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Abstract

Clustering customer chat data is vital for cloud
providers handling multi-service queries. Tra-
ditional methods struggle with overlapping con-
cerns and create broad, static clusters that de-
grade over time. Re-clustering disrupts continu-
ity, making issue tracking difficult. We propose
an adaptive system that segments multi-turn
chats into service-specific concerns and incre-
mentally refines clusters as new issues arise.
Cluster quality is tracked via Davies–Bouldin
Index (DBI) and Silhouette Scores, with LLM-
based splitting applied only to degraded clus-
ters. Our method improves Silhouette Scores
by over 100% and reduces DBI by 65.6% com-
pared to baselines, enabling scalable, real-time
analytics without full re-clustering.

1 Introduction

Cloud providers handle high volumes of customer
chats that often span multiple service areas e.g.,
compute, networking, and identity. This complex-
ity makes it hard to accurately categorize and track
evolving concerns. Traditional clustering methods
treat each chat as a single-topic unit and require
full re-runs to update, disrupting consistency and
hindering long-term tracking.

Exisiting methods like LDA, K-Means, and
HDBSCAN (Blei et al., 2003; MacQueen, 1967;
McInnes et al., 2017) enable initial topic discovery
but produce static, coarse clusters needing manual
refinement. While recent work in intent classifica-
tion and dialogue tracking (Ye and Johnson, 2024;
Gu et al., 2022), aids real-time understanding, it
lacks dynamic organization of granular concerns
across domains (Zhu et al., 2024).

We propose an adaptive framework to cluster
user concerns from multi-turn chats. LLMs seg-
ment conversations into themes, extract concerns,
remove duplicates via contrastive filtering, and clas-
sify them into service groups. Appendix A defines
key terms used throughout the paper, describing

the structure and categorization of customer sup-
port conversations in cloud service environments.
Within each group, HDBSCAN + UMAP (McInnes
et al., 2017, 2018a,b) creates interpretable topic
clusters, labeled using LLMs (Ma et al., 2024; Pat-
tnayak et al.). New concerns are incrementally
matched; unmatched ones form new clusters when
volume permits.

We track DBI and Silhouette Scores (Davies and
Bouldin, 1979; Rousseeuw, 1987a). to monitor
cluster quality. Degraded clusters are flagged us-
ing Z-score and cohesion tests, then refined using
LLM-based splitting avoiding full re-clustering and
preserving cluster identity for stable, actionable in-
sights.

Our Contributions:

• LLM-based segmentation of multi-turn
chats: Breaking down complex chats into co-
herent themes and distinct concerns, using
contrastive filtering to remove duplicates.

• Service group classification and topic clus-
tering: Assigning concerns to predefined
cloud service groups (F1 > 0.85) and form-
ing interpretable topic clusters.

• Incremental clustering for emerging con-
cerns: Dynamically assigning new concerns
to existing clusters or forming new ones us-
ing LLM-based semantic matching, no full
re-clustering needed.

• Metric-driven adaptive refinement: We
monitor DBI, Silhouette, and cohesion scores
to detect drift, refining only affected clusters
using LLM-based splitting to maintain stabil-
ity. Deployed on 90,000+ chats, the system
handles 500+ new concerns daily, enabling
real-time issue tracking and trend detection
without manual labeling or reprocessing.
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2 Related Work

2.1 Traditional Clustering in Customer
Support

Methods like LDA (Blei et al., 2003) and K-Means
(MacQueen, 1967) are common for text clustering
but struggle with fixed topic counts and long-tailed
data, limiting their use for evolving support con-
cerns. HDBSCAN (McInnes et al., 2017) improves
discovery by auto-selecting cluster counts but re-
quires full re-clustering for updates. Density-based
approaches (Aggarwal and Zhai, 2012) have also
been tried but lack scalability for real-time support
scenarios.

2.2 Multi-Turn Dialogue Understanding and
Intent Classification

Recent work in dialogue modeling focuses on in-
tent classification and conversational state tracking
to improve real-time query understanding (Ye and
Johnson, 2024; Patel et al., 2025; Gu et al., 2022).
While effective for chatbot resolution, these ap-
proaches rely on fixed intent categories (Pattnayak
et al., 2025a) ,and lack the ability to form evolving,
structured topic clusters. In contrast, our frame-
work segments multi-turn conversations at the con-
cern level, enabling dynamic clustering beyond
static intent labels.

2.3 Embedding-Based Retrieval

Retrieval-based clustering methods using mod-
els like Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019; Ni et al., 2022; Thakur et al.,
2021; Meghwani et al., 2025) enhance semantic
matching but fail to detect cluster degradation from
topic drift. While contrastive learning improves
text representations (Ma et al., 2024; Gao et al.,
2021; Gunel et al., 2021), its application (Patel
et al., 2024; Pattnayak et al., 2024) in support clus-
tering is limited. We incorporate contrastive filter-
ing to refine extracted concerns prior to clustering,
improving semantic coherence.

2.4 Incremental and Adaptive Clustering

Prior work on incremental clustering in streaming
data (Zhang et al., 2018; Li et al., 2021; Rohit et al.,
2022),focuses more on classification than maintain-
ing cluster coherence. Approaches using hierar-
chical adaptation(Moseley and Wang, 2017; Agar-
wal et al., 2024a) or drift detection (Gama et al.,
2014) often require expensive re-computation. In
contrast, our method monitors cluster quality and

selectively refines only drifting clusters avoiding
full re-clustering.

(Bentley and Batra, 2016) introduced Mi-
crosoft’s Office Customer Voice system, which
clusters short, single-turn feedback for ad-hoc in-
sights. In contrast, our method handles multi-turn
conversations through LLM-guided segmentation
and lifecycle-aware clustering, enabling incremen-
tal refinement: split, merge, and prune, while pre-
serving cluster identity for longitudinal analysis.

2.5 Our Approach
Our work introduces an adaptive clustering frame-
work that (1) segments multi-turn chats into themes,
removes redundancy and classifies concerns into
service groups, (2) dynamically refines clusters
through metric-driven monitoring, and (3) lever-
ages LLMs for semantic matching, new cluster
creation, and targeted splitting. Unlike prior ap-
proaches, we avoid disruptive full re-clustering by
continuously tracking DBI, Silhouette, and Cohe-
sion Scores to maintain stable, scalable, and inter-
pretable clustering for customer service analytics.

3 Methodology

We propose a dynamic clustering framework for
customer concerns in multi-turn chats that adapts
without full re-clustering. Unlike traditional meth-
ods, it incrementally refines clusters while monitor-
ing quality. Table 1 compares our method against
traditional clustering approaches.

Feature Traditional Our Approach
Multi-turn Chat Handling No Yes
Concern-Level Segmentation No Yes
Incremental Clustering Yes Yes
Contrastive Filtering No Yes
LLM-Based Service Groups No Yes
Cluster Stability Monitoring Yes Yes
Automated Cluster Splitting No Yes
Evolving New Clusters No Yes

Table 1: Traditional vs. Proposed Clustering Approach

As shown in Figure 1, the framework has three
key phases:(1) base cluster creation via LLM-
driven concern extraction, filtering, classification,
and HDBSCAN (Phase E of Fig 2); (2) incremen-
tal clustering for new concerns; and (3) LLM-based
refinement triggered by cluster drift.

3.1 Base Cluster Creation
To form initial clusters, we segment multi-turn
chats into service-specific themes and extract dis-
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Figure 1: Architecture: The figure outlines base clustering, incremental clustering and cluster refinement pipelines.

tinct, contextually grounded concerns. Given the
multi-issue nature of chats, this reduces redundancy
and preserves clarity. Concerns are then classified
into service groups via LLMs and clustered within
each group. The full pipeline is shown in Figure. 2
where Phase A-E refer the Data Pre processing
Pipeline.

1. Segmentation: Multi-turn chats are seg-
mented into domain-specific themes using
LLM-based detection (Fig. 2, Phase A) with
the prompt shown in (Fig. 9 Appendix Q). The
model detects topic shifts to separate concerns
across service areas. A windowed prompt
with overlapping context ensures coherence
in long chats. The output is a structured list
of segments, each with a theme title and rele-
vant utterances. Quality was validated on 200
chats with strong inter-annotator agreement
(Kappa = 0.79), guiding prompt refinement.

2. Concern Extraction: Each segment is pro-
cessed by an LLM to extract key user concerns
(Fig. 2, Phase B). A segment may yield mul-
tiple granular issues. Since user intents often
span multiple utterances, our prompt instructs
the model to extract standalone concerns and
use windowed context (±1–2 turns) for cross-
turn understanding. (e.g., "My VM crashed
and now I can’t connect to storage"), is split
into two separate concerns.Sample prompts

and output formats are detailed in (Fig.10 Ap-
pendix Q). We evaluated concern extraction
on 150 manually annotated segments labeled
by two experts (Kappa = 0.79). The LLM-
based method achieved an F1 score of 0.84,
indicating strong alignment with human anno-
tations and effective identification of granular
user concerns. (Appendix L) for performance
metrics

3. Contrastive Filtering:To reduce redundant
concerns in clusters, we apply cosine similar-
ity filtering (threshold = 0.95) on nli-roberta-
base-v2 sentence embeddings, as shown in
Fig 2 (Phase C).This step removes duplicate
concerns while keeping distinct ones. Since
cosine similarity may miss subtle semantic
differences, we use a high threshold to mini-
mize false negatives. Within each multi-turn
chat, duplicate concerns are removed to pre-
vent overweighting paraphrased repetitions of
the same issue (e.g., “login failed. . . still can’t
log in”). The objective of this de-duplication
step is to retain only distinct user concerns ex-
pressed within a single session, ensuring that
intra-chat redundancy does not inflate clus-
ter density. However, identical concerns ap-
pearing across different chats are intentionally
preserved, as they reflect recurring customer
issues and contribute to the representativeness
and semantic diversity of the resulting clus-
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Figure 2: Creation of Base Clusters

ters. (Appendix K) includes examples of con-
trastive filtering on semantically similar in-
tents.

4. Service Group Assignment: Extracted con-
cerns are classified into seven predefined ser-
vice groups - Compute, Networking, Identity
& Security, Storage, Data Services, Billing
& Accounts, and Others using few-shot LLM
prompts (Fig. 2, Phase D); prompt in (Fig.11
Appendix Q).

5. Sentence Embedding and Dimensionality
Reduction: Concerns are embedded using the
nli-roberta-base-v2 model (768 dimen-
sions) and reduced via UMAP to improve clus-
tering performance and address the curse of
dimensionality (Fig. 2, Phases E–F).

6. Localized Clustering: Concerns within each
service group are clustered using HDBSCAN,
which identifies topic-based clusters in unsu-
pervised manner as shown in Fig 2 (Phase
F).

7. Cluster Title and Description: Each cluster
is labeled with a title and description using
LLM (Fig. 2, Phase G; prompt in (Fig.12 Ap-
pendix Q).

Clustering quality is tracked using DBI, Silhouette
Score, and Centroid-Based Cohesion Score.

3.2 Incremental Clustering

As new user concerns arise, our framework avoids
disruptive full re-clustering by incrementally as-
signing them to existing clusters. This preserves
cluster continuity and reduces computational over-
head. To manage evolving concern clusters over
time, our framework incorporates a full lifecycle-
aware approach including splitting, merging, prun-
ing, role assignment, and drift explanation. The
process includes:

1. Concern Extraction and Filtering: Incre-
mental concerns are segmented, extracted,
contrastively filtered, and classified into ser-
vice groups using step 1- 4 of Base Clus-
ter creation as described previously. Dur-
ing incremental processing, concern-level de-
duplication is applied within each chat to en-
sure that only unique concerns are forwarded
for service group classification and cluster as-
signment. This step prevents redundant inclu-
sion of paraphrased or repeated issues while
preserving cross-session diversity and main-
taining a balanced representation of distinct
user problems across incremental updates.
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2. Cluster Assignment via Hybrid Scoring +
LLM Confirmation: To assign new con-
cerns to the most relevant existing clusters,
we employ a hybrid two-stage strategy that
balances speed, scalability, and semantic ac-
curacy. Since each incremental concern is al-
ready mapped to a specific service group, all
matching operations are restricted to clusters
within that same group.

(a) Stage 1 – Embedding-Based Similarity
Filtering:Each new concern is encoded
using a sentence embedding model (see
step 5: Base Cluster creation). Its embed-
ding is compared against precomputed
centroid embeddings of cluster using co-
sine similarity. Top 5 most similar clus-
ters are shortlisted. This step narrows
the LLM’s search space, improving effi-
ciency while maintaining high recall.

(b) Stage 2 – LLM-Based Semantic
Confirmation:The shortlisted clusters
and the new concern are passed
into a prompt-driven language model
(cohere.command-r-08-2024 v1.7). The
LLM selects the most appropriate cluster
based on natural language understanding,
capturing nuance and domain context. It
also provides a rationale for its choice to
support transparency and auditing.

This hybrid scoring + LLM confirmation
approach improves precision for edge cases,
emerging topics, and ambiguous inputs, while
reducing over-reliance on embeddings or
costly full LLM evaluation. (Fig.13 Appendix
Q) .

3. Handling Unassigned Concerns: Concerns
without a match remain in an unclustered pool
until enough similar concerns accumulate to
form a new cluster, ensuring that emerging
topics are identified and tracked over time us-
ing LLM.

LLM-based concern matching offers deeper se-
mantic understanding than embedding-based meth-
ods, enabling more accurate and efficient incremen-
tal assignments. After incremental assignments are
completed, the system recalculates DBI and Sil-
houette Scores at the service-group level to track
overall stability, and updates Centroid-Based Co-
hesion Scores only for affected clusters. If quality

degrades, LLM-driven splitting is triggered to pre-
serve cluster coherence. Fig 14 in Appendix Q is
LLM prompt for splitting a cluster.

3.3 Evolving New Clusters

Unassigned concerns are placed in an “Others”
pool. After each incremental run, an LLM prompt
(Fig. 15, Appendix Q) checks whether at least 10
similar concerns can form a meaningful new clus-
ter, avoiding low-impact groupings. These new
clusters help surface emerging issue types, such as
those introduced by new features.

3.4 Cluster Refinement: Splitting Clusters

To handle topic drift and evolving concerns, we
monitor cluster quality and trigger refinement when
needed.A split is initiated when a cluster becomes
overly broad, as described in Algorithm 1. A clus-
ter is flagged for review if its service group has
DBI > 0.5 or Silhouette < 0.5. We compute the
Centroid-Based Cohesion Score:

Ci =
1

|Xi|
∑

x∈Xi

d(x, µi), (1)

where Ci is the cohesion score for cluster i, Xi is
the set of data points in cluster i, µi is the centroid
of cluster i, and d(x, µi) is the Euclidean distance
between a point x and the centroid. A high co-
hesion score indicates dispersed concerns and po-
tential topic drift. We compute a Z-score against
historical cohesion to detect abnormal deviations
and determine if a split is warranted.

Zi =
Ci − µCi−1

σCi−1

, (2)

where Ci is the new cohesion score, µCi−1 is the
previous mean cohesion score, and σCi−1 is the
standard deviation. If Zi ≥ 2, the cluster is split
using an LLM, which reassigns concerns into co-
herent sub-clusters based on semantic similarity.
This preserves explainability while adapting to drift
without full re-clustering.

3.5 Drift Narrative Generation

To improve explainability, we generate a brief
LLM-based narrative after each cluster split. The
model is prompted with concerns before and af-
ter the split, as well as summaries of the resulting
subclusters. It produces a short explanation high-
lighting the thematic divergence and distinguishing
features of the new clusters. These narratives are
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archived and optionally surfaced in dashboards to
help reviewers trace the evolution of concern topics.
Fig 16 in Appendix Q is LLM prompt for splitting
a cluster.

3.6 Cluster Lifecycle Management: Merge
and Prune

To prevent cluster fragmentation and ensure long-
term cohesion, we incorporate a lightweight LLM-
guided module to manage cluster lifecycle through
merging and pruning. This is especially critical
in production settings, where redundant clusters
degrade explainability and overwhelm downstream
workflows.

Merge candidates are identified using centroid
embedding similarity. If two clusters within the
same service group have cosine similarity above a
threshold (empirically set at 0.92), they are passed
to an LLM prompt along with their names, sum-
maries, and sample concerns. The LLM determines
whether they are semantically overlapping enough
to warrant merging and provides a justification.
This process ensures that only truly redundant clus-
ters are consolidated, preserving granularity where
needed.

Conversely, clusters that have received no new
concern assignments for a 30-day window and fall
below a minimum concern count (e.g., 10) are con-
sidered for pruning. A secondary LLM check vali-
dates whether the cluster represents an outdated or
incoherent topic. Pruned clusters are archived but
not deleted, maintaining historical traceability.

This merge–prune module maintains a stable, in-
terpretable cluster space over time while minimiz-
ing unnecessary fragmentation. Fig 17 in Appendix
Q is LLM prompt for splitting merges.

3.7 Cluster Lifecycle Role Assignment
To enhance explainability and enable long-
term cluster lifecycle tracking, we introduce a
lightweight cluster role categorization scheme.
Each cluster is assigned one of four roles: Core,
Emerging, Peripheral, or Deprecated, based on its
age, assignment frequency, semantic cohesion, and
drift history. Core clusters represent stable, high-
traffic topics with sustained relevance; Emerging
clusters are recently formed with rising activity; Pe-
ripheral clusters are small or low-cohesion groups;
and Deprecated clusters show inactivity or seman-
tic decay. These roles provide downstream users
with intuitive life-cycle cues and enable prioritiza-
tion, monitoring, and dashboard summarization at

scale without additional supervision.

Algorithm 1 Triggering a Cluster Split

1: Input: Service Group S, Cluster c, Cohesion
Scores Ci

2: Output: Updated cluster assignments
3: Get Precomputed DBI and Silhouette Score for

S
4: if DBI > 0.5 or Silhouette Score < 0.5 then
5: Get Ci for current iteration
6: Compute µCi−1 and σCi−1 for previous it-

eration from database
7: Compute Z-score using above values
8: if Zi ≥ 2 then
9: LLM receives title for concerns in c

10: LLM generates new split clusters based
on semantic similarity

11: Titles and descriptions for split clusters
12: end if
13: end if
14: Return updated clusters

4 Experiments and Results

4.1 Experimental Setup

We evaluate our framework on 90,048 anonymized
multi-turn chat sessions (Apr-Sep 2024), each
tagged into one of seven service groups: Compute,
Networking, Identity & Security, Storage, Billing
& Account, Data Services, and Others. LLM-based
segmentation and concern extraction yield almost
148,200 unique concerns for clustering. During
Oct-Dec 2024, 400-500 new chats are processed
daily via incremental updates.

All LLM tasks (segmentation, concern extrac-
tion, service group classification) use the use the
cohere.command-r-08-2024 v1.7 model, selected
after comparing four models (cohere.command-
r-plus-08-2024 v1.6, cohere.command-r-08-2024
v1.7, meta.LLaMA 3.3-70B-instruct, meta.LLaMA
3.1-405B-instruct) on 10,000 chats across service
groups Refer Appendix (M). To reduce hallucina-
tions, we apply structured prompts, windowed con-
text, contrastive filtering, and post-hoc validation
using domain-specific heuristics. Human evalua-
tions further validated LLM reliability (Appendix
K and AppendixL), ensuring outputs are grounded
and cluster-ready. We also track lifecycle transi-
tions, cluster merges, pruning events, and LLM-
generated narratives during the 90-day incremental
window
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4.2 Evaluation Metrics
Our pipeline involves both classification and clus-
tering. We use the following standard metrics:

• Service Group Classification: Precision, Re-
call, and F1 Score assess the few-shot LLM’s
ability to assign concerns to correct service
groups, ensuring balanced evaluation across
categories (Manning et al., 2008). Service
group assignments were further validated us-
ing metadata from escalated chats that re-
sulted in formal support tickets, rather than re-
lying on LLM-based judgments. This ground-
ing in verified enterprise outcomes provides
an objective benchmark for evaluating classi-
fication accuracy and ensures that measured
performance reflects real operational correct-
ness.

• Clustering Evaluation: Silhouette Score
evaluates intra-cluster similarity vs. inter-
cluster difference (Rousseeuw, 1987b)
Davies-Bouldin Index (DBI) captures cluster
compactness and separation (lower is better).
Centroid Based Cohesion Score tracks in-
ternal spread via average distance to centroid,
useful for monitoring cluster drift (Xu and
Wunsch, 2005)

• Lifecycle-Aware Metrics To assess our clus-
ter lifecycle modules such as splitting, merg-
ing, pruning, and role tracking, we introduce
the following metrics:

– Merge Impact (∆Silhouette, ∆DBI):
Measures improvement in clustering
quality after LLM-guided merges.

– Cluster Stability: Percentage of clusters
persisting across multiple time windows.

– Role Distribution: Counts of clusters in
each role (Core, Emerging, Peripheral,
Deprecated) over time.

– Role Transitions: Tracks how clusters
evolve across roles (e.g., Emerging →
Core).

– Drift Narrative Clarity (Optional):
Human-rated scores (1–5) evaluat-
ing the clarity and insightfulness of
LLM-generated drift explanations.

These metrics offer a lightweight yet effective
lens into cluster evolution, explainability, and long-
term system robustness.

4.3 Results & Discussion
Classification Performance and Concern Distribu-
tion. Figure 3 summarizes few-shot classifica-
tion metrics across service groups, along with the
number of extracted concerns per class.The high
F1 scores (>0.85) across all classes indicate the
LLM generalizes well, enabling reliable routing to
service-group specific clustering.

Figure 3: Few-shot classification metrics by Group
Base Clustering Evaluation We apply HDB-

SCAN with UMAP to perform localized clustering
within each service group using sentence embed-
dings. Table 2 shows strong cohesion and separa-
tion across domains.

We apply UMAP + HDBSCAN clustering per
service group to retain domain specificity and
explainability. Table 2, yields strong cohesion
and separation improving Silhouette by +0.44
(111.7%) and reducing DBI by 65.6% over the
global KMeans baseline (Table 3).

Service
Group

User
Concern
Count

Cluster
Count Silhouette DBI

Compute 18765 59 0.73 0.47
Networking 22341 68 0.72 0.36
Ident./Sec. 25865 119 0.73 0.49
Storage 26711 96 0.71 0.43
Billing/Acc. 19876 89 0.77 0.44
Data Svcs. 24598 78 0.72 0.52
Others 10044 105 0.69 0.558
Average 0.72 0.46

Table 2: Base clustering metrics - HDBSCAN + UMAP.

Method Silhouette DBI
KMeans + BERT embeddings 0.28 1.34
HDBSCAN only 0.34 1.12
HDBSCAN + UMAP 0.72 0.46

Table 3: Comparison of clustering methods.

The dataset is moderately balanced across ser-
vice groups, ranging from 10K (“Others”) to 27K
(“Storage”) concerns, forming 59–119 clusters
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each. This mild imbalance does not affect clus-
tering quality.

HDBSCAN, in combination with UMAP for di-
mensionality reduction, adapts density-based clus-
tering thresholds locally and does not require uni-
form cluster sizes. UMAP preserves semantic struc-
ture, enabling HDBSCAN to adapt to varying clus-
ter sizes. Average metrics remain stable (Silhouette
= 0.72; DBI = 0.46), validating robustness.

UMAP preserves the semantic structure of high-
dimensional embeddings, allowing HDBSCAN to
discover dense topic-specific groupings even in
smaller or sparser groups. As shown in Table 2,
clustering performance remains consistent across
groups (average Silhouette Score = 0.72; average
DBI = 0.46), indicating that our approach is robust
to moderate imbalance without requiring rebalanc-
ing.

Incremental Clustering Results Over 90 days,
new chats are incrementally clustered using
LLM-based semantic matching without full re-
clustering.Figure 4 shows cluster quality (Com-
pute group) from Day 1 to Day 90. Across service
groups, cluster metrics remain stable over time.
Appendix J Figure 8. Gradual DBI increase and
Silhouette decline indicate topic drift; once thresh-
olds are exceeded, LLM-based refinement restores
scores within ±20% of baseline. Figure 5 confirms
quality degrades without refinement, validating the
system’s drift detection and adaptive response.

Figure 4: Incremental Clustering Metrics for "Compute
with Cluster Refinement"

4.4 Cluster Merge and Prune Evaluation

During the 90-day window, we observed frequent
opportunities for consolidation and cleanup. We
identified 43 merge candidates using centroid simi-
larity (cos > 0.92), of which 31 were approved by
LLM. Refer Figure 6 Post-merge, average Silhou-
ette improved from 0.63 to 0.7 and DBI dropped
from 0.58 to 0.52 at 90th iteration. This shows

Figure 5: Incremental Clustering Metrics for "Compute"
using no Cluster Refinement

Figure 6: Cluster Merge and Prune

that LLM-guided merging removes redundancy and
improves cohesion. 12 low-activity clusters were
pruned after 30+ days of inactivity and confirmed
by LLM to be obsolete.

4.5 Qualitative Example: Cluster Refinement

In Billing/Account, a broad cluster covering re-
funds, invoice errors, and renewals was refined into
three distinct sub-clusters. Triggered by cohesion-
based Z-score alerts, the LLM-based split improved
clarity and downstream labeling. See Appendix G
for full example.

4.6 Qualitative Example: Cluster Merge and
Prune

In Billing/Account, two clusters one focused on
refund delays and the other on non-receipt were
identified as semantically overlapping. Despite
slight differences in phrasing, both described the
same user concern: a refund had been approved but
not received. The LLM-guided merge consolidated
these into a single, clearer cluster titled “Refund
Not Received or Delayed,” reducing redundancy .
See Appendix H for full example.

4.7 Topic Drift Frequency and Examples

Over 90 days, recurring topic drift (Z-score 2)
prompted 61 cluster refinements across 7 service
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groups(5–15 splits each) (avg. 8.7), Data Services
and Others has frequent drift. Appendix E

4.8 Error Analysis and Ablation
Manual inspection of 600 classification cases re-
vealed most errors (6̃0%) in “Others” and “Data
Services,” due to vague or overlapping language.
Examples:

• "I’m not getting the output I expected from the
portal" lacks service-specific cues, resulting
in misclassification under "Others" instead of
"Data Services (Analytics)".

• "I need help with my pipeline performance"
The phrasing is vague and could refer to Data
Services or Others.

Misclassification rate: 7.6%. Clustering drift
was corrected via LLM-based refinement. Ablation
studies (Appendix B) show UMAP boosts cluster-
ing (+0.38 Silhouette, –0.66 DBI), and LLM-based
matching outperforms cosine similarity (36% better
Silhouette Removing any single component con-
cern extraction, contrastive filtering, or LLM-based
classification reduced clustering quality (avg. Sil-
houette 0.21, DBI +0.72), confirming each mod-
ule’s unique value to framework stability and ex-
plainability.

5 Synthetic Dataset Validation

We have released the synthetic/sanitized
dataset1,that is distributionally aligned and
replicates the enterprise dataset structure. The
synthetic dataset follows the similar service-group
distribution as observed in our enterprise corpus
(Compute 12.7 %, Networking 15%, Identity
Security 17%, Storage 18.0 %, Billing Account
15%, Data Services 16.6%, Others 6.8%), yielding
approximately 1300-1800 synthetic chats per major
service group and 680 for “Others.” This mirrors
the 148,000 concern enterprise dataset distribution
to maintain clustering comparability. To evaluate
the fidelity of the synthetic dataset, we split the
dataset into 8,000 base chats and 2,000 incremental
synthetic chats and compared clustering outcomes
of these base chats and incremental synthetic chats
against those obtained from the real enterprise
dataset. As shown in (Appendix P) Table 22, the
synthetic clusters exhibit close alignment in both
separation and cohesion metrics (Average DBI =

1https://github.com/Synthetic-Datasets-sudo

0.48 (Synthetic dataset) vs. 0.46 in (Enterprise
Data)) and (Average Silhouette = 0.70 (Synthetic
dataset) vs. 0.72 (Enterprise Data)).

Figure 7: Comparison of Silhouette Scores across Ser-
vice Groups Enterprise VS Synthetic dataset

6 Conclusion

We present a lifecycle-aware framework for clus-
tering user concerns from multi-turn support chats,
combining LLM-based segmentation, contrastive
filtering, and unsupervised clustering with adap-
tive, interpretable refinement. Unlike static or
embedding-only methods, our approach supports
real-time updates, drift detection, LLM-guided
cluster splitting, merging, pruning, and role track-
ing. Experiments on 90k+ enterprise chats over 90
days demonstrate strong cluster quality, semantic
coherence, and robustness to topic drift. Lifecy-
cle operations including 61 splits, 34 merges, and
12 prunes, enable long-term cluster stability while
LLM-generated narratives and role labels improve
explainability. Together, these components form a
scalable, auditable solution for evolving concern
management in production environments.

Limitations

While the framework shows strong performance,
it has a few limitations. Ambiguous or compound
concerns spanning multiple services (e.g., com-
pute and storage) can still challenge classification.
Evaluation relies primarily on internal metrics and
qualitative inspection; future work could include
human-in-the-loop or business impact metrics. Fi-
nally, the current system supports only English, and
extending to multilingual chats is an important next
step.
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A Appendix: Terminology and Glossary

To improve clarity and avoid ambiguity, we define
several key terms used throughout the paper. These
terms describe the structure and categorization of
customer support conversations in cloud service
environments.

• Multi-turn, Multi-service Chat: A multi-turn,
multi-service (Pattnayak et al., 2025d) chat is
a customer support conversation that involves
multiple back-and-forth exchanges (multi-
turn) between a user and an agent, and spans
multiple cloud service areas (multi-service)
within the same session.

For example, a customer might begin a chat
about a virtual machine that won’t start (Com-
pute), then ask about related firewall settings
(Networking), and finally inquire about unex-
pected charges (Billing and Account). These
topic shifts occur naturally in real-world sup-
port chats and pose challenges for traditional
clustering methods, which often treat the en-
tire conversation as a single unit.

• Theme: A theme is a coherent segment within
a multi-turn conversation that centers around
a single topic or line of discussion. Themes
are extracted by detecting topic shifts, and
may contain one or more related concerns. A
chat can have multiple ’themes’. In above
example, there are three themes: 1) Compute,
2) Networking and, 3) Billing and Account.

• Concern: A concern is a distinct user issue,
request, or problem described within a cus-
tomer support conversation. One chat session
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can contain multiple concerns (e.g., virtual
machine boot failure, billing inquiry), each
representing a specific topic or task. A theme
can have multiple ’concerns’.

• Service Group (or Domain): A service group
(also referred to as a domain) is a predefined
cloud service category used to organize con-
cerns (e.g., Compute, Networking, Identity &
Security). Concerns are classified into these
groups for structured clustering and analysis
(Pattnayak and Bohra, 2025).

B Appendix: Ablation Study of Effect of
UMAP

We see significant improvement, shown in 4, in
Overall Silhouette Score (+0.38) and DBI im-
proved by 0.66 with UMAP Reduction before clus-
tering as supported by (Allaoui et al., 2020). Group
wise scores are shown in Table 11.

Configuration Silhouette
Score DBI

HDBSCAN only 0.34 1.12
HDBSCAN + UMAP 0.72 0.46

Table 4: Impact of UMAP dimensionality reduction.

C Appendix: Ablation Study of LLM
Guided Incremental

Table 5 shows Clustering metrics of incremental
concerns being assigned to Base clusters using
LLM based matching (our proposed solution) and
Centroid based Cosine similarity

Method Silhouette DBI
LLM Matching (ours) 0.72 0.46
Cosine Similarity Match 0.53 0.81

Table 5: Incremental assignment: LLM-based vs cosine
similarity matching on "Compute" Service group on
Day 30.

D Appendix: Error Distribution by
Service Group

We analyzed 600 samples for misclassification and
only observed 7.67% errors, with 60% error con-
tributed from Data Services and Others Service
Groups as shown in Table 6.

Service Group Errors (#) Error Rate (%)
Compute 4 0.67
Networking 5 0.83
Identity & Security 3 0.50
Storage 4 0.67
Billing/Account 3 0.50
Data Services 13 2.17
Others 14 2.33
600 Samples 46 7.67%

Table 6: Observed classification errors from 600 manu-
ally reviewed samples.

E Appendix: Cluster Split Logs

We observed a total of 46 cluster splits across
all the 7 service groups with highest splits occur-
ring in Data Services which can be attributed to
rapidly growing number of services and features
in Database and AI services during the last year.
Table 7 shows group wise splits during the 90 days
of incremental clustering.

Service Group Split Events (90 days)
Compute 8
Networking 7
Identity & Security 5
Storage 6
Billing & Account 9
Data Services 15
Others 11
Total 61

Table 7: Number of cluster splits automatically triggered
via Z-score.

F Appendix: Cluster Role Categorization
and Transitions

Each cluster is assigned a lifecycle role (Core,
Emerging, Peripheral, Deprecated). Table 8 shows
distribution over time. 68% of Emerging clusters
became Core within 30 days; 14% of Core clusters
transitioned to Deprecated. This confirms the role
framework reflects real concern dynamics.

Role Day 30 Day 60 Day 90

Core 45 59 67
Emerging 22 16 11

Deprecated 3 8 12

Table 8: Cluster Role Categorization and Transitions
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G Appendix: Cluster Refinement
Example

Table 9 shows the case of a cluster within "Billing
& Accounts" service group which had issues from
related but different pain points, which resulted in
the cluster getting split. Three new clusters were
created post refinement process.

Before Split After LLM-Driven Split
Refund delays, invoice er-
rors, auto-renewal issues,
discount codes not applying

New Cluster 1: (Refunds,
invoice errors)
New Cluster 2: Auto-
renewal failures
New Cluster 3: Discount is-
sues

Table 9: LLM refinement of a noisy cluster.

H Appendix: Cluster Merge Example

Table 10 shows two clusters were phrased slightly
differently; one emphasizing non-receipt, the other
focusing on processing delays. However seman-
tically describe the same user issue: a refund has
been requested but hasn’t arrived.

Before Merge After LLM- Driven Merge
Base Cluster A: Refund Not
Received
Base Cluster B:Delayed Re-
fund Processing

Refund Not Received or De-
layed

Table 10: LLM driven cluster merge

I Appendix: Base Cluster Creation

Step by step base cluster creation process is de-
picted in Fig 2. A multi-turn chat is first segregated
into theme based chunks in Phase A. In Phase B,
an LLM extracts all the user concerns from these
themes. There could be several concerns in each
theme. Phase C uses contrastive filtering to remove
duplicate user concerns from the same theme to
ensure we have distinct user concerns per theme.
In Phase D, a few-shot LLM classifies the user
concerns into one of the 7 different service groups.
Phase E generates sentence embedding for the user
concerns under each service group followed by
Phase F where UMAP reduces the dimensions of
embeddings and HDBSCAN clusters user concerns
into specific clusters. Finally, in Phase G, LLM gen-
erates a cluster title/name and cluster description
using user concerns from each cluster.

J Appendix: Clustering Metrics of
Different Service groups per iteration

We observe that Silhouette Scores and DBI remain
stable and within +20% of initial base cluster val-
ues throughout 90 incremental iterations as shown
in Fig 8. This proves the efficiency of cluster refine-
ment process which triggers whenever it observes
degradation in cluster metrics and quality during
incremental step.
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Figure 8: Clustering Metrics of Different Service groups per iteration
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Service Team Groupwise HDBSCAN Groupwise HDBSCAN with UMAP
Identity & Security Silhouette: 0.4984, DBI: 0.7946 Silhouette: 0.7394, DBI: 0.4946
Networking Silhouette: 0.4502, DBI: 0.7452 Silhouette: 0.725, DBI: 0.3652
Billing & Account Silhouette: 0.4771, DBI: 0.7432 Silhouette: 0.7771, DBI: 0.4432
Storage Silhouette: 0.5026, DBI: 0.757 Silhouette: 0.7126, DBI: 0.4357
Compute Silhouette: 0.4689, DBI: 0.7532 Silhouette: 0.7389, DBI: 0.478
Data Services Silhouette: 0.521, DBI: 0.8043 Silhouette: 0.7218, DBI: 0.528
Others Silhouette: 0.4532, DBI: 0.848 Silhouette: 0.6918, DBI: 0.558

Table 11: Clustering performance comparison with and without UMAP dimensionality reduction

K Appendix: Examples of Contrastive
Filtering on Intents with Similar
Semantics

The table 12 shows how contrastive filtering uses
cosine similarity scores to decide which intent pairs
to keep. Intents with similarity above 0.95 are con-
sidered duplicates, so only one is retained; pairs
below this threshold are both kept. Using an an-
notated dataset of 100 concerns with strong inter-
annotator agreement (Cohen’s Kappa = 0.79), con-
trastive filtering correctly identified 89% of seman-
tically similar intents, effectively removing dupli-
cates and preserving unique entries.

L Appendix: Concern Extraction
Evaluation

This appendix presents the evaluation of the LLM-
based concern extraction module against a man-
ually annotated dataset of 150 conversation seg-
ments. It includes performance metrics and ex-
amples comparing model-extracted concerns with
ground-truth annotations to illustrate precision, re-
call, and common error cases.

• Exact Match: Concerns match word-for-
word or very closely.

• Semantic Match: Conceptually equivalent,
but phrased differently.

• Partial Match: One concern matches, the
other is missed or mismatched.

• Missed: Model failed to extract any concern
present in the ground truth.

• Spurious Output: Model generated concern
not present in ground truth.

Table 13 compares ground truth concerns with
those extracted by the LLM for various conversa-
tion segments, categorizing the matches as exact,
partial, semantic, missed, or spurious to illustrate
extraction accuracy.

Table14 summarizes the performance of the
LLM-based concern extraction module compared
to human-annotated ground truth on 150 segments.
It reports standard evaluation metrics precision, re-
call, and F1 score along with 95% confidence in-
tervals, and shows strong alignment with human
annotations. The inter-annotator agreement Co-
hen’s κ = 0.79 reflects high consistency between
annotators, validating the reliability of the dataset.
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Reference Intent Candidate Intent Cosine Similarity Action
I want to cancel my sub-
scription.

Please stop my membership. 0.44 retain both intents

App keeps crashing on
startup.

App crashing every time. 0.956 retain only 1 intent

Change my delivery ad-
dress.

Update tenancy location. 0.583 retain both intents

Refund not processed after
7 days.

Still waiting for my refund. 0.710 retain both intents

Need help with password
issues, can’t login.

Forgot my password, can’t
log in.

0.963 retain only 1 intent

Please reset my account
password.

Reset password for account
access.

0.976 retain only 1 intent

Table 12: Examples of Contrastive Filtering on Intents with Similar Semantics

Segment ID Ground Truth Concerns LLM-Extracted Concerns Match Type

S001 1. VM crash
2. Cannot connect to storage

1. VM crash
2. Storage access issue

Exact Match

S014 1. Billing confusion
2. Refund request

1. Billing confusion
2. Request for compensation

Partial Match

S023 1. Unable to reset password 1. Password reset not working Semantic Match
S035 1. Data loss after update

2. No backup option
1. Lost files
2. No backup setting

Exact Match

S048 1. Login error – Missed
S057 – 1. Account locked Spurious Output

Table 13: Concern Extraction Evaluation – Comparison with Annotated Ground Truth

Metric Score 95% CI Notes

Precision 0.86 [0.83, 0.89] LLM vs. gold-standard concerns
Recall 0.82 [0.79, 0.85] Captures partial & full matches

F1 0.84 [0.81, 0.86] Harmonic mean of precision and recall
Inter-Annotator Agreement 0.79 Agreement between two human annotators

Table 14: Concern Extraction Evaluation against Human-Annotated Data

M Appendix: Model Selection Study for
theme segmentation, concern
extraction, and and service group
classification.

Table 15 shows comparative analysis was con-
ducted across four LLM-based pipelines, each uti-
lizing a different language model to perform the
key tasks of theme segmentation, concern extrac-
tion, and service group assignment. After these
LLM-driven steps, each pipeline applied localized
clustering using HDBSCAN with UMAP-based
dimensionality reduction to group similar concerns.

To evaluate the clustering quality, we processed

10,000 customer chats spanning 10 service cate-
gories through each pipeline. Clustering perfor-
mance was assessed using two standard metrics:
the Davies–Bouldin Index (DBI) and the Silhou-
ette Score. Lower DBI values and higher Silhou-
ette Scores indicate better clustering performance,
signifying that the resulting clusters are both com-
pact (internally coherent) and well-separated (dis-
tinct from one another).

N Appendix: Extended Ablation Studies

This section reports additional ablations evaluating
the impact of concern extraction, contrastive filter-
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Service Group
LLaMA 3.3

(70B)
DBI / Silhouette

LLaMA 3.1
(405B)

DBI / Silhouette

Cohere R
DBI / Silhouette

Cohere R+
DBI / Silhouette

Identity & Security 0.44 / 0.71 0.43 / 0.73 0.38 / 0.76 0.41 / 0.70
Billing & Account 0.33 / 0.72 0.46 / 0.53 0.38 / 0.71 0.45 / 0.71
Compute 0.57 / 0.69 0.35 / 0.53 0.25 / 0.68 0.39 / 0.67
Data Services 0.72 / 0.38 0.68 / 0.52 0.62 / 0.50 0.62 / 0.53
Storage 0.38 / 0.74 0.49 / 0.70 0.46 / 0.73 0.49 / 0.72
Networking 0.60 / 0.57 0.79 / 0.30 0.45 / 0.68 0.45 / 0.65
Others 0.56 / 0.65 0.13 / 0.88 0.29 / 0.62 0.58 / 0.57

Table 15: Cluster Quality Comparison across LLM Pipelines (DBI / Silhouette Score). Lower DBI shows clusters
are well-separated and internally compact. Higher Silhouette means points are close to their own cluster and far
from others.

ing, and LLM-based service group classification.

N.1 Concern Extraction
Removing LLM-based concern extraction and clus-
tering raw utterances reduces cluster quality, con-
firming the importance of concern-level segmenta-
tion. Table 16 for reference.

N.2 Contrastive Filtering
Omitting duplicate removal degrades cohesion and
interpretability. Table 17 for reference.

N.3 LLM-Based Service Group Classification
Replacing few-shot LLM classification with
embedding-only matching lowers service-group F1
and cluster purity. Table 18 for reference.

O Appendix: Computational Cost and
Scalability

To assess the scalability and practical feasibility
of the proposed framework, we report an approxi-
mate breakdown of computational cost across three
phases: (1) Base Clustering, (2) Incremental Clus-
tering, and (3) Lifecycle Management. All costs
are estimated using publicly available token-based
(Pattnayak et al., 2025c,b)pricing for comparable
LLM APIs and are presented in USD equivalents.
Exact pricing cannot be disclosed to preserve ven-
dor confidentiality.

Token Length Considerations:

• Input tokens per call: 4,500–6,500 (conversa-
tion snippet + instructions)

• Output tokens per call: 2,000–3,500
(theme/concern/label text)

• Total tokens per call: 6,500–8,500, well
within Cohere Command-R’s 16k+ token con-
text window.

The complete base clustering of approximately
90,000 chats involves around 180,000 LLM API
calls, representing a one-time cost of roughly
US$60–$70. Subsequent incremental clustering
operates efficiently, requiring only about 2,250
API calls per day (approximately US$1.40) to pro-
cess 500 new chats. Lifecycle management activ-
ities—including cluster splitting, merging, prun-
ing, role assignment, and drift narrative generation
(Agarwal et al., 2024b) add roughly 2,400 API calls
every 90 days, corresponding to an estimated cost
of around US$1. All prompts and outputs remain
well within model context limits, confirming that
the overall framework is computationally feasible
and scalable for large-scale enterprise deployment.

O.1 Computation Cost for Base Clustering
Phase

Following are one time costs mentioned in Table
19.It processes 90k chats.

O.2 Computation Cost for Incremental
Clustering Phase

Incremental Clustering phase processes 500 chats
per day. Computation Cost mentioned in Table 20.

O.3 Lifecycle Management Phase (every 90
days)

Refer to table 21
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Configuration Silhouette DBI Notes

Full model (with concerns) 0.72 0.46
HDBSCAN + UMAP baseline
with concern extraction

No concern extraction 0.43 1.38
Raw utterances clustered;
loss of granularity

Table 16: Concern Extraction Ablation

Configuration Silhouette DBI Notes

Full model (with filtering) 0.72 0.46 Semantically coherent clusters

No filtering 0.59 0.72
Larger, noisier clusters;
duplicates distort centroids

Table 17: Contrastive Filtering Ablation

Configuration Silhouette DBI
Service Group

Avg F1 Notes

Full model (LLM classification) 0.72 0.46 0.86 Strong purity, con-
text captured

Embedding-only classification 0.51 1.43 0.62 Misassignments;
degraded purity

Table 18: LLM-Based Service Group Classification Ablation

P Appendix: Clustering Metrics
Synthetic data vs Enterprise Data

Table 22 shows Clustering metrics for Synthetic
data and Enterprise Data.

Q Appendix: LLM prompts

• Figure9 shows LLM prompt used for extract-
ing themes from multi-service chats

• Figure 10 shows LLM prompt used for ex-
tracting concerns from segmented chats

• Figure 11 shows LLM prompt used for assign-
ing extracted concerns to service groups using
LLM based few shot learning

• Figure 12 shows LLM prompt used for gen-
erating cluster name and cluster description
after created using HDBSCAN and UMAP
based base clusters.

• Figure 13 shows LLM prompt used for as-
signing incremental concerns to previously
created base clusters.

• Figure 14 shows LLM prompt used for split-
ting clusters.

• Figure 15 shows LLM prompt used for merg-
ing previously unclustered clusters.

• Figure 16 shows LLM prompt used for Drift
Narrative Generation

• Figure 17 shows LLM prompt used for Cluster
Merges
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Step API Calls Approx. Tokens / Call Approx. Cost (US$)
Chat → Themes ∼90,000 ∼6,500 input ∼29
Themes → Concerns ∼45,000 ∼6,500 input ∼15
Concern → Service Group ∼45,000 ∼6,500 input ∼15
Cluster Naming & Description ∼614 ∼2,000 output ∼2
Total Base Phase — — ∼61

Table 19: Base Clustering Phase

Step API Calls Approx. Tokens / Call Approx. Cost (US$)
Chat → Themes ∼500 ∼6,500 input ∼0.32
Themes → Concerns ∼250 ∼6,500 input ∼0.16
Concern → Service Group ∼250 ∼6,500 input ∼0.16
Cluster Naming & Description ∼1,250 ∼6,500 input ∼0.80
Total Incremental Phase — — ∼1.44

Table 20: Incremental Clustering Phase

Step API Calls Approx. Tokens / Call Approx. Cost (US$)
Splitting Clusters ∼180 mix of input + small output (∼6,500 ) ∼0.11
Merging Clusters ∼80 same as ∼6,500 ∼0.05
Pruning Clusters ∼12 small output (∼2,000 tokens) ∼0.01
Role Assignment ∼614 likely input tokens ∼6,500 ∼0.20
Drift Narratives ∼120 small output ∼2,000 tokens ∼0.02

Total 90-Day
Lifecycle Management — — ∼0.39

Table 21: Lifecycle Management Phase (every 90 days)

Synthetic Dataset Enterprise Dataset

Service
Base
DBI

Base
Silhouette

Incr
DBI

Incr
Silhouette Silhouette DBI

Compute 0.48 0.73 0.51 0.72 0.73 0.47

Networking 0.47 0.68 0.47 0.68 0.72 0.36

Ident./Sec 0.53 0.71 0.55 0.704 0.73 0.49

Storage 0.5 0.69 0.51 0.68 0.71 0.43

Data Services 0.52 0.73 0.53 0.72 0.72 0.52

Billing account 0.43 0.67 0.52 0.65 0.77 0.44

Others 0.44 0.7 0.45 0.71 0.69 0.558

Average 0.48 0.70 0.5 0.69 0.72 0.46

Table 22: Clustering metrics across service groups for synthetic and enterprise datasets.
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Figure 9: LLM Prompt for segmenting multi service chat into themes
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Figure 10: LLM Prompt for extracting user concerns from segmented chats
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Figure 11: LLM Prompt to assign user concern to service group using LLM based few-shot learning
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Figure 12: Prompt to Create Cluster Name and Cluster Description
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Figure 13: LLM Prompt to assign incremental user concerns to Existing clusters

3203



Figure 14: LLM Prompt for Splitting Cluster
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Figure 15: LLM Prompt to Merge Unclustered User Concerns

Figure 16: LLM Prompt for Drift Narrative Generation
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Figure 17: LLM Prompt for Cluster Merge Decision
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