, we find that the simulated user
can respond accurately to diverse questions up to
two hops (e.g., "How many children do you have
under the age of 5?"). Sufficiently complex queries
or those with more than two hops tend to cause the
simulated user to respond that it cannot answer the
question, but we rarely observe models generating
such questions in our experiments.

7 Discussion

Program-synthesis-guided dialog improves accu-
racy in adaptive decision problems while reducing
the number of dialog turns needed. This provides
multiple benefits by exposing the agent’s reason-
ing process in a human-readable format. Agent
decisions become more transparent and consistent,
improving interpretability, and enabling several av-
enues for further improvements.

Since the Python tool only needs to be created

once, we can use a stronger model for program
synthesis without incurring significantly increased
inference costs or latency. Then, by replacing the
READY and PREDICT language model calls in the
dialog loop with simple Python functions, we re-
duce the number of language model calls by over
50%. Unlike in black-box models where we ob-
serve disparate behavior based on surface form vari-
ation, especially in out-of-distribution contexts, our
technique forces the agent to behave consistently
across users. As a form of prompt transformation,
this may also reduce the susceptibility of public-
facing agents to jailbreak (Peng et al., 2024).

This white-box reasoning approach enables
transparency into model failure modes and clear op-
portunities for future work. On the dialog side, we
observe that LLMs often get stuck in dialog loops
after making false assumptions about the user. In
code generation, we observe a significant portion of
errors are due to inaccurate code generation (Fig-
ure 5) related to domain expertise. Specifically,
coding agents could search for domain knowledge
(e.g., the tax-purposes definition of a dependent
in the state of New York) before conducting pro-
gram synthesis. Strategies in self-correction and
theory of mind may be applicable here. Although
we generate code automatically in this work, the
code may be checked manually or with software
tools to ensure correctness before deployment. Un-
like black-box models, program synthesis-guided
models like ProADA may also be subject to unit
tests to ensure code quality.

AI faces increasing regulation, especially in pub-
lic services or where systemic bias may disenfran-
chise certain groups, such as credit offerings. In cer-
tain scenarios, providers are required to prove that
their models are unbiased or to provide a human-
readable basis for any given AI decision. Although
questions are generated neurally, eligibility deci-
sions are made with static code that can be auto-
matically traced to produce a rationale. However,
we note that the parsing of user utterances into
structured data may still introduce bias.

Many opportunities in BeNYfits and other public
opportunities are contingent on sensitive personal
information, such as income, substance abuse, do-
mestic violence, and being HIV positive. By limit-
ing closed-source model use only to program syn-
thesis, solutions like ProADA avoid leaking user
data to commercial entities while harnessing their
models’ advanced reasoning.

ProADA represents a reverse of the traditional

3315

tool-use paradigm in which language models call
tools by generating special tokens. Instead, our
agent creates a tool which in turn calls the lan-
guage model. Future work may explore more so-
phisticated agent-tool relationships.

8 Related Work

Many dialog agent tasks have been proposed, in-
cluding offline task-oriented dialog (Andreas et al.,
2020) (Budzianowski et al., 2018) and online user
simulations using real humans or LM agents as re-
sponders (Gür et al., 2018) (He et al., 2018). Ques-
tion generation is a related task where agents seek
information relevant to a downstream task, such as
user intent (Min et al., 2020), relevant facts (Toles
et al., 2023), or user preferences (Li et al., 2023).
Some task-oriented dialog datasets focus on clar-
ification and information seeking, such as Zhang
et al. (2023). However, datasets such as ShARC
(Saeidi et al., 2018) and ClariT (Feng et al., 2023)
only require "yes" or "no" questions. BeNYfits
expands on these works by adding a highly realis-
tic, multi-turn dialog agent task requiring logical
reasoning and domain-specific knowledge. Simi-
lar tasks include MediQ (Li et al., 2024), which
benchmarks medical diagnosis through dialog, and
ClarQ-LLM (Gan et al., 2024), which focuses on
discovering hidden information while playing an
adventurer. In comparison, BeNYfits focuses on
logically reasoning legalistic tasks to reach a binary
prediction.

Many works on tool-use have equipped language
models with a code interpreter (Gupta and Kemb-
havi, 2023) (Shen et al., 2024), though fewer have
specifically studied tool creation, e.g., Qian et al.
(2023). Several prior works have established the
efficacy of code generation in dialog systems. Chiu
et al. (2023) propose grounding in code generated
based on partner utterances and using symbolic
planning to reason over the code. Surís et al. (2023)
find code translations an effective intermediate rep-
resentation for natural language questions. Nguyen
et al. (2024) create an LLM agent framework for
dynamically creating and composing subtask ac-
tions based on code. To the best of our knowledge,
no other code generation-based approaches have
been proposed for question generation in dialog.

9 Conclusion

We present a strong tool-augmented method to
solve interactive decision-making in dialogs and

a novel and realistic benchmark for measuring
decision-problem accuracy and dialog efficiency.
Our method ameliorates memory and planning is-
sues by converting key information in user utter-
ances into structured key-value pairs to improve
reasoning, latency, and cost by offloading compu-
tations onto an agent-created Python tool. Such
structured coding support overcomes many prob-
lems of pure LLM baselines such as hallucination
of missing information, lack of object tracking, be-
ing over-confident, etc. Ultimately, our proposed
method achieved an F1 score of 56.2 (compared to
at most 42.2 for the baselines) while reducing the
dialog turns needed by 13.9% compared to the next
best agent, raising hopes for reducing user burden
and increasing access to public opportunities using
language models.

10 Limitations

The eligibility requirements for this benchmark
were derived from plain English summaries rather
than official documents. Requirements for some
opportunities omit details present in more complete
sources.

Although our dataset includes numerous state
and federal level opportunities, suggesting broader
applicability to many US-oriented applications, we
agree that NYC Open Data may not generalize
to other regions and contexts. We will add the
following to the limitations section:

We note that, due to its size and budget, New
York City and State provide a wider range of ser-
vices than most other municipalities around the
world. For example, New York State’s right to shel-
ter drives many of the 18 housing-related oppor-
tunities in the dataset. Other domains, especially
those requiring subjective evaluation (e.g., merit-
based opportunities) present additional challenges,
as eligibility cannot necessarily be determined con-
sistently based on self-reported user information.

The population data used to construct the Rep-
resentative Dataset were collected from numerous
independent sources. Some features were not avail-
able, such as the percentage of people currently
struggling to pay their electricity bill. In such cases,
we make estimates based on the most similar avail-
able data. At the same time, features are each col-
lected from disparate sources, rather than from a
single census, so our dataset is unable to express ac-
curate correlations between related features. Users
of our dataset should be aware of these limitations.

3316

Because our evaluation method weights the F1
score against dialog turns, complex, multi-hop
queries are weighted the same as simple yes or no
questions. However, in practice, we rarely observe
complex queries. The trade-offs of question com-
plexity, length, and user burden may be addressed
in future work.

11 Ethical Considerations

Empirically, we observe that model-generated code
in this study does not contain harmful side effects.
However, it is always safer to run untrusted code
in a sandboxed environment like Docker.

Introducing AI models into the social benefits
system poses risks of false determinations and in-
equitable user experiences. We encourage stake-
holders to use AI to increase accessibility to public
opportunities, but to avoid using them as the final
determiner in any step due to the harm caused by
errors. Similarly, user-facing deployments should
consider the relative harm of false acceptances ver-
sus false refusals and calibrate their models accord-
ingly.

Acknowledgments
This material is based upon work supported by the
National Science Foundation Graduate Research
Fellowship under Grant No. (DGE-2036197). We
thank Nick Deas and Zachary Horvitz for their
helpful feedback on early drafts.

References
Jacob Andreas, John Bufe, David Burkett, Charles Chen,

Josh Clausman, Jean Crawford, Kate Crim, Jordan
DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556–571.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Justin T Chiu, Wenting Zhao, Derek Chen, Sau-
jas Vaduguru, Alexander M Rush, and Daniel
Fried. 2023. Symbolic planning and code gen-
eration for grounded dialogue. arXiv preprint
arXiv:2310.17140.

Yue Feng, Hossein A Rahmani, Aldo Lipani, and Emine
Yilmaz. 2023. Towards asking clarification questions
for information seeking on task-oriented dialogues.
arXiv preprint arXiv:2305.13690.

Yujian Gan, Changling Li, Jinxia Xie, Luou Wen,
Matthew Purver, and Massimo Poesio. 2024. Clarq-
llm: A benchmark for models clarifying and re-
questing information in task-oriented dialog. arXiv
preprint arXiv:2409.06097.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Izzeddin Gür, Dilek Hakkani-Tür, Gokhan Tür, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. In 2018 IEEE Spoken Language Technol-
ogy Workshop (SLT), pages 900–906. IEEE.

Sandra G Hart. 2006. Nasa-task load index (nasa-tlx);
20 years later. In Proceedings of the human factors
and ergonomics society annual meeting, volume 50,
pages 904–908. Sage publications Sage CA: Los An-
geles, CA.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and gener-
ation in negotiation dialogues. arXiv preprint
arXiv:1808.09637.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2024.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems.

Belinda Z Li, Alex Tamkin, Noah Goodman, and Jacob
Andreas. 2023. Eliciting human preferences with
language models. arXiv preprint arXiv:2310.11589.

Shuyue Stella Li, Vidhisha Balachandran, Shangbin
Feng, Jonathan Ilgen, Emma Pierson, Pang Wei
Koh, and Yulia Tsvetkov. 2024. Mediq: Question-
asking llms for adaptive and reliable clinical reason-
ing. CoRR.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. Ambigqa: Answering
ambiguous open-domain questions. arXiv preprint
arXiv:2004.10645.

Dang Nguyen, Viet Dac Lai, Seunghyun Yoon, Ryan A.
Rossi, Handong Zhao, Ruiyi Zhang, Puneet Mathur,
Nedim Lipka, Yu Wang, Trung Bui, Franck Dernon-
court, and Tianyi Zhou. 2024. Dynasaur: Large
language agents beyond predefined actions. arXiv
preprint arXiv:2411.01747.

Benji Peng, Ziqian Bi, Qian Niu, Ming Liu, Pohsun
Feng, Tianyang Wang, Lawrence KQ Yan, Yizhu
Wen, Yichao Zhang, and Caitlyn Heqi Yin. 2024.
Jailbreaking and mitigation of vulnerabilities in large
language models. arXiv preprint arXiv:2410.15236.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. arXiv preprint arXiv:2305.14318.

3317

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume
Bouchard, and Sebastian Riedel. 2018. Interpretation
of natural language rules in conversational machine
reading. arXiv preprint arXiv:1809.01494.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11888–
11898.

Matthew Toles, Yukun Huang, Zhou Yu, and Luis Gra-
vano. 2023. Alexpaca: Learning factual clarifica-
tion question generation without examples. arXiv
preprint arXiv:2310.11571.

Yao Wan, Zhangqian Bi, Yang He, Jianguo Zhang,
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
and Philip Yu. 2024. Deep learning for code in-
telligence: Survey, benchmark and toolkit. ACM
Computing Surveys.

Brandon T Willard and Rémi Louf. 2023. Efficient
guided generation for large language models. arXiv
preprint arXiv:2307.09702.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: synergizing reasoning and acting in language
models (2022). arXiv preprint arXiv:2210.03629.

Xuanming Zhang, Rahul Divekar, Rutuja Ubale, and
Zhou Yu. 2023. Groundialog: A dataset for repair
and grounding in task-oriented spoken dialogues for
language learning. In Proceedings of the 18th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA 2023), pages 300–314.

A Structured Data Mapping

To investigate bias arising from the mapping of user
responses to structured data, we conduct the follow-
ing study: We analyze 17 questions generated by
ProADA and provide 6 perturbed versions of the
same answer. For example, to the question “What
is the number of people living in your household?”,
we provide the following perturbations:
Numeric: 1
Text: one
Verbose: There is only one person in my household
Multi-hop: I don’t live with anyone else
Misspelled: onee
Extraneous Info: One but I have a dog

Across all 102 trials, we find that overall, user
responses are mapped incorrectly only 2% (n=2)

of the time. Inaccurate mapping occurred only
once each in multi-hop and extraneous info per-
turbations. Otherwise, we see ProADA attempt
to clarify user responses in 6% (n=1) of verbose
perturbations and 23% (n=4) misspelling pertur-
bations, which we consider desired behavior. We
believe two factors contribute to the low level of
bias observed: Firstly, eligibility requirements in
BeNYfits are objective, leaving little room for bi-
ased interpretation. Secondly, ProADA generates
primarily yes/no (65%, n=11) and numeric ques-
tions (35%, n=6), which are generally straightfor-
ward to parse.

3318

B
D

et
ai

le
d

R
es

ul
ts

D
iv

er
si

ty
R

ep
re

se
nt

at
iv

e
Av

er
ag

e

St
ra

te
gy

M
od

el
A

cc
ur

ac
y

R
ec

al
l

Pr
ec

is
io

n
F1

Tu
rn

s
A

cc
ur

ac
y

R
ec

al
l

Pr
ec

is
io

n
F1

Tu
rn

s
F1

Tu
rn

s
T

W
F1

D
ir

ec
tP

ro
m

pt
in

g
L

la
m

a
3.

1
8B

51
.5

37
.7

49
.1

42
.6

8.
92

63
.8

41
.7

19
.0

26
.1

5.
01

34
.4

7.
0

32
.1

51
.5

37
.7

49
.1

42
.6

3.
85

65
.1

22
.2

12
.9

16
.3

10
.0

0
29

.5
6.

9
27

.6
55

.7
43

.8
54

.7
48

.7
3.

69
66

.8
36

.1
19

.1
25

.0
4.

32
36

.8
4.

0
35

.4
52

.9
39

.7
51

.0
44

.6
5.

49
65

.2
33

.3
17

.0
22

.5
6.

44
33

.6
6.

0
31

.7
L

la
m

a
3.

1
70

B
52

.1
53

.4
50

.0
51

.7
46

.7
5

66
.8

52
.8

23
.8

32
.8

76
.0

8
42

.2
61

.4
26

.1
53

.8
63

.0
51

.4
56

.6
37

.0
5

66
.0

41
.7

20
.3

27
.3

84
.0

8
41

.9
60

.6
26

.1
53

.4
58

.9
51

.2
54

.8
41

.0
7

62
.6

33
.3

15
.8

21
.4

85
.0

8
38

.1
63

.1
23

.4
53

.1
58

.4
50

.9
54

.3
41

.6
2

65
.1

42
.6

19
.9

27
.2

81
.7

5
40

.8
61

.7
25

.2
G

PT
-4

o
77

.4
33

.3
29

.3
31

.2
16

.7
5

55
.1

38
.4

54
.4

45
.0

37
.6

4
38

.1
27

.2
29

.9
G

PT
-o

3
m

in
i

82
.6

63
.9

45
.1

52
.9

20
.3

2
77

.0
13

.9
17

.9
15

.6
31

.2
0

34
.2

25
.8

27
.2

C
la

ud
e

3.
7

54
.4

37
.0

53
.5

43
.7

11
.9

1
76

.6
16

.7
19

.4
17

.9
8.

88
30

.8
10

.4
27

.9
R

eA
ct

A
ge

nt
L

la
m

a
3.

1
8B

56
.2

41
.7

15
.5

22
.6

13
.9

6
56

.2
41

.7
15

.5
22

.6
13

.9
6

22
.6

14
.0

19
.8

50
.8

49
.3

48
.6

49
.0

6.
07

56
.6

47
.2

17
.0

25
.0

8.
52

37
.0

7.
3

34
.5

52
.1

49
.3

50
.0

49
.7

8.
38

63
.4

52
.8

21
.6

30
.6

10
.3

6
40

.2
9.

4
36

.7
53

.0
46

.8
38

.0
40

.4
9.

47
58

.7
47

.2
18

.0
26

.1
10

.9
5

33
.2

10
.2

30
.2

L
la

m
a

3.
1

70
B

57
.4

62
.3

54
.8

58
.3

9.
53

63
.8

41
.7

19
.0

26
.1

37
.9

2
42

.2
23

.7
34

.1
G

PT
-4

o
56

.7
45

.9
55

.8
50

.4
18

.4
1

71
.1

25
.0

18
.0

20
.9

13
.2

8
35

.7
15

.8
30

.8
C

la
ud

e
3.

7
57

.6
31

.0
61

.6
41

.3
38

.6
6

77
.9

13
.9

20
.0

16
.4

28
.4

4
28

.8
33

.6
21

.6
Pr

oA
D

A
w

/o
C

la
ri

ty
L

la
m

a
3.

1
8B

62
.6

41
.8

67
.8

51
.7

16
.5

8
75

.7
58

.3
33

.3
42

.4
22

.9
6

47
.1

19
.8

39
.3

61
.6

43
.8

64
.6

52
.2

18
.1

4
78

.7
61

.1
37

.9
46

.8
27

.9
6

49
.5

23
.1

40
.2

59
.2

39
.0

62
.0

47
.9

15
.5

8
76

.2
44

.4
30

.8
36

.4
19

.2
4

42
.1

17
.4

35
.9

61
.2

41
.6

64
.8

50
.6

16
.7

7
76

.9
54

.6
34

.0
41

.9
23

.3
9

46
.2

20
.1

38
.5

L
la

m
a

3.
1

70
B

64
.9

49
.3

68
.6

57
.4

18
.8

3
86

.0
72

.2
53

.1
61

.2
19

.1
2

59
.3

19
.0

49
.8

63
.0

43
.8

67
.4

53
.1

18
.5

5
83

.0
61

.1
45

.8
52

.4
20

.2
0

52
.7

19
.4

44
.2

61
.5

42
.5

65
.3

51
.5

17
.2

8
78

.3
38

.9
32

.6
35

.4
20

.1
6

43
.4

18
.7

36
.6

63
.1

45
.2

67
.1

54
.0

18
.2

2
82

.4
57

.4
43

.8
49

.7
19

.8
3

51
.8

19
.0

43
.5

G
PT

-4
o

63
.3

39
.0

71
.3

50
.4

15
.7

3
86

.8
66

.7
55

.8
60

.8
17

.2
0

55
.6

16
.5

47
.7

Pr
oA

D
A

L
la

m
a

3.
1

70
B

70
.2

53
.4

77
.2

63
.2

20
.3

2
82

.6
63

.9
45

.1
52

.9
24

.2
0

58
.0

22
.3

47
.5

66
.6

54
.8

69
.0

61
.1

20
.3

8
84

.7
55

.6
50

.0
52

.6
24

.8
0

56
.9

22
.6

46
.4

67
.2

52
.1

71
.7

60
.3

18
.7

5
80

.0
61

.1
40

.0
48

.4
22

.0
4

54
.3

20
.4

45
.1

66
.8

49
.8

72
.3

58
.7

18
.7

9
83

.5
61

.8
47

.7
53

.7
22

.0
6

56
.2

20
.4

46
.7

C
la

ud
e

3.
7

(c
od

e)
67

.9
44

.5
79

.3
57

.0
21

.5
87

.7
55

.6
60

.6
58

.0
22

.4
4

57
.5

22
.0

47
.1

Q
w

en
32

B
(c

od
e)

53
.1

13
.7

54
.1

21
.9

10
.1

76
.6

16
.7

19
.4

17
.9

11
.5

2
19

.9
10

.8
17

.9

Ta
bl

e
3:

C
om

pl
et

e
B

eN
Y

fit
s

re
su

lts

3319

C List of Prompts

C.1 “Are Benefits Ready?” Prompt

Eligibility requirements: {eligibil-
ity_requirements}.

Is the information sufficient to determine
whether any member of the user’s household is eli-
gible for all programs? Answer only in one word
True or False.

C.2 “Predict Benefits Eligibility” Prompt

Eligibility: {eligibility_requirements}.
Predict the programs for which any member of

the user’s household is eligible. Return only a
boolean array of length {num_programs}, e.g. {ex-
ample_array}, where the value at index ‘i‘ is true
iff the user is eligible for program ‘i‘. Only return
the array. Do not return anything else in the re-
sponse. If a user’s eligibility is unclear, make your
best guess.

C.3 “Ask a Clarifying Question” Prompt

Eligibility: {eligibility_requirements}.
Ask a clarifying question that will help you de-

termine if any member of the user’s household is
eligible for benefits as efficiently as possible. Only
ask about one fact at a time.

C.4 “Predict Benefits Eligibility” for CoT
Prompt

Eligibility requirements: {eligibil-
ity_requirements}.

Is the information sufficient to determine
whether any member of the user’s household is
eligible for all programs? Think through your rea-
soning out loud. Then answer with True or False.

C.5 “Predict Benefits Reasoning” for CoT
Prompt

Eligibility: {eligibility_requirements}.
Predict the programs for which any member of

the user’s household is eligible. Return only a
boolean array of length {num_programs}, e.g. {ex-
ample_array}, where the value at index ‘i‘ is true
iff the user is eligible for program ‘i‘. Only return
the array. Do not return anything else in the re-
sponse. If a user’s eligibility is unclear, make your
best guess. Think through your reasoning out loud.

C.6 “Predict Benefits Constrained” for CoT
Prompt

Reasoning: {reasoning}.

Using the reasoning above, predict the programs
for which any member of the user’s household
is eligible. Output a boolean array of length
{num_programs}, e.g. {example_array}, where
the value at index ‘i‘ is true iff the user is eligible
for program ‘i‘. If a user’s eligibility is unclear,
make your best guess.

C.7 “Predict Clarifying Questions” for ReAct
Chain-of-Thought Prompt

Eligibility: {eligibility_requirements}.
Ask a clarifying question that will help you de-

termine if any member of the user’s household is
eligible for benefits as efficiently as possible. Only
ask about one fact at a time. Think through your
reasoning out loud, then state your question after a
colon, e.g. Question: What is the user’s age?

C.8 “Generate Checker” Prompt
{attempt_no}

Eligibility Requirements: {eligibil-
ity_requirement}

Write a python function called
check_eligibility that takes a dictionary
hh containing relevant information and determines
user eligibility. hh is a special dictionary connected
to a language model that is conversing with the
user. Any time it does not contain a key, it will
determine that information from the user. As a
result here are some requirements for interacting
with hh:

• DO NOT use dict.get() anywhere in the
code. Key errors will be handled elsewhere.

• Do not use default values.

• Do not use any f-strings, curly brackets, or
dynamically generated strings in your keys.

• Use only literal strings in keys.

• Do not use try-except blocks.

• If you need to access data for individuals
(rather than the household as a whole) you
can use integer indexing. hh[0] is the head of
the household.

check_eligibility returns a bool. All
keys and values of hh are strings. If you
write helper functions, keep them inside the
check_eligibility function. Make your code
as detailed as possible capturing every edge case.

3320

Remember that the household may have no relevant
members, so be sure to ask about the composition
of the household. For example, for childcare pro-
grams, check that the household has at least one
child. After each new lookup in hh, write a com-
ment suggesting a question to ask.

The following is a set of preexisting keys and val-
ues in the hh dictionary; take care not to duplicate
them.

{preexisting_keys}
Avoid using int() and use float() instead. Do

not provide anything besides code in your response.
Do not use input for user input.

C.9 “Get Type” Prompt
Context: {eligibility_requirements}

Code: {code}
Target key: {key}
Question: Given the code and context above,

what do you expect {key} to be an integer, a float,
or one choice from a set of strings? Return ONLY
int, float, or choice.

C.10 “Get Values” Prompt
Context: {eligibility_requirements}

Code: {code}
Target key: {key}
Question: Given the code and context above,

what are the possible values of {key}? Return
ONLY the list of possible values in a list of strings.
For example, return ["a", "b", "c"].

C.11 “Extract Values from Answer” Prompt
Context: {eligibility_requirements}

Line: ```{line}```
We need to extract the value of {key} from the

following dialog:
Question: {cq} Answer: {answer}
What should we set as the value of {key}? Re-

turn ONLY the value.

C.12 “Key Error” Prompt
Context: {eligibility_requirements}

Line: ```{line}```
We need to determine what value of {key}

should be stored in the hh dictionary. Ask a ques-
tion to the user that would get this value. For ex-
ample, for age_i, ask “What is the age of person
i?”. Return ONLY the question.

D Instructions to User Survey
Participants

Please select five programs in which you are inter-
ested. The chatbot will help you determine your
eligibility for them. Please answer the questions
with respect to your own household. You may end
the study at any time. Your responses will not be
stored. Only the final model prediction and your
feedback will be used.

Participants were students and a New York City
university recruited in person and compensated $3
to use one bot or $5 USD to use both. The study
required approximately 5 minutes per bot.

E Constrained Generation
Implementation Details

For constrained generation, when available (e.g.,
for OpenAI models) we use tool use JSON format-
ting to ensure constraints are satisfied. Where the
constrains cannot be clearly specified in the API,
we check whether the output conforms to a valida-
tion function (e.g., with regular expressions) and
regenerate it if it does not. For hugging face mod-
els, we use the Outlines library choices and regex
functions in most cases (Willard and Louf, 2023).
For ReAct-style prompting, we first instruct the
model to think through their reasoning. Then, in a
second prompt, we prompt the model to output its
answer in the specified form based on the thoughts.

3321

Benefits Program Positive Count Negative Count Percentage True (%)

FamilyHomelessnessAndEvictionPreventionSupplement 4 3 57.14
WorkforceoneCareerCenters 1 1 50.00
SilverCorps 1 1 50.00
AdultProtectiveServices 1 2 33.33
DisabilityRentIncreaseExemption 8 7 53.33
ChildTaxCredit 1 4 20.00
SeniorCitizenHomeownersExemption 1 9 10.00
InfantToddlerPrograms 3 6 33.33
LearnEarn 7 1 87.50
DisabledHomeownersExemption 1 6 14.29
PreKForAll 1 1 50.00
JobsPlus 1 1 50.00
HeadStart 6 2 75.00
KindergartenAndElementarySchool 1 1 50.00
CoolingAssistanceBenefit 4 5 44.44
HomeEnergyAssistanceProgram 4 3 57.14
VeteransAffairsSupportedHousing 1 1 50.00
NYCFreeTaxPrep 2 1 66.67
FamilyPlanningBenefitProgram 1 6 14.29
ChildrenAndYouthWithSpecialHealthCareNeeds 3 2 60.00
EnhancedSchoolTaxReliefProgram 0 2 0.00
SummerMeals 1 1 50.00
TrainEarn 6 3 66.67
NYCFinancialEmpowermentCenters 1 1 50.00
NYCHAPublicHousing 3 5 37.50
ChildAndDependentCareTaxCredit 4 4 50.00
ChildCareVouchers 8 2 80.00
HIVAIDSServicesAdministration 1 1 50.00
BigAppleConnect 1 1 50.00
OfficeOfChildSupportServices 1 3 25.00
BeaconPrograms 1 1 50.00
SafeAndSickLeave 1 5 16.67
NYSUnemploymentInsurance 1 1 50.00
FamilyTypeHomesForAdults 1 6 14.29
EarnedIncomeTaxCredit 1 6 14.29
Homebase 1 1 50.00
HomeFirstDownPaymentAssistance 2 1 66.67
HighSchool 1 1 50.00
SeniorCitizenRentIncreaseExemption 1 1 50.00
AccessARideParatransitService 2 1 66.67
TextTwoWork 4 1 80.00
TheEarlyInterventionProgram 1 1 50.00
EarlyHeadStart 2 4 33.33
Lifeline 6 1 85.71
IDNYC 1 1 50.00
NYSPaidFamilyLeave 2 1 66.67
COVIDnineteenFuneralAssistance 1 1 50.00
SchoolAgeAndEarlyChildhoodFamilyAndCommunityEngagementFACECenters 1 1 50.00
FairFaresNYC 1 2 33.33
NYCYouthHealth 1 1 50.00
NewbornHomeVisitingProgram 4 2 66.67
AcceleratedStudyInAssociatePrograms 1 1 50.00
STEMMattersNYC 1 1 50.00
CommoditySupplementalFoodProgram 1 2 33.33
CareerAndTechnicalEducation 1 1 50.00
NYCHAResidentEconomicEmpowermentAndSustainability 1 1 50.00
OutpatientTreatmentServices 1 1 50.00
CUNYFatherhoodAcademy 1 3 25.00
SummerYouthEmploymentProgram 1 1 50.00
ThreeK 1 1 50.00
MedicaidForPregnantWomen 1 2 33.33
ActionNYC 1 1 50.00
FamilyResourceCenters 2 1 66.67
NYCCare 1 1 50.00
PrimaryAndPreventiveHealthCare 1 1 50.00
NYCTenantResourcePortal 1 1 50.00
OlderAdultEmploymentProgram 1 1 50.00
NYCLaddersForLeaders 1 1 50.00
CornerstonePrograms 1 1 50.00
ComprehensiveAfterSchoolSystemOfNYC 1 1 50.00
WeSpeakNYC 1 1 50.00
NYCMitchellLama 1 0 100.00
CUNYStart 1 1 50.00
NYCNurseFamilyPartnership 1 1 50.00
MiddleSchool 1 1 50.00
AdvanceEarn 1 1 50.00
SectionEightHousingChoiceVoucherProgram 1 0 100.00
NYCYouthLeadershipCouncils 1 1 50.00
ChildHealthPlusAndChildrensMedicaid 1 2 33.33
VeteransPropertyTaxExemption 1 1 50.00
FamilyAssessmentProgram 1 1 50.00
BasicSchoolTaxReliefProgram 1 0 100.00
Total 146 159 47.88

Table 4: Benefits Program-wise Positive/Negative Counts and Percentages for the Diversity Dataset

3322

Benefits Program Positive Count Negative Count Percentage True (%)

AdultProtectiveServices 0 3 0.00
HomeEnergyAssistanceProgram 0 3 0.00
MiddleSchool 0 3 0.00
NYCFreeTaxPrep 0 3 0.00
NYSPaidFamilyLeave 1 2 33.33
NYSUnemploymentInsurance 0 3 0.00
WorkforceoneCareerCenters 1 2 33.33
FamilyTypeHomesForAdults 2 1 66.67
HeadStart 0 3 0.00
NYCFinancialEmpowermentCenters 3 0 100.00
TextTwoWork 3 0 100.00
ThreeK 0 3 0.00
CornerstonePrograms 0 3 0.00
JobsPlus 0 3 0.00
CommoditySupplementalFoodProgram 0 3 0.00
NYCCare 0 3 0.00
SilverCorps 0 3 0.00
SummerMeals 1 2 33.33
PrimaryAndPreventiveHealthCare 1 2 33.33
IDNYC 3 0 100.00
NYCYouthLeadershipCouncils 0 3 0.00
Homebase 1 2 33.33
NYCMitchellLama 2 1 66.67
NYCNurseFamilyPartnership 0 3 0.00
AdvanceEarn 0 3 0.00
BeaconPrograms 1 2 33.33
ChildHealthPlusAndChildrensMedicaid 0 3 0.00
BasicSchoolTaxReliefProgram 0 3 0.00
TheEarlyInterventionProgram 0 3 0.00
AccessARideParatransitService 3 0 100.00
ChildAndDependentCareTaxCredit 0 3 0.00
FamilyResourceCenters 0 3 0.00
InfantToddlerPrograms 0 3 0.00
NYCTenantResourcePortal 3 0 100.00
NYCYouthHealth 1 2 33.33
DisabledHomeownersExemption 0 3 0.00
OutpatientTreatmentServices 0 3 0.00
STEMMattersNYC 0 3 0.00
SeniorCitizenHomeownersExemption 0 3 0.00
CareerAndTechnicalEducation 0 3 0.00
NewbornHomeVisitingProgram 0 3 0.00
SchoolAgeAndEarlyChildhoodFamilyAndCommunityEngagementFACECenters 0 3 0.00
BigAppleConnect 0 3 0.00
CUNYFatherhoodAcademy 0 3 0.00
HomeFirstDownPaymentAssistance 0 3 0.00
DisabilityRentIncreaseExemption 0 3 0.00
KindergartenAndElementarySchool 0 3 0.00
EarnedIncomeTaxCredit 1 2 33.33
HIVAIDSServicesAdministration 0 3 0.00
OlderAdultEmploymentProgram 0 3 0.00
FamilyHomelessnessAndEvictionPreventionSupplement 0 3 0.00
ChildCareVouchers 1 2 33.33
ComprehensiveAfterSchoolSystemOfNYC 1 2 33.33
COVIDnineteenFuneralAssistance 0 3 0.00
TrainEarn 0 3 0.00
LearnEarn 0 3 0.00
SectionEightHousingChoiceVoucherProgram 0 3 0.00
CoolingAssistanceBenefit 0 3 0.00
MedicaidForPregnantWomen 0 3 0.00
SummerYouthEmploymentProgram 1 2 33.33
FairFaresNYC 0 3 0.00
PreKForAll 0 3 0.00
ChildrenAndYouthWithSpecialHealthCareNeeds 1 2 33.33
CUNYStart 2 1 66.67
NYCLaddersForLeaders 0 3 0.00
FamilyAssessmentProgram 1 2 33.33
FamilyPlanningBenefitProgram 0 3 0.00
NYCHAPublicHousing 0 3 0.00
SafeAndSickLeave 2 1 66.67
WeSpeakNYC 1 2 33.33
VeteransAffairsSupportedHousing 0 3 0.00
NYCHAResidentEconomicEmpowermentAndSustainability 0 3 0.00
SeniorCitizenRentIncreaseExemption 0 3 0.00
AcceleratedStudyInAssociatePrograms 0 3 0.00
EnhancedSchoolTaxReliefProgram 0 3 0.00
EarlyHeadStart 0 3 0.00
ActionNYC 0 3 0.00
Lifeline 1 2 33.33
VeteransPropertyTaxExemption 0 3 0.00
HighSchool 0 3 0.00
OfficeOfChildSupportServices 0 3 0.00
ChildTaxCredit 0 3 0.00
Total 38 208 15.42

Table 5: Benefits Program-wise Positive/Negative Counts and Percentages for the Representative Dataset

3323

