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Abstract

While question-answering (QA) benchmark
performance is an automatic and scalable
method to compare LLMs, it is an indirect
method of evaluating their underlying problem-
solving capabilities. Therefore, we propose a
holistic and generalizable framework based on
cascaded question disclosure that provides a
more accurate estimate of the models’ problem-
solving capabilities while maintaining the scal-
ability and automation. This approach collects
model responses in a stagewise manner with
each stage revealing partial information about
the question designed to elicit generalized rea-
soning in LLMs. We find that our approach
not only provides a better comparison between
LLMs, but also induces better intermediate
traces in models compared to the standard QA
paradigm. We empirically verify this behav-
ior on diverse reasoning and knowledge-heavy
QA datasets by comparing LLMs of varying
sizes and families. Our approach narrows the
performance gap observed in the standard QA
evaluation settings, indicating that the prevalent
indirect QA paradigm of evaluation overesti-
mates the differences in performance between
models. We further validate our findings by
extensive ablation studies.

1 Introduction

While general-purpose LLMs have become ubiqui-
tous today, evaluating them holistically remains
a massive challenge. Primarily, these models
are compared against each other by their per-
formance on a handful of benchmark tasks and
datasets (Liang et al.; Srivastava et al.; Wang
et al., 2018; Sarlin et al., 2020) dominated by vari-
ous kinds of question-answering tasks (Hendrycks
et al.; Lin et al., 2022; Rajpurkar et al., 2016; Rein
et al., 2024). While objective and scalable, to esti-
mate the underlying problem-solving capabilities
of models, this approach is indirect — merely judg-
ing a model on its ability to pick the correct choice

among distractors or to produce a correct numeri-
cal answer to a mathematical problem doesn’t mea-
sure the quality of strategies these models use to
arrive at that answer. There is a pressing need
(Alzahrani et al., 2024; Gan et al., 2024; Li et al.,
2024b) for direct evaluation of problem-solving
capabilities as they are better aligned to the ac-
tual use-cases of LLMs. For example, while the
GPQA dataset (Rein et al., 2024) contains multiple-
choice questions (MCQs) that indirectly test the
graduate-level knowledge of the models, the cor-
responding real-world use-case is more subjective
— the model should possess the ability to have an
accurate open-ended conversation with the user
about advanced concepts. This ability is better re-
flected in the strategies that the LLM uses to answer
GPQA questions. Hence, the focus of this paper
is to directly evaluate the internal problem-solving
capabilities of the models in a holistic, yet scalable
and generalizable manner.

We propose an evaluation framework called cas-
caded information disclosure which focuses on
eliciting and estimating the problem-solving ca-
pabilities reflected in the intermediate traces of
the models. Crucially, our framework differs from
standard Chain-of-Thought (CoT) evaluations that
rely on a post-hoc, subjective LLM-as-a-judge to
score a complete reasoning trace. In contrast, CID
introduces a stagewise informational bottleneck—
by withholding key details like answer choices—
which compels the model to produce a verifiable
intermediate trace. This approach replaces a sub-
jective, external judge with an objective, integrated
verification mechanism where the quality of the
trace directly impacts the final, verifiable answer.
It involves modification of standard QA tasks as
follows. We first transform the question into its
more generalized form and then design a scheme
to partition this form into non-overlapping parts.
Then we disclose these parts to the model under
evaluation in a stagewise manner. The final stage in
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Multiple Choice Question

Cascaded Information Disclosure

Q Stem: A small iron block is

Generalized Ideation Stage

dropped from a height of 30m.

- . ”
What is its velocity at 10m? Q Stem:...

Options:

A) (> 10 m/s) and (< 12m/s)
B) (> 19m/s) and (< 21m/s)
C) (> 49 km/hr) and (< 51 km/

\ 4

<Ideate> | will use Maxwell’s electromagnetic equations and terminal velocity.. <\Ideate>
<Ideation Answer> The velocity might be approximately \sqrt(4*\pi)m/s but | need to know the
mass and options to answer. <\Ideation Answer>

hr) Verifiable Projection Stage

D) <10m/s

v
Standard Q/A eval

Options:...
<Ideate>.. <\Ideate>

<Ideation Answer>... <\Ideation

Q Stem:... Answer>

Subjective eval: LLM-judge
Q Stem:...

<Ideate>.. <\Ideate> : :

<Ideation Answer>... <\Ideation
Answer>

v/

satisfies stage-1 answer.
....through elimination of 9

options.

= Answer>

I need to first convert all
options to m/s for ease of comparison...Option A

<Projected Answer> A <\Projected

..Stage-1 answer is correct
because you need the knowledge of the options
to answer.
<Judge Answer>Correct<\Judge Answer>

Figure 1: Demonstration of MCQA instantiation of our Cascaded Information Disclosure evaluation framework
against Standard evaluation and LLM-based Subjective evaluation of problem-solving capabilities. The standard
evaluation paradigm picks the correct option but has poor justification for the answer. Cascaded Information
Disclosure strategically generalizes the question and exposes parts of it to the model in a stagewise manner. The
free-form response generated during ideation phase reflects model’s poor problem-solving ability. LLM-based
subjective evaluation is an appealing alternative to judge the ideated response but fails in the example shown —
it supports the trivial conclusion in the incorrect ideation. Verifiable Projection while objective and automatic,
correctly penalizes the incorrect ideated response by picking the wrong option.

all instantiations is a verifiable projection stage that
projects the model’s responses in the earlier stages
to an automatically evaluatable form. This progres-
sive question disclosure leads to a more accurate
assessment of the subjective problem-solving capa-
bilities of the models while the verifiable projection
stage maintains the scalability and automation of
evaluation. We instantiate this framework for two
distinct QA modes: 1) multiple-choice QA, and ii)
reasoning-based math word problems.

Comparing a wide variety of models of different
sizes and families (§ 3.1), our approach narrows the
performance gap observed in the standard evalua-
tion settings, indicating that the prevalent indirect
evaluation paradigm overestimates the differences
in performance between models. Overall, we find
that our approach not only provides a better esti-
mate of LLMs’ underlying reasoning capabilities,
but also elicits better performance and intermediate
traces from the models compared to the standard
QA paradigm — an effect primarily driven by the de-
composition of the questions into separate foci. We
further validate the soundness of our observations
by extensive ablation studies.

To summarize, we i) propose a novel generalized
framework to test the problem-solving capabilities
of LLMs that supports automation and extensibility,
ii) empirically study our framework via concrete

automatic instantiations across multiple QA tasks
and LLMs, and iii) create manual instantiations of
this framework by annotating two datasets that are
publicly available.!

2 Cascaded Information Disclosure

The central guiding conjecture (Wood et al., 1976;
Collins and Stevens, 1983) behind our approach
is that an answerer (human or machine) will em-
ploy more detailed reasoning and knowledge-based
strategies and reveal more information in their an-
swers if the question is broken down into a series
of leading questions. Therefore, our approach in-
volves exposing partial information about the ques-
tion to the answerer model in a cascade of stages
and eliciting potentially detailed and meaningful re-
sponses from it at each stage. More concretely, the
input question @ is first converted into an abstract
form (). The abstract question is then decomposed
into n non-overlapping subsets Q) = Ui, Q;. Our
approach then solicits responses R; from the model
by presenting these subsets in a predetermined or-
der and conditioning each response on the corre-
sponding subset and the response in the previous
stage: R; < (;, R;—1. The response of the final

'The GitHub repository of this paper is publicly

available at https://github.com/RaccoonOnion/
cascaded-information-disclosure.git
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stage is considered to be the model’s answer to the
full question: A(Q) = R, | Qn, Ry—1. Crucially,
the response at any stage doesn’t explicitly depend
on the subparts of the question at the earlier stages
— the only information the model can gather about
the previous stages is through the response gen-
erated one stage prior. This bottleneck promotes
detailed and informative responses from the model
at each stage which, as we show in our results,
is the primary driver for eliciting better problem-
solving strategies from the models. An appropriate
decomposition procedure underpins the success of
our approach and needs to be custom-designed for
every instantiation of this abstract framework.

In our experiments, we instantiate this frame-
work for two different types of questions: multiple-
choice questions, and math word problems. While
the instantiations are procedurally different, there
are some commonalities between the two instantia-
tions. Both of them decompose the question into
two stages (n=2) that we call generalized ideation
and verifiable projection stages. The generalized
ideation stage presents a partial generalized view
of the original question to the model such that the
model generates a broad and general response R;.
The verifiable projection stage takes this response
along with the rest of the information in the orig-
inal question (question residue) to project R; to
an objectively measurable answer format. There-
fore, the generalized ideation stage produces the
subjective response detailing the problem-solving
strategies employed by the models, and the veri-
fiable projection stage ensures that the evaluation
remains automatic and scalable by using standard
evaluation metrics for the projected response. Thus,
compared to commonly used subjective evaluation
schemes involving an external judge (i.e., LLM-
as-a-judge), our approach integrates an objective
verification mechanism into a cascaded ideation
pipeline, providing a more direct and robust assess-
ment of the model’s intermediate reasoning.

2.1 MCQA Instantiation

We break the MCQ into two parts: the question
stem, and the options containing the answer. The
generalized ideation stage only gets to look at the
general question without the knowledge of the an-
swer candidate and induces the model to produce a
detailed constructed response (Livingston, 2009) to
answer the question in a free-form subjective man-
ner. This response is then passed, along with only
the candidate options, to the verifiable projection

stage. This stage assesses the model’s free-form re-
sponse and picks the option that most appropriately
matches the response. We conduct experiments
on different MCQA datasets designed to test for
reasoning and advanced graduate-level knowledge.

2.2 Math Word Problem Instantiation

The original math word problems are rewritten into
a templated form that is more general and specific
entities are replaced by abstract variables. This
generalized question is presented to the model in
ideation stage in which the only correct way to
answer the question is to reason about the prob-
lem and unknown variables, and produce a general
mathematical formula for the generalized question.
The verifiable projection stage takes the ideation
response and the variable assignment as input. The
mathematical formula is turned into executable
code that accepts the variable assignments as ar-
guments to yield a numeric answer to the origi-
nal question. This instantiation requires consider-
able manual intervention. Therefore, we use the
GSMBS8K (Cobbe et al., 2021) dataset for original
questions whose generalized form is constructed us-
ing templates in prior work (Mirzadeh et al., 2025).

3 Experimental Setup

We empirically compare the effectiveness of the
cascaded information disclosure evaluation frame-
work against other prevalent frameworks by evalu-
ating a variety of open-weight and close models
spanning various sizes (7B to 685B) and model
families (Llama (Grattafiori et al., 2024), Qwen
(Qwen et al., 2025), Gemma (Team et al., 2024),
Phi (Abdin et al., 2024), DeepSeek (Liu et al.,
2024) and GPT (OpenAl et al., 2024) ). Specifi-
cally, we use the instruction- finetuned checkpoints
for the models that are capable of following instruc-
tion prompts in a zero-shot QA setting. (Details in
Appendix)

Datasets: As described in§ 2, we instantiate our
cascaded information disclosure framework for
problem-solving evaluation for two types of ques-
tions: MCQs and math word problems. For the
MCQA format, we picked a) the test split of ARC-
Challenge (Clark et al., 2018) dataset which con-
sists of grade school level science questions for
MCQA format and, b) the GPQA dataset which
consists of challenging graduate-level science ques-
tions written by domain experts. Specifically,
we use the high-quality subset of the full GPQA
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dataset: GPQA-Main (448 questions), and its more
challenging subset GPQA-Diamond (198 ques-
tions). It is reported in the GPQA paper (Rein et al.,
2024) that highly skilled non-expert human valida-
tors only reach 30.4% and 22.1% accuracies on
GPQA-Main and GPQA-Diamond despite spend-
ing on average over 30 minutes with unrestricted
access to the internet. For math word problems,
we use GSMS8K to obtain original questions. Pre-
vious work (Mirzadeh et al., 2025) created 100
symbolic templates from 100 questions in the orig-
inal GSMS8K dataset by manually annotating the
entities (numeric values and categorical values) that
can be abstracted into variables. We extend these
templates by creating consistent assignments to the
variables in the templates, resulting in a derivative
dataset we call GSM-General® consisting of 100
template-variable assignment pairs that map to the
100 original questions in GSM8K dataset.
Inference Details: For prompt engineering, we
adopt zero-shot, chain-of-thought prompting (Wei
et al., 2022) to mimic the most common real-world
LLM use case. Prompt templates are available in
appendix 7.2. We specifically crafted the prompts
for all the settings including the baseline methods
so as to achieve maximal performance on the tasks
under each method. Specifically, we found that
describing our cascaded setup for question disclo-
sure to the models via the prompt resulted in stable
behavior under our approach. We use XML tags
based answer format in both prompting and answer
extraction. We use greedy decoding which is the de-
fault setting for all three selected datasets. For each
model, we set the context length to the maximum
supported by the model and we set a uniform cap
of 8192 for maximum number of generated tokens
to facilitate a fair comparison across models.

3.1 Evaluation Strategies Compared
3.1.1 Standard Evaluation

This evaluation setting is the most widely used
evaluation method for the datasets we work with.
We further enhanced the standard evaluation by
developing custom prompts and answer extrac-

This converted symbolic version of GSM8K dataset,
GSM-General is publicly available at https://github.
com/RaccoonOnion/cascaded-information-disclosure.
git Note that one would expect performance to degrade given
the use of "exotic format" (e.g., using variables like {age1});
instead, we observe dramatic improvements for most models
indicating that our approach elicits higher-quality, general
reasoning traces that are otherwise masked in standard,
concrete QA settings.

tion methods to ensure maximal performance on
the datasets that would serve as difficult baselines
for our approach to beat. For MCQA type, the
models take in the full original question: stem
(What is Newton’s Third Law of Motion
about?) and candidate options (A: Inertia, B:
Force and acceleration, C: Momentum, D:
Action-Reaction) as inputs, and provide a re-
sponse from which the answer index (A, B, C,
or D) is extracted.’

A math word problem is a mathematical exer-
cise presented as a scenario, requiring the applica-
tion of mathematical reasoning and computation
to solve a real-world or hypothetical situation and
provide a numerical answer. For evaluation, the
prompt contains requirements on the format of the
final answer. We use Im-evaluation-harness’s im-
plementation to evaluate models’ performance on
the 100 original GSM8K questions.

3.1.2 Cascaded Information Disclosure

We apply our two-stage (generalized ideation and
verifiable projection) framework as defined in §2.
A key detail of our experimental setup is that in
the prompt for the generalized ideation stage, we
explicitly specify that reiteration of the question is
prohibited to restrict its leakage into the next stage.
For the verifiable projection stage, we in-
structed all LLLM-based projectors to abstain from
solving the original problem and only focus on
matching the ideation trace to the correct option.
We experiment with four distinct projector types:

* Self-Projector: The LLM being evaluated is
used as its own projector.

* Open-Weight Projector: An external perfor-
mant model (Phi-4).

* Blackbox Projector: A frontier model (GPT-
40 (OpenAl et al., 2024)).

* Rule-Based Projector: A non-LLM baseline.
For MCQA, this uses a sentence-level BLEU
score metric (Post, 2018) for matching. For
math problems, this extracts an executable
Python expression from the answer tags.

*We use two implementations of standard MCQA base-
lines: LM Evaluation Harness ((Gao et al., 2024); denoted
“LMH”) and a custom implementation. We found that LMH’s
simple prompts and answer extractions led to high parsing
failure rate. To provide a fairer comparison of model perfor-
mance, we develop an advanced MCQA baseline that greatly
improves model’s instruction following on formatting.
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3.1.3 Subjective evaluation of Generalized
Ideation Traces

While verifiable projection stage makes our ap-
proach automatic and reliable, it is not the only pos-
sible automatic approach to evaluate the problem-
solving capabilities of the model elicited in the gen-
eralized ideation stage. We also compare our setup
against strategies for automatic subjective evalua-
tion of the first stage traces. We experiment with
LLM-as-Judge projector (Zheng et al., 2023a) for
both MCQA and math word problem settings. The
LLM judge, armed with the ground truth answer,
is tasked to project the ideation trace to a binary
verdict "Correct" and "Incorrect".

3.2 Evaluation Metrics

Following the description above, we use the term
accuracy to refer to two kinds of metrics whose
usage is differentiated by context: a) objective ac-
curacy, which is a measure of match between the
ground truth answer and the projected answer, and
b) subjective accuracy, which is the rate of correct-
ness as judged by an LLM. Thus, the standard
baselines and systems employing the verifiable
projector use objective scoring, while LL.M-as-a-
judge methods use subjective scoring that decides
whether the ideation trace is deemed correct or
not. Subjective accuracy is heavily biased towards
judge’s style and hence is not directly comparable
to objective accuracy. We also report the parsing
failure rate (in Appendix) of answer extraction. The
failure is caused by the answering model’s inability
to follow answer formatting instructions.

4 Empirical Analysis

4.1 Cascaded Information Disclosure
Narrows the Gap between Models

In Table 1, we present accuracies of LLMs eval-
uated on four different benchmark datasets using
various evaluation paradigms. We report three dif-
ferent LLM projectors for the verifiable projection
stage: Phi-4, GPT-40, and ideation model itself.
For each evaluation method, we measure perfor-
mance gap as the difference between the highest
and the lowest scoring model. We observe that
our approach results in a significantly narrower gap
between the models compared to the standard eval-
uation. For example, the gap under standard eval-
uation for GPQA-Diamond (37.4) is much higher
than the gap (12.1) when GPT-4o0 is used as the
verifying projector. Moreover, the more powerful

the verifying projector, the lower the performance
gap. This suggests that the standard evaluation
benchmarks prevalent today underestimate the true
capabilities of smaller models. We posit that the
gap narrows because our method provides a more
accurate estimate of their underlying abilities. We
observe two key drivers for this correction:
Improved Reasoning Quality: Our cascaded dis-
closure elicits higher-quality, more coherent rea-
soning traces from smaller models, whose true per-
formance is often masked by confounding factors
in standard QA formats. For instance, on GSMS8K,
Gemma-9B’s accuracy jumps dramatically from
21% to 74% under our protocol (Table 1), indi-
cating its underlying capabilities were not being
captured under the standard evaluation setup.
Elimination of Formatting Errors: Our two-
stage approach virtually eliminates parsing failures,
a significant confounder that disproportionately pe-
nalizes smaller models. As detailed in Section 4.3
and Appendix Table 10, standard harnesses can
suffer from high parsing failure rates (upwards of
40% for Gemma2-9B), which incorrectly penalizes
a model for formatting rather than reasoning. Our
method removes this discrepancy.

We also extend our evaluation to include frontier
blackbox models (GPT-4.1 and DeepSeek V3.1)
on the challenging GPQA-Diamond dataset. As
shown in Table 2, our findings remain consistent:
the CID (Self-Pick) framework provides a more
challenging evaluation (note the lower accuracy)
than the standard MCQA baseline. This reinforces
our claim that CID measures a different, more ro-
bust aspect of problem-solving. Furthermore, these
results again highlight the unreliability of subjec-
tive LLM-as-a-judge (Self-Judge) baselines, a point
we explore further in Section 4.5.

4.2 Cascaded Information Disclosure
Estimates Problem-solving Capability

Generalized questions make QA tasks harder:
The generalized question used in our framework is
more difficult than the original questions, by their
nature. For MCQA, the answer choices are omit-
ted in the generalized questions, thereby providing
the evaluation subjects with strictly less informa-
tion compared to standard evaluation methods. For
GSM-General, the question is transformed into an
abstract symbolic question, forcing the models to
utilize their reasoning capabilities.

The increase in difficulty is naturally reflected
by decrease in performance of larger models (14B+
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Table 1: Comparison of Cascaded Information Disclosure based evaluation with verifiable projector with standard
(Std.) evaluation. Experiments with three different kinds of projectors are reported: the LM under evaluation (self),
external open-weight LM (Phi-4), and blackbox frontier model (GPT-40). Performance Gap refers to the difference
between the best performing model and the worst performing model.

Dataset -+ | ARC-challenge GPQA-Diamond GPQA-Main GSMSK-100
Model | \ Projector \ Projector \ Projector Projector
Std. Self Phi-4| Std. Self Phi-4 GPT-40| Std. Self Phi-4 GPT-40|Std. Self Phi-4

Llama 3.1-8B |82.5 80.4 87.7 | 20.7 31.8 32.8 353 |23.7 283 33.0 30.8 [32 40 42
Gemma 2-9B |90.4 84.6 90.1 |30.30 31.3 31.8 353 |324 30.6 32.6 348 |21 70 74
Qwen 2.5-7B |87.2 82.8 89.0 |32.32 30.3 34.8 374 |31.0 319 30.1 292 |76 75 70
Qwen 2.5-14B (92.1 88.8 909 | 41.4 404 419 379 |38.236.2 37.7 373 |80 85 84
Phi-4 (14B) [95.7 90.8 90.8 | 58.1 51.5 51.5 47.5 |529 453 453 47.1 |52 91 091
Qwen 2.5-32B (93.3 91.0 929 | 47.0 424 449 46.5 |43.1 41.5 40.8 42,6 |87 95 95
Perf. Gap A (13.2 10.7 5.2 | 374 21.2 19.7 121 (292 169 152 179 |66 55 53

Table 2: Performance (accuracy, %) of frontier models on GPQA-Diamond. We compare the standard MCQA
baseline against our Cascaded Information Disclosure (CID) method (Self-Pick) and the subjective LLM-as-a-Judge

(Self-Judge) baseline.
Model Standard MCQA |Self-Judge* | Self-Pick (Ours)
DeepSeekV3.1 (non-reasoning) 72.73% 52.53% 67.68%
DeepSeek V3.1 (reasoning) 64.14% 76.77% 71.72%
GPT4.1 (non-reasoning) 68.69% 50.51% 62.12%

*The number reported for Self-Judge is the percentage of “Correct” verdicts from the Judge LLM, which is a subjective scoring

metric.

parameters) on MCQA tasks in Table 1 under our
evaluation paradigm. A qualitative example demon-
strating this is provided as Phi-4’s raw reasoning
traces under standard MCQA 2 and cascaded in-
formation disclosure 3 for question #996 in ARC-
Challenge dataset. Under standard MCQA setting
where options are provided, Phi-4 only analyzes the
four options to get the correct answer whereas in
our evaluation setting, Phi-4 falsely identified "nu-
cleus" as not being part of the atom during ideation
and its ideation trace is projected to the Incorrect
answer by our verifiable projector correctly. The in-
crease in difficulty posed by our framework forces
models to engage with the task at a deeper level,
thereby contributing to superior evaluation of the
model’s problem-solving capabilities.

Generalized questions elicit better traces from
the models: By contrast, we observe the oppo-
site trend for the smaller models (<10B) and the
GSMBSK dataset: the model performance is signifi-
cantly better under our framework with verifiable
projection than the standard evaluation setting. In
fact, stronger projectors yields better performance.

This is caused by the improvement in the rea-
soning traces generated by the models under our
evaluation framework, as we observe from manual

inspection. In one of the GSM8K outputs (List-
ing 1), we observe that the Gemma-9B’s outputs
are incoherent past the third sentence for the stan-
dard evaluation method. In contrast, the reasoning
traces for the projector method are semantically
coherent, laying out each step coherently and ex-
plicitly. We observe similar behavior for GPQA
outputs. In the standard evaluation method (List-
ing 4), Qwen-7B’s reasoning traces for a quantum
mechanics problem are correct up to the middle,
after which it hallucinates its expression to match
one of the provided answer choices. For the pro-
jection method (Listing 5), the model generates a
correct reasoning trace from start to finish, without
any hallucinations. Our framework elicits higher
quality traces from the model, thereby providing
a more faithful estimation of its problem-solving
capability.

4.3 Separation of Concerns Improves
Instruction Following Quality

Recent work on Reinforcement Learning from Ver-
ifiable Feedback (RLVF) has shown that improve-
ments in MCQA are often driven not by enhanced
reasoning, but by better output formatting capa-
bilities introduced via fine-tuning or reinforcement
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learning (Shao et al., 2025). This suggests that stan-
dard evaluations underestimate models’ problem
solving abilities due to brittle evaluation pipelines
that rely on rigid regex-based answer extraction.
To quantify the effect of formatting issues, we com-
pare parsing failure rates (full table in Appendix
Table 10) between our two-stage method with Phi-
4 as the final projector and the standard evaluation
paradigm. For standard evaluation paradigm, we
compare three systems: LMH (widely used LM
evaluation harness), LMH+ (LM evaluation harness
augmented with additional formatting and parsing
instructions), and custom prompting that we de-
signed specifically for the standard MCQA setup
3.1. We observed that LMH and LMH+ evalua-
tion setups are completely unsuitable for the Phi-4
model (parsing failure rate of 90%+ on GPQA).
This is because Im-evaluation-harness evaluation
system doesn’t apply any chat template even for
instruction-finetuned models and Phi-4 tends to
produce empty output when the input is not aligned
with its prompt template. In general, we observe
that the standard widely used LMH system suffers
from high answer parsing error rates for a major-
ity of our models: upwards of 40% and 30% for
Gemma2-9B and the Llama3.1-8B models, and
around 2-5% for the Qwen models. LMH+ reduces
these failure rates but they remain significantly high
for the Llama and Gemma models (15-20%). This
indicates that models struggle to adhere to the im-
plicit formatting assumptions of the Im-evaluation-
harness framework. Our custom standard method
which applies correct chat template for each model
via careful prompt engineering and answer extrac-
tion strategies detailed in 3.1 further reduces pars-
ing failures to below 10% for most models except
the Llama model, possibly because of length issues.
Contrastingly, our evaluation setting achieves
zero parsing failures across all models. This is
expected — decomposition of the answering mech-
anism into ideation and projection stages enables
disentangled focus on each stage leading to greater
format adherence. More importantly, the reduction
(or elimination) of formatting issues with custom-
standard and our approach indicates that the perfor-
mance trends in Table 1 are an accurate reflection
the models’ performance on QA tasks, having ac-
counted for a commonly observed confounding
factor related to formatting. This benefit of CID is
not limited to open-weight models; we observe the
same trend with frontier models, as shown in Ap-
pendix Table 16, where CID again reduces format-

related parsing failures to nearly zero.

4.4 Oracle for Generalized Ideation

We evaluate the quality of two projection strategies
in our framework: a) LLM-judge projector, b) veri-
fiable projector. Specifically for GPQA, we bypass
the LL.M-based ideation stage and instead use hu-
man expert-written explanations as inputs to the
projection stage. These explanations are provided
by the expert annotators and are included as part of
the GPQA dataset. Thus, in this setting the LLM-
judge projector should score 100% because all the
explanations are correct by design. Also, a high-
quality verifiable-projector should always pick the
correct option congruent with the ground-truth ex-
planation. The judge setting in Table 3 assumes ac-

Table 3: Results of subjective projection using LLM-
as-judge (Judge) and verifiable projection (Verify) of
oracle generalized ideation on GPQA-Main. Differ-
ent projector LLMs are compared: Llama 3.1-8B(L),
Gemma 2-9B (G), Qwen 2.5 models (Q-7B, Q-14B,
Q-32B), and Phi-4 (P).

L G Q7B Q4B P Q32B
Judge 65.6 953 70.1 924 973 93.1
Verify 95.8 95.5 97.8 99.1 982 99.3

cess to additional knowledge of the correct answer
to the original question to subjectively evaluate
the oracle. We see that the judge performs poorly
for several LMs (It is even poorer when it doesn’t
have access to original question’s answer — full
table: Appendix table 9). This indicates that sub-
jective evaluation techniques like LLM-as-a-judge
do not faithfully reflect the assessment of problem-
solving capabilities of models. Similar concerns
about this evaluation paradigm have been raised in
prior work (Panickssery et al., 2024; Zheng et al.,
2023a; Dubois et al., 2025; Zhu et al.; Li et al.;
Manakul et al., 2023; Doddapaneni et al., 2024).
In contrast, the verifiable projector achieves near-
perfect accuracy across all models, reaching over
99% in several cases. This validates the correctness
of our verifiable projection approach as it behaves
almost flawlessly with oracle generalized ideation.
We further tested this dichotomy on frontier models.
We found that LLM-as-a-judge baselines are highly
inconsistent: as shown in Appendix Table 15, the
"Correct" verdict for a single model’s output can
vary by over 10 percentage points depending on
which frontier model is used as the judge. Con-
versely, our verifiable projector approach is highly
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consistent, with minimal scoring gaps (1-3%) when
swapping between the same set of projector mod-
els (Appendix Table 17). This strongly indicates
that our CID framework, via its verifiable projec-
tion stage, provides a more reliable and consistent
evaluation than subjective judge-based methods.

4.5 Scalability of Our MCQA Instantiation

One potential concern in our implementation of
MCQA instantiation of cascaded information dis-
closure framework is that some multiple-choice
questions may not be fully self-contained once
the candidate options are removed. Therefore, for
challenging GPQA-Diamond questions, we pro-
jected the original MCQ (Q)) to a modified abstract
form (Q) by manually annotating the question
stems such that they are self-contained. Table 4
shows the difference between performance under
our evaluation approach with Phi-4 as the projector
on the annotated dataset and the unmodified dataset.
We only notice small differences in either direction
across LLMs. These results indicate that manual
annotation is not necessary for effective cascaded
information disclosure evaluation. This finding re-
inforces the practical scalability of our approach,
allowing researchers to repurpose existing MCQA
datasets for improved evaluation without incurring
significant human annotation costs.

Table 4: Performance difference (A) between two strate-
gies for generalized question generation for MCQA: a)
converting GPQA-diamond question stems to be self-
contained, and b) using the original question stems.
These questions are input to the ideation stage with
different LLMs: Llama 3.1-8B(L), Gemma 2-9B(G),
Qwen 2.5 models(Q-7B, Q-14B, Q-32B), and Phi-4(P).

L G Q7B Q-14B P Q32B
Amnot-A 00 35 20 56 35 -1.0

4.6 Effect of varying projector LLM

We have shown in 4.4 that verifiable projectors
consistently outperform subjective projectors when
ground truth explanations are used as ideation
traces. To further compare the robustness of sub-
jective and verifiable projectors, we compute the
accuracy gap between the best projector and the
worst projector when different LLM projectors are
used to score the ideation traces from the same
models. From the results table 5 we can see that
this gap is consistently larger for subjective pro-
jectors than verifiable projectors. In some cases,

Table 5: Performance Gap between the highest scoring
projector LLM and the lowest scoring projector LLM
for both subjective projector (Ajyyqge) and verifiable pro-
jector (Averiry) settings on ARC-challenge (A), GPQA-
main (M) and diamond (D) datasets. The ideation stage
is reported under different LLMs: Llama 3.1-8B(L),
Gemma 2-9B (G), Qwen 2.5 models (Q-7B, Q-14B,
Q-32B), and Phi-4 (P).

L G Q7B Q14B P Q-32B

Andge M) 9.6 27.0 127 199 167 18.3
Averity M) 47 31 22 36 58 42

Ajgge(D) 11.6 23.7 12.1 19.19 15.1 17.7
Averity(D) 2.0 6.6 81 101 7.1 7.6
Ajugge(A) 183 319 155 115 82 98

Averity(A) 73 76 69 67 69 6.6

LLM-as-a-Judge based projector performance gap
is almost 7 times of verifiable projector, signaling
extreme instability of the subjective projectors.

4.7 Why LLMs for Verifiable Projection?

Table 6: Performance difference (A) between two verifi-
able projection strategies: a) using an LLM and, b) using
a rigid rule-based system. The ideation stage is pro-
duced by different LLMs: Llama 3.1-8B(L), Gemma 2-
9B (G), Qwen 2.5 models (Q-7B, Q-14B, Q-32B), and
Phi-4 (P), on MCQA (GPQA) diamond and math word
problem (GSM)8K-100 datasets.

L G Q7B QI4B P Q32B

GPQA A 12.1 -1.0 6.1 6.6 17.2 11.62
GSMA 12 15 22 9 0 0

Since the verifier projection stage maps the ideation
stage output to an objective answer, it is possible
to build simple heuristics for this stage instead of
using an LLM as a projector. For MCQA, the
rule-based projector selects the option that maxi-
mizes sentenceBLEU with the ideated response.
For GSMS8K, we extract a pythonic expression
if available from the tail of the ideated response
and execute it for evaluation. Table 6 compares
LLM-based projector (Phi-4) to rule-based projec-
tors designed by us (full table in Appendix Table
12). Across almost all models and datasets, the
LLM projector substantially outperforms (+ A) the
symbolic baseline. Thus, rigid rule-based systems
are insufficient for reliable projection, particularly
in tasks requiring nuanced reasoning alignment.
On the other hand, this projection task is simple
enough for LLM projectors as shown in § 4.4.
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4.8 Is It Just Inference-time Scaling?

Because our framework involves more computa-
tion steps due to its stagewise nature, in Table 7
we compare it (self as a verifier projector) to a
two-round version of the standard evaluation set-
ting (self-reflect). This setting performs the stan-
dard QA twice, with the second round also using
the model’s response from the first round. We find
that self-reflect behaves in an opposite manner to
our framework — it hurts the performance on the
small models and doesn’t affect the performance
of larger models, thereby increasing the perfor-
mance gap between the models. This suggests that
cascaded information disclosure performance isn’t
merely an artifact of inference-time scaling.

Table 7: Performance gap between Increased-compute
and Standard settings. Two methods of increasing com-
pute are compared: a) cascaded info disclosure with
the ideation LLM as verifiable projector (Agys), and
b) self-reflection (A efiect) on GPQA-Main (M) and Dia-
mond (D). The ideation stage is reported under different
LLMs: Llama 3.1-8B(L), Gemma 2-9B (G), Qwen 2.5
models (Q-7B, Q-14B, Q-32B), and Phi-4 (P).

L G Q7B Q14B P Q-32B
Aows M) 47 -1.8 09 20 -7.6 -16
Aveiecct M) -49 04 -07 -05 1.6 0.0
Aows D) 11.1 1.0 20 -1.0 -6.6 -46
Apefiect D) 2.5 -1.5 -1.0 -1.5 1.0 -25

5 Discussion

Similar to our instantiation, prior work has ex-
plored transforming extant benchmarks for better
evaluation. This transformation includes permuta-
tion of answer choices (Gao et al., 2024), augment-
ing an additional choice (Wang et al., 2024), remov-
ing questions from the problem statement (Balepur
et al., 2024), adversarial perturbations of problem
statements (Li et al., 2024a; Wang et al., a), trans-
lating the questions into another natural language
(Yue et al., 2023), formal language (Tsoukalas
et al., 2024), and programming language (Zheng
etal., 2023b), among others. Another popular trans-
formation for MCQA is randomly replacing the an-
swer choices with None of the other choices
(Balepur et al., 2025; Livingston, 2009) We also
conducted experiments with this transformation
(Appendix Table 8a) and observed that this further
shrinks the gap between the models as it makes the
questions more difficult. Such transformations are

complementary to our findings and can be seam-
lessly integrated into our framework.

Finally, our evaluation framework is general and
capable of encompassing multiple stages with dis-
tinct foci. Our observation that our multi-stage
setup elicits improved intermediate traces suggests
a significant practical implication and a fruitful
future direction for model development. While
prevalent Reinforcement Learning (RL) pipelines
often rely on a subjective, post-hoc "process re-
ward" from an LLM-judge (Bai et al., 2022; Kwon
et al., 2023), our CID framework provides an objec-
tive, verifiable reward for the intermediate problem-
solving traces specifically. The evaluation process
itself could be used as a verifier for fine-tuning
models for learning how to decompose and solve
problems robustly. This may provide cleaner, more
direct signal to teach models not just to produce
correct final answers, but to follow a verifiable rea-
soning process.

6 Limitations

Although our proposed method provides a more
robust evaluation of a model’s reasoning capabil-
ities, it requires some additional compute to run
the LLM-based projector. Relatedly, our frame-
work could be extended with recent orthogonal
approaches for inference-time scaling (Wang et al.,
b), (Madaan et al., 2023), (Snell et al., 2024; Tian
et al., 2025). In this work, we focus on a structured
and efficient multi-round paradigm that avoids re-
dundant computation.

Furthermore, we restricted our attention to
MCQA and math word problems in this paper. We
did not evaluate on many other tasks of interest
to the LLM community, such as machine transla-
tion. While our framework is general enough to
accommodate multiple tasks and stages, for some
of these cases, formulation and implementation
may be nontrivial when instantiating our cascading
information disclosure framework. For example,
some of these cases might require annotating the
dataset as in our GSM-General (although this pro-
cess could be automated using an LLM).
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7.1 Qualitative Examples
7.1.1 Example from GSMS8K Dataset

"original_question”: "Brett is 14 years old. In four years his sister Angela will be
three times as old as he is now. How old is Angela right now?”,
"answer_numeric": 38,
"generalized_symbolic_question”: "{namel} is {agel} years old. In {years} years his
{relation_type} {name2} will be {mult} times as old as {namel} is now. How old
is {name2} right now?\n\nVariables and the range of possible values they can

take are:\n- namel = sample(names_male)\n- name2 = sample(names_female)\n-
relation_type = sample(['sister', 'cousin'])\n- $agel = range(8, 25)\n- $years =
range(2, 10)\n- $mult = range(2, 5)\n\nThe relationship variables should have
is:\n- agel * mult - years > 0\n\n",
"answer_symbolic” : "agel*mult-years”,
"ideation_traces"”: "<Reasoning>\n1. Let's denote the current age of {name2} as {

age2}.\n2. In {years} years, {namel} will be {agel} + {years} years old.\n3.

In {years} years, {name2} will be {age2} + {years} years old.\n4. We know that
in {years} years, {name2} will be {mult} times as old as {namel} is now, so we

can write the equation: {age2} + {years} = {mult} * {agel}\n5. We need to solve
this equation for {age2}.\n\n</Reasoning>\n<Answer>{age2} = {mult} * {agel} - {

years}</Answer>",

"raw_symbolic_answer"”: "{age2} = {mult} * {agel} - {years}"”,
"cleaned_symbolic_answer”: "(mult * agel) - years”,

"projected_numeric_result”: 38,

"lmh_answer_trace”: "We need to figure out how old Angela is right now. We know

that in four years her sister Angela will be three times as old as he is now.

We also know that Angela is right now. We need to figure out how old Angela is

right now.\n\n\nLet me know if you have any other questions.<end_of_turn>",
"lmh_filtered_answer”: "[invalid]"”

Listing 1: GSM8K Example. Evaluation subject is Gemma-2-9B
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7.1.2 Example from ARC-Challenge Dataset

"id": "996",
"question”: "Which of these is not part of an atom?”,
"options"”: [

"isotope”,

"proton”,

"nucleus”,

"electron”
] ,
"answer_index": 0,
"Phi-4_raw_output”: "<Reasoning>\nTo determine which option is not part of an
atom, let's analyze each choice:\n\nA) Isotope: An isotope refers to variants of

a particular chemical element that have the same number of protons but
different numbers of neutrons. Isotopes are not a part of an atom itself; rather
, they are different forms of atoms of the same element. Therefore, isotopes are

not a component of a single atom.\n\nB) Proton: Protons are positively charged
particles found in the nucleus of an atom. They are a fundamental part of the
atom's structure.\n\nC) Nucleus: The nucleus is the central part of an atom,
containing protons and neutrons. It is a crucial component of the atom.\n\nD)
Electron: Electrons are negatively charged particles that orbit the nucleus of
an atom. They are essential parts of the atom's structure.\n\nBased on this
analysis, the option that is not a part of an atom is A) isotope, as it refers
to different forms of atoms rather than a component of a single atom.\n</
Reasoning >\n<PickedAnswer >A</PickedAnswer >",
"is_correct”: "Yes"”

Listing 2: ARC-Challenge Example: Phi-4 Correctly Answers Question in Standard MCQA Setting

"id": "996",

"phi-4_ideation_traces”: "To determine which component is not part of an atom, we
need to understand the basic structure of an atom. An atom is the smallest unit
of ordinary matter that forms a chemical element. It consists of three primary

subatomic particles:\n\nl. xxProtonsx*: These are positively charged particles

found in the nucleus of an atom. The number of protons in the nucleus defines
the atomic number of an element and determines the element's identity.\n\n2. =*x

Neutrons**: These are neutral particles, meaning they have no charge, and are

also located in the nucleus alongside protons. Neutrons contribute to the mass

of the atom and can influence the stability of the nucleus.\n\n3. #**Electrons#*x*:
These are negatively charged particles that orbit the nucleus in various energy
levels or electron shells. Electrons are much smaller in mass compared to
protons and neutrons and are responsible for the chemical properties of an atom
.\n\nGiven this understanding, any component not fitting into these categories (
protons, neutrons, or electrons) would not be considered part of an atom.

Commonly, other particles or structures that are not part of an atom include:\n\

n- *xMolecules*x: These are groups of two or more atoms bonded together.

Molecules are not part of a single atom but rather a collection of atoms.\n\n-

*xIons**: These are atoms or molecules that have gained or lost electrons,

resulting in a net charge. While ions are related to atoms, they are not a

fundamental part of an atom's structure.\n\n- *xNucleus*x: While the nucleus is

a part of an atom, it is not a subatomic particle itself but rather a structure

within the atom that contains protons and neutrons.\n\n- **Quarks*x: These are

fundamental particles that make up protons and neutrons. While quarks are part
of the subatomic particles, they are not considered part of the atom itself in
the context of basic atomic structure.\n\n- **Photons#*x: These are particles of
light and do not form part of an atom. They are involved in electromagnetic
interactions but are not components of atomic structure.\n\nBased on this
analysis, the correct answer would be a component that does not fit into the
categories of protons, neutrons, or electrons, such as a molecule, ion, nucleus,
quark, or photon.",

"phi-4_ideation_stage_answer”: "A molecule, ion, nucleus, quark, or photon is not
part of an atom.",
"verifiable_projector_raw_output”: "<Reason>\nThe key conclusions from the '

Reasoning Trace' are that an atom consists of three primary subatomic particles:
protons, neutrons, and electrons. Any component that does not fit into these
categories is not considered part of an atom. The trace specifically identifies

molecules, ions, the nucleus, quarks, and photons as examples of components that
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are not part of an atom.\n\nNow, let's evaluate each answer option:\n\n- *x*
Option A: proton*x\n - Protons are explicitly mentioned in the reasoning trace
as a fundamental component of an atom. Therefore, this option does not match the

conclusion that the component is not part of an atom.\n\n- *xOption B: electron
**\n - Electrons are also explicitly mentioned in the reasoning trace as a
fundamental component of an atom. Thus, this option does not match the
conclusion that the component is not part of an atom.\n\n- **Option C: nucleus
**\n - The reasoning trace states that the nucleus is not a subatomic particle
itself but a structure within the atom that contains protons and neutrons.
Therefore, the nucleus is not considered a fundamental component of an atom in
the context of subatomic particles. This aligns with the conclusion that the
component is not part of an atom.\n\n- *xOption D: isotope**\n - Isotopes are
variants of a particular chemical element that differ in neutron number. While
isotopes are related to atoms, they are not a fundamental part of an atom's
structure. However, the reasoning trace does not explicitly mention isotopes as
an example of a component not part of an atom. The focus is more on subatomic
particles and structures like the nucleus.\n\nBased on the analysis, Option C (
nucleus) is the most consistent and closest match to the reasoning trace, as it
is explicitly identified as not being a subatomic particle and thus not a
fundamental component of an atom in the context of the trace.\n</Reason>\n<
PickedAnswer >C</PickedAnswer>",

"projected_answer_text"”: "nucleus"”,
"is_anwer_correct”: "No"

Listing 3: ARC-Challenge Example: Phi-4 Fails to Derive the Correct Answer in Cascaded Information Disclosure
Setting

7.1.3 Example from GPQA Dataset
Qwen2.5-7B’s answer under standard MCQA Evaluation

"resps”: "<Reasoning>\nTo solve this problem, we need to understand the
Kraus representation of a quantum channel and how it relates to the given Kraus
operators. The Kraus operators \\(A_i\\) for a depolarizing channel are given as
An\N\\[ A_Q = \\sqrt{1 - \\frac{3p3}{4}3} I \\I\n\\[ A_1 = \\sqgrt{\\frac{p}{4}} X

ANNVINNNNL A_2 = \\sqgrt{\\frac{p}{43} Y \\I\n\\[ A_3 = \\sqrt{\\frac{p}{4}} Z
\\J\n\nThe depolarizing channel can be represented as:\n\n\\[ E(\\rho) = \\sum_i
A_i \\rho A_i*\\dagger \\J\n\nGiven the Kraus operators, we can substitute them
into the equation:\n\n\\[ E(\\rho) = A_@ \\rho A_0*\\dagger + A_1 \\rho A_1"\\
dagger + A_2 \\rho A_2*\\dagger + A_3 \\rho A_3*\\dagger \\J\n\nSince \\(A_0 =
\\'sgrt{1 - \\frac{3p}{4}} I\\), we have:\n\n\\[ A_0 \\rho A_0*\\dagger = (1 - \\
frac{3p}{43}) \\rho \\]\n\nFor the other operators, we have:\n\n\\[ A_1 \\rho A_1
“"\\dagger = \\frac{p}{4} X \\rho X \\J\n\\[ A_2 \\rho A_2*\\dagger = \\frac{p
{4} Y \\rho Y \\I\n\\[ A_3 \\rho A_3*\\dagger = \\frac{p}{4} Z \\rho Z \\]1\n\
nCombining these, we get:\n\n\\[ E(\\rho) = (1 - \\frac{3p3}{4}) \\rho + \\frac{p
{4} X \\rho X + \\frac{p}{4} Y \\rho Y + \\frac{p}{4} Z \\rho Z \\]\n\nWe can
rewrite this as:\n\n\\[ E(\\rho) = (1 - \\frac{3p}{4}) \\rho + \\frac{p}{4} (X
\\rho X + Y \\rho Y + Z \\rho Z) \\J\n\nWe know that \\(X*2 = Y*2 = Z*2 = I\\),
so:\n\n\\[ X \\rho X = \\rho \\J\n\\[ Y \\rho Y = \\rho \\J\n\\[ Z \\rho Z = \\
rho \\J\n\nThus, the expression simplifies to:\n\n\\[ E(\\rho) = (1 - \\frac{3p
}{43}) \\rho + \\frac{p}{4} (\\rho + \\rho + \\rho) = (1 - \\frac{3p}{4}) \\rho +
\\frac{3p}{4} \\rho = (1 - \\frac{3p}{4} + \\frac{3p}{4}) \\rho = (1 - p) \\rho
+ \\frac{p}{3} (X \\rho X + Y \\rho Y + Z \\rho Z) \\J\n\nThis matches the form
given in option A.\n\nTherefore, the correct Kraus representation of the state
A\NCE(\\rho)\\) is:\n\n\\[ E(\\rho) = (1 - p) \\rho + \\frac{p}{3} (X \\rho X + Y
\\rho Y + Z \\rho Z) \\I\n\n</Reasoning>\n<PickedAnswer >A</PickedAnswer >"

Listing 4: Qwen Custom Example
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Qwen2.5-7B’s ideation traces under our framework:

"reasoning”: "To derive the Kraus representation of the depolarizing channel
operation \( E(\rho) \), we need to ensure that the sum of the squares of the
Kraus operators equals the identity matrix. The given Kraus operators are:\n\n\[

A_0 = \sqrt{1l - \frac{3p}{4}} I \I\n\[ A_1 = \sqgrt{\frac{p}{43}} X \I\n\[ A_2 =
\sqgrt{\frac{p}{43} Y \I\n\[ A_3 = \sqrt{\frac{p}{43}} Z \1\n\nFirst, let's verify
that the sum of the squares of these operators equals the identity matrix \( I

\):\n\n\[ A_0*2 + A_1"2 + A_2"2 + A_372 = \left( \sqrt{l - \frac{3p}{4}} I \
right)*2 + \left( \sqrt{\frac{p}{43}} X \right)*2 + \left( \sqrt{\frac{p}{43}} Y \
right)*2 + \left( \sqrt{\frac{p}{4}} Z \right)*2 \]J\n\nCalculating each term
individually:\n\n\[ A_0"2 = \left( \sqrt{l - \frac{3p}{4}} I \right)*2 = \left(
1 - \frac{3p}{4} \right) I \I\n\[ A_172 = \left( \sqgrt{\frac{p}{43}} X \right)*2
= \frac{p}{4} X*2 = \frac{p}{4} I \I\n\[ A_272 = \left( \sqrt{\frac{p}{4}} Y \
right)*2 = \frac{p}{4} Y*2 = \frac{p}{4} I \I\n\[ A_372 = \left( \sqgrt{\frac{p
34} Z \right)*2 = \frac{p}{4} Z2*2 = \frac{p}{4} I \I\n\nSumming these up:\n\n
\[ A_0*2 + A_1"2 + A_2"2 + A_37%2 = \left( 1 - \frac{3p}{4} \right) I + \frac{p
4} I + \frac{p}{4} I + \frac{p}{4} I \I\n\[ = \left( 1 - \frac{3p}{4} + \frac{
p}{4} + \frac{p}{4} + \frac{p}{4} \right) I \I\n\[ = \left( 1 - \frac{3p}{4} + \
frac{3p3}{4} \right) I \]J\n\[ = 1 I \J\n\[ = I \]J\n\nSince the sum of the squares
of the Kraus operators equals the identity matrix, the given Kraus operators
correctly represent the depolarizing channel operation \( E(\rho) \).\n\
nTherefore, the correct Kraus representation of the state \( E(\rho) \) is:\n\n
\[ E(\rho) = \sum_{i=03}*{3} A_i \rho A_i*\dagger \J\n\nWhere the Kraus operators
are:\n\n\[ A_Q = \sqgrt{1 - \frac{3p}{4}} I \I\n\[ A_1 = \sqgrt{\frac{p}{4}} X
\INN\L A_2 = \sqart{\frac{p}{43} Y \I\n\[ A_3 = \sqgrt{\frac{p}{4}} Z \1",

"answer"”: "\[ E(\rho) = A_0 \rho A_0*\dagger + A_1 \rho A_1*\dagger + A_2 \rho A_2*\
dagger + A_3 \rho A_3*\dagger \]J\nWhere \( A_@ = \sqrt{1l - \frac{3p}{4}} I \),
\NC A_1T = \sgrt{\frac{p}{43} X \), \( A_2 = \sqrt{\frac{p}{43} Y \), and \( A_3 =

\sqrt{\frac{p}{4}} Z \)."

Listing 5: Qwen Ideation Traces
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You are a helpful assistant. You will be provided with a challenging science domain
question (e.g., biology, physics, chemistry) and a set of multiple-choice
options. Your task is to reason through the question step-by-step to arrive at a

detailed answer and select the correct option.

Follow these steps:

1. Think step-by-step to analyze the question and derive a solution. Detail your
reasoning process.

2. After your reasoning, clearly state your final answer by picking the correct
option letter.

Output your response using the following XML format ONLY:

<Reasoning>

Your detailed step-by-step thinking process here.

</Reasoning>

<PickedAnswer >X</PickedAnswer > (where X is the letter of the correct option)

Listing 7: Custom Implementation of Standard MCQA Evaluation Prompt

The projection traces in stage 2 - Phi-4 as projector:

"ideation_traces"”: "<Reason>\nThe reasoning trace provides a detailed derivation of
the Kraus representation for a depolarizing channel. The key conclusions from
the reasoning trace are:\n\nl. The Kraus operators for the depolarizing channel
are:\n - \(C A_Q = \sqgrt{1l - \frac{3p}{43}} I \)\n - \( A_1 = \sqgrt{\frac{p
343> X \)\n - \( A_2 = \sgrt{\frac{p}{4}} Y \V\n - \( A_3 = \sqgrt{\frac{p
}{4}} Z \)\n\n2. The sum of the squares of these Kraus operators equals the
identity matrix, confirming they form a valid representation.\n\n3. The
depolarizing channel operation \( E(\rho) \) is expressed as:\n \[\n E(\rho)

= A_0 \rho A_0*\dagger + A_1 \rho A_1%\dagger + A_2 \rho A_2"\dagger + A_3 \rho
A_3*\dagger\n \1\n\n4. Substituting the Kraus operators into the expression
for \( E(\rho) \), we get:\n \[\n E(\rho) = \left(1 - \frac{3pl}{4}\right) \
rho + \frac{p}{4} X \rho X + \frac{p}{4} Y \rho Y + \frac{p}{4} Z \rho Z\n AWIAN
n\nNow, let's evaluate each answer option:\n\n- **Option A:x*\n \[\n E(\rho) =
(1-p)\rho + \frac{p}{3}X\rho*{2}X + \frac{p}{3}Y\rho*{2}Y + \frac{p}{3}Z\rho
*{2}Z\n \J\n This option uses \(\rho*2\) instead of \(\rho\) and has
coefficients \(\frac{p}{3}\) instead of \(\frac{p}{4}\). It does not match the
derived expression.\n\n- #*xOption B:**\n \[\n E(\rho) = (1-p)\rho + \frac{p
}H43X\rho X + \frac{p}{4}Y\rho Y + \frac{p}{4}Z\rho Z\n \]J\n This option has
the correct form and coefficients \(\frac{p}{43}\) for the terms involving \(X\),
\(Y\), and \(Z\). However, the coefficient for the identity term is \((1-p)\)
instead of \(\left(1l - \frac{3p}{4}\right)\). Despite this discrepancy, it is
the closest match in terms of structure and coefficients.\n\n- **Option C:**\n
\[\n E(\rho) = (1-p)\rho + \frac{p}{3}X\rho X + \frac{p}{3}Y\rho Y + \frac{p
}3}2\rho Z\n \]\n This option uses \(\frac{p}{3}\) instead of \(\frac{p}{43}\)
and \((1-p)\) instead of \(\left(l - \frac{3p}{43}\right)\). It does not match
the derived expression.\n\n- x*Option D:**\n \[\n E(\rho) = (1-p)\rho*{2} + \
frac{p}{3}X\rho*{2}X + \frac{p}{3}Y\rho*{2}Y + \frac{p}{3}Z\rho*{2}Z\n \J\n
This option uses \(\rho”2\) instead of \(\rho\) and has incorrect coefficients
\(\frac{p}{3}\). It does not match the derived expression.\n\nOverall, Option B
is the closest match to the reasoning trace in terms of structure and
coefficients, despite the slight discrepancy in the coefficient of the identity
term.\n</Reason>\n<PickedAnswer >B</PickedAnswer >"

Listing 6: projector=phi4

7.2 Prompt Templates and XML Tag Based Answer Extraction

7.2.1 Prompt Templates

Prompt used in our custom implementation of MCQA Evaluation

Prompt used for self-reflection

Prompt used in ideation stage Prompt used by verifiable projector Prompt used by Subjective
LLM Projector
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You are an expert evaluator. You will be provided with a 'Reasoning Trace' from a
language model that attempted to answer a question and multiple 'Answer Options'
(labeled as A, B, C, etc.). The original question will also be provided.

Your task is to critically re-evaluate the entire problem to find the correct answer
You must perform your own independent, step-by-step analysis to arrive at the
most accurate solution, using the provided 'Reasoning Trace' as a reference but
not assuming it is correct.

Consider the following when making your decision:

= *xNumerical Closeness:xx If the options and your reasoning involve numerical
values, convert all relevant numbers to scientific notation (e.g., expressing
numbers as a coefficient multiplied by 10 raised to an exponent, like 1.23 x
104 or 5.6 x 10%-2). Ensure all numbers are in this consistent format, and in
the same unit if applicable, before comparison. Then, identify the option whose
scientific notation value is closest to the scientific notation value derived
from your reasoning.

= **Conceptual Closeness:x* If the options involve concepts, equations,
definitions, or qualitative explanations, identify the option that best reflects

the core ideas in your reasoning or is logically inferred from your reasoning.

Follow these steps:
1. Carefully read and understand the original question, all options, and the entire
'Reasoning Trace'.
2. Conduct your own detailed, step-by-step reasoning process to solve the problem.
You can reference, correct, or build upon the provided trace.
3. Based on your independent analysis, decide which option is the most consistent
and closest match.

Output your evaluation using the following XML format ONLY:

<Reasoning>

Your detailed step-by-step reasoning here.

</Reasoning>

<PickedAnswer >X</PickedAnswer > (where X is the letter corresponding to your chosen
option)

Listing 8: Self Reflection Prompt

You are a helpful assistant. You will receive a challenging science-domain question,
but the multiple-choice options are hidden from you. Your step-by-step
scientific reasoning will be passed to a Stage-2 AI that can see the options and
will rely on your analysis to choose the correct one.

Therefore:

1. Do NOT refuse, disclaim, or say that the task is impossible because the options
are missing.

2. Apply rigorous scientific reasoning: cite relevant concepts, principles,
equations, variables, and alternative scenarios; deduce the most plausible
answer or the exact characteristics the correct answer must have.

3. Do NOT quote, paraphrase, or repeat the question text in your response.

OUTPUT FORMAT --- STRICT
Respond using EXACTLY the XML structure shown below and nothing else.
Formatting rules:

- Put your full, detailed reasoning inside the <Reasoning> ... </Reasoning> tags.
- Put your concise final answer (or the uniquely identifying properties of the
correct answer) inside the <Answer> ... </Answer> tags.

- Do not include any text before <Reasoning> or after </Answer>.
- Do not add extra tags, attributes, or wrapper elements.

<Reasoning>Your step-by-step thinking process goes here.</Reasoning>
<Answer >Your final derived answer goes here.</Answer>

Listing 9: Ideation Stage Prompt
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You are an expert evaluator whose ONLY goal is to select the best answer OPTION (A,
B, C, ...) based on a provided Reasoning Trace.

What you receive

- The Reasoning Trace: a step-by-step analysis already produced by another model.

- The Answer Options: labelled A, B, C, ... (the original question text may be
omitted).

Your responsibilities

1. DO NOT solve the original question again. Judge options solely by how well they
align with the Reasoning Trace's conclusions.

2. DO NOT refuse, claim uncertainty, or state that none of the options match. You

MUST pick the single closest option even if the match is imperfect.

3. Use two dimensions of closeness:

- Numerical closeness: convert every relevant number in both trace and options to
scientific-notation in the SAME UNITS, then choose the option with the smallest
numerical difference (consider both coefficient and exponent).

- Conceptual closeness: match the key ideas, equations, or qualitative statements
in the trace.

4. If several options tie, pick the first among the tied ones in alphabetical order
and explain the tie-break.

OUTPUT FORMAT --- STRICT (XML)

You MUST comply with this exact structure; any deviation will cause automatic
failure.

Rules

- Put your comparative analysis inside <Reason> ... </Reason>.

- End with a single uppercase letter (A, B, C, ...) inside <PickedAnswer> ... </

PickedAnswer >.
- NEVER leave <PickedAnswer> blank, use words, or add extra tags/attributes.
- Do NOT output anything before <Reason> or after </PickedAnswer>.

<Reason>Your detailed comparison of each option to the Reasoning Trace goes here.
Begin with a one-sentence summary of the trace's conclusion, then analyse each
option (A, B, C...) explaining its fit or mismatch. Finish by justifying the
option you will pick.</Reason>

<PickedAnswer >X</PickedAnswer >

Listing 10: Verifiable Projector Prompt
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You are an expert evaluator. You will be provided with a 'Reasoning Trace' from a
language model that attempted to answer a question. The original question may be
provided, and in some cases, the correct answer may also be provided for
reference.

Your task is to meticulously analyze the 'Reasoning Trace' and evaluate whether the
reasoning process and conclusions are correct. You must not try to solve the
original question yourself; your evaluation should be based solely on the
logical soundness and accuracy of the reasoning presented.

Consider the following when making your decision:

= *xLogical Soundness:**x Evaluate if the reasoning follows a clear, logical
progression and if each step is properly justified.

= *xNumerical Accuracy:**x If the reasoning involves numerical calculations, verify

if the math is correct and if the units are properly handled.

= *xConceptual Accuracy:xx If the reasoning involves scientific concepts,
equations, or definitions, verify if they are correctly applied and interpreted.

= *xCompleteness:*x* Check if the reasoning addresses all aspects of the question
and if any assumptions are clearly stated and justified.

Follow these steps:

1. Carefully read and understand the entire 'Reasoning Trace'.

2. If a reference answer is provided, use it to verify the accuracy of the
reasoning.

3. Identify any logical flaws, incorrect assumptions, or mathematical errors.

4. Based on your analysis, determine if the reasoning is Correct or Incorrect.

Output your evaluation using the following XML format ONLY:

<Reason>

Your detailed step-by-step analysis here. First, summarize the key points in the
reasoning trace. Then, explain any flaws or strengths you identified. Finally,
state your overall justification for your judgment.

</Reason>

<Judgment>Correct</Judgment> or <Judgment>Incorrect</Judgment>

Listing 11: LLM Judge Projector Prompt
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7.2.2 XML Tag Based Answer Extraction

As we shown above, we adopt a XML tag based prompting strategies where each functional components
are wrapped with XML tag that summarizes its function. We also include clear instructions and a
demonstration for the desired output XML format at the end. Then in the answer extraction stage,
we use regular expression to search for the corresponding pattern (e.g. for answers, we are searching
for <PickedAnswer> and </PickedAnswer>). In our experiments, we found that this method greatly
improves the stability of models instruction following performance in answer format and results in a near
zero parsing failure rates.

7.3 Additional Experimental Results
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(a) Model accuracy on the GPQA Diamond dataset when the correct answer is swapped out with “None of the other choices.” For
“Phi (No swap)”, we report accuracies for the case when no changes are made to the answer choices. Higher is better. The A row
reports the difference between minimum and maximum for each column. Parsing failure rates are 0% for the projector methods.

Projector

Standard  Self  Phi Phi (No swap)

GPQA Diamond - Accuracy (%)

Llama3.1-8B 15.66 28.28 37.37 32.83
Gemma2-9B 13.13 27.78 37.37 31.82
Qwen2.5-7B 27.78 31.82 41.41 34.85
Qwen2.5-14B 40.40 34.34 41.92 41.92
Phi-4 (14B) 3.03 45.96 45.96 51.52
Qwen2.5-32B 35.35 38.89 43.43 44.95
A 37.37 18.18 8.59 19.7

(b) Parsing failure rates for the ablation studies on the GPQA Diamond dataset. The table compares failure rates when the correct
answer is swapped with a "None" option versus when it is swapped with a random incorrect option.

Projector (Ours)

Model Standard Self Phi Phi (No swap)

GPQA Diamond - Parsing Failure (%)

Llama3.1-8B 29.29 0.00 0.00 0.00
Gemma2-9B 47.47 0.00 0.00 0.00
Qwen2.5-7B 5.56 0.00 0.00 0.00
Qwen2.5-14B 0.51 0.00 0.00 0.00
Phi-4 (14B) 91.41 0.00 0.00 0.00
Qwen2.5-32B 5.56 0.00 0.00 0.00
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Table 9: Evaluation of projector models. Models were provided with the ground truth solutions, and were asked to
evaluate them as if they were generated from evaluation subject models. Higher is better. Projector consistency
performs nearly perfectly, far outperforming LLM-as-a-judge. For “Judge w/ Answer", we additionally provided
the projector model with the ground truth answer, to see if it would help improve the judge’s performance. Even in
this case, the projector outperforms it.

Projector Model Judge Judge w/ answer Projector (Ours)

GPQA Diamond - Accuracy of projector (%)

Llama3.1-8B 18.69 64.14 92.93
Gemma2-9B 57.07 95.96 97.47
Qwen2.5-7B 44.95 68.18 98.48
Qwen2.5-14B  38.89 91.92 98.99
Phi-4 (14B) 79.80 94.95 98.48
Qwen2.5-32B  62.12 93.94 99.49
GPQA Main - Accuracy of projector (%)

Llama3.1-8B 25.00 65.63 95.76
Gemma2-9B 60.49 95.31 95.54
Qwen2.5-7B 45.31 70.09 97.77
Qwen2.5-14B  39.06 92.41 99.11
Phi-4 (14B) 83.48 97.32 98.21
Qwen2.5-32B  65.85 93.08 99.33

Table 10: Parsing failure rates (%) for models on GPQA datasets under standard MCQA evaluation and our two
stage instantiation of proposed framework. We observe a complete elimination of parsing failures when Phi-4
is chosen as projector in verifiable projection stage. LMH+ and Custom are both variants of standard MCQA
evaluation with prompt engineering improvements. * - Phi-4’s extreme parsing failure rate in LMH based evaluation
is the result of missing chat template in LMH framework and Phi-4’s high sensitivity to input format.

Standard MCQA Evaluation Our Method

LMH LMH+ Custom Projector - Phi

GPQA Diamond

Llama3.1-8B  34.34 16.16 29.29 0.00
Gemma2-9B  44.95 19.19 5.56 0.00
Qwen2.5-7B 4.55  0.51 3.54 0.00
Qwen2.5-14B  0.00  0.00 0.00 0.00
Phi-4 (14B) 89.39* 100.00* 0.51 0.00
Qwen2.5-32B 3.54 051 1.52 0.00
GPQA Main

Llama3.1-8B  29.02 13.84 26.79 0.00
Gemma2-9B  38.62 19.20 7.37 0.00
Qwen2.5-7B 3.13 045 2.01 0.00
Qwen2.5-14B 1.79 045 0.67 0.00
Phi-4 (14B) 91.29* 100.00* 0.67 0.00
Qwen2.5-32B 2.68 0.67 0.67 0.00
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Table 11: Parsing failure rate for LMH, projector, and LL.M-as-a-judge. Lower is better.

* - The projector threw an error because the model’s outputs could not be converted to a valid Python expression.
The other three evaluation methods did not throw an error because they simply marked these outputs as incorrect.
Llama seemed to struggle in this scenario due to its shorter context length.

1 - For a few examples, the projector refused to choose an answer based on the model’s outputs. (See section 4.3.)

Judge
Model LMH Projector (Phi) Self  Phi-4
ARC Challenge - Parsing Failure (%)
Llama3.1-8B  NA 0.09° 1.37  0.00
Gemma2-9B NA 0.00 0.09 0.09
Qwen2.5-7B NA 0.00 3.92  0.09
Qwen2.5-14B  NA 0.00 0.00  0.00
Phi-4 (14B) NA 0.00 0.00  0.00
Qwen2.5-32B  NA 0.00 0.00  0.00
GPQA Diamond - Parsing Failure (%)
Llama3.1-8B 34.34 0.00 11.62 1.01
Gemma2-9B  44.95 0.00 0.00  0.00
Qwen2.5-7B 4.55 0.00 2.02  0.00
Qwen2.5-14B 0.00 0.00 1.01 0.00
Phi-4 (14B) 89.39 0.00 0.00  0.00
Qwen2.5-32B 3.54 0.00 0.51 0.00
GPQA Main - Parsing Failure (%)
Llama3.1-8B  29.02 0.00 7.81 0.00
Gemma2-9B 38.62 0.00 0.22 0.00
Qwen2.5-7B 3.13 0.00 2.46  0.00
Qwen2.5-14B 1.79 0.00 0.00  0.00
Phi-4 (14B) 91.29 0.00 0.00  0.00
Qwen2.5-32B 2.68 0.00 0.45  0.00
GSMS8K-100 - Parsing Failure (%)
Llama3.1-8B 0.00 10.00* 4.00 1.00
Gemma2-9B 2.55 0.00 0.00  0.00
Qwen2.5-7B 0.00 0.00 0.00  0.00
Qwen2.5-14B 0.00 0.00 1.00  0.00
Phi-4 (14B) 0.00 0.00 0.00  0.00
Qwen2.5-32B 0.00 0.00 0.00  0.00
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Table 12: Ablation study on the importance of the projector. Higher is better.

Projector

Model LMH Rule-based Phi-4

GPQA Diamond - Accuracy (%)

Llama3.1-8B  18.69 20.71 32.83
Gemma2-9B  14.65 32.83 31.82
Qwen2.5-7B  29.29 28.79 34.85
Qwen2.5-14B 42.42 35.35 41.92
Phi-4 (14B) 4.04 34.34 51.52
Qwen2.5-32B 41.41 33.33 44.95
GPQA Main - Accuracy (%)

Llama3.1-8B 22.76 22.54 33.04
Gemma2-9B 18.30 33.04 32.59
Qwen2.5-7B  33.48 28.57 30.13
Qwen2.5-14B 38.17 32.37 37.72
Phi-4 (14B) 2.90 35.49 45.31
Qwen2.5-32B 41.74 34.60 40.85
GSMS8K-100 - Accuracy (%)

Llama3.1-8B  32.00 30.00 42.00
Gemma2-9B  21.00 59.00 74.00
Qwen2.5-7B  76.00 48.00 70.00
Qwen2.5-14B 80.00 75.00 84.00
Phi-4 (14B)  52.00 91.00 91.00
Qwen2.5-32B 87.00 95.00 95.00

3232



Table 13: Ablation study on the importance of the projector. Failure rates are reported across various models on
three different benchmarks. The methods compared are a baseline (LMH) and two projector-based approaches.

Projector

Model LMH Rule-based Phi-4

GPQA Diamond - Parsing Failure (%)

Llama3.1-8B  34.34 38.89 0.00
Gemma2-9B  44.95 2.02  0.00
Qwen2.5-7B  4.55 13.13  0.00
Qwen2.5-14B  0.00 2.02  0.00
Phi-4 (14B)  89.39 1.52  0.00
Qwen2.5-32B  3.54 0.51 0.00
GPQA Main - Parsing Failure (%)

Llama3.1-8B  29.02 31.47 0.00
Gemma2-9B  38.62 1.56 0.00
Qwen2.5-7B  3.13 12.95 0.00
Qwen2.5-14B  1.79 1.12 0.00
Phi-4 (14B) 91.29 2.01 0.00
Qwen2.5-32B  2.68 1.56  0.00
GSMS8K-100 - Parsing Failure (%)

Llama3.1-8B  0.00 47.00 10.00
Gemma2-9B  2.55 33.00 0.00
Qwen2.5-7B  0.00 40.00 0.00
Qwen2.5-14B  0.00 16.00 0.00
Phi-4 (14B) 0.00 0.00 0.00
Qwen2.5-32B  0.00 0.00 0.00
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Table 14: Gap in model performance depending on the choice of projector model. Reported numbers are calculated
by taking the difference of the max and min of the accuracies over all of the open-source projector models. Judge
results vary drastically depending on what model is being used as a projector. Smaller is better.

Projector Judge

ARC Challenge - A Accuracy (%)

Llama3.1-8B 0.07 0.18
Gemma2-9B 0.08 0.32
Qwen2.5-7B 0.07 0.16
Qwen2.5-14B 0.07 0.12
Phi-4 (14B) 0.07 0.08
Qwen2.5-32B 0.07 0.10
GPQA Diamond - A Accuracy (%)
Llama3.1-8B 0.04 0.12
Gemma2-9B 0.07 0.24
Qwen2.5-7B 0.08 0.12
Qwen2.5-14B 0.10 0.19
Phi-4 (14B) 0.07 0.15
Qwen2.5-32B 0.08 0.18
GPQA Main - A Accuracy (%)
Llama3.1-8B 0.05 0.10
Gemma2-9B 0.04 0.27
Qwen2.5-7B 0.03 0.13
Qwen2.5-14B 0.04 0.20
Phi-4 (14B) 0.06 0.17
Qwen2.5-32B 0.05 0.18

Table 15: Inconsistency of LLM-as-a-Judge (Judge baseline) on GPQA-Diamond. For the same answerer model’s
response, different judges (DSV3.1, DSV3.1R, GPT4.1) give inconsistent "Correct” verdicts. The final column
shows the gap (Max - Min) in scores.

Test LLM / Judge LLM — | DSV3.1| DSV3.1R | GPT4.1 |Max - Min A
DSV3.1 52.53% | 58.08% |57.58% 5.55%
DSV3.1R 53.54% | 64.14% |56.06% 10.60%
GPT4.1 43.94% | 44.95% |50.51% 6.57%

Table 16: Parsing failure rate (%) of frontier models on GPQA-Diamond. Our proposed CID setting (Self-Pick)
reduces format-related parsing errors to nearly zero.

Model Standard MCQA | Self-Pick (Ours)
DeepSeekV3.1 (non-reasoning) 0.51% 0.00%
DeepSeekV3.1 (reasoning) 3.54% 1.01%
GPT4.1 (non-reasoning) 1.52% 0.00%

Table 17: Consistency of Cascaded Information Disclosure (Ours) on GPQA-Diamond. Our verifiable projector
(DSV3.1, DSV3.1R, GPT4.1) gives highly consistent accuracy scores for the same ideation trace. The gap (Max -
Min) is minimal.

Test LLM / Projector LLM — | DSV3.1 | DSV3.1R|GPT4.1 |Max - Min A
DSV3.1 67.68% | 69.19% |67.17% 2.02%
DSV3.1R 72.22% | 71.72% | 72.73% 1.01%
GPT4.1 58.59% | 61.11% |62.12% 3.53%
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