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Abstract

We investigate communication emerging in
noisy environments with the goal of captur-
ing the impact of message disruption on the
emerged protocols. We implement two differ-
ent noise mechanisms, inspired by the erasure
and deletion channels studied in information
theory, and simulate a referential game in a neu-
ral agent-based model with a variable message
length channel. We leverage a stochastic eval-
uation setting to apply noise only after a mes-
sage is sampled, which adds ecological validity
and allows us to estimate information-theoretic
measures of the emerged protocol directly from
symbol probabilities. Contrary to our expec-
tations, the emerged protocols do not become
more redundant with the presence of noise; in-
stead, we observe that certain levels of noise
encourage the sender to produce more compo-
sitional messages, although the impact varies
depending on the type of noise and input repre-
sentation.

1 Introduction

Emergent Communication (EC) studies how arti-
ficial agents spontaneously develop their own lan-
guage through interaction. Simulations with such
systems offer insight into fundamental questions
related to the origins of language and the biases
(inductive or environmental) that are key for struc-
ture to emerge. EC frameworks also have a role in
applied research, as they have been used for the au-
tomatic development of communication protocols
in several real-world domains, such as autonomous
driving, traffic control, or internet of things (Chafii
et al., 2023; Pi et al., 2024).

The relevance of incorporating more naturalis-
tic settings into EC has been increasingly recog-
nized, as communication protocols emerging in
overly artificial settings tend to lack crucial fea-
tures of natural languages (Chaabouni et al., 2019a,
2020; Galke and Raviv, 2025). Simulations with

agents endowed with either human-like cognitive
constraints or biases (Kouwenhoven et al., 2024,
Rita et al., 2022; Galke et al., 2022; Galke and
Raviv, 2025; Chaabouni et al., 2019b) or a learn-
ing environment in which the agents are subject
to naturalistic communication pressures (Lazari-
dou and Baroni, 2020; Galke et al., 2022) seem to
encourage the presence of some of language-like
properties, such as Zipfian distribution of message
lengths, or the word-order/case-marking trade-off.

A possible way to make the setting more nat-
uralistic is by incorporating a noisy environment.
In the real world, message transmission is often
imperfect, either because of competing sounds in
the environment or due to the listener’s perceptual
or attentional constraints. To facilitate communica-
tion in noisy environments, a language must offer
some degree of resilience to disruptions resulting
from random distortions of the produced utterances.
Redundancy and compositionality are two features
of natural language that can help in that endeavor.

The former characterizes human communication
on several levels (Aylett, 2000); for instance, redun-
dancy of English was estimated to be around 50%
at the letter level, according to the information-
theoretic formalization of the notion (Shannon,
1951). Some phonetic features may also be consid-
ered redundant, particularly the distinction between
an allophone and a phoneme (Bazzanella, 2011).
Numerous ways of conveying the same meaning
provide another example, e.g. consider the phrases:
“How old are you?”, “What is your age?”, “What
age are you?”. Nonetheless, redundancy does not
seem to grow indefinitely in (emergent) languages
(Beekhuizen et al., 2013), as exemplified by the
trade-off between word order and case markings
(Chaabouni et al., 2019a; Lian et al., 2021).1 On the

'This trade-off refers to the tendency of natural languages
to rely either on case-marking with more flexible word-order
(e.g. Russian), or stricter word-order with little or no case-
marking (e.g. English) to encode the role of sentence con-
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other hand, compositionality divides the meaning
of a message across multiple lexical pieces (Szabd,
2004). This has the potential to help preserve the
correct decoding of a message: if the message “red
hat” is altered due to noise but part of it is preserved
(“red” or “hat”) we may still infer the referent.

Here, we follow previous work (Kucinski et al.,
2020, 2021) which use an Emergent Communica-
tion (EC) scenario to explore whether the presence
of noise in a communication channel encourages a
neural agent-based system to develop robust com-
munication protocols via the use of redundancy and
compositionality. Our contributions are as follows:
(i) our agents are allowed to use variable-length
messages; (ii) we study two types of noise —erasure
and deletion— derived from information-theoretic
models of noisy communication channels (Shan-
non, 1948; Mitzenmacher, 2009); (iii) we leverage
a stochastic evaluation setting in which the sender
samples symbols from the learned distribution, and
we apply the noise only after the sender has sam-
pled a message. This has multiple benefits: (1) the
formalization of noise applies only to the channel
and is therefore a more ecologically valid technique
for simulating disruptions (compared to approaches
which apply noise as a regularization layer before a
message is sampled (Foerster et al., 2016; Kucinski
etal., 2021), and (2) it allows us to compute a range
of information-theoretic measures on the emergent
protocols with greater reliability, compared to the
deterministic approach.

We find that the presence of (certain amounts
of) noise encourages compositionality but not re-
dundancy of the messages generated by the sender.
However, compositionality is not always preserved
in the corrupted messages reaching the receiver.

2 Related Work

Simulating EC in a cooperative setting is often
based on a referential game, most often a version
of the Lewis Signaling Game (Lewis, 1969), in
which two agents are trained to achieve a common
goal: the Sender observes a state and generates a
message, based on which the Receiver’s goal is to
select a unique correct state, i.e. the target, among
a set of candidates; both are awarded if the correct
state is chosen. Over repeated iterations of the
game, the agents develop a shared communication
protocol based on the learning signal.

stituents. However, languages rarely include both strategies,
and so in that sense are not redundant.

In recent work on EC, the Sender and Receiver
are modeled as neural network architectures (see
Lazaridou and Baroni, 2020 and Peters et al., 2025
for an overview). Much focus has been put on
studying the emergence of compositionality. While
emerging communication protocols do not always
exhibit this property (Lazaridou and Baroni, 2020;
Peters et al., 2025), choices on model capacity and
channel bandwidth (Gupta et al., 2020), input rep-
resentations (Lazaridou et al., 2018; Stowik et al.,
2020; Akkerman et al., 2024), model architecture
and training regimes (Havrylov and Titov, 2017;
Ren et al., 2020; Chaabouni et al., 2020; Galke and
Raviv, 2025) seem to influence the emergence of
compositional languages.

Another line of work investigates how noise in-
fluences agents’ communication. Some of this
work primarily focuses on how the presence of
noise impacts task performance (Simdes et al.,
2019; Kontogiorgis and Bouroche, 2024; Weil et al.,
2023). Other studies on EC in a noisy setting focus
specifically on how it affects the protocols them-
selves, such as the presence of Zipf’s law of abbre-
viation (Ueda and Washio, 2021), symbol distribu-
tions (Foerster et al., 2016), or properties facilitat-
ing zero-shot communication (Cope and Schoots,
2024). In the domain of information theory, Letizia
et al. (2023) exploit a cooperative game setting in-
spired by GANSs to learn capacity of noisy channels,
i.e. the maximum possible rate at which informa-
tion can be reliably transmitted.

Studies investigating compositionality or redun-
dancy in noisy settings are particularly relevant to
this work. Nikolaus (2024) studies explicit con-
versational mechanisms and observes that the pres-
ence of noise boosts compositionality, unless the
setting includes a feedback mechanism facilitating
conversational repair. Vital et al. (2025) find that
communication emerging in noisy environments
is more robust to disrupting messages by masking
symbols, possibly due to more redundant proto-
cols. Kucifiski et al. (2021) apply noise to symbol
distributions in Straight-Through Gumbel-Softmax
based simulations. They find that moderate levels
of noise promote compositionality and prove that
under certain conditions, convergence to a compo-
sitional protocol is guaranteed in the presence of
noise, noting that the effect may be specific to the
fixed message-length setting they use.
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3 Experimental Setting

Inspired by Lazaridou et al. (2018), we simulate
the referential game with variable message length
in two settings, utilizing either disentangled binary
vectors or pixel data as the input dataset. We use
the EGG framework (Kharitonov et al., 2019). Our
code and other resources required to reproduce
the reported results are made available at https:
//github.com/cklamra/noisyEC/.

3.1 Input Data

We use two complementary datasets: one using dis-
entangled feature vectors, and another using pixel-
based inputs:

Disentangled Input We follow the procedure de-
scribed by Lazaridou et al. (2018) to recreate disen-
tangled feature vectors from the Visual Attributes
for Concepts Dataset (Silberer et al., 2013).> Each
of the 503 sparse binary vectors represents 594
disentangled attributes of a single concept belong-
ing to one of 16 categories. We randomly choose
402 vectors to be used for training and in-domain
evaluation (ID) and use the remaining 101 vec-
tors for out-of-domain evaluation (OOD). Then,
for each target vector, we repeatedly sample sets
4 distractors.® The resulting dataset consists of
102912/1206/1212 samples for training, ID and
OOD evaluation, respectively.

Figure 1: Sparsity pattern in the VisA dataset (Disten-
tangled input). Each row represents a single concept,
whose features are marked in black. Horizontal lines
separate concept categories.

Pixel Input We generate 64x64 RGB images of
single object scenes using a modified version of the
Obverter dataset scripts (Choi et al., 2018). We con-
sider 5 object shapes and 8 colors from the original

*We do not remove homonym concepts.

3For each target vector, we sample 256/12/3 sets of dis-
tractors for training, ID and OOD evaluation. Note that the
samples presented during training and during ID evaluation
are independently drawn from the same distribution.

dataset, and additionally include the cone shape.
12 out of the 48 resulting combinations are solely
used for OOD evaluation, and the remaining 36 are
used for training and ID evaluation. For each tar-
get scene, we sample 256/12/36 sets of 4 distractor
scenes, resulting in 9216/432/432 total samples, for
training, ID and OOD evaluation, correspondingly.
Additional details are provided in Appendix A.

Although pixel input is generally considered
more realistic and challenging (as agents need to
learn the relevant attributes themselves), attribute
distributions in the pixel input condition are in fact
much more artificial: even though in some cases we
constrain the set of possible candidates (see above),
the features of the target object follow uniform
distributions, whereas VisA attributes are sourced
from the real world, thanks to which intra-concept
features reflect subtle co-dependencies, as illus-
trated in Figure 1.

3.2 Architecture

Let A be the set of available symbols and Ly, ,x be
the maximum message length. Given the target ob-
jectt = ¢;, where ¢; belongs to the sequence of can-
didate objects C = (cq, . . -, ¢5), the sender encodes
t into a dense representation hg = f(i,) of size d.
Then it iteratively samples symbols s; based on the
output h; = hS(g(sl_l), hl_l) of the decoder (i.e.
logm; = h; are unnormalized log-probabilities),
producing the message m = (s1, -, s1).*

Based on the message m, the receiver com-
putes dense representations v = (v;)1<i<|c|, Where
v; = f®(c;) for each candidate object ¢; € i,, and
embeds m into z = h;,, where [y is the position of
the first EOS symbol and h; = hS(gS(le ), hi—1 ).5
Finally, the receiver predicts the target t' € C by
selecting the object corresponding to the highest
probability of the Gibbs distribution computed as
the dot product between z and each v;. Agents’
communication is successful provided that ¢ = ¢.

For disentangled input, the encoder f(-) is a sin-
gle fully-connected layer; in the pixel input setting,
we use the model described in Denamganai et al.
(2023), consisting of four 3x3 CNN layers with
stride 2.°, each of which is followed by a 2D batch
normalization layer. The output of the last layer of
size 1024 is transformed to a dense representation

“Atl =1, alearned SOS embedding ey is used as the first
argument of h.

Sho = 0 is assumed.

®The first/last two layers have 32/64 filters, respectively.
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of size 128 by a fully connected layer. Outputs of
the fully connected layer and each batch normaliza-
tion layer are passed through the ReLU activation
function. The symbol encoder g(-) maps previ-
ously sampled symbols to a dense representation of
size 16, while the decoder h(-), is implemented as
a single-layer LSTM with 64 and 128 hidden units
for the first and second experiment, respectively.

3.3 Learning

Learning is based on Gumbel-Softmax relaxation
(GS). During training, at each timestep | < Lyax
the sender transforms the vector of (unnormalized)
log-probabilities log ; into a relaxed symbol sam-
ple s; ~ GS(m, 7), defined as:

exp ((logp; + G;)/7)
> jeaexp ((logpi + G5)/7)
where 7, = (p;)iea is the vector of (normalized)
symbol probabilities, 7 is the temperature param-

eter and each G; ~ Gumbel(0, 1) (Huijben et al.,
2023).

GS(m,7)i =

Unlike the majority of recent work on emergent
communication systems, in which the whole setup
is made deterministic on inference by applying
argmax to the learned symbol distribution Cat(7),
we use the same symbol sampling mechanism dur-
ing training and evaluation. We take advantage of
the fact that argmax;, 4 (GS(m, 7)) ~ Cat(r,7),’
to obtain discrete messages after the training is
completed.® However, any feedback that impacts
the training is exclusively based on relaxed symbol
distributions, ensuring that gradients are not biased,
as in the case of Straight-Through GS.’

While most research in EC minimizes cross-
entropy loss of receiver output and target label,
Kucinski et al. (2021) minimize cross-entropy be-
tween the attributes of the target and selected can-
didate instead. After preliminary experiments with
both options (summarized in Appendix B), we
opted for balancing these objectives by comput-

"Cat(r, T) denotes temperature-adjusted categorical dis-
tribution based on 7 and can be computed as softmax(, 7).
For brevity, we will henceforth implicitly assume that 7 is
adjusted for the temperature.

8We additionally remove symbols preceded by EOS during
training.

°The gradient is biased with respect to discrete symbol
distributions.

ing both losses:
Lteatures = Z Hc(]lAi ) Az)
7
Liabel = Hc(ﬂAt77TR)

where for each attribute in (shape, color, x, y), in-
dexed by ¢ and taking the value A; for the target
t, the expected value A; of the selected object is a
vector given by A; = chec p?]l Ac wWhere p? is the
j-th position of the distribution 7% outputted by
the receiver, representing the estimated probability
that t = ¢;."” We combine the losses as:

L = Lieatures + 0.5 X Liape) +0.01 x E(L)

where the final term E(L) adds the length cost
(Chaabouni et al., 2019a). Further details of our
training procedure can be found in Appendix B.

3.4 Noisy Communication Channels

We consider two noise mechanisms, inspired by
the erasure and deletion channels studied by in-
formation theory (Shannon, 1948; Mitzenmacher,
2009):

* Erasure channel: a non-EOS symbol is re-
placed by a special symbol, distinct from the
symbols available to the sender.

* Deletion channel: a non-EOS symbol is re-
moved from the message without replacement
(an additional EOS symbol is appended).

Note that symbol positions and message length
may only be distorted by the deletion channel, ren-
dering the communicative task more difficult (a
priori) given equal error probability as information
on which symbols were distorted is lost.

EOS ———  EOS E0S — EOS

1-pe 1-pe
1 1 1 1
~ ~
NN 1-pe AN 1-pe
2\ N 2 2\ ~ 2
SV l-pe S Y l-pe
3z —= 3 3z —= 3
. T~ NN X - NN
: ~ol-pen : ~_1-pe~
n —— — N n n —— — n
- - ~ O~ - - ~ O~
NN T~ TSy
Pe ‘*~§7 Pe ‘\3§5

(a) Erasure channel (b) Deletion channel

Figure 2: Models of the two noisy channels.

Figure 2 illustrates the behavior of the channels
on transmission of a single symbol. Unlike other

"%For a categorical RV X, 1 is its one-hot encoding.
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work investigating noise in a differentiable setting
(Foerster et al., 2016; Kucinski et al., 2021), we
apply noise after sampling symbols. First, relaxed
symbol representations are sampled according to
the probability of error p. (on evaluation, only non-
EOS symbols are considered). Then, noise is ap-
plied to each symbol vector s;: on training, non-
EOS probability mass of the relaxed target symbol
probabilities s; = GS(7, 7) is adjusted to represent
the distribution after applying noise C'(s;).

On evaluation, each one-hot vector s; represent-
ing a non-EOS symbol is disrupted with proba-
bility p.. We adjust the symbol distribution 7
of each message m passing through the channel
C, to obtain symbol distribution E,, [C), (m;)] =
PexC'(m)+(1-pe ) x7 of the noisy message (analo-
gously to adjusting relaxed symbol probabilities).!!
Efficiently solving the task requires that relevant

t ‘t’

Sender Receiver

ms me
—| Channel

Figure 3: Standard information-theoretic communica-
tion scheme.

C

information about the target object be compressed
into messages, which should also offer a degree of
robustness to noise. The whole setup could be seen
as a variant of the standard information-theoretic
communication scheme (see Figure 3), in which
the agents realize both source and channel coding
of the target features, corresponding to these two
goals. The sender encodes the features of the target
object t into the message mg; the receiver predicts
the target object t’ € C' based on the message m;
after passing through the channel and additionally
provided set of candidate objects C'.

3.5 Information-Theoretic Measures

To formalize the intuition that agents’ communi-
cation relies both on efficient encoding of the fea-
tures of the target object (source coding) and on
robustness against noise introduced by the chan-
nel (channel coding), let Mg, MR be RVs repre-
senting sent and received messages and 1" be a

""n case of the deletion channel, we adjust relaxed probabil-
ities by: (i) computing expected non-EOS symbol distributions

at each position, and (ii) adjusting EOS probabilities at each
position accordingly.

(uniformly distributed) RV representing disentan-
gled features of the target object. Note that suc-
cessful identification of the target object by the re-
ceiver depends on I(T'; MR ), which is bounded by
both I(T'; Mg) and I(Mg; MR): since Mg and T’
are conditionally independent given Mg, we have
I(T; Mg | Mg) = 0. Optimizing the efficiency of
channel coding and source coding of the protocol
corresponds to maximizing the former and the lat-
ter, respectively. We assess the relative importance
of these objectives at different stages of training by
computing the values of I(Mg; MR), I(T; Ms),
and I(T'; MR) after every epoch.

Entropy estimators based on empirical distribu-
tions are proved to be biased and do not scale well
with the support size of the distribution (Paninski,
2003). '? This problem constitutes a major obsta-
cle in a deterministic setting, in which the number
of unique messages is bounded by the number of
unique target objects. We leverage the access to
actual symbol distributions that the sender samples
from to compute entropy directly from probabili-
ties or assume the Monte Carlo approach, reducing
the bias by sampling additional messages.'> Un-
less otherwise stated, reported values of entropy
and other information-theoretic measures based on
a Monte Carlo sample are computed using a Maxi-
mum a posteriori estimator with a Dirichlet prior
a = 1/k, where K is the number of all possible
messages (Wolpert and Wolf, 1995; Perks, 1947).
The method of computing entropy directly from
probabilities is described in Appendix C. Further-
more, in Appendix D we compare the performance
of several entropy estimators used on a single mes-
sage or multiple samples against entropy computed
from probabilities.

4 Results

We report results after training for 77,184 steps in
the Disentangled input setting and 34,560 steps for
the Pixel input.'* We run simulations for maximum
lengths L € {2,3,4,5} and vocabulary size |A| =
10.15

We evaluate messages before and after passing

“n our case, there are O(|A|“™*) possible messages.
Even though we assume a moderate value of |A| = 10, the
number of possible messages may easily exceed the number
of unique sender inputs on evaluation.

BNeither of these approaches would work if argmax was
applied, as described in subsection 3.3.

"“The number of training steps was selected to ensure con-
vergence, based on the preliminary experiments.

'SExcluding the additional symbol for the erasure channel.
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through the channel, henceforth referring to them
as sent and received messages, correspondingly.'®
We analyze the resilience of the protocols to other
mechanisms of message disruption and provide
additional analysis to support our findings in sec-
tion E.

Efficiency of communication As illustrated in
Figure 4, in nearly all settings the success rate tends
to decrease as more noise is introduced. In the
disentangled input condition, we observe a consis-
tent drop in success rate of around 10 pp. in the
OOD condition relative to the ID condition. No
such discrepancy is observed in experiments based
on pixel input. Average accuracy in the pixel in-
put experiments is substantially lower than for the
disentangled input runs, although it is well above
chance level (20%) for every condition. Simula-
tions with larger maximum lengths result in more
accurate communication. Notably, performance for
the sent and received messages is almost the same
after training on pixel input. Unsurprisingly, the
disparity between success rate for sent and received
messages is strongest for shorter messages.

Source vs Channel coding In a noisy environ-
ment, communicative efficiency has different com-
ponents: to what extent do agents prioritize max-
imizing the informativeness of messages with re-
spect to the target referent (source), versus enhanc-
ing robustness against channel noise. The results of
this analysis are presented in Figure 5, for Ly« = 4
(see also Figure 13 in Appendix E for all maximum
lengths).

For both channels and both input data types, we
observe that the values I(7T'; Mg), and I(Mg; MR)
consistently increase during training (with a steeper
increase for lower noise levels), suggesting that the
two objectives are equally important. On the test
set for the disentangled input data, any amount of
noise for either of the channels negatively impacts
accuracy throughout training. This effect is also ob-
served in the pixel input condition for the deletion
channel; however, for the erasure channel, low and
moderate noise levels also achieve a success rate
comparable to the condition without noise (particu-
larly in the final phases of training).

In case of the erasure channel we observe similar
dynamics of change across training for both input
data types: noise seems to positively impact the val-

'® Agents’ weights are updated based solely on the received
messages.

ues of H(Mpg), whereas H(Ms), I(T; Ms) and
I(T; MR) are consistently impeded proportionally
to pe. For the deletion channel, the impact of noise
on I(T; Mg) and I(T; MR) is even stronger, how-
ever the pattern of change of I(Msg; M) and en-
tropy values is different for each input data type:
the values of I(Msg; MR), H(Ms) and H(Mg) all
positively related to p. on the disentangled dataset,
but negatively related on the pixel input dataset.

Overall, we find that I(Mg; MR), H(Mpg) and
H(Msg) are non-decreasing during training (ex-
cept for the p. = 0 condition where I(Msg; MR) =
H(M)). Although I(T'; MR) is successfully op-
timized during training, the success rate does not
reach values close to 1 in the pixel input condition.
Concurrently, we find that in the pixel input set-
ting the values of I(T"; Mg), where T represents
the attributes of the object selected by the receiver,
are much closer to I(7"; Mg) than on the disentan-
gled input, both for training and evaluation (see
Figure 14 in section E).

Lexical Properties We find that both types of
noisy channels have a clear impact on properties
of the emerging communication protocols. The av-
erage message length is affected in different ways
(see average length row on Figure 4): (i) we ob-
serve a weak but consistent negative relationship
between message length and p. for the erasure
channel; (ii) in case of the deletion channel and
the disentangled input, the presence of noise in-
creases the average length of sent messages, re-
sulting in a values almost equal to L.y, Whereas
average length of received messages is highest for
pe = 0.05 and steadily decreases for p. > 0.05;
in the pixel input condition, average length con-
sistently decreases relative to p. and in case of
the received messages and is non-increasing for
the sent messages. For the erasure channel, while
the number of unique received messages mostly
increases with noise, the number of unique sent
messages remains stable. For the deletion chan-
nel, lexicon size for the received messages takes an
inverted U shape and tends to increase with noise
for sent messages in the disentangled condition. In
general, lexicon size is much lower in the pixel
setting, likely due to a lower number of unique
target objects or the uniform distribution of target
features. Lastly, redundancy per symbol and maxi-
mum message length seem to be positively related
because permitting longer messages leaves more
room for redundancy.
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Redundancy We evaluate message redundancy
based on the standard information-theoretic no-
tion of relative redundancy, computed as R(M) =
1 = H(M)/Hyax (M), Wwhere Hpax (M) is the maxi-
mum achievable entropy given the expected length
distribution of messages M.!” The resulting value
corresponds to redundancy per symbol, rather than
redundancy of the whole sequence.

Across all conditions, we observe that the redun-
dancy of the protocols in the ID and OOD condi-
tions tend to coincide (see redundancy per symbol
row in Figure 4). The presence of noise stimulates
redundancy of the received messages; however, this
is not the case for the sent messages: contrary to
our expectations, we find that redundancy of sent
messages tends to decrease relative to p. in most
cases, possibly because average message length
decreases as well.'8. Similar redundancy values
were observed in additional experiments where the
length-cost term in the loss function was disabled
(see Figure 16 in section E), suggesting that this
cost did not contribute to the protocol’s lack of re-
dundancy. For disentangled input and the erasure
channel (or sufficiently long messages and the dele-
tion channel), redundancy of noisy messages peaks
for intermediate noise levels.

Compositionality We compute topographic sim-
ilarity (Brighton and Kirby, 2006) to assess com-
positionality of the emerged protocols (see topsim
in Figure 4). We opt for ropsim due to its wide ac-
ceptance and its flexibility with regards to message
length (it is unclear whether other compositionality
metrics in the literature are applicable to variable-
length sequences). Topsim requires the use of two
distances: for the messages, we use Levenshtein,
and for the targets, we use cosine for disentangled
input and Hamming for pixel input.

We find that the erasure channel positively im-
pacts topsim of sent messages when using moderate
amounts of noise, provided the input is disentan-
gled —the pattern is much less clear for the pixel
input. The impact of the input representation is
reversed for the deletion channel: while noise has
an almost imperceptible effect for disentangled in-

"Expected length is computed via conditioning on prefix
probabilities (see Appendix C). Hmax (M) for received mes-
sages computed based on the value of p., with the assumption
that sending messages consisting of uniformly distributed (and
so pairwise independent) non-EOS symbols leads to maximal
entropy of noisy messages.

"®Increasing message length while holding entropy constant,
e.g. by repeating symbols, would result in higher redundancy,
since Hmax positively depends on actual message length.

put, intermediate and high levels of noise positively
impact topsim of the sent messages.

As expected, the received messages lose some of
their compositional structure after passing through
the noisy channels. This reduction of topsim
largely follows the same relation to p. in the Era-
sure channel, but the decrease is much more abrupt
in the Deletion channel. This reduction is consis-
tent with average length: the compositional struc-
ture is lost as messages become shorter.

The maximum sequence length has a small pos-
itive influence on the disentangled input, yet a
(smaller) negative effect on the pixel input. We
do not observe a relationship between topsim and
accuracy within simulations (with the exception of
a negative correlation for the deletion channel and
received messages). The discrepancy between the
sent and received conditions is much stronger for
topsim than for accuracy.

5 Discussion

Our results suggest that, in some settings, agents
opt for increasing compositionality as a way to
combat noise. This is in line with earlier work
(Nowak and Krakauer, 1999; Kucinski et al., 2021);
however, here we show that this is also the case for
erasure and deletion channels with variable-length
messages; furthermore, the gains in compositional-
ity largely depend on the type of noise and whether
the input is disentangled.

This strategy followed by the agents has also
been attested in studies that investigate the influ-
ence of population size in emergent languages.
Larger groups inevitably introduce variability in
the system, and studies with human subjects find
that speakers tend to develop more structured lan-
guages in such situations, likely to preserve mutual
understanding (Raviv et al., 2019). These findings
have been replicated in a heterogeneous population
of neural agents (Rita et al., 2021).

Consistent with Chaabouni et al. (2020), we do
not find a direct relation between accuracy and com-
positionality; however, in our case, this may be due
to the presence of noise, since more compositional
systems are also those with higher probability of
message distortion.

Our simulations use a different type of noise
compared to previous approaches: instead of intro-
ducing other symbols from the vocabulary (Cope
and Schoots, 2024; Kucinski et al., 2021) (which
possibly have an attributed meaning), it distorts the
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message by either introducing an out-of-vocabulary
symbol (erasure) or removing part of the message
(deletion). While the erasure is arguably easier to
combat, the latter may increase the difficulty, es-
pecially if agents rely on positional information to
interpret meaning. Interestingly, the agents seem
to deal with both types of noise equally well in
the disentangled input condition, but in the case of
pixel input, accuracy is substantially lower for the
deletion channel. Concurrently, redundancy rate
and average length of the sent messages remain
stable relative to the noise level, suggesting that in
the pixel input setting, the sender counters deletion
by generating more compositional messages rather
than by increasing redundancy (either by produc-
ing longer messages or increasing redundancy per
symbol).

Vital et al. (2025) find that protocols emerging
in environments in which symbols may be erased
are more resilient to symbol masking, and argue
that this results from a higher degree of redun-
dancy. While we observe a similar effect (see
section E), redundancy at the symbol level of mes-
sages generated by the sender decreases or does not
change with respect to the noise level (in case of
the deletion channel and disentangled input condi-
tion, lower redundancy per symbol is compensated
by increased message length). These results indi-
cate that the increased robustness of the protocols
emerging in noisy environments may be accounted
for by compositionality or other features, rather
than by redundancy.

In our setting, agents perform joint source-
channel coding with constrained maximum mes-
sage length. Xin et al. (2024) note that in scenar-
ios where the coding complexity is limited, the
joint approach surpasses the traditional two-step
approach. We observe that I(Msg;T') I(Msg; Mg)
both increase during training, and for a given value
of p., the rate of change for these two values is
proportional. This indicates that the objectives
of conveying the information about the target in
the message and maximizing noise-resilience of
the protocol both guide the training. Furthermore,
Giindiiz et al. (2024) argue that grateful degradation
with noise is an advantage of joint source-channel
coding; indeed, we observe that the rate at which
the aforementioned values and I (Mpg;T') increase,
gradually decreases as we introduce more noise.

6 Conclusions

We set out to investigate the influence of two types
of channel noise (erasure and deletion) in EC with
variable message length. To this end, we run sim-
ulations of the Lewis referential game, using the
setup of Lazaridou et al. (2018) with the following
modifications: (i) including two noisy channels, (ii)
using Gumbel-Softmax relaxation, (iii) sampling
symbols according to learned distributions, instead
of evaluating in a deterministic setting. Our work
provides evidence that this type of noise provides
a bias favorable to compositionality also in sys-
tems that allow for variable message length, but
the choice of specific noise type and probability, as
well as input representation, matters.

Limitations

On training, our design of noisy communication
channels relies on modifying relaxed symbol vec-
tors. While our design of the channels aims to
ensure that the mechanism is consistent between re-
laxed and discrete symbols, i.e. during training and
evaluation, other implementations are possible. For
instance, consider the following approaches to eras-
ing a single relaxed symbol vector, i.e. replacing
the symbol with the special ? symbol:

(i) assigning a part of the non-EOS probability
mass given by p. of every symbol passed
through the channel to ?, without sampling
the symbols to be disrupted;

(i1) sampling symbols to be disrupted according to
Pe, for which the whole non-EOS probability
mass is assigned to ? (our implementation);

(iii) sampling specific positions of each relaxed
symbol representation to be disrupted accord-
ing to pe, in which case a symbol vector could
consist of both disrupted and disrupted proba-
bilities after passing through the channel.

All of the above implementations could be argued
to be consistent with our interpretation of symbol
erasure, yet they could impact communication in
different ways."”

We acknowledge that some regularities specific
to natural language may possibly require a joint
presence of several naturalistic pressures. Sev-
eral adjustments of the EC simulation setup have

Note that this would not be a problem if discrete sym-
bols were used on training, e.g. for learning based on REIN-
FORCE.
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been argued to be of crucial importance for mod-
eling naturalistic communication pressures, some
of which include periodical parameter resetting, in-
creasing the population size of agents, switching
agent roles, voting, and imitation among sender
agents (Chaabouni et al., 2022; Galke and Raviv,
2025). Furthermore, Chaabouni et al. (2022) em-
phasizes the significance of considering complex
tasks. The incorporation of the aforementioned
mechanisms in our setup could potentially reveal
additional effects.

Our analysis of compositionality is entirely
based on topographic similarity, which has been
argued to have multiple drawbacks (Korbak et al.,
2020; Chaabouni et al., 2020). Alternative mea-
sures include tree reconstruction error (Andreas,
2019), conflict count (Kucinski et al., 2021), as well
as positional disentanglement and bag-of-symbols
disentanglement (Chaabouni et al., 2020). Notwith-
standing, (to the best of our knowledge) there is no
consensus as to which method best captures compo-
sitionality (including its subtler forms), especially
in a variable message length setting.

Our accuracy for the pixel input in the no noise
condition is lower compared to previous work (e.g.
Lazaridou et al., 2018; Kucinski et al., 2021) re-
port an accuracy of around 90% or higher for pixel
input, compared to around 80% for sufficiently
long message lengths). This might be due to the
stochastic evaluation setting and the temperature
value used (7 = 1 after training). 2° We also note
several differences between input data, architec-
tures, and learning mechanisms compared to the
aforementioned work.
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A Pixel Input Dataset Details

Scene generation For each combination of the 6
shapes, 8 colors, and positions on a 2x2 grid (see
Figure 6), we generate 20 input images.”! Example
images are presented in Figure 7. Object rotation
is uniformly sampled, and since most objects ex-
hibit rotational symmetry, we do not consider it
an attribute. Object location is uniformly sampled
among 4 combinations of two positions on each
axis, after which it is shifted by an offset sampled
from a normal distribution, effectively resulting in
the distribution depicted in Figure 6¢c. We aim to
eliminate the possibility of basing the protocol on
the color of the tile occupied by the target object,
rather than its « and y coordinates. We do not allow
horizontally centered object positions, so that the
tile color coincides with the position on the y axis.

A
@i =m 4o A

*O90 mm

(a) 6 shapes (b) 8 colors  (c) 4 positions on a grid

Figure 6: Object attributes for the Obverter dataset.

Figure 7: Example input images

Sampling distractors Combinations of shape
and color are divided into exclusive train and test
sets, as illustrated in Table 1. The train set is used
for training and ID evaluation, whereas the test
set is only used for OOD evaluation. Distractors
are uniformly sampled from the available combi-
nations of object shape, color, and position. Ad-
ditionally, in 50% of the samples, it is ensured
that each combination of object shape and color is
unique within the sample (i.e. objects of the same
shape and color but at different positions may not
co-occur.)

“'We utilize the code made available by Choi et al.
(2018): https://github.com/benbogin/obverter/blob/
master/create_ds.py

> E
£ 285329
= & 2 BmE 5 E
cube | o o
sphere . .
cylinder | o .
torus . °
ellipsoid . .
cone . o

Table 1: Division of combinations of shape and color
into the train and test datasets. Marked combinations
have been assigned to the test dataset.

B Training

Computational Resources The models used
in the disentangled input experiments contained
119,162 parameters, while those used in the pixel
input experiments comprised 545,082 parameters.
Since running simulations on GPUs did not lead
to considerable reduction of the training time, we
opted for the cheaper CPU setup: all experiments
were run on CPU-only computing nodes with 192
cores and 384 GB of RAM; up to 96 simulations
were ran in parallel on each node. On average, run-
ning a single experiment took approximately 32
minutes in the disentangled setting or 5 hours and
11 minutes hours in the pixel setting.

Objective Function. Minimizing cross entropy
between receiver output and label is a widely used
training objective (Kharitonov et al., 2020), which
ensures the identity of the target object is the only
feedback signal guiding the training. Kucinski et al.
(2021) argue that spontaneous emergence of com-
positional communication requires the presence of
inductive biases, and opt to minimize cross entropy
between the attributes of the target and selected
object instead. Relying on the features of the target
object makes it possible to reward partial success,
since the penalty for selecting a distractor depends
on how similar it is to the target object.

In preliminary experiments we found that re-
lying solely on the label loss results in a slower
convergence of the training and scarcely leads to
emergence of compositional communication. On
the other hand, while minimizing cross-entropy be-
tween the features of the target and selected objects
guides the agents to develop both highly efficient
and compositional protocols in some cases, we ob-
serve that the training is less stable, and in some
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runs, the agents would fail to establish efficient
protocols. The approach we report strikes a good
balance.

Hyperparameters In all experiments, we as-
sume a batch size of 32 and use the AdamW opti-
mizer with weight decay 0.01. In the pixel input set-
ting, weight decay is not applied to the CNN mod-
ule. The learning rates used for the sender/receiver
are 5e-3/1e-3 in the disentangled input condition
or 5e-4/1e-4 on the pixel input dataset.

We anneal the GS temperature from 1.5 in the
first epoch to 1 in the last epoch, according to an ex-
ponential decay schedule. Kharitonov et al. (2020)
suggest that in GS, the pressure to minimize en-
tropy of the protocol is stronger for lower tem-
perature values; in our stochastic evaluation set-
ting, increasing the degree of discreteness in the
final phases of the training is especially desirable.
Concurrently, higher temperature values may boost
training, as they guarantee stronger gradients.

We find that in the pixel input condition, as-
suming a non-zero length cost sometimes impedes
successful communication, preventing the speaker
from generating any non-EOS symbols (after dis-
cretization). At the same time, applying length
cost has been argued to be a prerequisite for the
emergence of human-like communication protocols
(Chaabouni et al., 2019a). We disable the length for
the initial 250 network updates in the pixel input
condition, which suffices to ensure that the training
converges.

C Information-theoretic Measures

Computing Entropy Directly from Probabilities
We compute message entropy M as the joint en-
tropy of its symbols S;, M = (Sy,--,S1).22 We
do so by iteratively applying the chain rule:

L
H(M):l_ZIH(Sl’Sd)

Computing H (.S1) is straightforward, as it suffices
to aggregate probabilities (7;;)1<i<n = 7 corre-
sponding to symbols 5.2 Otherwise, if I > 1, we
consider all possible prefixes 5 = (3;) ;< such that
each s; is (an index of) a non-EOS symbol. Next,
we compute the probability 7; 5 of the prefix s for

2M , (51)i<z are random variables whose realizations are
messages m = {m; }1<i<n and their symbols (5;)i<r.

B All probabilities are temperature-adjusted, as described
in subsection 3.3, which is not made explicit in the notation to
prevent clutter.

every message m;:

-1
mis = [ mis,
J=1

Next, we aggregate symbols probabilities 5;
weighted by the prefix probabilities 7;.5, as well as
the prefix probabilities themselves between mes-
sages to obtain expected distribution Wl*\g and prefix

probabilities 77, respectively:

~
1]
—_

* P . o~
Ty = 71'1’5

Finally, we compute H (.5;|S<;) as follows:
H(Sl | S<l) = Zﬂg H(Sl | S<l = §)
B

= Z UM H(Wﬁg)

Each time we aggregate probabilities, we normal-
ize them, which is not made explicit in the notation
for the sake of clarity. When aggregating prefix
probabilities, we normalize them relatively to the
conditional non-EOS probability mass. All compu-
tations, except for the final step, are performed in
log-space.

We use the above procedure to compute KL
divergence reported in section E as well: given
messages M; = (Si;j)o<j<k, ¢ € {1,2}, it suffices
to replace the entropy term in the final step with
Drr((S1lS1<) || (S2qlS2:<1))-

Identifying communicated attributes In the
pixel input experiment, we exploit the Monte Carlo
approach to identify which object attributes serve
as a warp for agents’ communication. For each at-
tribute in (shape, color, x, y), indexed by i, let A;
be its value for the target object. We compute mu-
tual information for I(M; A;|AL;) between mes-
sages M and A; given A.; where A.; = (A;);z; is
a compound RV taking the values of remaining at-
tributes of the target. We then compute proficiency,
also known as uncertainty coefficient, conditioned
on A,;, according to the formula:

UA:) = H(M, A|Az)

The measure represents the fraction of informa-
tion contained in A; that can be predicted based
on M, given the remaining attributes (in order
to exclude correlations between object attributes,
e.g. during OOD evaluation, shape and color are
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strongly correlated); normalization ensures values
within the [0, 1] range. As shown in Figures 15a
and 15b, agents tend to initially rely on object posi-
tion, and the importance of object shape and color
increases in the latter phases of the training, con-
sistent with the results reported by Lazaridou et al.
(2018), who found that the agents tend to base their
communication on object location. Furthermore,
we observe that the presence of noise has an impact
on the communicated attributes: agents often more
strongly rely on object location rather than shape
or color for higher levels of noise applied during
training.

D Benchmark of Entropy Estimation
Methods

During training, we evaluate message entropy after
every epoch, estimating it with 4 different estima-
tors: maximum likelihood estimator (ML), James-
Stein estimator, and maximum a posteriori esti-
mator with a Dirichlet prior of ¥ (Perks) or v
(Minimax), where m is the number of all permissi-
ble messages and n is the number of realizations.
We use implementations from the pyitlib library
and estimate entropy based on a single sample or
after drawing multiple samples: 20/100 samples
for the train/test dataset in the disentangled input
condition or 40/200 samples in the pixel input con-
dition. We then compute the bias of each estimate
against the value computed directly from probabili-
ties. The results for simulations with zero probabil-
ity of error are presented in Figure 8. Simulations
with non-zero probability of error were excluded
to ensure a reliable comparison (e.g. in case of
the erasure channel, the library does not permit
specifying the known probability of the special ?
symbol).

Although the James-Stein estimator proved most
accurate overall, yielding more symmetric and
marginally more closely centered around O distri-
butions of bias compared to the other methods, the
observed improvement over the simpler maximum
likelihood estimator is almost negligible. However,
drawing multiple samples (see subsection 3.5) con-
sistently lead to markedly more accurate estimates.

Furthermore, we observe that as maximum mes-
sage length increases, so does the degree to which
the estimate is biased. While in the deterministic
evaluation setting entropy estimated from a sample
is deemed to be heavily biased for sufficiently long
messages (assuming that the evaluation dataset has

a limited size), our approach allows for estimating
entropy based on an arbitrary number of samples,
even for moderately sized datasets, resulting in
more accurate estimations.
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Figure 8: Distributions of the bias of entropy estimated
from a sample of messages, computed for simulations
with zero probability of error. Four entropy estimators
are compared against entropy values computed from
symbol distributions. Distributions of bias are based on
message entropy estimates computed after every epoch,
sourced from all simulations (values after the first two
epochs were excluded). Probability density on the y
axis was approximated using kernel density estimation.
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E Extended Analyses

Average message length in the pixel setting In
the pixel setting, average message length does not
approach the maximum length as more noise is
introduced. A possible explanation is that the al-
phabet size and maximum lengths permit commu-
nicating more information than necessary to solve
the task: although assuming maximum length 3
would be sufficient to map a unique sequence to
each possible combination of the 4 attributes,”* the
effect is observed also for maximum length 2. In
spite of this, performance is far from perfect, since
average success rate in the pixel setting does not
exceed 85%.

Novelty of the protocol during generalization
Estimating cross-entropy or relative entropy (KLD)
was proposed as a method for quantifying the de-
gree of similarity between natural languages (Juola,
1998). Since the chain rule for entropy resembles
its counterpart for KLD (Crooks, 2024), the pro-
cedure described in subsection 3.5 can easily be
adjusted to compute relative joint entropy between
symbols of different distributions of sequences of
symbols, making it possible to compute KLD di-
rectly from probabilities. We report KLD between
messages in the ID and OOD conditions as a mea-
sure of similarity between the protocol used when
agents communicate about known concepts and
when they generalize.?

Figure 9 illustrates the relationship between
KLD values and probability of error. We observe
that the extent to which the protocols used to re-
fer to objects in the ID and OOD conditions dif-
fer depends on the input data type used, rather
than on the channel type. When training on the
disentangled input, KLLD values decrease as p, in-
creases, both for sent and received messages and
consistently across all considered message lengths.
These results suggest that the presence of noise
may encourage the agents to exploit established
linguistic patterns during generalization. On the
other hand, we do not observe any strong relation-
ship between KLD values and intensity of noise
in the pixel input setting, indicating that this ef-
fect is based on naturalistic attribute co-occurrence
patterns present only in the disentangled input set-

248 combinations of shape and color at 4 possible locations
yield 192 combinations in total (144 for the objects in the train
set only).

We examine KLD in the other direction as well and find
that its dependence on noise level follows a similar pattern.

DKL (Mtrain | | Mtest)
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Figure 9: Average KLD between messages in the ID and
OOD conditions for each input data type and maximum
length, stratified by the probability of error. Shaded
areas represent 95% Cls.

ting. Although KLLD monotonously decreases for
the deletion channel, all values fall into the nar-
row [2.5,3.5] range, whereas the spread is much
broader on the disentangled input.

Resilience to Message Disruption Following Vi-
tal et al. (2025), we investigate whether communi-
cation protocols emerging in noisy environments
are more robust to various types of message disrup-
tion. We consider the following perturbations:

* deletion of a single symbol (as in the case of
the deletion channel),

* replacement of a single non-EOS symbol with
a different non-EOS symbol (uniformly sam-
pled, the replacement symbol may not be the
special erased symbol),

* permutation of 2, 3, 4, or 5 non-EOS sym-
bols (or all available symbols for shorter mes-
sages).

After training, we randomly sample 5 target non-
EOS symbols to be disrupted (or combinations of
symbols in case of permutation). We exclude per-
mutations of n symbols in which some symbols do
not change their position (i.e. permutations whose
matrix representation has a non-zero diagonal). Fi-
nally, we pass the disrupted messages as input to
the receiver. The difference between accuracy be-
fore and after perturbations is shown in Figure 12.

Unsurprisingly, we find that passing messages
through the deletion channel during training results
in protocols highly robust to this type of noise. For
most settings and mechanisms of disruption, we
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observe that the presence of noise improves robust-
ness of the protocols, since the observed difference
between accuracy before and after disruption tends
to be most prominent for p. = 0. While the dif-
ference monotonously decreases relative to p, for
symbol permutations, the drop is often lowest for
intermediate levels of noise for received messages
or plateaus for sent messages. Notably, in case of
the erasure channel the difference between accu-
racy before and after disruption does not seem to
decrease as p. increases (moreover, for sufficiently
long messages and the disentangled input, we ob-
serve decreasing robustness to symbol deletion).

Additional figures The following figures illus-
trate our analyses:

* Figure 10: KLD between messages in the in-
domain and out-of-domain conditions

* Figure 11: relationship between composition-

ality and generalization

Figure 12: resilience to message disruption

Figure 13: information-theoretic measures

during training for all message lengths

Figure 14: changes of entropy, topographic

similarity and redundancy during training

Figure 15: communicated attributes during

training in the pixel input condition

Figure 16: results for simulations with zero

length cost
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Figure 13: Changes of information-theoretic measures during training. On the train set, we report expected accuracy
computed from the relaxed symbol distributions. Ag = I(T; Mg) - I(T"; Ms), and Ag is defined analogously.
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Figure 15:

(b) Out-of-domain evaluation (pixel input)

Proficiency of each attribute given messages, conditioned on the remaining attributes.
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Figure 16: Accuracy, topographic similarity, redundancy per symbol, average message length, and lexicon size,
averaged over 20 models trained with zero length cost. Shaded areas represent 95% Cls.
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