AGNUS LLM: Robust and Flexible Entity Disambiguation with
decoder-only Language Models

Kristian Noullet, Ayoub Ourgani, Niklas Thomas Lakner, Lukas Kinder, Tobias Kifer.

Karlsruhe Institute for Technology (KIT)
KaiserstraBBe 12, 76131 Karlsruhe, Karlsruhe, Germany.

Correspondence: noullet@kit.edu

Abstract

Entity disambiguation (ED) links ambiguous
mentions in text to entries in a knowledge base
and is a core task in entity linking systems.
While pretrained decoder-only language mod-
els (DLMs) offer strong generalization capabili-
ties, their effective use in ED has been restricted
due to sensitivity to candidate order, susceptibil-
ity to hallucinated outputs, and potential dataset
leakage. We introduce AGNUS a zero-shot
ED framework that addresses these challenges
through three core innovations: (1) order-
invariant candidate encoding via shared posi-
tional embeddings and modified autoregressive
attention masking, which eliminates bias on in-
put ordering; (2) constrained decoding that en-
sures outputs are restricted to valid candidates,
effectively preventing hallucinations; and (3)
synthetic dataset creation approach as a diag-
nostic tool for data contamination detection and
counteraction. AGNUS eliminates up to 15.2%
of F1 variability caused by candidate permu-
tations, delivering consistent and order-robust
predictions previously unattainable with autore-
gressive architectures. In our experiments, AG-
NUS achieves state-of-the-art performance on
four standard ED benchmarks, surpassing prior
zero-shot approaches by an average 3.7%. We
release code, data including candidate sets, and
a synthetic benchmark to support reproducibil-
ity and controlled evaluation'.

1 Introduction

Entity Disambiguation (ED) represents the task of
linking ambiguous mentions in text to the correct
entity from a provided candidate set and is a core
component of knowledge-intensive NLP applica-
tions such as question answering, semantic search,
and entity linking. While Large Language Models
(LLMs) have demonstrated remarkable generaliza-
tion across diverse tasks, their robust application to

"https://github.com/kmdn/agn-dis

ED remains challenging, particularly in zero-shot
settings.

In this work, we identify and address three fun-
damental limitations of Decoder-Only Language
Models (DLMs) when applied to ED:

First, these models are highly sensitive to the
order in which candidate entities are presented.
Autoregressive generation induces positional bias,
leading to substantial prediction variability across
permutations of candidate inputs - up to 15.2%
(F1) in our experiments. Second, DLMs may pro-
duce entities that are not part of the candidate set,
undermining system reliability in constrained ED
settings. Third, meaningfully evaluating LLLMs on
existing benchmarks is complicated by potential
training data contamination, given the opacity of
pretraining corpora.

To overcome these challenges, we propose AG-
NUS @ , a robust, zero-shot ED framework for
DLMs that can be applied to open-weight mod-
els out-of-the-box, requiring no fine-tuning or re-
training. AGNUS incorporates two key compo-
nents to achieve order-robustness and hallucina-
tion resistance: (1) Masked Attention Candidate
Set (MACS) to enforce candidate order-invariant
encoding; and (2) Agnus Contextual Decoding
(ACDQO) to restrict decoding to valid candidate en-
tities.

Our approach ensures that candidate entities are
represented indistinguishably in terms of position
(positional embeddings) and interdependencies (at-
tention) to the underlying model, eliminating the
influence of input order on token predictions. At
the same time, constrained decoding removes hal-
lucinated outputs without sacrificing the model’s
contextual reasoning ability.

To audit dataset leakage, we design a synthetic
dataset construction methodology for ED. The re-
sulting synthetic dataset serves as a diagnostic tool
to detect contamination, evaluate with a potentially
lesser degree of contamination and therewith al-
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lows us to test model generalization capabilities in
a controlled setting.
Our contributions are as follows:

* We propose AGNUS ¢*, a zero-shot ED frame-

work combining:

— MACS for order-invariant candidate en-
coding.

— ACDC for constrained autoregressive
tree-based decoding.

* We introduce a synthetic dataset construction
method to gauge benchmark contamination
and apply it to the AIDA (Yosef et al., 2011)
benchmark.

* We release all code, data including entity
candidates and evaluations to support repro-
ducibility? and future comparability.

Across four standard ED benchmarks, AG-
NUS achieves state-of-the-art performance in
zero-shot settings, while delivering stable predic-
tions under candidate permutations and eliminating
hallucinated outputs.

The remainder of this paper is structured as fol-
lows. Section 2 reviews related work in entity
disambiguation and recent advances in large lan-
guage models, with particular attention to dataset
contamination, hallucination, and order sensitivity.
Section 3 introduces our proposed framework, AG-
NUS ¢* , detailing the disambiguation setup, our
order-invariant encoding method, and constrained
decoding strategy. Section 4 presents our experi-
mental setup, results across standard benchmarks,
and a comprehensive ablation analysis, followed by
a study on contamination detection. Finally, Sec-
tion 5 concludes the paper and outlines directions
for future work.

2 Related Work

2.1 Entity Disambiguation

Entity disambiguation (ED) is a critical task in
natural language processing and understanding,
where the goal is to map ambiguous entity men-
tions in text to their correct entries in a knowledge
base. Current state-of-the-art ED and entity link-
ing models (van Hulst et al., 2020; Barba et al.,
2022; Ayoola et al., 2022; Shavarani and Sarkar,

Znttps://github.com/kmdn/agn-dis

2023; Xiao et al., 2023b; Ding et al., 2024a; Or-
lando et al., 2024) make use of various deep learn-
ing architectures to outperform more traditional
works. In recent years, transformer-based sys-
tems, such as BLINK (Wu et al., 2020), REL (van
Hulst et al., 2020), SpEL (Shavarani and Sarkar,
2023), DeepType (Raiman and Raiman, 2018) and
GENRE (Cao et al., 2021) have taken over the
stage with many basing themselves on BERT (De-
vlin et al., 2019) embeddings. In recent years,
LLM-based systems have entered the space with
(Sun et al., 2023), (Wang et al., 2023a), (Xiao
et al., 2023a), EntGPT (Ding et al., 2024a), Cha-
tEL (Ding et al., 2024b), LLMAEL (Xin et al.,
2024) and (Tasawong et al., 2024). Particularly,
in (Ding et al., 2024a; Xin et al., 2024; Liu et al.,
2024; Vollmers et al., 2025) authors improve LLM-
based entity disambiguation by tuning inputs and
otherwise providing LLM backbones with context-
relevant data.

2.2 Large Language Models

Applying LLMs to ED is accompanied by a multi-
tude of considerations when contrasted with more
traditional ED. Among these, there exist bench-
mark contamination (Section 2.2.1), hallucina-
tions (Section 2.2.2), decoding mechanisms (Sec-
tion 2.2.3) and order-specific biases (Section 2.2.4)
that endanger robust disambiguation. In the follow-
ing, we address these areas of prior work.

2.2.1 Dataset Contamination

Benchmark contamination in LLMs (Xu et al.,
2024) has become a critical issue as models trained
on vast amounts of publicly available data may
inadvertently *'memorize’ aspects of popular bench-
mark datasets, potentially leading to inflated esti-
mates of their true capabilities.

To address these challenges, researchers have
started developing various countermeasures (Chen
et al., 2025), including dynamic evaluation bench-
marks (Wang et al., 2025; Zhu et al., 2024a,b) to
effectively prevent pre-benchmarking disclosure.
Another measure is to provide a means of evalu-
ation for the degree of contamination (Xu et al.,
2024) by computing perplexity (Li, 2023) — by
applying the exponential function to the average
negative log likelihood over a particular sequence
of text to measure a model’s ’surprise’ (or inverse
confidence) for a particular output.
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Figure 1: AGNUS Overview — Takes an input document, (1.) generates candidate entities for mentions (e.g. MIKA)
using a pre-existing candidate generation method, (2.) applies masked attention and altered positional embeddings to
the candidate entity collection (MACS, Section 3.2) and (3.) passes representation to a specified LLM, followed by
(4.) constrained decoding (ACDC, Section 3.3) for context-sensitive disambiguation and returns the disambiguated

entity (e.g. Mika (F1)).

2.2.2 Hallucinations

Despite remarkable capabilities in generating
human-like text, LLMs may produce factual inac-
curacies or nonsensical sequences, a phenomenon
referred to as hallucination (Huang et al., 2025).
The underlying causes of hallucinations are an ac-
tive area of research. Some potential contributing
factors include the vast scale of the training data,
containing potentially noisy data (Petroni et al.,
2021; Ji et al., 2023) and the autoregressive nature
of text generation based on prior tokens (Holtzman
et al., 2020; Maynez et al., 2020). The presence of
hallucinations poses a significant challenge for the
reliable application of LLMs on downstream Natu-
ral Language Processing (NLP) tasks, posing issue
for robust and trustworthy ED. Recent research
efforts have started counteracting hallucinations
through retrieval augmentation, fact verification
and the incorporation of knowledge graphs (Lewis
et al., 2020; Pusch and Conrad, 2024).

In this paper, we eliminate the possibility for
entity candidate hallucinations by defining a spe-
cialised constrained decoding strategy for ED.

2.2.3 Constrained Decoding

Early work on LLMs (Brown et al., 2020; Radford
et al., 2019) demonstrated that decoder-only lan-
guage models process natural language prompts
effectively without an enforced schema, meaning
that input-output pairs are structurally not bound
by predefined templates or grammars. This flexi-
bility allows for broad applicability but introduces
challenges in reliability, consistency, and controlla-

bility (Bender et al., 2021).

To mitigate challenges of unstructured interac-
tion, researchers have developed various prompt
engineering methods (Sahoo et al., 2024; Ouyang
et al., 2022a; Madaan et al., 2023; Wei et al., 2022)
to implicitly guide, but not force DLMs towards
more structured outputs. Therefore, constrained
decoding (Beurer-Kellner et al., 2024) approaches
to enforce strict restrictions on LLM text genera-
tion have been developed and even started being
applied to the domain of entity linking (Vollmers
et al., 2025).

2.2.4 Order Bias

Prior work has established that modern gen-
erative large language models demonstrate in-
herent tendencies toward positional preferences
when processing ordered lists of candidate an-
swers (Pezeshkpour and Hruschka, 2023; Wei et al.,
2024; Zheng et al., 2023; Kinder et al., 2025) and
that these are also sensitive towards the arrange-
ment order of otherwise identical answer collec-
tions (Dominguez-Olmedo et al., 2023; Li et al.,
2023; Li and Gao, 2024; Wang et al., 2023b, 2024a;
Xue et al., 2024). Approaches to mitigation in-
clude compensation for positional preferences (Wei
et al., 2024; Zhao et al., 2021), systematic per-
mutation averaging and applying multiple forward
passes with varied option sequences (Pezeshkpour
and Hruschka, 2023; Wang et al., 2023b), as
well as reasoning-enhanced strategies (Wang et al.,
2024a,b) to attenuate sequence dependence. While
we alleviate certain biases, we note that AGNUS
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may still suffer from other forms, e.g. domain as
found in (Noullet et al., 2025). AGNUS employs
a method to mitigate candidate order bias with-
out requiring additional training by adapting the
approach from (Kinder et al., 2025) — which inves-
tigated the effects of altered positional embeddings
on generated output — to entity disambiguation.

3 AGNUS

In this section we introduce AGNUS ¢* , our pro-
posed approach for LLM-based robust entity disam-
biguation. In Figure 1, we present AGNUS: from
(Step 1.) generating entity candidates for each men-
tion using the DBpedia Lookup® service — chosen
for improved reproducibility; (Step 2.) applying
combined masked attention and position-specific
shared positional embeddings (Masked Attention
Candidate Set, Section 3.2) based on (Kinder et al.,
2025); (Step 3.) passing the encoded inputs to
a chosen model; (Step 4.) constrained decoding
(ACDC) to final disambiguation for the input docu-
ment "Mika left his mark on Grand Prix history."
and entity mention Mika, yielding contextually dis-
ambiguated entity Mika (F1) 4,

3.1 Disambiguation Setup

AGNUS represents an approach leveraging DLMs
for the task of disambiguating entities based on en-
tity candidate information while mitigating DLM-
specific challenges. AGNUS is built on top of
the Combining Linking Techniques (Noullet et al.,
2023) framework and acts as a knowledge-base ag-
nostic entity disambiguator. For disambiguation,
AGNUS takes as input a document providing con-
text, a mention and a collection of candidate enti-
ties generated via pre-existing candidate generation
approaches.

Due to leveraging the contextual disambiguation
capabilities of DLMs, AGNUS does not require
candidate entities to solely be a knowledge base-
backed IRD. Instead, candidate entity representa-
tion may additionally take any identifying or mean-
ingful form, such as a description, label, type or
combination thereof. For each mention contained
within an input document, we generate a fixed can-
didate set, employing candidates generated with
DBpedia Lookup®. Each candidate collection is

3https://lookup.dbpedia.org/
4https://en.wikipedia.org/wiki/Mika_Hékkinen
Shttps://wikipedia.org/wiki/
Internationalized_Resource_Identifier
nttps://github.com/dbpedia/dbpedia-lookup

encoded using MACS (Section 3.2). Subsequently,
the resulting encoded prompt is transmitted as a
whole to the underlying DLLM for contextual pars-
ing and decoded via ACDC (Section 3.3).

3.2 Masked Attention Candidate Set

Text sequences encoded on modern generative
language models rely on underlying position-
influenced attention mechanisms and positional em-
beddings to signal the order of token appearance
within a sequence (Kinder et al., 2025). This affects
desiredly order-invariant sequences, such as candi-
date collections — an undesirable property for entity
disambiguation. To render an LLM order-agnostic
for parts of a sequence, we tackle both aspects:
modify positional embeddings (Section 3.2.1) for
candidate entities to simulate similar positions and
mask the attention mechanism between entity can-
didates (Section 3.2.2) to the underlying language
model.

Each candidate collection is encoded using
MACS, embedded into its original textual encod-
ing with text preceding (Pre-MACS) and succeed-
ing (Post-MACS) the collection being encoded in
standard LLM-specific fashion.

3.2.1 Positional Embedding

Every sequence of tokens is attributed a certain
range of positional embedding values within its
LLM-encoded representation. Within a MACS-
encoded collection, every token making up an en-
tity candidate is modified to appear as sharing a
similar range of positions (see visualization Fig. 2)
as other candidates to the underlying LLM.

To do so, we define relative position i €
[0,..,nc; — 1] of each token ¢, ; for entity candi-
date representation c; € C s.t. n, is the number of
tokens for entity ¢; and collection of all candidate
entities C for a given mention and T¢, the set of all
tokens for ¢;: V1., ;1 i € [0,..,maxccc(|n — 1])].

Therefore as visualised in Figure 2, the shared
range of possible positional embeddings is defined
by the token-wise longest candidate within a
MACS collection and starts for each candidate at
the end of prior sequence’s token (PRE-MACS)
and afterwards continues the candidate encoding
with the succeeding sequence’s (POST-MACS)
first positional embedding.
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Figure 2: MACS - Positional Embeddings: Each candidate entity entry is encoded as being on the same range of
positions for the length of their contents. Candidate entity entries’ positional identifiers are shared across common
lengths and encoded analogously. Post-MACS — any tokens after a MACS block — starting positional embedding is
computed as being subsequent to the longest option contained within MACS (candidate) entries.
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3.2.2 Causal Mask

To encode a collection of entity candidates in an
order-invariant fashion to the underlying LLM,
we apply an adapted version of the commonly-
employed triangular attention matrix as causal
mask (see Figure 3). Entities within a collection
cannot attend to one another (grey entries), but do
attend (pink entries) — and are attended to — in oth-
erwise usual LLM fashion to their own prior tokens
(diagonal entries) and rest of the token sequence
(to PRE-MACS and by POST-MACS). This means
that tokens within each candidate’s representation
continue attending to each other, such as <ka> to
<Mi> within our example.

3.3 Agnus Contextual Decoding
Generative LLMs may hallucinate information in

unexpected fashions. This ranges from a corrupt
expected result format to non-existing options. Due
to the nature of entity disambiguation, only given
options may be produced. As such, we define an
input-flexible grammar based on entity candidates.

We implement this grammar in a logits processor’

that filters forbidden tokens at each generation step
until a single disambiguated entity remains.
Formally: Let the set of candidate sequences be
O ={o1,...,0,} where each candidate option o; €
Y is a sequence of length ;. The vocabulary is de-
finedas X = {r} |ic{l,....n}, ke {l,....[}} U
{E0S}. We then define the set of nonterminals
asV={XF|ie{l,...,n}, ke{0,...,;}} where
Xik denotes the state after generating the first k to-
kens of candidate ¢;. The start symbol transitions
to the initial state of each candidate: S — X} |
X9 |...] X?. For each o;, we define the following
transitions: X¥ — tkHXk“, Vke{0,..., [;—

1}, X — E0S.

4 Experiments and Results

AGNUS ¢ combines techniques to create an LLM-
enabled approach to robust entity candidate dis-
ambiguation. In this section, we conduct experi-
ments to evaluate AGNUS with different configura-
tions regarding representations of entity candidates,
LLMs, our candidate encoding (MACS) and our
constrained decoding (ACDC). We report entity
disambiguation results in comparison to prior work
in Table 1.

4.1 Technical Details

All our experiments were run on a server with
NVIDIA RTX 4090 (24GB vRAM), 1TB RAM,
128 CPU cores, Debian (Bookworm), CUDA 12.5
and Python 3.11. As for LLMs, we decided
on instruct models for our experiments such that
they would run on our hardware and be com-
parable in size, leading to the following selec-
tion: Mistral (7B-Instruct) (Jiang et al., 2023),
Llama?2 (7B) (Touvron et al., 2023), Llama3 (8B-
Instruct) (Dubey et al., 2024) and Qwen (2.5-7B-

Thttps://anonymous.4open.science/r/Agnus/src/
agnus/pipeline/1lm.py#L356
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Instruct) (Yang et al., 2024) — for the rest of the
paper we omit detailed version specifications.

4.2 Evaluation

In our experiments, we outperform related work
on 4 out of 5 common datasets (AIDA (Yosef
etal., 2011), KORE 50°"W€ (Noullet et al., 2020),
MSNBC (Cucerzan, 2007), ACE04 (Ratinov et al.,
2011), AQUAINT (Milne and Witten, 2008)) in
zero-shot settings despite our underlying LLMs’
relatively modest parameter count®.

We report our ED F1 results in Table 1 — the
top block lists scores for trained or finetuned ap-
proaches, the bottom block compares zero-shot
methods. Our model performs strongly across most
datasets and even surpasses finetuned or trained
prior work in certain cases. Despite being a zero-
shot approach, AGNUS attains overall new state-of-
the-art results for KORE 50 (82.3%) and ACE04
(95.5%). Unsurprisingly when evaluating on AIDA,
approaches trained on AIDA outperform ours, but
AGNUS (86.7%) exceeds second-ranked zero-shot
approach EntGPT-P (Ding et al., 2024a) (82.1%)
F1 measure by 4.6%. Evaluating against KORE 50,
AGNUS reaches 82.3% in comparison to ChatEL’s
78.7%, surpassing it by 3.6%. As for ACE and
AQUAINT, our results (95.5% and 87.5%) improve
upon EntGPT-P’s (91.8% and 79.1%) respectively
by 3.7% and 8.4%. For MSNBC, we do not beat
the state-of-the-art for zero-shot entity disambigua-
tion and instead reach 82.4%, underperforming
ChatEL (Ding et al., 2024b) (88.1%) by 5.7% and
finetuned state-of-the-art CoherentED (96.3%) by
13.9%. While AGNUS yields improvements across
some benchmarks, we consider our primary benefit
lying in enhancing disambiguation robustness via
order invariance for candidates and by preventing
structurally invalid outputs.

4.3 Ablation Study

AGNUS employs multiple techniques to mitigate
issues relating to LLM-based ED. Particularly, AG-

8We note that our models are at least an order of magnitude
smaller and that Ding et al. (2024b) argue model parameter
count having a significant influence on the entity disambigua-
tion task. EntGPT (Ding et al., 2024a) and ChatEL (Ding
et al., 2024b) employ Llama2 70B (Touvron et al., 2023) and
GPT-3.5 (Ouyang et al., 2022b); ChatEL (Ding et al., 2024b)
additionally makes use of PaLM 540B (Chowdhery et al.,
2023) and GPT-4 (OpenAl, 2023). OpenAl has not disclosed
parameter counts for GPT-3.5 and GPT-4, but each of them
is assumed to have at least 175B parameters, with rumors
claiming GPT-4 having 1.76 trillion parameters according to
https://en.wikipedia.org/wiki/GPT-4.

NUS relies on LLMs for disambiguation, MACS
for order-invariant candidate encoding, ACDC for
entity decoding and particularly candidates’ rep-
resentation. In our ablation study, we therefore
design experiments to verify the impact of these
aspects on model results by investigating candi-
date representation (Section 4.3.1), LLM selection
(Section 4.3.2), MACS (Section 4.3.3) and ACDC
(Section 4.3.4).

4.3.1 Candidate Representation

To validate LLM disambiguation capabilities based
on contextual candidate entity information, we ap-
ply AGNUS to candidate representations of differ-
ent entity information types. We selected DBpe-
dia (& Wikipedia) entity IRIs, entity types, tex-
tual entity descriptions and labels as meaning-
ful entity information characterising entity candi-
dates for our experiments (Tables 2 and 3). We
note that in Table 2 across all datasets, IRI-based
representations perform best with an average F1
performance of 86.9%, outperforming labels by
10.2% — with a tie of 87.9% for AQUAINT. For all
datasets beside KORE 50 and AQUAINT, descrip-
tions reach the second-highest score (avg.: 73.5%),
but are still surpassed by labels (76.7%) on aver-
age by 3.2%. We note that the shorter and more
unique a representation is, the better AGNUS seems
to perform. In our experiments, we find effects
of representation depend on benchmarked dataset
with representation-based score differences ranging
from 5.6% (ACEO04) to 34.9% (AQUAINT) with a
mean of 21.12% across our 6 datasets.

4.3.2 Large Language Model

To verify our approach’s generalizability across
LLMs, we run AGNUS on 4 LLMs: Llama2 (Tou-
vron et al., 2023), Llama3 (Dubey et al., 2024),
Qwen (Yang et al., 2024) and Mistral (Jiang et al.,
2023). In Table 3, we notice similar trends across
most LLMs for the AIDA dataset with Llama?2 rep-
resenting a slight outlier: All other LLLMs attain
respective top results using IRIs (Qwen: 84.6%,
Mistral: 86.7%, Llama3: 84.0%) as candidate in-
formation, whereas our outlier LLM manages to
slightly improve on its 80.9% F1 measure, reaching
81.3% by employing labels as candidate represen-
tation. Typically, Llama3, Mistral and Qwen reach
similar results to each other using IRIs (84.0% —
86.7%) and descriptions (70.2% — 76.3%) as candi-
date representations. Using labels, Qwen plummets
down to 64.6%, whereas Llama3 (74.5%) and Mis-
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Trained (or finetuned) for ED

Model AIDA KORE 50 MSNBC ACE04 AQUAINT Mean
End2End (Kolitsas et al., 2018) 0.891 0.569 0.933 0.892 0.894 0.836
GENRE (Cao et al., 2021) 0.933 0.542 0.943 0.901 0.899 0.844
REL (van Hulst et al., 2020) 0.928 0.618 0.935 0.897 0.873 0.850
ReFinED (Ayoola et al., 2022) 0.939 0.567 0.941 0.908 0.918 0.855
LLMAEL x ReFinEDgr (Xin et al., 2024) 0.923 - 0.888 0.881 0.891 0.900
EntGPT-I (GPT3.5) (Ding et al., 2024a) 0.920 0.753 0.922 0.937 0.906 0.888
EOEDbMSL (Tasawong et al., 2024) 0.941 - 0.935 0917 0.894 0.922
ExtEnD (Barba et al., 2022) 0.926 - 0.947 0.918 0.916 0.927
CoherentED (Xiao et al., 2023b) 0.894 - 0.963 0.934 0.946 0.934

LLM 0-shot ED

Model AIDA KORE 50 MSNBC ACE04 AQUAINT Mean
ChatEL (Ding et al., 2024b) - 0.787 0.881 0.893 0.767 0.832
EntGPT-P (GPT3.5) (Ding et al., 2024a) 0.821 0.716 0.867 0.918 0.791 0.823
EntGPT-P (Llama2 70B) (Ding et al., 2024a) 0.708 0.647 0.741 0.746 0.635 0.695
Ours — AGNUS ¢» (Llama2 8B) 0.809 0.529 0.562 0.897 0.576 0.675
Ours — AGNUS ¢» (Mistral) 0.867 0.823 0.824 0.955 0.875 0.869
Baseline: Mistral (hidden candidates) 0.791 0.794 0.739 0.953 0.720 0.799
Ablation: w.o. MACS (best) 0.865 0.811 0.814 0.962 0.907 (0.872)
Ablation: w.o. MACS (worst) 0.833 0.779 0.766 0.950 0.847 (0.835)

Table 1: ED evaluation table — Upper category: ED systems trained or finetuned for ED (mainly with AIDA). Lower
category: 0-shot ED systems. Top scores per column and category bolded, second highest underlined. Scores
obtained from respective papers. Note that baseline with hidden candidates also uses matching to candidates (else
naive results would tend to 0) and MACS ablations are run over multiple iterations, showing score variability.

Entity Representation AIDA  AIDA-Syn KORES50 MSNBC ACE04 AQUAINT Mean
AGNUS & w. IRI 0.867 0.863 0.823 0.824 0.955 0.879 0.869
AGNUS ¢ w. Label 0.743 0.706 0.785 0.589 0.899 0.879 0.767
AGNUS & w. Type 0.705 0.719 0.595 0.591 0.934 0.530 0.679
AGNUS ¢ w. Description | 0.763 0.790 0515 0.679 0.954 0.706 0.735

Mean | 0.769 0.770 0.679 0.671 0.936 0748 [ 0762

Table 2: Ablation Study (Candidate Representation over datasets): AGNUS

(Mistral) F1 measures on AIDA,

AIDA-Syn, KORE 50, MSNBC, ACE04 and AQUAINT with different candidate entity representations (IRI, label,
entity type, entity description), along with per representation and per dataset averages. Top entry by dataset in bold,

second underlined.

AIDA
IRI Label  Type
0.846 0.646  0.422
0.867 0.743  0.705
AGNUS (Llama2) 0.809 0.813 0.560
AGNUS (Llama3) 0.840 0.745 0.392

AGNUS (Llama3) w.o. ACDC ‘ 0.765 0.698 0.331

Model o Mean
Description
0.721
0.763
0.565

0.702
0.677

0.659
0.770
0.687
0.670

[ 0.618

AGNUS (Qwen)
AGNUS (Mistral)

Table 3: Ablation Study (LLM, Candidate Representa-
tion, ACDC): AGNUS F1 measures for different types
of candidate representations for Qwen, Mistral, Llama2,
Llama3 and without constrained decoding via ACDC.
AGNUS without ACDC utilises fuzzy search, ranking
reply and candidate, matching to candidate with highest
similarity.

tral (74.3%) attain F1 scores close to each other.
For type candidate information, Mistral (70.5%)
noticeably outperforms Qwen (42.2%) and Llama3
(39.2%); Llama2 manages to outperform its succes-
sor Llama3 (56.0%). Llama3 (70.2%) and Qwen

(72.1%) handle descriptions as meaningful entity
information comparably well with Mistral (76.3%)
performing slightly better and Llama2 (56.5%) dis-
playing worst results.

4.3.3 Masked Attention Candidate Set

We investigate how MACS affects qualitative re-
sults and whether it actually renders disambigua-
tion order-invariant. To this end, we run experi-
ments shuffling candidates over 10 iterations and
display results in Figure 4. Our experiments over
3 different LLMs (Llama3, Mistral, Qwen) dis-
play how disambiguation varies without the use
of MACS and remains unchanged when applying
MACS. Order invariance persists across all 10 iter-
ations of shuffled candidates when MACS is em-
ployed whereas not applying the causal mask to
candidate entities yields result variations. With-
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Figure 4: Ablation Study (MACS) - F1 Score Variabil-
ity: Error Bar plot on disambiguation without (leff) and
with MACS (right) with randomised candidate shuffles
over 10 iterations with Llama3, Mistral and Qwen on
perplexity decoding — disambiguates to highest confi-
dence — for AIDA. MACS and non-MACS results are
similar on average. Without MACS, performance varies
(Llama3: 13.5%, Mistral: 11.2%, Qwen: 15.2%).

out MACS, Llama3 averages at 66.53% (MACS:
66.40%) and varies between 59.56% — 73.02%, a
difference of 13.46%. Mistral on the other hand
varies in the range of 32.47% — 43.69%, averaging
at 38.07% without MACS across iterations of can-
didate shuffles (with MACS: 38.20%). In Table 1,
we also display MACS ablations over 2 iterations,
from one non-MACS execution to another exhibit-
ing 3.7% F1 difference on average and beating AG-
NUS in ACE04 (96.2% vs. 95.5%). Finally, Qwen
also exhibits changes resulting from candidate or-
der changes: with an average of 65.57% (MACS:
64.54%) its candidate order-dependant results vary
within the range 57.61% — 72.84%. Based on our
experiments, we conclude that MACS effectively
removes order-based bias from candidates with an
overall minor average reduction in F1 score.

4.3.4 Agnus Contextual Decoding

In Table 3, additionally to checking out the im-
pact of candidate representations across language
models, we also evaluate AGNUS without our con-
strained decoding method (ACDC). We find that
AGNUS hallucinates across the board, decreasing
F1 for all types of candidate representation. In non-
ACDC experiments, we apply fuzzy matching to
improve the likelihood of finding at least one entity.
Exact disambiguation to candidate matches in our
zero-shot experiments yield extremely subpar re-
sults (close to 0) and would otherwise be misrepre-

senting the added value of our robustness-oriented
approach. On average, F1 performance without
ACDC is lowered by 5.2%, the largest drops ap-
pearing with IRI (-7.5%) and type (-6.1%) candi-
date representations, followed by label (-4.7%) and
descriptions (-2.5%).

4.4 Contamination Detection

To diagnose potential contamination, we employ
perplexity (Li, 2023) to quantify a model’s uncer-
tainty for a given token sequence prediction. Per-
plexity reflects the inverse likelihood assigned to a
particular token sequence by a model: lower per-
plexity indicates higher predictive confidence and
a higher likelihood of contamination. To detect
contamination and evaluate the generalizability of
DLMs, we propose synthetically generating a novel
dataset derived from an existing one by replacing
each entity mention with a distinct, contextually
similar mention and corresponding entity. We ap-
ply our method with the DeepSeek-R1 (DeepSeek-
AI et al., 2024) model” to AIDA (Yosef et al.,
2011) and release AIDA-Syn'?. For each sequence,
we produced five mention-entity options, but for
AIDA-Syn only one was retained to reduce the risk
of future pretraining exposure. All alternatives,
along with a generation script, are made avail-
able'!. To assess contamination levels across dif-
ferent LLMs, we introduce a modified decoding
strategy, illustrated in Figure 4 with disambiguation
performed by selecting a candidate entity with high-
est confidence. The model that performs worst with
this strategy is presumed to be least contaminated.
Our findings show that Mistral (Jiang et al., 2023)
yields the lowest performance with a perplexity-
based decoding method on AIDA, suggesting being
least affected by benchmark contamination. Ap-
plying the same decoding strategy with ATDA-Syn,
F1 score decreases from 38.20% to 22.82%, a sub-
stantial relative drop of 15.38%. This reduction
supports the hypothesis that AIDA-Syn exhibits
reduced contamination and that our underlying
DLMs may suffer from contamination.

9Version from May 2025: https://www.deepseek.con/
10Made up of 888 documents. More details in Appendix.
Hnttps://github.com/kmdn/agn-dis
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5 Conclusion

We propose a set of techniques to enable robust
LLM-based entity disambiguation by addressing
the issues of unwanted order bias and hallucina-
tions in an entity disambiguation component we
dub AGNUS ¢ . Our experimental results show that
our zero-shot approach outperforms prior work on
average by 3.5%. Further, we introduce a method-
ology to detect data contamination and publish a
novel diagnostic dataset AIDA-Syn. Advantages of
our approach to the area of ED are that contextual
information may be utilised through the application
of LLMs of choice, enabling an ease of candidate
representation definitions. This could be particu-
larly beneficial in the case of incomplete, imperfect
or not well-connected knowledge bases. While
our approach using MACS and ACDC yields mod-
est improvements across benchmarks, our primary
benefit lies in enhancing output robustness and con-
trolling generation behavior, particularly in cases
where unconstrained and order-variant decoding
leads to semantically or structurally invalid outputs.
The only requirement we have for entity disam-
biguation is to have meaningful textual candidate
representations. Therefore, AGNUS ¢* can be used
for multi-Knowledge Graph (KG), KG-agnostic
fashions and novel entity settings — provided entity-
defining information is present.

In future work, we plan to improve upon our
research by finetuning models, testing scalability
with large numbers of candidates, designing novel
decoding strategies and testing our approach over
other knowledge bases.

6 Limitations

Due to our introduction of order-invariance by ap-
plication of a causal mask, modifying positional
IDs and introducing a custom logits processor, we
are limited to open-weight DLMs, making evalu-
ation with DeepSeek (DeepSeek-Al et al., 2024),
GPT-3.5 (Ouyang et al., 2022b), GPT-4 (OpenAl,
2023) impossible, unfortunately. Also, due to hard-
ware restrictions, we are limited to evaluating on
significantly smaller models than related work —
with us running experiments on models with around
10 billion parameters. For instance, in (Ding et al.,
2024a), authors employ GPT3.5 and Llama, claim-
ing that results improve with increased model size.

AGNUS counteracts candidate order bias, but
still suffers from other biases, such as do-
main (Noullet et al., 2025) or data bias linked to

the underlying LLM.

Fundamentally, we design a causal mask due
to being interested in disambiguating entities with
causal decoder-only language models. The general
idea could likely be transferred to other types of lan-
guage models by analogously adapting the causal
mask to fit another paradigm’s attention masking
strategy.

Alike other deep learning approaches to entity
disambiguation, AGNUS is limited by its generated
candidate sets and by only working with candi-
date entities that have some form of textual label,
description, types or otherwise meaningful infor-
mation for a LLM to predict.

Our prompt design (for further details, see Fig-
ure 6) does not take into account character offsets
within input documents due to DLMs running into
issues when handling numerical values. Conse-
quently, AGNUS may run into issues when the same
mention at different positions in a document refers
to different entities. (Example: Tim, CEO of
Apple, likes to eat an apple a day.)

While ACDC does mitigate hallucinations, a
given LLM’s next token prediction may be to con-
tinue with non-entity tokens, such as a greeting,
acknowledgment of task or similar, therewith po-
tentially negatively affecting entity disambiguation
depending on decoding algorithm. Designing a spe-
cific decoding strategy to include such behaviour
could prove to be a benefit in future endeavours.

In this paper, our underlying models are not fine-
tuned for the entity disambiguation task nor given
particular domain-specific information that could
boost context and potential results. Therefore, we
concede that going for a few-shot approach could
yield improved results.

Further, despite having the out-of-the-box struc-
tural capabilities for it, we could not evaluate our
approach on knowledge bases other than Wikipedia
and DBpedia due to not being aware of comparable
and valid evaluation benchmarks for it.

DLMs are language-dependant and have mainly
been trained with English in mind. Therefore, re-
sults may vary greatly when our approach is applied
to other languages.

Regarding evaluation contamination and the cre-
ation of AIDA-Syn, we did not go as in-depth ex-
plaining our procedure, safeguards against LLM
hallucinations, inherent surrounding bias as we
would have liked, nor provide in-depth statistics
or analyses. We introduce it mainly as a diagnos-
tic tool to evaluate our approach and show that
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despite there being novel entities and candidates,
AGNUS is capable of attaining similar results as for
the non-synthetic version with the suggested least
contaminated LLM.
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A Appendix

Over the course of researching and developing AG-
NUS ¢ , we implemented some further aspects that
we could not allude to in depth. Here are some
supplemental materials about them that might be
of interest to fellow researchers.

A.1 Prompt Setup & Candidate
Representation

In Figure 6, we illustrate how our prompts are set
up: we provide a system prompt, a user prompt
including a task definition, specific mention to dis-
ambiguate, input document text, desired output
representation type and a list of (by default) 10 per-
mutable candidate entities. We note that since we
do not provide offsets (due to DLMs handling them
questionably), we potentially run into issues when
multiple mentions - referring to different entities -
are to be disambiguated.

Prompts for different representation types are
constructed analogously to the URI-based prompt
(Figure 5) from our prompt template (Figure 6) for
simple representation types. For combined ones,
the process is similar with prompt template seen in
Figure 7, but utilises 2 (different) representations
instead.

A.1.1 IRI

In many of our experiments, utilising human-
readable IRI-based representations linking to DB-
pedia provide best results. Our choice is motivated
by IRIs representing the most straightforward —
even if knowledge base-dependent — representa-
tion for entities. We assume for this to likely be the
case due to these being succinct, human-readable,
similar to labels and that the start of the candidate
(https://dbpedia.org/resource/) provides a
useful bias to contextually reinforce the representa-
tion. We provide an example IRI-based candidate
representation prompt in Figure 5.

A.1.2 Label

A second candidate representation type we inves-
tigate is labels. The choice is motivated by prior
work and structural similarity to human-readable
Wikipedia- and DBpedia-based IRIs.

A.1.3 Description

While some of our other representations are likely
to have occurred in appropriate contexts within
chosen models’ training data, representing candi-
date entities as descriptions follows the rationale

SYSTEM

You are an expert assistant
disambiguating entities and outputting
if any of the passed entities are
referenced in a given input text.

USER

Identify which entity candidate (if any)
corresponds to the mention "Mika" in the
input document.

Please reply with just the IRI of the
entity.

Input document:

"Mika left his mark on Grand Prix
history."

Entity Candidates:

- https://dbpedia.org/resource/Mika_Hékkinen

- https://dbpedia.org/resource/Mika_(singer

- https://dbpedia.org/resource/FC_Mika

- https://dbpedia.org/resource/R._Mika

- https://dbpedia.org/resource/FC_Lahti

- https://dbpedia.org/resource/Mika_Nakashima

- https://dbpedia.org/resource/Mika_Singh

- https://dbpedia.org/resource/Mika_Kaurismdki

- https://dbpedia.org/resource/Mika_Waltari

- https://dbpedia.org/resource/Mika_vVdyrynen

ASSISTANT

The correct

disambiguated entity is
https://dbpedia.org/resource/Mika_Hdkkinen

Figure 5: Prompt - IRI: Entity Candidates represented
by their DBpedia-grounded entity IRIs.

of "contextual reasoning". Descriptions describe
entities, give deeper context and use more specific
language to define what an entity represents at its
core. As such, utilising descriptions for our ex-
periments tests whether (1) longer bits of text may
bias models into different directions and (2) models
can reason over contexts, reaching desired answers.
Unfortunately, our results with descriptions tend
to be worse than with IRIs or labels. We theorise
that ACDC’s strictly constrained decoding causes
issue with descriptions due to looking to reproduce
the exact description while descriptive texts may
oftentimes begin with generic ambiguous formu-
las. A possible improvement could be to change
the decoding algorithm to beam search rather than
the oftentimes defaulted-to greedy decoding. Fur-
ther, descriptions may greatly vary in length, caus-
ing an underlying DLM to run into unexpected
"behaviour" regarding attention and positional em-
beddings when a large "gap" is perceived between
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Entity Representation AGNUS w. IRI AGNUS w. Type AGNUS w. Label AGNUS w. Desc.
AGNUS w. IRI 0.867 0.855 0.763 0.854
AGNUS w. Type 0.855 0.705 0.734 0.766
AGNUS w. Label 0.763 0.734 0.743 0.744
AGNUS w. Desc. 0.854 0.766 0.744 0.763

Table 4: Ablation Study (Entity Representation - Single and Pairwise): Disambiguation results (F1-measure) on
AIDA for pairwise and singular (diagonal) entity representation information types for candidates on AGNUS (Mistral):
entity IRI, entity type(s), entity label and entity description. Per column top-ranked score in bold, second-ranked
underlined.

# Documents
888

Mentions # Type-Consistent Docs.
15,314 331

Type Consist. (Mean)
46.60%

Table 5: Some data statistics for AIDA-Syn. Type-Consistency compares pre-transformation types of entities to
post-transformation types of entities and checks overlap.

System AIDA-Syn AIDA  ASM-10 ASM-50 ASM-100
Babelfy (Moro et al., 2014) 0.7503  0.6729 0.7660  0.7111 0.6912
WAT (Piccinno and Ferragina, 2014) 0.8641 0.6986  0.9355 0.8235 0.8332
REL (van Hulst et al., 2020) - 0.9030 0.7942 0.6829

Table 6: F1 measures on datasets AIDA-Syn, AIDA for
AGNUS and GERBIL-available systems (all other pub-
licly available systems on GERBIL (Verborgh et al.,
2018) timed out or returned "The annotator caused too
many single errors" for the platform despite repeated
attempts).

candidate descriptions’ number of ingested tokens.

A.14 Type

Finally, we introduce ’types’ as a source of in-
formation for entities. While simple and poten-
tially ambiguous, the idea was that in combination
with other representation types, it could help im-
prove disambiguation by providing more context
as used in more traditional entity disambiguation
approaches (e.g. applying named entity recogni-
tion incl. types and disambiguating based on type-
filtered candidates). On another hand, types can
also be particularly specific, such as defining an
entity as a "Formula One racer" which would prove
beneficial to identify a mention Mika as the Finnish-
born race driver Mika H&kkinen.

A.1.5 Pairwise Representation

In Table 4, we apply disambiguation based on
multiple entity representations in a pairwise fash-
ion AIDA. These experiments’ prompts are set
up analogously to the ones as illustrated in Fig-
ures 5 and 6 In these experiments, pairwise rep-
resentations are ordered in descending fashion
by mean representation scores reached in single-
representation experiments (see Table 2): IRI >
Label > Description > Type. For instance, in
a pair of Label and Type, "candidate representa-

tion type 1" would be defined by Label and "can-
didate representation type 2" by Type.

A.2 Candidate Representation - Pairwise
Effects

We investigated effects of single candidate repre-
sentation types within our paper. We considered it
interesting to have a look at pairwise combinations
thereof as well to verify to what extent adding more
information could yield better results — as would
be an initial human intuition.

In Table 4, we evaluated AGNUS on pairwise
combinations of candidate repsentation types to
verify effects as well as the extent of increased
information content on results. We note that disam-
biguating based on meaningful IRIs, such as from
Wikipedia (e.g. https://en.wikipedia.org/
wiki/Mika_ (singer)), yields the best scores re-
gardless of representation it may be combined with.
Any further representation type worsens results,
seemingly indicating that highly-defining compact
representations may yield best results.

Types by themselves return mixed results,
slightly improving upon description-based candi-
dates, but deteriorate label-based results slightly.
This may be due to the high overlap among can-
didates for this representation, potentially causing
confusion upon disambiguation and yielding worst
results (7.0%) in our experiments. Adding labels
(7.3%) or descriptions (7.7%) to types increases
candidate information, decreasing ambiguity and
leading to improved results. Labels as an entity
characteristic by themselves (7.43%) are relatively
ambiguous, but benefit slightly from further infor-
mation in the form of descriptions (7.44%). Over-
all, top scores are reached with IRI representations
regardless of other combined information — actu-
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SYSTEM

You are an expert assistant
disambiguating entities and outputting
if any of the passed entities are
referenced in a given input text.

SYSTEM

You are an expert assistant
disambiguating entities and outputting
if any of the passed entities are
referenced in a given input text.

USER
Identify which entity candidate (if any)
corresponds to the mention "<mention>"
in the input document.
Please reply with just the <provided
entity representation type> of the
entity.
Input document:
"<input document>"
Entity Candidates:

- <candidate 1>

- <candidate 2>

- <candidate 3>

- <candidate 4>

- <candidate 5>

- <candidate 6>

- <candidate 7>

- <candidate 8>

- <candidate 9>

- <candidate 10>

USER

Identify which entity candidate (if any)
corresponds to the mention "<mention>"
in the input document.

Please reply with just the provided
entity.

Input document:

"<input document>"

Entity Candidates:

- <cand. rep.l 1> <cand. rep.2 1>
- <cand. rep.l 2> <cand. rep.2 2>
- <cand. rep.l 3> <cand. rep.2 3>
- <cand. rep.l 4> <cand. rep.2 4>
- <cand. rep.l 5> <cand. rep.2 5>
- <cand. rep.l 6> <cand. rep.2 6>
- <cand. rep.l 7> <cand. rep.2 7>
- <cand. rep.l 8> <cand. rep.2 8>
- <cand. rep.l 9> <cand. rep.2 9>
- <cand. rep.l 10> <cand. rep.2 10>

ASSISTANT
The correct disambiguated entity
is <chosen candidate>

Figure 6: Prompt - Template: Template variables are
surrounded by less than (<) and greater than (>) sym-
bols.

ally suffering from any additional representations
(by itself: 8.67%, with type(s): 8.55%, with de-
scription: 8.54%) —, most notably suffering from
labels (7.63%).

A.3 Masked Attention Candidate Set - Details

MACS hides certain tokens’ positions from other
tokens without requiring retraining by restricting at-
tention and sharing positional embeddings for suc-
cessive token predictions. In Figure 8, we illustrate
an example of the encoding to an underlying DLM:
the positional embedding ID for each candidate is
reset to the first candidate’s positional embedding
and incremented for each token until another can-
didate entity or the end of the candidate entity set
is encountered. The positional embedding of the
first token succeeding a masked attention candidate
set is set to the longest candidate’s final token’s
positional ID incremented by one.

As such, to the underlying DLM it will appear as
though there was a gap in positions. Consequently,

ASSISTANT

The correct disambiguated entity
is <chosen cand. rep. 1> <chosen cand.
rep. 2>

Figure 7: Prompt - Pairwise Template: Prompt Template
for pairwise representation type experiments. Template
variables are surrounded by less than (<) and greater
than (>) symbols.

prompts including candidates with highly varying
lengths may lead to weirdness for the underlying
DLM’s decoding process.

A.4 Agnus Contextual Decoding - Details

Our constrained decoding mechanism functions in
a tree-based fashion in accordance to the grammar
defined in Section 3.3 and only allows for specific
tokens at each step by setting disallowed tokens to
negative infinity (-inf) with a customised logit pro-
cessor. Effectively, this leads to undesired tokens
being impossible to be generated by the language
model. Our approach aims to be minimally inva-
sive and maximally generalisable to open-weight
models in the sense that we do not define nor mod-
ify a particular decoding algorithm. Instead, our
models use the default or otherwise defined decod-
ing algorithms for the respective language model
(i.e. greedy decoding, top-p sampling or similar).
Furthermore, we introduce a simple optimization
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Figure 8: MACS Example - Position Embeddings & Attention: Encoding of a disambiguation prompt (see Fig. 6). In
particular with attention from second candidate entity (Mika (Singer)) token <ka> with intra- and extra-candidate
attention. Candidate entities attend (arrows) to themselves, but cannot attend to each other as defined in our causal

mask (see Figure 3).

involving an "early stopping" mechanism when
decoded entity representations start being no longer
ambiguous

A.5 AIDA-Syn

We created AIDA-Syn using DeepSeek-R1 and
generated 5 variants of coherent mentions and en-
tities each. We automatically filtered out variants
and documents where entities did not correspond
to a valid DBpedia entity or where other LLM-
related issues may have arisen. Some issues were
related to DeepSeek’s maximum number of gen-
erated tokens activating prior to reaching the end.
Key criteria for our generation included semantic
coherence, lexical diversity, naturalness, plausibil-
ity within the surrounding text, and alignment with
existing entities — our employed setups, prompts
and results are publicly available'?. In the end, we
generated a collection of 888 synthetic documents
with 5 variants of mentions and entities for each.
The reasoning behind the latter being more options
for future evaluation endeavours, as well as switch-
ing to alternative mention contexts in case of faulty
generations. Note that due to hardware limitations,
we relied on DeepSeek’s API rather than employ-
ing ACDC with DBpedia entities for the synthetic
dataset generation.

As a means of verifying that our generated men-
tions and entities are sensical, we used a two-
pronged approach. First, two researchers manually
validated a random sample of 222 (25%) docu-
ments, verifying contextual coherence for all vari-
ants. In 14% (32 documents) of documents, gener-
ated mentions created excessive entity ambiguity
or were incorrect, leading to using another set of
generated mentions and entities for the documents.

Second, we attempted to run the full suite of
annotators via GERBIL (Verborgh et al., 2018) to
see whether existing approaches could annotate

I2nttps://github.com/kmdn/agn-dis

documents effectively — we report the results in
Table 6. Unfortunately, many D2KB annotators did
not run on our full AIDA-Syn (or ASM-10'3, ASM-
50'4, ASM-100"%) and the original AIDA datasets,
instead returning timeout errors and similar. In
Table 5 we display some details about the synthetic
AIDA-Syn dataset including number of documents
(888), total number of mentions (15,314) as well as
entity type consistency between the original dataset
and the transformed documents. Our assumption
is that a certain degree of overlap between types
should persist, but that it shouldn’t be an absolute
overlap the sake of document diversity.

A.5.1 Synthetic Data Generation Caveats

Generating novel mentions can result in a variety
of ways that lessen expressiveness of data. For
instance, "Mika" is transformed into following
alternative mentions: Ayrton Senna, Michael
Schumacher, Alain Prost, Lewis Hamilton
and Sebastian Vettel. In this case, a simple
first name ("Mika") is transformed into a first name
followed by a last name, both belonging to famous
race drivers. The presence of the last name cre-
ates a lower degree of ambiguity than in the initial
dataset, reducing complexity of the disambiguation
task.

Further, in this setup, the linked wikipedia ID
("wiki") may be hallucinated, making the alterna-
tive document effectively unuseable unless verified.

Similarly, a DLM may hallucinate a mention and
link an unrelated entity to it.

These points put into question the validity of
utilising synthetic data for evaluation, but still allow
for a certain degree of expressiveness regarding
contamination diagnostics.

Bhttp://gerbil.aksw.org/gerbil/experiment?id=
202505190000

Yhttp://gerbil.aksw.org/gerbil/experiment?id=
202505190001

Bhttp://gerbil.aksw.org/gerbil/experiment?id=
202505190002
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A.6 Baseline Experiments

Do note that in the case of "w.o. ACDC" (with-
out constrained decoding), we apply fuzzy match-
ing between candidate representations for both pre-
dicted and expected values, ranking similarity for
the sake of comparison fairness and picking the
highest-overlap-similarity candidate as a match.
Just using the results as-is for a "baseline” com-
parison seemed disingenuine as "exact matching"
criteria would put baseline results very close (if not
exactly) to 0 in most cases.

Applying hard-prompting based finetuning to
our employed suite of large language models would
likely alleviate the effects to a certain degree, but
would simultaneously render the comparison in-
valid due to comparing our zero-shot model to a
1-shot baseline, therewith having only limited ex-
pressivity over our existing ED evaluation table
(Table 1).

Due to similar reasons, our baseline without can-
didates still uses matching to candidates (it did not
see or produce) rather than dryly applying an exact
matching scheme, therewith heightening the likeli-
hood of correct results. Hence, we urge readers to
not overestimate baseline performance.

A.7 Evaluating with Related Work
Candidates & Details

Unfortunately, to the best of our knowledge, the
large majority of prior work does not provide can-
didate entities for their entity disambiguation meth-
ods. We provide our candidates, data and results
(see code repository). We have some comments
and concerns with prior work’s (EntGPT (Ding
et al., 2024a)) provided candidates!®, but we want
to validate our approach best as possible and see
an added benefit for comparability in doing so.
AGNUS ¢» always chooses a single entity from
among a set of 10 candidates. EntGPT’s candidate
sets are variable in size and less than or equal in
amount to 10 (averaging between 6.1 - 9.2 depend-
ing on dataset, see Table 7). Further, EntGPT relies
on a prompt structure allowing underlying DLMs
to express that "None" of the provided candidates
correspond to the desired one. This unfortunately
entails a few additional considerations regarding
evaluation: Theoretically, (1) if a candidate gen-
eration technique were to never contain a desired

16https://github.com/yifding/In_Context_
EL/tree/main/RUN_FILES/4_13_2023/rel_blink/
evaluation_new_one_step

Dataset || In-Set | "None" | Docs. | Docs. (Original) | Mentions | Total Cand. | Min. Cand. | Avg. Cand.
KORESO 113 35 50 50 148 1365 1 9.223

ACE2004 242 15 35 106 257 1953 1
AIDA-B || 4250 125 230 231 4375 31651 1 7.235
AQUAINT 700 27 50 50 727 4935 1 6.788
CLUEWEB || 9961 1193 320 - 11154 83285 1 7.467
MSNBC 617 39 20 20 656 4525 1 6.898

1

1

1

1

1

7.599

OKE2015 441 95 101 101 536 3625 6.763
OKE2016 240 48 55 - 288 2179 7.566
Reuters-128 544 106 113 128 650 4686
RSS-500 447 77 357 500 524 3199
WIKI 6076 77 319 - 6793 42296

7.209
6.105
6.226

Table 7: Prior Work (Ding et al., 2024a) Dataset Statis-
tics: Number of mentions for which correct entity is
within candidate set (In-Set), is not in candidate set
("None" being correct), number of documents provided
and number of documents within dataset originally (as
far as could be determined reasonably). Dash (-) means
varying values have been found from different sources.

Dataset H In-Set ‘ "None" ‘ Mentions ‘ Total Cand. ‘ Min. Cand. ‘ Max. Cand. ‘ Avg. Cand.
ACE2004 || 2333 274 2607 257718 1 100 98.86
AQUAINT || 13359 | 1383 14742 1464034 1 100 99.31
AIDA || 25076 | 2741 27817 2760855 0 100 99.25
KORE 50 || 813 93 906 89440 6 100 98.72
MSNBC || 10450 1066 11516 1143092 1 100 99.26

Table 8: AGNUS Dataset Statistics: Candidates gener-
ated using DBpedia Lookup. Number of mentions for
which correct entity is within candidate set (In-Set), is
not in candidate set ("None" being correct), number of
mentions, number of total candidates along with min-
imum, maximum and average candidates for all men-
tions.

entity for disambiguation, a DLM could technically
always choose "None" and reach a perfect score.
(2) Limited comparability to existing ED methods.

Also, according to our analyses (see Table 7),
some datasets are incomplete in terms of docu-
ments and mentions, therefore making meaningful
comparisons with other existing work difficult. De-
spite concerns regarding generalizability to other
methods, we regard comparing AGNUS to the best
of our knowledge the only prior work that explicitly
provides candidate entities a meaningful endeav-
our. We note that while some prior work do techni-
cally provide code to generate candidates, provided
code being impossible to run without possible ma-
jor changes (e.g. local dependencies (Liu et al.,
2024)'7 or paths to inaccessible datasets (Xiao
et al., 2023a)'®) significantly impedes a compa-
rable and clean evaluation process.

Mhttps://github.com/laquabe/OneNet /blob/main/
pointwise_process/listwise_cand.py

B8nttps://github.com/MrzilinXiao/
InsGenEntityLinking/blob/master/data_scripts/
create_candidates_dict.py
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