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Abstract

Temporal question answering (TQA) remains
a challenge for large language models (LLMs),
particularly when retrieved content may be ir-
relevant, outdated, or temporally inconsistent.
This is especially critical in applications like
clinical event ordering, and policy tracking,
which require reliable temporal reasoning even
under noisy or outdated information. To ad-
dress this challenge, we introduce RASTeR:
Robust, Agentic, and Structured, Temporal
Reasoning, a prompting framework that sep-
arates context evaluation from answer genera-
tion. RASTeR first assesses the relevance and
temporal coherence of the retrieved context,
then constructs a temporal knolwedge graph
(TKG) to better facilitate reasoning. When
inconsistencies are detected, RASTeR selec-
tively corrects or discards context before gen-
erating an answer. Across multiple datasets
and LLMs, RASTeR consistently improves ro-
bustness1. We further validate our approach
through a “needle-in-the-haystack” study, in
which relevant context is buried among distrac-
tors. With forty distractors, RASTeR achieves
75% accuracy, over 12% ahead of the runner
up.2

1 Introduction

Large language models (LLMs) can often answer
factual questions directly from the knowledge
stored in their parameters, if the necessary facts
appeared in their pre-training data (Petroni et al.,
2019; Roberts et al., 2020). When a question is
likely to require information outside of the model’s
pre-training data, practitioners typically fall back
on retrieval-augmented generation (RAG) (Lewis
et al., 2020), which prepends retrieved passages
to the prompt so the model can “read” before it

1 Some TQA work defines robustness as handling diverse
temporal phenomena. Here, we define it as the ability to
answer correctly despite suboptimal context

2 Code available: https://github.com/danschumac1/RASTeR

Retrieval-based
Temporal QA RASTeR Framework

Question:
Who was the first Beatle to die?

Context:
“Paul died in 1966 in a car crash”

(Fake news from 1966)

Output:
Paul McCartney

Incorrect due to false context

Context Evaluation:
X Not temporally consistent

So use parameteric knowledge

Output:
John Lennon

Question:
Who was the first Beatle to die?

Figure 1: Example of TQA failure due to irrelevant
context. The retrieved statement is outdated, leading
to an incorrect answer. RASTeR detects the inconsis-
tency and defaults to parametric knowledge. Additional
experiments examine other context imperfections (e.g.
partially incorrect, fully irrelevant context).

“writes.” Unfortunately, the retriever offers no guar-
antee of relevance (Yin et al., 2023). Irrelevant
or adversarial snippets can mislead the generator
and lower accuracy (Petroni et al., 2020). Recent
work further underscores that today’s QA bench-
marks rarely stress a system’s robustness (Shaier
et al., 2024). These issues become even more pro-
nounced in TQA where answers depend on current
facts and where stale, or simply wrong, documents
are frequently retrieved (Wu et al., 2024).

TQA, therefore, poses a dual challenge: mod-
els must identify any relevant entities and reason
about their evolution over time. Robust tempo-
ral reasoning is critical for applications such as
historical-event analysis (Lorenzini et al., 2022),
time-sensitive retrieval (Wu et al., 2024), data-
driven journalism, and real-time analytics, domains
where a single date error can significantly alter the
answer. Yet comprehensive benchmarks such as
TimeBench and TRAM reveal that even GPT-4
lags behind human performance, despite access to
gold context (Chu et al., 2023; Wang and Zhao,
2024), and recent studies show that LLMs often
hallucinate timelines or overlook explicit temporal
cues (Beniwal et al., 2024). While prior work has
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evaluated models under clean context (Wallat et al.,
2025; Luu et al., 2022; Tan et al., 2024), tested
zero-shot generalization with synthetic data (Uddin
et al., 2025), or explored robustness to irrelevant
context in general QA (Yoran et al., 2024a; Cheng
et al., 2024), these approaches do not directly ad-
dress the temporal inconsistencies and ambiguities
that arise in realistic retrieval.

Despite this progress, a key gap remains. Ex-
isting benchmarks and methods tend to focus on
either (1) scenarios in which the model has no prior
knowledge of the event and must rely entirely on
external context, (2) general robustness to distrac-
tors without temporal grounding, or (3) evaluation
of questions that may have been seen during pre-
training. However, real-world TQA systems must
handle both: reasoning about known events under
noisy, outdated, or conflicting context, and general-
izing to novel or emerging events where memorized
knowledge offers no support. Temporal ambigu-
ity (In et al., 2025; Wang et al., 2025), misaligned
retrievals (Fang et al., 2024; Yoran et al., 2024a),
and hallucinations even under gold context (He
et al., 2024; Wallat et al., 2024) highlight the need
for methods that can diagnose and correct temporal
inconsistencies. To our knowledge, no prior work
systematically evaluates model robustness under
both seen event settings and also evaluates unseen
event settings with temporal context.

To address this gap, we propose RASTeR, an
agenentic framework for TQA that explicitly sepa-
rates context evaluation from answer generation.
RASTeR introduces modular agents that assess
the temporal relevance and coherence of retrieved
passages before transforming valid evidence into
a structured TKG. This structure enables precise
stepwise reasoning about time even under adver-
sarial or outdated contexts. We systematically eval-
uate RASTeR across multiple models and four
TQA datasets, including scenarios where events are
known, unknown, or contextually distorted. Our
results show that this agentic and structured de-
composition not only improves robustness to noisy
context, a key limitation in RAG pipelines, but also
enables fine-grained reasoning over long, distractor-
heavy passages. In doing so, RASTeR bridges the
gap between robustness and temporal reasoning, of-
fering a principled approach to TQA under realistic
retrieval conditions. See Figure 1 for a high-level
idea of our contribution.

Our contributions are as follows: (1) We intro-
duce RASTeR, an agentic prompting pipeline that

separates context evaluation from answer genera-
tion via temporal consistency agents and structured
knowledge graph transformation. (2) We bench-
mark RASTeR across three LLMs and four TQA
datasets, demonstrating consistent gains in both
clean and noisy contexts. (3) We conduct granular
robustness analyses, including adversarial retrieval
settings (needle-in-the-haystack), altered temporal
context, and relevance misclassifications, to better
understand the strengths and weaknesses of this
approach.

2 Related Work

Temporal Question Answering. TQA tasks in-
volve understanding how events unfold over time,
whether in text, video (Zhu et al., 2017), or struc-
tured data such as knowledge bases (Xiao et al.,
2021; Jang et al., 2017; Saxena et al., 2021; Zhao
and Rios, 2024; Tan et al., 2024). This includes
applications like ordering clinical events (Sun et al.,
2013; Zhao and Rios, 2024) or answering factoid
questions such as “Who was president of the U.S.
in 1998?” Several benchmarks have been proposed
to evaluate temporal reasoning, including tests for
time-sensitive fact verification and temporal rever-
sal, where performance asymmetries between for-
ward and backward questions reveal a reliance on
memorized patterns rather than grounded temporal
inference (Bajpai et al., 2024; Wallat et al., 2025).

Recent and historical work has exposed persis-
tent limitations of LLMs in this setting. Models
often struggle to reason over timelines, halluci-
nate events, or miss temporal cues entirely (Qiu
et al., 2023; Beniwal et al., 2024). To probe
these weaknesses, researchers have released new
datasets (Gruber et al., 2024a; Jia et al., 2018;
Velupillai et al., 2015; Wang et al., 2022; Gru-
ber et al., 2024b) and diagnostic tasks (Llorens
et al., 2015; Tan et al., 2023a; Gao et al., 2024a)
that evaluate logical reasoning in time-sensitive
settings. Zhu et al. (2025) highlight a related is-
sue of temporal drift: LLMs tend to anchor their
factual knowledge around 2015, resulting in de-
graded performance for domains like news or pol-
icy where timelines evolve. This drift presents a
key challenge for retrieval-augmented QA, where
the context retrieved may be outdated, misleading,
or temporally misaligned with the question.

Robustness in Retrieval-Augmented Generation.
Improving the robustness of LLMs to imperfect
context has been a focus of recent work on RAG.
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Broadly, these methods fall into three categories:
filtering irrelevant context, adversarial training, and
ambiguity-aware reasoning. For filtering, Yoran
et al. (2024b) propose using NLI-based filters to
exclude unsupported evidence before generation,
and fine-tune models on mixed-quality data to im-
prove resistance to distractors. He et al. (2024)
introduce CoV-RAG, which incorporates a veri-
fication model and structured reasoning to select
and integrate relevant information. More recently,
Chang et al. (2025) present MAIN-RAG, a multi-
agent RAG framework where LLM agents collab-
oratively filter and score retrieved documents us-
ing adaptive, consensus-based thresholds to min-
imize noise without sacrificing recall. Similarly,
Nguyen et al. (2025) propose MA-RAG, which de-
composes retrieval-augmented reasoning into spe-
cialized agent roles—Planner, Step Definer, Ex-
tractor, and QA—communicating through chain-
of-thought prompting to iteratively refine retrieval
and synthesis. In the legal domain, Wang and Yuan
(2025) introduce L-MARS, a multi-agent work-
flow that coordinates reasoning, retrieval, and ver-
ification to reduce hallucination and uncertainty
by decomposing legal queries, conducting targeted
searches, and verifying jurisdictional validity be-
fore synthesis. While MAIN-RAG, MA-RAG, and
L-MARS are all multi-agent systems that operate
upstream in the RAG pipeline to improve retrieval
and evidence aggregation, our approach begins
downstream, assuming retrieval has already oc-
curred and that the context mix is imperfect. In
practice, our method is complementary, as both
downstream and upstream methods could work in
tandem addressing a different phase of the reason-
ing process.

Adversarial training methods expose models to
noisy or counterfactual inputs to encourage robust-
ness. For instance, Fang et al. (2024) train mod-
els on irrelevant and contradictory passages to im-
prove reliability under real-world retrieval errors.
However, these approaches typically focus on gen-
eral QA and do not account for temporal-specific
failure modes. Ambiguity-aware pipelines offer a
complementary strategy. In et al. (2025) retrieve
diverse evidence to accommodate questions with
multiple valid answers. Wang et al. (2025) propose
a multi-agent architecture where separate models
handle different retrieved passages, and a judge
model resolves conflicts. Other work uses search-
based methods (Hu et al., 2025b), eligibility as-
sessment (Kim et al., 2024), or similarity-based

example selection (Park et al., 2024) to guide rea-
soning under ambiguity. Finally, GraphRAG (Han
et al., 2025) combines RAG with graph-structured
knowledge, showing that graph-based retrieval can
improve reasoning. This motivates us to explore
how transforming retrieved temporal context into
graph form to can support more robust reasoning.

Structured Knowledge and Reasoning. Struc-
tured representations such TKGs enable reasoning
over time. Most prior research assumes access to
structured datasets and focuses on TKG question
answering (TKGQA), which typically involves ei-
ther interpolation (inferring missing facts within
a timeline) or extrapolation (predicting events be-
yond observed data) (Chen et al., 2024). A central
challenge in TKGQA is identifying the most salient
nodes. Zhang et al. (2024) use reinforcement learn-
ing to sample reasoning chains, while Gao et al.
(2024b) first filter relevant relations and then re-
strict them temporally.

Others focus on improving question formulation.
Hu et al. (2025a) show that LLMs perform better on
explicit temporal queries and propose a two-stage
retrieval-and-rewriting pipeline to make implicit
questions more solvable. Xia et al. (2022) also
advocate for a two-step strategy that first retrieves
direct evidence and then expands it using related
entities to capture second-order temporal relation-
ships. These methods assume relatively clean data
and often ignore the noisy, conflicting nature of
real-world context.

In contrast, our work examines how structured
temporal representations impact model robustness
when the context is messy, misaligned, or adver-
sarial. Rather than using TKGs solely for interpo-
lation or extrapolation, we dynamically construct
TKGs from retrieved text and assess their utility
under imperfect retrieval conditions. The closest
to our approach is the Chain-of-Timeline frame-
work (Wu and Hooi, 2025), which constructs struc-
tured TKGs based on a question and its associated
context. However, their work evaluates only on
golden context and a single dataset. We extend it
by developing a system that handles a variety of
context and generalizes across models and datasets.

3 Method

TQA presents unique challenges that standard RAG
pipelines are not designed to handle. Retrieved
context may be outdated, partially relevant, or tem-
porally inconsistent, yet current systems often as-
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Relevance
Detection

TKG
Generation

TKG
Reasoner

Context
Corrector

Reasoner

Answer

If irrelevant
or no context

If context needs
correction

Who was the first Beatle to die?

Paul died in 1966 in a car crash.
John Lennon was murdered in 1980.

George Harrison died of cancer in 2001.
If context relevant
or partially relevant

If context is
correct

[
  {
    "Entity1": "Paul McCartney",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1966",
    "EndTime": "1966"
  },

Example TKG

Question

Context

{
    "Entity1": "George Harrison",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "2001",
    "EndTime": "2001"
  }
]

,
 {
    "Entity1": "John Lennon",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1980",
    "EndTime": "1980"
  },

{
    "Entity1": "George Harrison",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "2001",
    "EndTime": "2001"
  }
]

[
 {
    "Entity1": "John Lennon",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1980",
    "EndTime": "1980"
  },

Figure 2: Overview of the RASTeR framework. Given a question and retrieved context, the system first determines
whether the context is relevant and temporally coherent. If necessary, it corrects temporal inconsistencies before
generating a structured TKG. The final answer is produced either by reasoning over the TKG or, in cases of irrelevant
or missing context, via a fallback zero-shot reasoner.

sume that any retrieved passage can be treated as
reliable input. Our approach addresses this gap
by explicitly separating context evaluation from
answer generation. We first assess whether the
context is relevant and temporally coherent with
respect to the question. When the context passes
these checks, we convert it into a structured TKG
to support precise, time-aware reasoning. If the
context is found to be unreliable or inconsistent,
we either attempt to correct it or disregard it and
rely on the model’s parametric knowledge. This
modular, agent-based design enables robust per-
formance across a wide range of TQA scenarios
through structured intermediate representations.

We formalize the robust TQA task as follows.
Let Q denote a temporal question, and C denote
the corresponding golden context to answer it. The
LLM is modeled as a function Mθ that produces an
answer A = Mθ(Q,C), where Q = q1, . . . , qn,
C = c1, . . . , cm, and A = a1, . . . , ak are token
sequences. We evaluate model performance across
several context settings: relevant (Cr), irrelevant
(Ci), altered (Ca), and no context (C0).

The RASTeR pipeline is structured into distinct
modules, each handled by a dedicated agent: con-
text evaluation, TKG construction, context correc-
tion, and answer generation (via reasoner agents).3

We show a high-level overview of our method in
Figure 2. First, a question and context are evaluated
to test if the context is relevant to the question. If
not, or if there is no context, a reasoner answers the
question directly using the models internal paramet-
ric without using the context. Otherwise, a TKG is

3 Multi-agent frameworks generally increase token usage.
See Appendix A.3 for a detailed breakdown of RASTeR’s
computational cost.

generated using the context. If the relevance detec-
tor determined that the context was only partially
relevant, then the context corrector is called to fix
the TKG. Finally, the TKG reasoner is called to
reason over the TKG to answer the question. We
describe each part below.

Context Evaluation. Before reasoning over the
retrieved context, we must establish whether it is
temporally aligned and semantically relevant to the
question. To achieve this, we introduce a Rele-
vance Reasoning Chain that decomposes context
evaluation into discrete steps. Given a question
Q and context C, the model identifies the ques-
tion’s entities Qe, checks for their presence (epres)
in the context, and generates a Correction Rea-
soning Chain D = (d1, d2, d3, d4) assessing d1:
chronological coherence of dates, d2: alignment of
context dates with the question, d3: realism of the
overall time span, and d4: agreement with paramet-
ric knowledge. These outputs inform a final deci-
sion Cnc on whether the context requires correction.
If Cnc = True, then the Context Correction agent
(details below) is triggered to modify the context.
The exact prompting format as well as an example
for this step is shown in Appendix A.9.1 Figure 5
and Figure 6 respectively.

Temporal Knowledge Graph Construction.
When the context is deemed usable, we convert
it into a TKG that supports symbolic reasoning
over events and temporal intervals. TKGs can
be formally defined as a sequence of quadruples
(e1, ri, e2, ti)

N
i=1, where each tuple represents a fact

consisting of a subject entity ei, a relation ri, an
object entity e2, and an associated timestamp ti..
We begin by splitting the context into sentences
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and chunking it with overlap (batch size = 12, over-
lap = 6). For each chunk ci, the model conditions
on the previous TKG state TKGi−1 to expand the
graph: TKGi = fTKG(ci, TKGi−1). The final
graph is the union of all iterations. As an example,
if there are three sentences, s1, s2, and s3, with a
batch size of 2 and an overlap of 1, a TKG1 will
be generated using s1 and s2. TKG2 will be gen-
erated by s2 and s3. Both TKG1 and TKG2 will
be combined to form the final TKG. Intuitively,
generating a TKG by passing the entire context as
input causes the model to hallucinate nodes and
edges, and worse, miss important information. By
generating it in an iterative and overlapping fash-
ion, information is seen multiple times and in small
contexts to generate the final graph better. An ex-
ample of the prompting for this procedure is shown
in Appendix A.9.1 Figure 7.

Context Correction. If Cnc is true, we trigger a
context correction mechanism. For each TKG node,
we replace the temporal fields (starttime and
endtime) with placeholders and prompt the model
to infer plausible time spans. The model then
generates a natural language sentence that articu-
lates the relation. Formally, each corrected node is
(e1, rel, e2, starttime′i, endtime′i, sentencei). This
results in a corrected graph TKG′ with both sym-
bolic and textual representations. Appendix A.9.1
Figure 8 shows the full correction prompt.

Answer Generation. When a TKG is available,
we filter relevant nodes, extract justifications, and
synthesize an answer A as part of a larger output
(A, sn, r) = ftkg_answerer(Q,TKG), where sn de-
notes supporting nodes and r is the reasoning trace.
We do this using an LLM agent without any rule-
based methods. The full answer generation prompt
is shown in Appendix A.9.1 Figure 9. In the ab-
sence of usable context (without TKG), the model
falls back to zero-shot reasoning using parametric
knowledge: (Q1, r, A) = fzs_answerer(Q), where
Q1 is a restated version of the question and r is the
internal reasoning trace. The prompt for this setup
is included in Appendix A.9.1 Figure 10.

4 Experiments

In this section, we describe the datasets, metrics,
baseliens, and our overall results. We also include
a detailed error analysis and ablation of the various
components in our agent-based framework.

Datasets. Each subset of our collected datasets

benchmarks a distinct aspect of temporal reason-
ing, thus testing different dimensions of temporal
question answering. We describe each dataset be-
low.

MenatQA (MQA). In MQA (Wei et al., 2023), the
counterfactual subset explores imaginative tempo-
ral reasoning. The scope subset evaluates a model’s
ability to handle questions with variable time spans,
while the scope_expand subset challenges models
to reason over extended temporal intervals that go
beyond the typical bounds of the context. The or-
der subset targets reasoning over shuffled event
sequences.

TimeSensitiveQA (TSQA). TSQA (Chen et al.,
2021) evaluates temporal reasoning over time-
evolving passages, with a focus on alignment be-
tween temporal expressions in the question and
timeline boundaries in the context. The dataset is
split into two levels: easy and hard. In the easy
subset, the time specifier in the question exactly
matches a boundary event (e.g., the start or end of a
time interval) that is explicitly mentioned in the pas-
sage, allowing models to answer via surface-level
matching. In the hard subset, the time specifier
falls within the middle of a temporal span, requir-
ing models to infer implicit time alignment and
reason beyond explicit timestamps.

TempReason (TR). TR (Tan et al., 2023b) focuses
on factual temporal reasoning across two levels.
The l2 subset asks for specific facts grounded in
time (e.g., “Who coached the team in 2010?”),
while the l3 subset requires reasoning over event
sequences (e.g., “Who coached the team before
Ted Lasso?”), combining time understanding with
knowledge of event order.

UnSeenTimeQA (UTQA). UTQA (Uddin et al.,
2025) is a dataset of logistics-style word problems
designed to test temporal reasoning without relying
on prior knowledge. Because the problems are syn-
thetic and domain-specific, models cannot answer
them without using the provided context. This re-
duces concerns about training data contamination.
We focus on the hardSerial and hardParallel sub-
sets. HardSerial assumes events occur in sequence
but only provides durations, requiring models to
simulate a timeline mentally. HardParallel allows
events to overlap and introduces distractors that
resemble irrelevant but plausible context.

Data Augmentation. Out of the box, each
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dataset consists of N rows containing Q, A,
and Cr. Formally, D = {(Qn, An, C

(n)
r )}Nn=1.

Our goal is to augment each row of each
dataset4 n ∈ {1, . . . , N} of D with Ci

and Ca, yielding the extended dataset D′ =

{(Qn, An, C
(n)
r , C

(n)
i , C

(n)
a )}Nn=1.

Ca is constructed from Cr by (1) using regex
to identify all explicit temporal expressions and
(2) applying a rule-based substitution that replaces
each temporal expression (e.g., “January,” “Jan,”
“1994,” “01-1995”) with a different, non-matching
value; i.e., C(n)

a = τ
(
C

(n)
r

)
, where τ maps each

temporal token t to t̃ ̸= t.
To generate Ci within the same dataset, we

randomly sample another row’s Cr: C(n)
i =

C
(m)
r , where m ∼ Uniform({1, . . . , N} |

C
(m)
r ̸= C

(n)
r ).

In realistic RAG scenarios, retrieved documents
are rarely completely irrelevant. However, each
dataset already contains highly related questions
(for example, TR primarily consists of Q and C
pairs about athletes’ careers), so this setup is suf-
ficient to approximate realistic retrieval noise. To
further validate the robustness of our system, we
also evaluate RASTeR under conditions where the
retrieved context is not random but the most seman-
tically similar to the query. See Appendix A.6.

Metrics. We report Exact Match (EM), Contains
Accuracy (Acc), and word-level F1 to evaluate
model performance. EM measures whether the
predicted answer exactly matches any reference an-
swer (e.g “Barack Obama” is not “Obama”). Acc
is more lenient and considers a prediction correct if
it is a subset of, or contains, any reference answer
(e.g “Barack Obama” contains “Obama”). Finally,
F1 captures the overlap between the predicted and
reference answers at the word level by computing
the harmonic mean of precision and recall. For-
mal definitions of these metrics are provided in
Appendix A.1. To conserve space, our main tables
only show Acc. The full results which include EM
and F1 are available in Appendix A.4 (Tables 9
and 10).

Baselines. We compare three baseline prompt-

4 We do not augment UTQA because its questions can-
not be answered without the provided golden context (e.g.,
“Package-A arrived from Location-1 to Location-2 on Plane
B at 4:00 pm”). In contrast, the other datasets contain ques-
tions (e.g., “Where did Messi play before Miami?”) that large
language models can often answer correctly from pretrained
knowledge, even without golden context.

Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .332 .257 .176 .293
Reasoning .222 .275 .190 .225

TKG .302 .254 .164 .271
RASTeR .327 .290 .166 .294

gpt-4o-mini

Few-Shot .302 .288 .220 .286
Reasoning .264 .324 .236 .270

TKG .306 .256 .201 .280
RASTeR .319 .315 .262 .311

Llama-3.1-8B-Instruct

Few-Shot .087 .124 .069 .090
Reasoning .217 .227 .135 .205

TKG .266 .227 .135 .238
RASTeR .253 .231 .182 .238

Table 1: Acc averaged across subset, and eval-context
for each model and prompting strategy.

ing strategies against our proposed method. (1)
generic Few-Shot prompting, (2) a simple reason-
ing prompt, and (3) a TKG prompt with no agen-
tic steps. For each baseline we include four few-
shot examples, one each for relevant-, irrelevant-,
slightly altered, and no-context.

Few-Shot. In the Few-Shot approach, we provide
the question and context and ask for an answer.
The prompt for this baseline is in Figure 11 in the
Appendix.

Reasoning. In the reasoning approach, we ask
the model to follow the following reasoning chain
(1) restate the question, (2) evaluate the relevance
of the context, (3) quote supporting evidence, (4)
reason towards an answer, and (e) use the reasoning
to come to a final conclusion. Basically, this is
a structured chain-of-thought-like prompt (Sultan
et al., 2024) for TQA. The full prompt can be seen
in Figure 12 in the Appendix.

Simple TKG. In this approach, the model first
extracts entities from the context and uses them
to construct a structured TKG composed of time-
stamped relational tuples. It then answers the ques-
tion using only the generated TKG, encouraging
structured reasoning and temporal grounding with-
out additional agentic steps. Unlike the simple
TKG baseline, which directly constructs a TKG
from the context without evaluating its relevance
or consistency, our method introduces agentic rea-
soning steps. These include checking whether the
context is relevant or altered, correcting temporal
inconsistencies, and iteratively building a TKG con-
ditioned on previous outputs, resulting in a more
robust and context-sensitive reasoning process. The
full prompt is in Figure 13 in the Appendix.
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Model Prompt MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .238 .004 .010 .161
Reasoning .110 .026 .028 .082

TKG .235 .004 .010 .159
RASTeR .305 .052 .098 .228

gpt-4o-mini

Few-Shot .190 .018 .044 .137
Reasoning .174 .116 .120 .155

TKG .211 .014 .030 .148
RASTeR .253 .091 .164 .171

Llama-3.1-8B-Instruct

Few-Shot .019 .000 .002 .013
Reasoning .090 .000 .002 .060

TKG .179 .012 .018 .124
RASTeR .209 .050 .102 .165

Table 2: Acc averaged across subset for Irrelevant Con-
text Evaluations Only.

5 Results

Main Results. Table 1 shows the average contains
accuracy on the MQA, TR, and TSQA datasets.
RASTeR demonstrates consistent robustness across
MQA, TR, and TSQA. It generalizes well across
Gemma (gemma-3-12b-it) , GPT (gpt-4o-mini) ,
and Llama (Llama-3.1-8B-Instruct) with an aver-
age improvement in accuracy from .293, .286, and
.205 to .294, .311, and .238, respectively. These
scores are averaged across all four context types:
relevant (Cr), irrelevant Ci, altered (Ca), and no
context (C0). For Gemma and LLaMA, TKG ties
for best average score. Overall, this shows strong
robustness to noisy RAG contexts compared to stan-
dard baseline methods. Significance testing further
validates these results; details can be found in Ap-
pendix A.5

Next, in Table 2, we report how our system
works in a worst-case setting: when evaluated only
on irrelevant context. On average, RASTeR consis-
tently outperforms other methods, particularly on
open-source models. RASTeR with Gemma scores
on average ∼7% better (.228) than the runner-up
(.161). Likewise, LLaMA (.165) handles random
context on average ∼6% better than its runner-up
(.124). Furthermore, in the irrelevant evaluation
setting, our method is the dominant prompting
strategy across nearly every dataset and model
combo. The only exceptions being gpt + TR, where
reasoning is higher RASTeR (.116 vs. .091)

Needle-In-The-Haystack. In practice, RAG sys-
tems often surface both relevant and irrelevant con-
tent. The context is generally never completely
relevant nor completely irrelevant. To simulate
this, we manipulate TSQA by inserting n irrele-
vant contexts on each side of the golden context
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Figure 3: GPT accuracy as the number of distractors
(irrelevant contexts) increases around a single relevant
passage. All contexts have a relevant passage.

(e.g., for n = 3: irr, irr, irr, rel, irr, irr, irr; where
‘irr’ is an unrelated distractor and ‘rel’ is the true
relevant context). Intuitively, the model needs to
identify the relevant context within many noisy
contexts. This is particularly difficult given that
language models generally “lose” information in
the middle (Liu et al., 2024; Zhang et al., 2025).
Descriptive statistics for this experiment can be
found in Figure 6 in the Appendix. Figure 3 shows
the overall findings of our experiments. Overall,
RASTeR remains highly effective under this setup,
maintaining strong performance despite the pres-
ence of distractors. At each n, RASTeR achieves
the highest performance. In fact, with forty distrac-
tors (n = 20), RASTeR, with an accuracy of 74%,
outperforms (by at least 12%) all other prompt-
ing strategies’ performance at fourteen distractors
(n = 7). These results demonstrate that our system
can robustly reason over long contexts with numer-
ous distractors. This finding is highly impactful,
given that we show that careful engineering of how
context is handled, even at a low, nearly artificial
level, can generalize to more realistic scenarios that
are experienced in practice.

Unseen Data. In Table 3, we report the results of
the USQA dataset. Intuitively, we are evaluating
generalization to unseen data, i.e., information the
model has never seen during pretraining. At a high
level, we hypothesize that using the TKG is crucial
for improved temporal reasoning when the tem-
poral context wasn’t observed during pretraining.
While RASTeR incorporates a TKG, it may not
consistently outperform the TKG baseline alone, as
RASTeR’s reasoning and TKG components are de-
coupled to better handle noisy context. In contrast,
the TKG baseline reasons and answers within a sin-
gle prompt. We find that RASTeR outperforms the
reasoning and few-shot baselines across all models
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Model Prompt Type HardParallel HardSerial Avg

gemma-3-12b-it

Few-Shot .085 .117 .101
Reasoning .146 .151 .149

TKG .341 .408 .375
RASTeR .391 .355 .373

gpt-4o-mini
Few-Shot .267 .317 .292
Reasoning .190 .164 .177

TKG .533 .551 .542
RASTeR .251 .331 .291

Llama-3.1-8B-Instruct

Few-Shot .109 .130 .120
Reasoning .197 .192 .195

TKG .275 .274 .275
RASTeR .213 .256 .235

Table 3: Acc across the UTQA hard subsets using rele-
vant context only.

Ablation irrelevant avg

RASTeR .300 .388

w/o DateFix .263 .375
w/o TKG .275 .360
w/o DetRel .212 .325

Table 4: Ablation results showing irrelevant accuracy
context and the overall average across all context types.

and metrics, confirming that incorporating a TKG,
even in a modular setup, substantially enhances
generalization to novel temporal contexts. For in-
stance, using the gemma-3-12b-it model, RASTeR
achieves an average accuracy of 0.373 compared to
only 0.149 for the reasoning baseline and 0.101 for
few-shot prompting. This trend holds across other
models as well, such as LLaMA, where RASTeR
improves from 0.120 (few-shot) and 0.195 (rea-
soning) to 0.235. Although RASTeR does not al-
ways exceed the decoupled TKG baseline, its con-
sistent advantage over non-TKG methods demon-
strates the importance of explicitly structured tem-
poral representations even in modular reasoning
pipelines. This result suggests that future work can
explore how to better link the reasoning answerer
and the actual TKG generation (e.g., through itera-
tive TKG generation and answering, in a back-and-
forth framework).

Ablations. RASTeR, like all multi-step systems, in-
troduces additional potential failure points at each
agentic stage, which can increase the risk of cas-
cading errors. While there are no hard-coded issues
that cause complete breakdowns—each module can
successfully pass its output to the next—individual
components may still produce suboptimal results.
For instance, the relevance agent might incorrectly
flag a relevant context as needing correction, or the
TKG generator could hallucinate or omit critical
temporal facts. Despite these possibilities, our re-

Predicted Context Type

SA NO/IRR REL

Eval Context

No 0.0% 100.0% 0.0%
Irrelevant 2.3% 90.1% 7.6%
Relevant 2.6% 4.8% 92.6%
Slightly Altered 77.1% 8.5% 14.3%

Table 5: Confusion matrix of RASTeR’s predicted con-
text type versus true context type. Results are aggre-
gated across TR, MQA, and TQA.

sults show that the overall framework consistently
improves performance across models and datasets.
To better understand these dynamics, we perform
ablation studies and manual analyses to evaluate
the contribution of each component and identify
areas where further improvement is possible.

To assess the contribution of each component
in RASTeR, we conducted an ablation study by
evaluating three modified variants of the pipeline:
(1) w/o DateFix, which disables the context cor-
rector responsible for resolving temporally incon-
sistent information; (2) w/o TKG, which removes
the TKG constructor and relies entirely on natural
language rather than structured graphs; and (3) w/o
DetRel, which bypasses relevance assessment by
treating all input context as relevant. Each abla-
tion was tested against the full pipeline on a ran-
domly sampled subset spanning all datasets and
subsets. Descriptive statistics for this subset ap-
pear in Table 7 (Appendix A.2]). Overall, the full
RASTeR pipeline achieves the highest average ac-
curacy (.388), outperforming all ablations. In the
irrelevant context setting, RASTeR also obtains
the best performance (.300), indicating that both
the TKG and context relevance agents contribute
meaningfully to robustness under noisy retrieval.
Notably, removing the relevance detector (w/o De-
tRel) leads to the largest drop in performance, espe-
cially in the irrelevant context setting, suggesting
that misclassifying noisy inputs as relevant can
significantly degrade reasoning. These results high-
light the importance of both structured temporal
representation and selective context filtering in im-
proving TQA robustness. Full ablation results are
shown in Table 14 (Appendix A.7).

Validating Relevance Determiner. In Table 5, we
observe distinct patterns in how relevance is pre-
dicted across different eval contexts. When evalu-
ated with no context, the model perfectly classifies
the context as NO / IRR, 100% of the time. When
presented with irrelevant context, the model some-
times mistakenly labels the context as REL (7.6%)
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or less frequently as SA (2.3%) . This is followed
by evaluating on relevant context, in which the
model most frequently misclassified the context
as NO / IRR (4.8% of the time). There is a big
drop in performance when evaluated on slightly
altered, relevance errors are more evenly split.
While 72.6% of predictions are correctly labeled as
SA, the 14.3% mislabeled as REL and 8.5% as NO /
IRR suggest that identifying slightly altered context
remains challenging and leaves room for improve-
ment. UTQA is not include in the aggregation in
Table 5. UTQA only contains relevant context and
aggregating a cross it would skew results. With
that being said, RASTeR identifies UTQA’s rele-
vant context as relevant 100% of the time.

Validating TKG. Another potential source of er-
ror lies in the temporal knowledge graph (TKG)
construction process. If the constructor fails to ac-
curately identify entities, relations, or timestamps,
the resulting graph would likely be less informa-
tive than the original relevant context. Although
the overall performance gains (in EM, contains
accuracy, and F1) suggest that this is not a ma-
jor concern, we conducted an additional validation
to confirm. Two annotators manually evaluated
365 extracted triples sampled from each dataset
(entities, relations, timestamps), labeling each as
fully correct, partially correct, or incorrect. The
annotators showed strong agreement, assigning the
same label in 86% of cases. Of the 365 triples, 297
(81.37%) were fully correct, 51 (13.97%) incorrect,
and 17 (4.66%) partially correct. Disagreements
were jointly reviewed and reconciled by both anno-
tators.

Types of General Errors. A common issue occurs
when the model attempts to infer an answer even
when the gold label is unanswerable.

QUESTION: What job did Mary have in 2010?
CONTEXT: In 2009, Mary was a teacher at Lincoln
High School. In 2011, she became a school principal.
INCORRECT REASONING: Mary’s 2010 job is not
explicitly stated. But since she was a teacher in 2009
and only became a principal in 2011, it is inferred she
remained a teacher in 2010. GROUND TRUTH: unan-
swerable PREDICTION: Lincoln High School

Our prompting pipeline encourages models to
reason and guess in the absence of explicit evi-
dence, which improves performance in no-context
and irrelevant-context settings. However, this be-
havior can produce errors in settings where abstain-
ing is preferred. An example is provided above.

Finally, temporal reasoning remains one of the

most challenging categories of errors. To highlight
these issues, MQA’s counterfactual questions re-
quire models to answer based on a hypothetical
that directly contradicts the context. These ques-
tions test whether models adhere to the “what-if”
condition rather than relying on factual timelines.
example of a subset-specific reasoning error can be
found below:

QUESTION: What school did Henry go to from 2008
to 2010, if Henry didn’t graduate from Rice High School
until 2011?
CONTEXT: Henry started at Rice High School in 2004.
In 2008, he graduated and enrolled at Brown University.
He completed his studies there in 2015.
INCORRECT REASONING: The timeline shows
Henry enrolled at Brown University in 2008, which im-
plies he attended it from 2008 to 2010. Since no other
school is mentioned, Brown is inferred as the correct
answer.
GROUND TRUTH: Rice High School
PREDICTION: Brown University

These examples illustrate the need for finer-grained
evaluation and improved handling of temporal and
counterfactual reasoning in large language models.

6 Conclusion

TQA presents persistent challenges for LLMs, par-
ticularly when retrieved context is irrelevant, mis-
leading, or missing. We introduced RASTeR, a
modular, agentic framework that separates con-
text evaluation from answer generation. By as-
sessing context quality, constructing structured
TKGs, and correcting inconsistencies, RASTeR
enables more robust and temporally grounded rea-
soning. Across four TQA datasets and three LLMs,
RASTeR consistently improves accuracy in noisy
and distractor-heavy settings while maintaining
strong performance in ideal conditions. In needle-
in-the-haystack scenarios, it not only outperforms
alternatives but also degrades more gracefully as
distractors increase. In future work, we plan to
extend RASTeR to support multi-hop temporal
reasoning and questions with multiple temporally
valid answers. We also aim to broaden our robust-
ness analysis beyond date shifts to include pertur-
bations such as entity substitutions and relation
modifications, better characterizing model sensi-
tivity to noisy temporal input. Furthermore, we
aim to investigate how to more effectively integrate
TKG generation and the reasoner answerer for im-
proved performance on unseen temporal reasoning
questions.
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Limitations

Despite our best efforts to develop a comprehensive
and robust framework for temporal question an-
swering, several limitations persist. RASTeR uses
slightly more resources than traditional prompt-
ing. While RASTeR’s agent-based architecture
introduces multiple prompting steps per query, we
found the overall overhead to be manageable in
practice. On average, each full query involves 3–4
calls to the underlying LLM, with total token usage
averaging 4.64x more that of a single monolithic
prompt (Table8). However, because the number
of agent calls is fixed and does not scale with in-
put length or number of retrieved documents, the
additional cost remains minimal and predictable
across queries. This fixed modular structure en-
sures stable inference time and simplifies deploy-
ment planning. RASTeR has not been evaluated on
datasets with gold-standard temporal graphs, leav-
ing the accuracy of its generated knowledge graphs
unverified. While the framework is practical in
retrieval-based settings, it underperforms on tasks
requiring abstract generalization, where simpler
prompting strategies may suffice. Moreover, al-
though RASTeR prompts with structured temporal
knowledge, it does not yet leverage deeper archi-
tectural integration, such as graph neural networks
or instruction-tuned models, which may offer more
effective handling of complex temporal relation-
ships.
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A Appendix

A.1 Metric Formalization

In any NLP applications, due to the diverse nature
of natural langue, determining the correctness of
a prediction is always challenging. To highlight
this challenge, Figure 4 shows how the model out-
put can be marked incorrect by both exact match
(EM) and contains accuracy (Acc), despite being
semantically correct. Having a variety of evalu-
ation metrics allows us to get a better picture of
model performance measured by partial matches,
and more strict criteria.

QUESTION: John O. Moseley was an
employee for whom from Mar 1936 to
Dec 1938?
OUTPUT: central state college
GROUND TRUTH: central state
teachers college

Figure 4: An example where the model output is seman-
tically correct but fails EM and Acc.

To define our evaluation metrics formally,
Let â be the predicted answer and let A =
{a1, a2, . . . , an} denote the set of gold reference
answers. Let Wx represent the multiset of words in
answer x.

Exact Match (EM). EM measures whether the
ground truth is exactly identical to the prediction.
(e.g. "Border Collie" is identical to "Border Col-
lie")

EM = 1[â ∈ A]

EM returns 1 if the predicted answer exactly
matches any gold answer, and 0 otherwise.

Contains Accuracy (Acc). Acc measures whether
the ground truth is contained in the prediction. (e.g.
"Border Collie" is contained in "The dog is a Bor-
der Collie")

Acc = 1[∃a ∈ A such that a ⊆ â]
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Acc returns 1 if any gold answer is a substring of
the predicted answer, and 0 otherwise.

Word-Level F1. F1 is the most flexible metric.
It measures the maximum word overlap between
the predicted and gold answers by computing the
harmonic mean of precision and recall. For each
a ∈ A, we compute:

Precision =
|Wâ ∩Wa|

|Wâ|
, Recall =

|Wâ ∩Wa|
|Wa|

F1 = max
a∈A

2 · Precision · Recall
Precision + Recall

For example: if the predicted answer is "central
state college" and the gold answer is "central state
teachers college", the prediction shares three words
with the gold answer. Precision is 1 (3 out of 3
words), recall is .75 (3 out of 4 words), and F1 =
2·1·.75
1+.75 = .857.

A.2 Descriptive Statistics

In Table 6, we report the average number of words
per context and the number of samples (n) for all
datasets used in our experiments. The full MQA
dataset was included but is substantially smaller
than the other datasets. Full subsets of UTQA
were also used, though we excluded the easy and
medium settings, as they were less challenging
and required minimal reasoning compared to the
hard subsets. Among all subsets, HS n_20 had
the highest average word count, with nearly 5.5k
words. This is due to the relevant context being
surrounded by forty distractors. The TSQA subsets
also had long contexts, making them the second
most verbose in terms of average word count.

For ablations, we used a subset of 80 randomly
selected rows sampled from our three main datasets.
Half of the rows came from TR, while the other
half were drawn from MQA and TSQA. Table 7
summarizes the row counts and proportions for
each subset included in the ablation.

A.3 Estimated Token Costs

Table 8 reports estimated token usage (in mil-
lions) for TKG generation versus our multi-agent
RASTeR method across all datasets. Although
RASTeR uses more tokens due to its modular
agents, the overall increase is modest relative to
the scale of improvement in accuracy and robust-
ness.

Dataset Subset Avg. Words n

MQA counterfactual 82.38 112
MQA order 80.44 182
MQA scope 82.38 112
MQA scope_expand 75.91 176
UTQA hardSerial 140.84 2700
UTQA hardParallel 140.47 2700
HS n_1 399.94 200
HS n_3 904.67 200
HS n_5 1503.09 200
HS n_7 2021.04 200
HS n_20 5494.45 200
TR l2 128.29 250
TR l3 141.08 250
TSQA easy 2041.00 250
TSQA hard 1827.08 250

Table 6: Average word count of relevant context and
number of samples (n) per subset.

Dataset Subset Count Proportion (%)

MQA

counterfactual 7 8.8
order 6 7.5
scope 5 6.2

scope_expand 7 8.8

TR l2 16 20.0
l3 16 20.0

TSQA easy 14 17.5
hard 9 11.2

Total – 80 100.0

Table 7: Descriptive statistics of combined data subsets
used for ablations

More often than not, multi-agent frameworks
increase computational cost, as noted in our limita-
tions section. However, this increase is not a funda-
mental weakness but a general property of agentic
systems. As inference costs continue to decline, we
expect this overhead to become increasingly negli-
gible. Even with a 4.64× average increase (shown
in Table 8 ), the total expense remains within a
practical range for modern research pipelines.

A.4 Expanded Results

In addition to Acc show in Table 1, we report EM in
Table 9 and F1 scores in Table 10. While Gemma
with the Few-Shot prompt slightly outperforms
RASTeR in terms of EM (by 0.8%), RASTeR
consistently performs better on both Acc and F1.
In fact, RASTeR shows the strongest gains when
evaluated through the lens of F1. For example,
RASTeR combined with LLaMA achieves a full
7% improvement over the next-best average F1
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Dataset TKG RASTeR

MenatQA 4.52 16.37
TempReason 5.14 20.20
TimeQA 5.75 48.91

Average 4.83 22.43

Table 8: Estimated cost in USD per million tokans com-
paring single-agent TKG generation and the multi-agent
RASTeR framework. Despite the multi-agent structure,
the relative increase in cost remains moderate.

Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .306 .257 .150 .272
Reasoning .191 .266 .136 .194

TKG .291 .240 .142 .258
RASTeR .291 .276 .140 .264

gpt-4o-mini

Few-Shot .268 .288 .188 .258
Reasoning .210 .318 .195 .226

TKG .273 .253 .177 .254
RASTeR .287 .303 .221 .287

Llama-3.1-8B-Instruct

Few-Shot .056 .122 .060 .068
Reasoning .088 .193 .095 .107

TKG .178 .153 .093 .159
RASTeR .213 .222 .148 .204

Table 9: Exact Match (EM) averaged across subset, and
eval-context for each model and prompting strategy.

score.
We believe RASTeR’s strong performance un-

der F1 is due to the metric’s sensitivity to partial
overlap. Predictions are often semantically correct
but do not match the gold answer word-for-word,
especially when context is missing. Since RASTeR
is designed to filter, correct, and reason over noisy
context, it excels in settings where exact matches
are unlikely but partial correctness is common.

A.5 Significance Testing
To assess whether the observed performance differ-
ences between RASTeR and each baseline model
were statistically reliable, we conducted a two-
stage significance analysis covering all models,
datasets, and evaluation contexts.

Stage 1 – Pairwise Bootstrap Testing. For ev-
ery combination of model, dataset, subset, and
evaluation context, we compared RASTeR to each
baseline (generic-fs, reasoning-fs, TKG-fs) using
a paired bootstrap test on per-example correctness
scores (1 = correct, 0 = incorrect). Each boot-
strap sample resampled the same set of test in-
stances with replacement to estimate the distribu-
tion of the accuracy difference:

∆ = x̄RASTeR − x̄baseline.

Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .364 .321 .206 .331
Reasoning .248 .317 .211 .253

TKG .345 .304 .205 .315
RASTeR .368 .383 .223 .346

gpt-4o-mini

Few-Shot .343 .338 .270 .330
Reasoning .292 .382 .285 .306

TKG .344 .306 .248 .322
RASTeR .359 .380 .317 .364

Llama-3.1-8B-Instruct

Few-Shot .085 .171 .090 .100
Reasoning .129 .239 .135 .148

TKG .225 .208 .133 .207
RASTeR .285 .300 .224 .277

Table 10: F1 Score averaged across subset, and eval-
context for each model and prompting strategy.

From 10,000 bootstrap replicates, we computed
percentile-based confidence intervals and one-sided
p-values following Riezler and Maxwell (2005).
The full grid of comparisons consisted of 216 pair-
wise tests

Stage 2 – Pooled McNemar Tests. To summarize
effects at the model level, we aggregated contin-
gency counts across all datasets, subsets, and eval-
uation contexts. For each model–baseline pair, we
accumulated:

a = both correct,

b = RASTeR only correct,

c = baseline only correct,

d = both incorrect.

We then applied a continuity-corrected McNemar
chi-square test:

χ2 =
(|b− c| − 1)2

b+ c
,

which tests whether the two systems differ signifi-
cantly in accuracy while accounting for paired de-
pendence. Two-sided p-values were derived from
the chi-square distribution with one degree of free-
dom.

Across all 216 pairwise tests, every statistically
significant difference favored RASTeR (positive
∆). The pooled McNemar results, summarized in
Table 11, confirm that RASTeR’s improvements
are robust and consistent across models.

A.6 Using Semantically Similar Context

To further ensure that our system is robust against
realistic confounders, we introduce a semantically
similar context, denoted Cs.
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Model Baseline pMcNemar Significant (0.05)

gemma-3-12b-it
TKG_fs 3.8× 10−5 Yes
Generic_fs 0.132 No
Reasoning_fs 2.2× 10−11 Yes

gpt-4o-mini
TKG_fs 1.4× 10−17 Yes
Generic_fs 2.6× 10−9 Yes
Reasoning_fs 1.3× 10−9 Yes

LLaMA-3.1-8B-Instruct
TKG_fs 0.0596 No
Generic_fs 6.5× 10−115 Yes
Reasoning_fs 1.1× 10−7 Yes

Table 11: Pooled McNemar significance tests compar-
ing RASTeR against each baseline, aggregated across
all datasets, subsets, and evaluation contexts. Signifi-
cant results (p < 0.05) indicate that RASTeR’s accuracy
improvements are statistically reliable.

Cs is selected based on cosine similarity between
the question embedding and other context em-
beddings, computed using the all-MiniLM-L6-v2
model. Formally,

C
(n)
s = C

(m)
r , m = arg max

j∈{1,...,N}\{n}
cos

(
emb(Qn), emb(C

(j)
r )

)

This procedure selects the most semantically
similar yet distinct context to Qn, allowing us to
evaluate model robustness under plausible but mis-
leading evidence rather than purely random noise 5.

In the haystack experiments, distractor passages
were previously selected at random. Likewise,
the irrelevant-context experiments also relied on
random sampling. To test the robustness of our
approach under more realistic retrieval noise, we
conducted additional experiments using semanti-
cally similar contexts, identified using cosine sim-
ilarity between question and context embeddings
computed with all-MiniLM-L6-v2. These exper-
iments help determine whether RASTeR remains
effective when distractors are not arbitrary but in-
stead closely related to the query in meaning.

Main Experiment. Table 12 extends the results
reported in Table 2 by evaluating the gpt-4o-mini
model on the TEMPREASON dataset under seman-
tically similar distractors.

As shown, RASTeR continues to outperform
both generic and reasoning few-shot baselines even
when distractors are not chosen at random but by
semantics.

Needle-in-a-Haystack Experiment. We also ex-
tended the needle-in-a-haystack experiments to use

5While questions within each dataset share similar themes,
introducing semantically similar distractors provides an ad-
ditional test of the system’s stability under realistic retrieval
conditions.

Prompt Type Dataset Cont. Acc.

Generic Few-shot TempReason 0.045
Reasoning Few-shot TempReason 0.135
RASTeR TempReason 0.153

Table 12: gpt-4o-mini’s performance on semantically
similar irrelevant contexts

semantically similar distractors. The results with
gpt-4o-mini are presented in Table 13.

Prompt Type Cont. Acc. EM F1

Generic Few-shot 0.485 0.485 0.584
Reasoning Few-shot 0.565 0.560 0.646
TKG 0.495 0.495 0.571
RASTeR 0.650 0.640 0.714

Table 13: TempReason Needle-in-a-haystack results
using 40 semantically similar distractor contexts (based
on cosine similarity via all-MiniLM-L6-v2).

RASTeR again achieves the highest performance
across all metrics, indicating that it maintains ro-
bustness even when distractors are not random but
contextually plausible. These findings strengthen
the evidence that RASTeR’s reasoning and veri-
fication mechanisms generalize beyond artificial
perturbations, capturing robustness to realistic re-
trieval noise.

A.7 Error Analysis
Table 5 presents a confusion matrix showing how
our relevance reasoner classified different types of
context. Note that the pipeline treats both no con-
text and irrelevant context as equivalent, so both the
relevance reasoner should label them as NO / IRR.
As discussed in the main paper, the greatest area
for improvement lies in detecting slightly altered
contexts, which are only correctly identified 77.1%
of the time.

We evaluate the contribution of individual com-
ponents in our agentic system by systematically
removing steps and comparing the performance of
the full system to these ablated variants. As can be
seen in Table 5, Our full model achieves the highest
average accuracy across context types, driven by
strong performance in the none, relevant, and
slightly altered settings. It also maintains
a competitive score in the relevant condition,
demonstrating balanced robustness across evalu-
ation scenarios.

A.8 Ordering Dates
Rule order (lexicographic over key):
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Ablation none irrelevant relevant slightly altered avg

w/o DateFix .275 .263 .762 .200 .375
w/o TKG .275 .275 .700 .188 .360
w/o DetRel .150 .212 .762 .175 .325
nothing ablated .263 .300 .738 .250 .388

Table 14: Ablation results showing accuracy across different
context types. Each row removes a specific module from the
full pipeline to assess its contribution.

1. Nodes with a valid starttime first;

2. Among equal starttimes: earlier starttime,
then higher precision (DAY < MONTH <
YEAR < UNKNOWN);

3. If starttime ties or is invalid: prefer nodes with
a valid endtime, then earlier endtime, then
higher precision;

4. Nodes with neither valid start nor end appear
last; stability preserves their original order.

Note. Normalized dates (e.g., first day of mon-
th/year) are used only for ordering and do not over-
write the original strings. Sorting is O(|S| log |S|);
parsing is O(|S|).

A.9 Prompts

Both our method and baseline prompts used few-
shot examples. To ensure a fair, apples-to-apples
comparison, we kept the examples as consistent as
possible by using the same set of AlphaGo-related
questions and contexts6, randomly selected once
and reused throughout. When applicable, we in-
cluded examples with relevant, irrelevant, slightly-
altered, and no context to test model robustness
across conditions. Notably, for the Irrelevant An-
swerer shown in Figure 10 , we include only a
no-context example, as its pipeline never permits
prompting with any other context type. Further
details are provided below.

A.9.1 RASTeR Prompts

Relevance Reasoner.
To assess the relevance of a given context, we
prompt the model to perform five steps using both
the question and the context: (1) Identify the
main entity in the question; (2) Determine whether
this entity appears in the context; (3) If the con-
text uses pronouns instead of explicit names (e.g.,
he/she/they instead of ‘Abraham Lincoln’), assess

6We selected the topic AlphaGo randomly; it does not
confer any advantage to our method or the baselines and serves
solely to ensure consistency across examples.

whether the pronouns plausibly refer to the iden-
tified entity; (4) Evaluate the temporal validity of
any dates in the context across four dimensions;
(5) Based on this evaluation, decide whether date
correction is needed. We included five few shot
examples for the relevance reasoner: (1) a typi-
cal example; (2) an example with a longer context
window; (3) an example with some noisy context,
(4); an example with longer context and noise; and
(5) a counterfactual example. The exact prompt is
shown in Figure 5. Additionally, we provide an
example input-output pair inf Figure 6 to demon-
strate how the relevance agent can detect temporal
inconsistencies without access to golden answers
or oracle supervision.

TKG Constructor.
To incrementally construct a TKG, we prompt the
model with a slice of historical context and all pre-
viously constructed nodes. The model is asked
to identify new temporal facts from the context
slice that are not already present in the prior graph.
Then convert those facts into structured TKG nodes.
Each output node includes: (1) a supporting quote
from the context; (2) subject and object entities;
(3) their relation; (4) a start and end time; and (5)
a reformatted sentence that is grammatically cor-
rect, time-grounded, and follows specific templates.
The model is explicitly instructed to infer plausi-
ble dates when none are stated, use qualifiers like
“around” when necessary, and avoid duplicating ex-
isting facts. We included two Few-Shot examples
to guide the TKG Constructor: (1) an example with
no former TKG; and (2) an example with a start-
ing TKG. The exact prompt is shown in Figure 7.
As an aside, our prompt encourages the model to
format the starttime and endtime in the “YYYY-
DD-MM" format, but does not require it. This
intentionally allows varying date granularity. If the
context says “He adopted his first dog in 2014,” the
model should not hallucinate month/day; forcing
YYYY-MM-DD would fabricate precision that is
not in the evidence. The changes in format types
does not impact LLMs like it would impact a graph
database, as LLMs can easily handle slight differ-
ences in format. An analysis of the generated time
stamps can be found in Table 15

TKG Date Completion.
When the Relevance Reasoner determines that a
context requires correction, we manually remove
the starttime and endtime from each node in the
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System Prompt

You will be given a question and a context. Your job is to carefully evaluate the context using the steps below:
1. Question Entity: Identify the main entity of the question.

2. Does the Entity appear in the context?

3. Do Pronouns Refer to the Entity?
If the main entity does not explicitly appear in the context, but the context contains pronouns (e.g., ‘he”, she”, it”), can
these pronouns be reasonably inferred to refer to the entity in question?
Options: True / False / None (if not applicable)

4. Evaluation of Context Dates:

• a. Chronological Order: Are the dates logically ordered, or are they contradictory or impossible to sequence?

• b. Timeframe Alignment: Do the dates overlap with or lead into the timeframe asked in the question?

• c. Realism of Time Span: Is the total date range plausible for the entity, or is it unrealistically broad?

• d. Historical Consistency: Do the dates contradict known facts or include anachronisms or future events?

5. Date Need Correction: A boolean indicating whether the dates in the context need correction based on the above
evaluation.

User Prompt

Please evaluate the following context by following these steps:

1. Question Entity

2. Does the Entity appear in the context?

3. Do the Pronouns Refer to the Entity?

4. Evaluation of Context Dates

5. Date Need Correction

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 5: System and user determining the relevance of a provided context.

TKG, replacing them with placeholder values X
and Y . The model is then prompted to (1) infer
plausible temporal bounds using historical knowl-
edge or contextual cues, and (2) generate a natural,
grammatically correct sentence that incorporates
the subject (e1), relation (rel), object (e2), and the
inferred timeframe. The output must include both
the completed sentence and the recovered temporal
fields in a structured format. This step allows the
model to use its internal knowledge to infer tem-
poral boundaries, enabling accurate correction of
incomplete TKG facts. We included a single few
shot example to guide the model. The exact prompt
is shown in Figure 8.

Relevant Answerer.
After the construction of the TKG, we prompt the
model with a question and the TKG. The model
is instructed to perform three steps: (1) select the
node(s) from the TKG that are temporally relevant
and contain information necessary to answer the
question; (2) explain how the selected node(s) sup-
port the answer, including reasoning over temporal
relationships such as before/after conditions; and
(3) provide a confident, direct answer based on the
evidence, or make an educated guess using indi-
rect cues if no explicit answer is available. This
step leverages the structured context encoded in the
TKG to produce grounded, time-aware answers.
We included six Few-Shot examples to help guide
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Model Dataset % YYYYMMDD % YYYY % MonthYYYY % UNKNOWN N

gemma

MenatQA 75.10% 9.11% 0.56% 15.23% 4,972
TempReason 99.99% 0.00% 0.00% 0.01% 8,518
TimeQA 67.93% 9.77% 0.57% 21.74% 54,280

gpt

MenatQA 92.72% 0.00% 0.00% 7.28% 4,588
TempReason 99.99% 0.00% 0.00% 0.01% 8,444
TimeQA 81.70% 0.00% 0.00% 18.30% 68,990

llama

MenatQA 85.06% 3.14% 0.49% 11.31% 4,898
TempReason 98.09% 0.00% 1.90% 0.01% 8,330
TimeQA 62.88% 11.91% 1.21% 24.00% 100,046

Table 15: Distribution of temporal expression formats across datasets for each model. Percentages indicate the
proportion of timestamps expressed as full dates (YYYYMMDD), years (YYYY), month-year pairs (MonthYYYY),
or unknown formats.

the models reasoning: (1) an example with relevant
context; (2) and example without context; (3) an ex-
ample with random context; (4) and example with
slightly altered context; (5) an example showing
when pronouns correctly refer to the entity in the
question; and (6) an example showing when the
pronouns do not refer to the entity in the question.
The exact prompt is shown in Figure 9.

Irrelevant Answerer.
When the context is determined to be irrelevant,
we discard the context, and prompt the model to
answer questions using only its internal knowledge.
The model is guided through a 3-step reasoning
process: (1) restate the question to clarify what is
being asked; (2) reason toward an answer using
general world knowledge; and (3) provide a final
answer in a clear, structured format. By discarding
the context, we eliminate distractors and evaluate
the model’s ability to interpret and answer temporal
questions without relying on a retrieved context.
We provide a single Few-Shot example to help
guide the model’s reasoning. The exact prompt is
shown in Figure 10.

A.9.2 Baseline Prompts

All baseline prompts have four Few-Shot exam-
ples to help guide their reasoning: (1) an example
with relevant context; (2) an example without con-
text; (3) an example with random context; (4) an
example with slightly altered context.

Few-Shot.
Our first baseline evaluates model performance us-
ing a minimal prompt that mirrors common few-
shot setups. The model is given a question and a
corresponding context and is instructed to respond
concisely using the format: The answer is X. Un-

like our structured approaches, this prompt includes
no explicit reasoning steps or guidance for inter-
preting the context. It serves to benchmark how
well the model can extract answers when given rel-
evant input, and how it performs in the presence of
no or irrelevant context without any reasoning scaf-
folding. The exact prompt is shown in Figure 11.

Reasoning.
Our second baseline introduces a structured 5-step
reasoning process to guide the model through ques-
tion answering. Given a question and a context, the
model is instructed to (1) restate the question to
clarify its intent; (2) assess whether the context is
relevant; (3) quote specific evidence from the con-
text, or indicate NONE if no useful information is
found; (4) reason toward an answer using either the
provided evidence or its own internal knowledge;
and (5) produce a final answer in the format: The
answer is X. This format encourages explicit rea-
soning and evidence grounding. The exact prompt
is shown in Figure 12.

Simple TKG.
This baseline a non-iterative TKG construction
without the full multi-agent pipeline. The model is
prompted to (1) extract all entities from the context,
including people, places, roles, and other named
concepts; (2) construct a TKG; and (3) answer the
question based on the constructed TKG using the
standard format: The answer is X. The model
is allowed to correct factual inconsistencies in the
context or fall back on internal knowledge when
context is irrelevant. This prompt provides a basic
measure of how well the model can extract tempo-
ral structure and reason over it in a single pass. The
exact prompt is shown in Figure 13.
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INPUT

Question: Who was the first Beatle to die?

CONTEXT:

• The Beatles were an English rock band formed in Liverpool in 1960.

• The group consisted of John Lennon, Paul McCartney, George Harrison, and Ringo Starr.

• John Lennon was tragically shot and killed on December 8, 1980.

• George Harrison passed away on November 29, 2001, due to lung cancer.

• Ringo Starr, born July 7, 1940, is still alive as of 2025.

• Paul McCartney died in a car crash in 1966.

• Paul McCartney continued to play a central role in the Beatles’ later albums, including Sgt. Pepper’s Lonely Hearts
Club Band (1967), The White Album (1968), Abbey Road (1969), and Let It Be (1970).

OUTPUT

Question entity: Paul McCartney

Does entity appear in context? Yes

Pronoun refers to the entity? Not applicable (the context clearly states "Paul McCartney"; no inferences need to be
made about He/She/They)

Date Reasoning Chain

• D1 – Chronological order: The claim that Paul died in 1966 comes before Lennon’s death in 1980 and
Harrison’s in 2001. However, the same context states Paul contributed to albums released after 1966. If he were
dead, he could not have helped with these later works. This creates a chronological contradiction.

• D2 – Timeframe alignment: The timeframe spans 1966 through 2001, but Paul’s supposed death in 1966 does
not align with the Beatles’ actual release history from 1967–1970.

• D3 – Time span realism: A death in 1966 is unrealistic because it conflicts with Paul’s continued presence in
recordings and performances through the late 1960s and beyond.

• D4 – Historical consistency: Lennon’s 1980 and Harrison’s 2001 death dates are historically consistent, but
Paul’s supposed 1966 death is inconsistent with the known historical record.

Final decision: CONTEXT NEEDS CORRECTION

Figure 6: Example input and output of the relevance agent. The date reasoning chain allows the detection temporal
consistency (or inconsistency) without gold answers through logical reasoning.
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System Prompt

You will be presented with a slice of historical context and a previously constructed temporal knowledge graph (TKG).
Your task is to identify new temporal facts from the current context and output them as TKG nodes.
Do not repeat facts already included in the previous TKG.
Each node should include the following fields:

• quote: a verbatim snippet or sentence from the context that supports the node’s validity

• e1: subject entity (e.g., person, organization)

• e2: object entity (e.g., location, role, other person)

• rel: the relation between e1 and e2

• starttime: when the relation began

• endtime: when the relation ended

• reformatted: a rewritten sentence that:

– rearranges the quote to follow the order: time(s), e1, rel, e2
– is grammatically correct and includes only e1, e2, rel, and times
– must include temporal information (date, year, or month); if not explicit, infer it
– uses qualifiers like ‘around” or roughly” when inferring time
– follows these example templates:

* On {starttime}, {e1} was {rel} {e2}

* Between {starttime} and {endtime}, {e1} was {rel} {e2}

* Roughly in {starttime}, {e1} was {rel} {e2}

Format your output as a list of dictionaries:

[ { "quote": "...", "e1": "...", "e2": "...", "relation": "...", "starttime": "...",
"endtime": "...", "reformatted": "..." }, ... ]

Notes:

• Begin with an empty TKG or ‘NONE” on the first slice.

• Only include new nodes clearly grounded in the current context.

• Use short, direct quotes.

• Do not repeat nodes from the former TKG.

• Preferred time formats: ‘YYYY-MM-DD”, then YYYY”, Month YYYY”, or UNKNOWN”.

• You may extract overlapping or nested events if they are distinct.

• Use only double quotes in your answer (no single quotes).

User Prompt Header

Construct new TKG nodes using the provided context and former_tkg.
Avoid duplicating facts already extracted. Output only new nodes relevant to the current slice of context.

Reminder: The "reformatted" quote should be a grammatically correct sentence that includes a specific date, year,
month, or timespan. If not explicitly stated in the context, infer it using surrounding information. In such cases, use
terms like ‘around” or roughly”.

HERE IS THE CONTEXT:
{context}

HERE IS THE FORMER TKG:
{former_tkg}

Figure 7: System and user prompt for generating new temporal knowledge graph (TKG) slices of a provided context.
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System Prompt

You are given a temporal knowledge graph (TKG) triple with missing starttime and endtime.

Your task is to:

1. Infer appropriate starttime and endtime based on historical knowledge or reasonable assumptions.

2. Write a grammatically correct and natural-sounding sentence that incorporates:

• the subject (e1)
• the relationship (rel)
• the object (e2)
• and the inferred temporal range

You are allowed to rephrase the sentence as long as all elements are included and the timeframe is clearly conveyed.

Your output should follow this format:

COMPLETE SENTENCE: [your complete sentence]
STARTIME: [YYYY-MM-DD]
ENDTIME: [YYYY-MM-DD]

Example:

INPUT:
{"e1": "Arseny Dmitrievich Mironov", "e2": "USSR State Prize", "rel": "recipient of",
"starttime": X, "endtime": Y}

OUTPUT:
COMPLETE SENTENCE: Arseny Dmitrievich Mironov received the USSR State Prize in 1976.
STARTIME: 1976-01-01
ENDTIME: 1976-12-31

User Prompt Header

Given the following TKG triple with missing temporal information, fill in the starttime and endtime, and write a
complete, natural-sounding sentence.

You must:

• Include e1, rel, and e2

• Clearly indicate the time period

• Use correct grammar and phrasing

Format:

COMPLETE SENTENCE: ...
STARTIME: ...
ENDTIME: ...

HERE IS YOUR TRIPLE:
{triple}

Figure 8: System and user prompt for inferring missing temporal values in a temporal knowledge graph triple.
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System Prompt

You are given a question and a temporal knowledge graph (TKG). Your job is to answer the question using the TKG to
assist you.

Please follow these steps:
1. Select Supporting Nodes:

• From the TKG, return the node(s) that provide the information necessary to answer the question.

• You may include one or more nodes.

• Only include nodes that are temporally relevant to the question.

• You must consider the time frame mentioned in the question.

• If multiple matching nodes exist, include them all.

2. Explain Your Reasoning:

• Justify how the node(s) support your answer.

• If no node is directly about the question, you may infer the answer from strong contextual clues.

• For before/after questions, identify the event that occurred immediately before or after the referenced one.

• Example:
Context: Dan attended high school from 2010–2014, undergrad from 2014–2018, a master’s from 2023–2024, and
began a PhD in 2024.
Question: What did Dan do after high school?
Reasoning: Dan completed undergrad, a master’s, and began a PhD after high school. However, undergrad was
immediately after, so it is the correct answer.

3. Answer the Question:

• Respond in the format: The answer is X

• If no nodes provide a direct answer, use indirect evidence to make an educated guess.

• For instance, political roles, awards, institutions, or cities may imply nationality or affiliation.

• Your answer should be confident and definite.

Note: Use only double quotes in your answer. Do not use single quotes.

User Prompt Header

Given a question and a temporal knowledge graph (TKG), answer the question using the TKG to assist you.
Follow these steps:

1. Select Supporting Nodes

2. Explain Your Reasoning

3. Answer the Question

If no nodes directly provide information to answer the question, use indirect evidence to make an educated guess.

HERE IS YOUR QUESTION:
{question}

HERE IS THE TKG:
{TKG}

Figure 9: System and user prompts for answering temporal questions using a temporal knowledge graph (TKG).
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System Prompt

You are a helpful and precise assistant. When given a question, respond clearly and concisely, only using relevant
information. To help you arrive at the correct answer, follow this 3-step reasoning process:

1. Restate the Question
Rephrase the original question to clarify what is being asked.

2. Reason
Rely on your general knowledge to reason toward an answer.

3. Answer
Provide your final answer using the format: The answer is X.

Note: Only use double quotes in your answer. Do not use single quotes.

User Prompt Header

Please answer the question using the provided context.
Follow the 3-step reasoning process above, and end with a final answer in Step 3.

HERE IS THE QUESTION:
{question}

Figure 10: System and user prompts for answering questions without context using a structured 3-step reasoning
process.

System Prompt

You are a helpful and precise assistant. When given a context and a question, respond clearly and concisely, only using
relevant information.

Please use the format: The answer is X where X is your answer.

Example formatting:

The answer is Michael Phelps.

User Prompt Header

Please answer the question given the context.
Your response should follow the format: The answer is X

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 11: System and user prompts for answering questions with concise, format-specific responses.
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System Prompt

You are a helpful and precise assistant. When given a context and a question, respond clearly and concisely, only using
relevant information. To help you arrive at the correct answer, follow this 5-step reasoning process:

1. Restate the Question
Rephrase the original question to clarify what is being asked.

2. Evaluate Context Relevance
Determine whether the provided context contains information that is useful for answering the question.

3. Quote Supporting Evidence
Copy and paste the exact portion(s) of the context that support your answer.
If no useful evidence exists, write NONE.

4. Reason
If the context is relevant, use the quoted evidence to logically derive the answer.
If the context is not relevant, rely on your general knowledge to reason toward an answer.

5. Answer
Provide your final answer using the format: The answer is X.

User Prompt Header

Please answer the question using the provided context.
Follow the 5-step reasoning process above, and end with a final answer in Step 5.

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 12: System and user prompts for answering questions using a structured 5-step reasoning process.
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System Prompt

You are a helpful and precise assistant. You will be presented with some context and a question. Your job has two parts.

First: Identify all entities in the context, including places, names, occupations, and things.
List them using the following format, wrapped in triple backticks. Do not skip any entities.

e1. Yoko Ono
e2. Businessman
e3. Europe

Second: Construct a Temporal Knowledge Graph (TKG) based on the context using the identified entities.
Each TKG node should include the following fields:

• Entity1

• Entity2

• Relation

• Timestamp

Format:

[
{’Entity1’: ’...’, ’Entity2’: ’...’, ’Relation’: ’...’, ’Timestamp’: ’...’},
...
]

Additional Instructions:

• If the context is partially incorrect, correct the information before building that part of the TKG.

• If the context is irrelevant or marked as NONE, discard it and use your internal knowledge instead.

Once the TKG is complete, use it to answer the question. Respond concisely using the format: The answer is X.

Example formatting:

The answer is Michael Phelps.

User Prompt Header

Build a temporal knowledge graph (TKG) to help answer the question using the provided context.
The TKG should be a list of nodes, each with Entity1, Entity2, Relation, and Timestamp fields.

Once the TKG is complete, use it to answer the question.
Your answer should follow the format: "The answer is X"

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 13: System and user prompts for entity extraction, temporal knowledge graph construction, and question
answering.
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