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Abstract

Grammar competency estimation is essential
for assessing linguistic proficiency in both writ-
ten and spoken language; however, the spo-
ken modality presents additional challenges
due to its spontaneous, unstructured, and dis-
fluent nature. Developing accurate grammar
scoring models further requires extensive ex-
pert annotation, making large-scale data cre-
ation impractical. To address these limitations,
we propose a zero-shot grammar competency
estimation framework that leverages unlabeled
data and Large Language Models (LLMs) with-
out relying on manual labels. During train-
ing, we employ LLM-generated predictions
on unlabeled data by using grammar compe-
tency rubric-based prompts. These predictions,
treated as pseudo labels, are utilized to train a
transformer-based model through a novel train-
ing framework designed to handle label noise
effectively. We show that the choice of LLM
for pseudo-label generation critically affects
model performance and that the ratio of clean-
to-noisy samples during training strongly influ-
ences stability and accuracy. Finally, a qualita-
tive analysis of error intensity and score predic-
tion confirms the robustness and interpretability
of our approach. Experimental results demon-
strate the efficacy of our approach in estimating
grammar competency scores with high accu-
racy, paving the way for scalable, low-resource
grammar assessment systems.

1 Introduction

Grammar competency assessment is a critical com-
ponent of assessing language proficiency with
wide-ranging applications in education, language
learning platforms, automated speech scoring sys-
tems, and conversational Al (Vajjala and Meurers,
2016; Burstein et al., 2004; Zechner et al., 2009b;
Litman and Silliman, 2004). Accurate grammar
competency assessment is essential for understand-
ing the linguistic capabilities of individuals across
both written and spoken forms of communication

(Vajjala and Meurers, 2016; Chapelle and Chapelle,
2001). However, traditional approaches to gram-
mar assessment are often constrained by their re-
liance on manually annotated datasets and super-
vised learning paradigms, which demand signifi-
cant human expertise and resources for dataset cre-
ation (Yannakoudakis et al., 2011a; Bryant et al.,
2017). These methods also struggle to scale ef-
fectively to diverse linguistic contexts and modal-
ities(Zhao et al., 2024). In recent years, advances
in machine learning, particularly with the advent
of Large Language Models (LLMs) such as GPT,
have enabled significant progress in natural lan-
guage understanding and generation tasks(Brown
et al., 2020; Radford et al., 2019; Devlin et al.,
2019). LLMs have demonstrated remarkable capa-
bilities in few-shot and zero-shot learning, allowing
them to generalize to new tasks with minimal or no
labeled data(Radford et al., 2019; Gao et al., 2020).
However, leveraging LL.Ms for grammar compe-
tency evaluation remains underexplored, especially
in scenarios where labeled datasets are unavailable
or infeasible to create.

In this paper, we introduce a novel zero-shot
grammar competency score estimation method that
addresses the challenges of traditional grammar
assessment approaches. Unlike conventional su-
pervised methods, our approach eliminates the de-
pendency on labeled training data by leveraging
unlabeled data in conjunction with LLM-generated
predictions. Specifically, during training, we use
a grammar competency rubric-based prompt cre-
ated by language experts to guide the LLM in gen-
erating predictions for the grammar competency
of unlabeled responses. These predictions serve
as a form of pseudo-labels, providing the supervi-
sory signal required to train a transformer-based
model. To effectively handle the noise in these
labels, we propose a novel training framework de-
signed to maximize the learning potential of the
model while ensuring robustness and generaliza-
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tion. Our method is designed to work effectively
across both written and spoken responses, making
it versatile in addressing the needs of diverse real-
world scenarios. For example, it can be applied to
assess written essays, transcribed spoken responses,
or other forms of language data, thus bridging the
gap between text-based and audio-derived inputs.
This adaptability makes our approach highly suit-
able for diverse language assessment tasks. The key
contributions of the proposed work are as follows:

* We propose a method that eliminates the re-
liance on labeled data by leveraging unlabeled
data and LLM-generated predictions, offering
a scalable and resource-efficient solution for
grammar assessment.

* We design grammar competency rubric-based
prompts to guide LLMs in generating predic-
tions aligned with human evaluation criteria,
ensuring that the pseudo labels reflect mean-
ingful linguistic features.

* We introduce a novel adaptive sample-
weighting-based training framework that ef-
fectively utilizes pseudo-labels to train a
transformer-based model, ensuring robustness
and minimizing the impact of label noise.

* Our method supports both written and spoken
responses, demonstrating adaptability across
different input modalities and real-world sce-
narios.

¢ We introduce two in-house industrial datasets,
SGAD and WGAD, and conduct comprehen-
sive experiments on them to rigorously vali-
date the effectiveness of our approach, demon-
strating its capability to reliably assess gram-
mar competency in zero-shot settings without
reliance on labeled training data.

The proposed method represents a notable ad-
vancement in automated grammar assessment. Fur-
thermore, the ability to generalize across written
and spoken responses makes our approach particu-
larly valuable for applications in education, where
multimodal input is common.

2 Related Work

Automated grammar assessment has primarily
evolved along two lines: grammatical error de-
tection/correction (GED/GEC) and holistic profi-
ciency scoring (e.g., CEFR-based). However, fine-
grained grammar scoring aligned to rubric-based

scales, especially for spoken language, remain un-
derexplored. Recent work has begun bridging this
gap by leveraging neural and LLM-based models.
For instance, (Kopparapu et al., 2024) introduce
a grammar scoring system robust to ASR noise,
while (Banno et al., 2024a) employ Whisper-based
models for end-to-end GEC, incorporating disflu-
ency. Other studies such as (Caines et al., 2020;
Knill et al., 2019) develop spoken GED using se-
quence labeling, though they report lower accuracy
compared to written tasks. Feature-based meth-
ods like (Banno and Matassoni, 2022) predict spo-
ken proficiency from written grammar errors, and
(Lu et al., 2020) explore integrating acoustic cues.
Broader surveys (Soni and Thakur, 2018; Tetreault
and Leacock, 2014) highlight error categorization
and real-time challenges. Despite progress, most
approaches remain supervised; to the best of our
knowledge, there are currently no zero-shot meth-
ods specifically designed for rubric-aligned gram-
mar scoring, particularly in the spoken domain,
making this an open and impactful research direc-
tion.

2.1 Related Work on Grammar Competency
Scoring

Recent work in automated grammar scoring for
spoken content has explored diverse strategies to
handle the variability of learner speech. POS-
based similarity measures and syntactic features
have proven effective in capturing grammatical
proficiency, especially on short utterances (Yoon
and Bhat, 2018; Zechner et al., 2017). Multi-task
learning with auxiliary tasks like POS-tagging and
native language prediction improves model per-
formance on ASR-transcribed speech (Craighead
et al., 2020). Systems like SpeechRaterSM com-
bine fluency, ASR, and language use features to
align well with human scoring (Zechner et al.,
2009b), while rate of speech (ROS) offers a fast,
though imperfect, proxy for fluency (de Wet et al.,
2007). Cross-corpus studies show models trained
on written grammar errors can generalize to spo-
ken inputs (Banno and Matassoni, 2022; Yuan
and Briscoe, 2016). To enhance robustness, re-
cent work explores self-supervised speech mod-
els (e.g., wav2vec 2.0), adversarial augmentation,
and mixture-of-experts architectures (Banno et al.,
2023; Yoon et al., 2019; Papi et al., 2021). Prompt-
aware content features, such as lexical overlap,
also help improve relevance and scoring accuracy
(Evanini et al., 2013).
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2.2 Large Language Models (LLMs) in
educational assessment.

Recent work has explored the potential of large lan-
guage models (LLMs), especially GPT-4(Achiam
et al., 2023), for automated essay scoring and feed-
back generation. GPT-4 has shown consistency
with human raters in evaluating discourse coher-
ence (Naismith et al., 2023) and can provide ana-
lytic scores aligned with CEFR criteria in zero-shot
settings (Banno et al., 2024b). Perplexity measures
from LLMs have been proposed as proxies for lin-
guistic competence (Sanchez et al., 2024). Studies
also demonstrate that prompting LL.Ms with multi-
trait criteria leads to reliable analytic assessments
for graduate-level writing (Wang et al., 2025) and
short L2 essays (Yancey et al., 2023). Multi-trait
scoring frameworks like MTS (Lee et al., 2024)
and RMTS (Chu et al., 2024) improve trait-specific
accuracy using structured prompting and rationale
generation. Other work highlights that prompt de-
sign can enhance both scoring and feedback genera-
tion (Stahl et al., 2024), though fine-tuning remains
crucial for short-answer scoring tasks (Chamieh
et al., 2024). LLMs have also been applied to spo-
ken grammar evaluation by generating test varia-
tions robust to ASR noise (Kopparapu et al., 2024).

3 Proposed Method

The proposed method estimates grammar compe-
tency without labeled training data by adopting
a zero-shot learning paradigm. Large language
model (LLM) predictions serve as pseudo-labels to
train a transformer-based model. Pseudo-labels are
generated using an LLM prompted with a grammar
competency rubric—a strategy shown to enhance
zero-shot essay scoring and feedback (Evanini
et al., 2013; Wang et al., 2023). To handle pseudo-
label noise, we employ a robust framework in-
spired by prior work on learning from noisy, trait-
specific supervision (Zhang et al., 2021; Bengio
et al., 2009). This approach generalizes to both
written and spoken tasks, eliminating costly human
annotations while outperforming strong LLM-only
baselines in grammar scoring accuracy.

3.1 Pseudo-Label Generation with LLM

The first step in our method is to generate pseudo-
labels for the unlabeled dataset using a Large Lan-
guage Model (LLM), frraq(.). Given an unla-
beled dataset Dyplabeled = {xi}f\il, where x; repre-
sents a sample (written or spoken response), we

prompt the LLM with a grammar competency
rubric-based prompt P to produce predictions.
Mathematically, the pseudo-labels yfseudo are de-
fined as:

YN = fropm(zi, P)

Here, P is carefully designed to align with the
grammar competency scoring rubric, ensuring that
the LLM predictions are meaningful approxima-
tions of grammar scores. These predictions, while
inherently noisy, serve as the foundation for train-
ing the transformer model.

3.2 Training Methodology

Our proposed training strategy focuses on deriving
reliable grammatical proficiency estimates from
imperfect, noisy data. We adopt a robust training
framework for regression using deep neural net-
works, designed to mitigate the effects of noisy or
low-quality data through dynamic sample weight-
ing (Zhang et al., 2021; Han et al., 2018b; Song
et al., 2022). Our approach iteratively re-weights
training examples per epoch based on their ob-
served losses, promoting learning from "clean"
samples while down-weighting potentially noisy
outliers (Jiang et al., 2018; Kumar et al., 2010;
Wu et al., 2020). Using the generated pseudo-
labels, we construct a training dataset Dy, =
{(z;, yfseudo) N |. The pseudo-labels yfseudo are
treated as noisy labels, as they may not perfectly
align with true grammar competency scores. This
introduces a critical challenge in the training pro-
cess, which our framework addresses by leveraging
robust loss functions and regularization techniques
to mitigate the impact of label noise (Zhang et al.,
2021; Song et al., 2022).

We begin by leveraging a pre-trained transformer
encoder, such as BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019), without architectural
modification, and add a projection layer to map its
contextual embeddings to scalar proficiency scores
for the regression task. Specifically, we instanti-
ate a regression model fy(-), parameterized by 6,
wherein the transformer-based architecture serves
as the feature extractor, and the projection layer
outputs the estimated grammar competency score
1; for each input z;:

Ui = fo(xs) (H

Recognizing that not all pseudo-labels assigned to
samples are equally reliable, we implement a sam-
ple selection mechanism guided by training loss
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dynamics. The core idea behind this approach (Han
et al., 2018b; Jiang et al., 2018; Kumar et al., 2010)
is that not all training examples contribute equally
to effective model development; treating all su-
pervision uniformly risks overfitting to mislabeled
or inconsistent data. To address this, after each
epoch, we analyze the training loss associated with
individual samples: those consistently exhibiting
high loss are flagged as potentially noisy or mis-
aligned with the scoring rubric and are accordingly
downweighted, while samples with lower and more
stable losses, which are more likely to reflect the
true learning signal, are upweighted. This dynamic
prioritization enables the model to focus on higher-
quality supervision, thereby promoting robustness
and mitigating the influence of unreliable labels.
At the beginning of the training process (epoch

t = 0), all samples are assigned equal impor-
tance via uniform weights: wgo) = %, Vi €

{1,..., N} ensuring 3"V wEO) = 1. This uni-
form initialization ensures unbiased exposure to
all samples during the initial learning phase. To
implement dynamic sample selection in subsequent
epochs, we compute the per-sample loss at the end
of each epoch. Throughout each training epoch,
the model predicts scores ¢; = 9@) (x;) for all sam-
ples, and the per-sample loss is computed using the
mean squared error (MSE) loss function at epoch

g(t) (fa (fﬁz) fseudo)g'

During mini-batch training, for each batch By, at
step k, the training loss is computed as the weighted
average of per-sample losses in the batch:

|B|Zw

1€By

batch

This weighted approach ensures that samples
deemed more reliable (i.e., with higher weights)
exert greater influence on model parameter up-
dates, thereby reducing the impact of noisy or mis-
labeled data. To adapt sample weights in subse-
quent epochs, we employ a soft selection strategy.
At the end of each epoch, all per-sample losses
from the current model parameters are aggregated
into a vector:

10 = 96D,

The samples are then sorted in ascending order of
their loss values:

7 = argsort(1?)).

so that samples with the lowest losses, those which
the model currently identifies as most “clean,” con-
fident, or consistent with the target signal, appear
first. Only the top fraction « (e.g., the top 30%)
of these samples are retained for the subsequent
epoch:

7®

clean

={7T1,...,7TLQNJ}, O<a<l.

These selected samples guide the learning process
in the next epoch. Crucially, this dynamic process
continuously adjusts sample weights: emphasizing
reliable data while still allowing uncertain exam-
ples to re-enter training in future epochs as their
losses improve. The updated sample weights for
epoch t + 1 are assigned as follows:

(t)
w(tJrl) _Ju (t) I’ ifie Ilean

clean

0, otherwise

with normalization to ensure Y7 | wgtH) = L
Unlike hard filtering, this dynamic reweighting
does not permanently exclude higher-loss samples;
instead, it allows their reinclusion in subsequent
epochs if their loss improves, capturing the evolv-
ing confidence and understanding of the model.
The ultimate training objective, given the epoch-
wise sample weighting, is to minimize the overall
weighted loss:

N
0 — : (®) p(t)
arg min ; w;

Here, the adaptive weights wgt) dynamically shift

focus towards the most informative and consistent
samples as determined by model predictions at each
stage, facilitating robust training in the presence of
label noise and enhancing the overall performance
of the grammar score predictor.

4 Experimentation and Results

4.1 Dataset Details

Due to the lack of open-source datasets featuring
grammar proficiency ratings, we constructed two
in-house datasets to evaluate the performance of
our proposed method. These datasets are designed
to assess grammar proficiency in both spoken and
written modalities, with one dataset for each modal-
ity. Each consists of spontaneous speech and writ-
ten essays, respectively, collected from a diverse

3170



participant pool representative of various demo-
graphic factors, including gender, region, and lin-
guistic background. Both datasets are divided into
two splits: (1) an unlabeled training set, and (2) a
test set with ground truth ratings assigned by expert
human raters, which we utilize for evaluation met-
rics. During data collection, we ensured that there
was no overlap between participants in the training
and test sets, and that the test sets exhibited no sig-
nificant class imbalance. The distribution of ratings
for each dataset is presented in Table 1. Further
details on each dataset are provided below.
Spoken Grammar Assessment Dataset
(SGAD) : The SGAD dataset was derived from
an online spoken English assessment product,
where candidates responded spontaneously to two
open-ended prompts, each within a 60-second
time limit. Prompts were designed to elicit natural
language use and authentic grammatical structures.
All audio responses were transcribed using a
state-of-the-art automatic speech recognition
(ASR) system! for accurate textual representation.
. For the test set, four expert raters, representing
diverse linguistic backgrounds and possessing
expertise in language assessment, evaluated both
audio and transcripts with Subject Matter Experts
(SME) . This rubric assessed grammatical accuracy,
fluency, and coherence. Each response was rated
by multiple experts to ensure reliability, with final
scores averaged to address inter-rater variability.
Written Grammar Assessment Dataset
(WGAD) : The WGAD was developed using an
analogous methodology, leveraging an online
language assessment product intended to evaluate
written English proficiency. In this test, partic-
ipants were required to write structured essays
on given topics, facilitating the assessment of
grammar use in formal writing contexts. For the
test set, essays were evaluated by expert raters
using a specialized five-point rubric for written
grammar, also devised by I/O psychologists
and linguists to assess grammatical accuracy,
coherence, and fluency. The rater panel consisted
of four individuals with diverse demographic
and linguistic backgrounds to ensure robust and
unbiased evaluation. Multiple experts rated each
essay, and discrepancies were resolved through
score averaging. Inter-rater correlation was
computed to validate the reliability of the ratings.

'We used the Azure Speech to Text service by Microsoft
(https://learn.microsoft.com/en-us/azure/ai-services/speech-
service/speech-to-text) for transcribing all audio data.

Unlabeled Training Data Preparation and
Pseudo-Labeling for SGAD and WGAD) : To
construct the unlabeled training datasets for both
SGAD and WGAD, we collected extensive spo-
ken and written samples, respectively, from over
10,000 individuals representing a broad spectrum
of linguistic and regional backgrounds, thereby mit-
igating potential demographic bias during train-
ing. Each participant provided two responses to
assigned prompts or topics, resulting in large, de-
mographically diverse corpora for both modalities.
For both SGAD and WGAD, pseudo-labels were
generated using the GPT-4 (OpenAl, 2023) model,
which was prompted with the same five-point gram-
mar scoring rubrics employed by human raters,
specifically, the spoken grammar rubric for SGAD
and the written grammar rubric for WGAD, to as-
sign scores ranging from 1 to 5. This approach en-
sured consistency with human evaluation standards,
reduced subjectivity, and addressed the scalability
limitations inherent in manual annotation. For each
dataset, additional details regarding the train and
test splits are provided in Table 1.

1.0 15 2.0 2.5 3.0 35 4.0 45 5.0
Grammar Score

()

200
> 150
9
2

9
& 100

10 15 2.0 25 3.0 35 4.0 45 5.0
Grammar Score

(b)
Figure 1: Histogram Plot of Expert-Rated Grammar
Scores from Test Set of (a) SGAD Dataset (b) WGAD
Dataset

4.2 Evaluation Metric

To rigorously assess the performance of the gram-
mar competency scoring model, we employ several
evaluation metrics commonly used in related re-
search (Yannakoudakis et al., 2011b; Zechner et al.,
2009a; Williamson et al., 2012; Attali and Burstein,
2006). Specifically, we report the Quadratic
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Weighted Kappa (QWK), the Pearson Linear Corre-
lation Coefficient (PLCC), the Spearman Rank Cor-
relation Coefficient (SRCC), and the Root Mean
Square Error (RMSE). QWK evaluates agreement
between predicted and expert-annotated scores, and
making it well-suited for ordinal regression. PLCC
measures the linear correlation between predicted
and reference scores, while SRCC assesses the con-
sistency of rank ordering, capturing both linear and
non-linear monotonic relationships. RMSE quanti-
fies prediction error as the square root of the mean
squared differences between predicted and actual
scores. During evaluation, higher values of QWK,
PLCC, and SRCC, alongside a lower RMSE, are
indicative of better grammar competency scoring
performance.

Table 1: Details of the Grammar Assessment Datasets.

Dataset Dataset No of No of Avg. Length | Max Length
Split Samples | Candidates (Words) (Words)
Train-set | 20030 10015 74 130
SGAD Test-set 778 389 72 132
Train-set 9669 9669 260 539
WOAD | restset | 1059 1059 258 5

4.3 Performance of Different Backbone
Model Architectures

We evaluated three backbone architectures: BERT,
ELECTRA, and XLNet on the SGAD and WGAD
datasets and results are shown in Table 2. ELEC-
TRA consistently outperformed the others, achiev-
ing the highest QWK, PLCC, and SRCC scores
with the lowest RMSE across both datasets. On
SGAD, it showed the strongest agreement with
human ratings, while also maintaining robust corre-
lation scores. On WGAD, ELECTRA continued to
lead, confirming its effectiveness across modalities.
BERT followed closely, particularly in WGAD,
with competitive QWK and PLCC scores, though
its higher RMSE and slightly lower correlations
suggest minor prediction inconsistencies. XLNet
trailed both models, with lower agreement metrics
and higher RMSE, indicating limited suitability
for grammar scoring tasks. Overall, ELECTRA’s
performance highlights the value of its pretraining
approach and underscores the importance of select-
ing strong transformer models for reliable grammar
assessment.

4.4 Performance of Different LLM Model
Architectures

We evaluate several large language models (LLMs)
on the SGAD and WGAD datasets to measure their

ability to predict grammar proficiency (Table 3).
For score prediction, we apply the same grammati-
cal competency rubric-based prompt that was used
during pseudo-label generation. The models differ
in architecture and training methods, providing in-
sights into what works best for spoken and written
grammar assessment. Most models perform well
on written grammar, showing strong correlation
with expert scores. However, performance drops
in spoken grammar tasks, where disfluencies and
spontaneous speech are harder to handle. Mod-
els trained with task-specific data tend to perform
more reliably. Among all models, GPT-4 consis-
tently outperforms other LLMs across both spoken
and written grammar evaluations, further establish-
ing it as a baseline and a suitable choice for use
in the proposed method. Overall, results highlight
the need for careful model selection and targeted
training for grammar evaluation.

4.5 Method Sensitivity to Different LLM
Model Architectures

We conducted a comprehensive study using the
top five performing large language models (LLMs)
listed in Table 3 to evaluate the sensitivity of
our approach to variations in LLM architectures.
Each model generated pseudo labels for grammar
scoring under identical instructions and evaluation
rubrics to ensure a controlled comparison. We then
trained separate instances of our grammar scoring
model on the pseudo-labeled datasets from each
LLM, employing the optimal configuration identi-
fied in previous experiments. Results are reported
in Table 4. Our analysis reveals that downstream
model performance is strongly influenced by the ca-
pability of the LLM used to produce pseudo labels.
Models trained on labels from higher-capability
LLMs, those demonstrating stronger alignment
with human-rated grammar scores, exhibited su-
perior agreement with expert annotations. Con-
versely, pseudo labels generated by less capable
LLMs introduced higher noise, leading to reduced
performance. This dependency reflects the ability
of advanced LLMs to capture nuanced grammati-
cal features and produce pseudo labels that closely
mirror expert judgments. Consequently, the reli-
ability and quality of supervision scale with the
underlying LLM’s intrinsic proficiency.

4.6 Sensitivity Analysis of the o Parameter

The hyperparameter « plays a critical role in con-
trolling the noise filtering mechanism by determin-
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Table 2: Performance of Different Backbone Model Architectures.

Dataset Model QWK PLCC SRCC RMSE
BERT (Devlin et al., 2019) 0.659 0.748 0.782 0.623

SGAD ELECTRA (Clark et al., 2020) 0.664 0.732 0.73 0.73
XL-Net (Yang et al., 2019) 0.589 0.623 0.664 0.844
BERT (Devlin et al., 2019) 0.776 0.862 0.813 0.558

WGAD ELECTRA (Clark et al., 2020) 0.763 0.833 0.797 0.599
XL-Net (Yang et al., 2019) 0.664 0.686 0.690 0.912

Table 3: Performance of Different LLM Model Architectures on both the WGAD and SGAD datasets.

Method SGAD WGAD
QWK PLCC SRCC RMSE QWK PLCC SRCC RMSE
GPT-4 (Achiam et al., 2023) 0.543 0.602 0.621 0.998 0.541 0.632 0.645 1.233
GPT-40 (Hurst et al., 2024) 0.533 0.587 0.592 1.082 0.534 0.654 0.666 1.298
Gemini 1.5 (Team et al., 2024) 0.324 0.422 0.447 0.952 0.261 0.458 0.465 1.195
LLAMA 3 (Grattafiori et al., 2024) 0.445 0.542 0.644 1.312 0411 0.544 0.586 1.403
Mistral-7b (Jiang et al., 2023) 0.261 0.324 0.375 1.702 0.256 0.318 0.465 1.234
Mistral-8x7b (Jiang et al., 2024) 0.282 0.265 0.345 1.611 0.299 0.478 0.592 1.066
Mistral-large (Jiang et al., 2023) 0.455 0.567 0.687 1.044 0.477 0.576 0.496 1.064
Claude Sonnet (Claude) 0.478 0.553 0.632 1.266 0.495 0.599 0.598 1.052
Claude Haiku (Claude) 0.461 0.592 0.622 1.193 0.498 0.576 0.582 0.989
ing the fraction of samples retained as “clean” after
each training epoch. To rigorously evaluate the 20 2255
impact of a on model performance and address 215
concerns regarding its selection, we conducted an
extensive sensitivity analysis over « values rang- . >//\—_ S N
05 — o,

ing from 0.0 to 1.0 in increments of 0.1. For each
value, we classified the lowest-loss a fraction of
samples as clean and assigned them higher sam-
pling weights during the subsequent training epoch,
while down-weighting the remaining (1 — «) frac-
tion. This approach allows us to systematically
explore the trade-off between discarding noisy sam-
ples and preserving valuable training data. When
a = 0, all samples are considered noisy and effec-
tively discarded, resulting in minimal data utiliza-
tion; conversely, & = 1 corresponds to using the
entire dataset without any noise filtering. Interme-
diate values of v enable flexible balancing between
noise robustness and data retention. The analy-
sis, illustrated in Fig. 2a and Fig. 2b, reveals that
model performance exhibits a clear dependence on
a. Notably, moderate values of « (e.g., around 0.3)
consistently yield lower root mean squared error
(RMSE) and improved correlation metrics across
multiple datasets, indicating an optimal balance
which empirically justifies our original choice of
a=0.3.

4.7

For baseline comparison, we introduce two base-
line approaches: supervised baseline and unsuper-
vised baseline. For unsupervised baseline, we em-
ploy GPT-4 large language model (LLM) for gram-
mar scoring, leveraging its strong zero-shot perfor-
mance in rubric-aligned assessment tasks. During
inference, we used the same grammar competency
rubric-based prompt as was utilized during pseudo-

Quantitative Comparison

0.0 01 02 03 04 0.5 0.6 0.7 08 0.9 10
Alpha (a)

(a) Effect of « variation (SGAD Dataset)

Metrics
—em RMSE
pec
== SRCC
—o- Quik

Metric Value

e,

00 01 02 03 04 06 07 08 09 10

0.5
Alpha (o)

(b) Effect of « variation (WGAD Dataset)

Figure 2: Sensitivity of Grammar Scoring model perfor-
mance to « on both the WGAD and SGAD datasets.

label generation, thereby ensuring consistency in
prediction criteria. For the supervised baseline,
we trained a BERT-based grammar scoring model
specifically using the same pseudo-labeled dataset
as our proposed method. This baseline was opti-
mized using mean squared error (MSE) loss with
identical training configurations, except that no
label noise-aware sample weighting was applied.
The model was evaluated on the same test set as
our proposed approach. Including this supervised
baseline provides a more comprehensive context
for interpreting the performance gains achieved by
our pseudo-label-based training framework. While
our rated dataset does not contain enough anno-
tated samples to support a conventional fully super-
vised baseline with an independent train—test split,
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Table 4: Performance Comparison of Grammar Scoring Models trained on Pseudo labels from Different LLM

architectures on both the WGAD and SGAD datasets.

SGAD

WGAD

Method

QWK PLCC

SRCC

RMSE QWK PLCC SRCC RMSE

GPT-40 (Hurst et al., 2024) 0.426 0.643

0.660 0.920 0.419 0.687 0.692 1.140

LLAMA 3 (Grattafiori et al., 2024) 0.365 0.605

0.634 0.897 0.409 0.678 0.697 1.114

Mistral-large (Jiang et al., 2023) 0.489 0.684

0.707 0.778 0.309 0.641 0.657 1.028

Claude Sonnet (Claude) 0.374 0.598

0.605 0.862 0.391 0.669 0.676 0.951

0.341 0.629

Claude Haiku (Claude)

0.634 0.842 0.401 0.639 0.645 0.958

this setup serves as an ablation study, quantifying
the benefits of our sample weighting and noise-
aware training procedures central to the proposed
approach. The performance of the respective base-
lines is reported in Table 3. The results show that
our proposed method outperforms both baselines
by substantial margins.

Given the lack of prior work in zero-shot gram-
mar scoring, particularly in the spoken domain, we
adopt noise-robust learning algorithms as a princi-
pled alternative to supervised methods for handling
pseudo-labeled data. To benchmark the effective-
ness of our approach, we compare it against several
state-of-the-art (SOTA) noise-robust training tech-
niques, including co-teaching (Han et al., 2018a),
pseudo-label refinement (Wang et al., 2022), and
sample reweighting methods (Feng et al., 2024;
Li et al., 2022), evaluated on both the SGAD and
WGAD datasets (Table 5). While these methods
are designed to mitigate the effects of label noise,
they often exhibit limited generalization and incon-
sistent performance across metrics. In contrast, our
structured training framework demonstrates robust
and stable results, showing greater resilience to
noisy supervision.

4.8 Impact Analysis with Different Error
Types

Although grammar scoring models effectively as-
sess grammatical proficiency, their reliability in
spoken language remains challenged by informal
structures, disfluencies, and pauses (Ting et al.,
2010). Without distinguishing acceptable spoken
variations from true errors, models may misjudge
natural speech or miss actual mistakes, reducing
alignment with human evaluations. To analyze
this, we construct a synthetic dataset by select-
ing high-scoring (> 4.5) samples from SGAD and
WGAD and introducing controlled grammatical er-
rors. Domain-specific errors, such as spelling, verb
form, tense, subject—verb agreement, pronouns,
punctuation, prepositions, word order, and filler
words, are applied following prior work (Wang
etal., 2021; Ting et al., 2010). Details of each error

type appear below.

* Filler Word Error: Use of unnecessary
words like "um," "like," or "you know."

* Redundant Phrases: Repetition of ideas that
makes the sentence wordy.

* Word Order Error: Incorrect sequence of
words affecting clarity and grammar.

* Verb Error: Incorrect verb form disrupting
sentence structure.

* Preposition Error: Wrong or missing prepo-
sitions leading to awkward expressions.

* Tense Errors: Inconsistent or incorrect verb
tenses confusing the time of action.

* Subject-Verb Agreement Error: Mismatch
in number between subject and verb.

* Spelling Error: Incorrect spelling affecting
readability or meaning.

* Punctuation Error: Misuse or omission of
punctuation changing sentence meaning.

* Pronoun Error: Unclear use of pronouns
confusing the sentence subject or object.

Each sample is corrupted in a controlled manner,
where we incrementally increase the error intensity,
defined as the percentage of words affected. This
enables fine-grained stress testing of model robust-
ness across varying degrees of linguistic degrada-
tion. The resulting dataset facilitates evaluation of
model sensitivity, consistency with expert ratings,
and bias in error attribution, offering insights into
how different error types influence prediction be-
havior and helping guide the development of more
resilient grammar assessment models.

4.9 Qualitative Comparison

We qualitatively evaluated model robustness using
a synthetic dataset (4.8) with varying grammati-
cal error intensities. As errors increased, predicted
grammar scores declined, showing a strong neg-
ative correlation (Figure 4). The percentage of
impacted samples those with higher score differ-
ences also increased with error intensity, as shown
in Figure 3. Structural errors like word order, filler,
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Table 5: Quantitative Comparison Results on both the WGAD and SGAD datasets.

Method SGAD WGAD
QWK PLCC SRCC RMSE QWK PLCC SRCC RMSE
Gur method 0659 | 0748 | 0.782 | 0623 | 0776 | 0862 | 0813 | 058
Supervised Baseline 0.466 0.655 0.657 0.997 0.366 0.478 0.488 1.102
Unsupervised Baseline 0.543 0.602 0.621 0.998 0.541 0.632 0.645 1.233
Mentor-net (Jiang et al., 2018) 0.249 0.176 0.141 1.167 0.671 0.821 0.795 0.673
Co-teaching (Han et al., 2018a) 0.155 0.167 0.167 1.386 0.772 0.800 0.795 0.669
Co-teaching Plus (Yu et al., 2019) 0.225 0.412 0.410 2.137 0.766 0.795 0.782 0.677
SIGUA (Han et al., 2020) 0.585 0.733 0.761 0.737 0.580 0.814 0.786 0.667
FINE (Kim et al., 2021) 0.499 0.265 0.253 1.298 0.731 0.817 0.798 0.632
Active-Passive-Losses (Ma et al., 2020) 0.640 0.699 0.738 0.695 0.733 0.802 0.775 0.681
SPR-LNL (Wang et al., 2022) 0.358 0.651 0.667 1.057 0.447 0.533 0.596 1.125
SSR-BMV (Feng et al., 2024) 0.624 0.731 0.742 0.655 0.696 0.803 0.769 0.662
Sel-CL (Li et al., 2022) 0.587 0.712 0.745 0.724 0.756 0.804 0.782 0.658
Error Intensity vs Impacted Samples % Error Intensity vs Mean Prediction Score
100 4.0
38
80
56
2 g
2 60 3 34
: g
§ é 32
E 40 i
E 3
- Error Type =30 Error Type
— word_order —— word_order
20 pronoun 28 pronoun
—— subject_verb_agreement —— subject_verb_agreement
— fillers — fillers
— tense 261 — tense
o = Weposiion = eposiion
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 04 0.6 0.8 10
Error Intensity Error Intensity
(a)
(a) Error Intensity vs Mean Prediction Score
Error Intensity vs Impacted Samples %
100 4.0
35
80
E 3.0
A 5
2 60 g
e $ 25
2 < Error Type
g g —— word_order
g w Error Type = 209 — punctuation
E = word_order —— subject_verb_agreement
punctuation —— wnse |
—— subject_verb_agreement 154 — pronoun
20 — tense — filers
— pronaun — preposition
10 spelling
~— preposition
0 spelling 0.0 0.2 0.4 0.6 0.8 10
ror ncensty
0.0 0.2 0.4 0.6 0.8 10
Error Intensity (b)
(b) Figure 4: Impact of Increasing Error Intensity on Mean

Figure 3: Percentage of impacted samples due to in-
creasing Error Intensity on Mean Prediction Scores
Across Error Types. (a) Impact on SGAD Dataset. (b)
Impact on WGAD Dataset

and punctuation caused the largest drops. Compar-
ison with human ratings showed strong alignment,
confirming consistent rubric-based scoring.

5 Conclusion

We present a novel zero-shot method to estimate
grammar competency scores in both written and
spoken responses. Our approach mitigates the
scarcity of labeled data by leveraging unlabeled
samples and generating pseudo-labels using Large
Language Model (LLM) predictions guided by a
rubric-based prompt. These pseudo-labels are then
employed within a noise-aware training framework
to train a transformer-based model for grammar

Prediction Scores Across Error Types. (a) Impact on
SGAD Dataset. (b) Impact on WGAD Dataset

score prediction. The method’s ability to general-
ize across written and spoken modalities demon-
strates its broad applicability. Experimental results
highlight the effectiveness of our approach and its
ability to overcome the limitations of labeled data
scarcity. Additionally, experiments varying the ra-
tio of “clean” and “noisy” samples retained after
each epoch reveal that selective retention of high-
quality samples is crucial for stable training. We
further evaluate multiple LLMs for pseudo-label
generation, showing that model choice significantly
influences alignment with human judgment. Future
work will enhance noise robustness and extend to
multilingual datasets.
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Limitations

While our method offers a practical and scalable
solution for grammar competency score estima-
tion, it has certain limitations. First, the use of
pseudo-labels derived from Large Language Model
(LLM) predictions introduces noise and some er-
rors may not be captured well by LLMs, which
may affect the model’s accuracy under certain con-
ditions. Second, the approach relies on the quality
and alignment of the grammar competency rubric-
based prompts, which may also vary across differ-
ent use cases.
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