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Abstract

Pretrained transformer-encoder models like
DeBERTaV3 and ModernBERT introduce
architectural advancements aimed at improving
efficiency and performance. Although the
authors of ModernBERT report improved
performance over DeBERTaV3 on several
benchmarks, the lack of disclosed training
data and the absence of comparisons using a
shared dataset make it difficult to determine
whether these gains are due to architectural
improvements or differences in training data.
In this work, we conduct a controlled study
by pretraining ModernBERT on the same
dataset as CamemBERTaV2, a DeBERTaV3
French model, isolating the effect of model
design. Our results show that the previous
model generation remains superior in sample
efficiency and overall benchmark performance,
with ModernBERT’s primary advantage being
its support for long context, faster training,
and inference speed. However, the new
proposed model still provides meaningful
architectural improvements compared to
earlier models such as BERT and RoBERTa.
Additionally, we observe that high-quality
pre-training data accelerates convergence
but does not significantly improve final
performance, suggesting potential benchmark
saturation. These findings show the importance
of disentangling pretraining data from
architectural innovations when evaluating
transformer models.

1 Introduction

Despite the widespread adoption of decoder-only
large language models (LLMs) in our
post-ChatGPT era, encoder-only transformers
such as BERT (Devlin et al., 2019) continue to
play a central role in many NLP applications.
These models remain the backbone of a
wide range of non-generative tasks such as
classification, named entity recognition (NER),
and retrieval-based systems, especially in

high-throughput or latency-sensitive environments.
Their relatively low compute requirements and
strong performance across standard information
benchmarks benchmarks make them a practical
choice for large-scale deployment, including in
Retrieval-Augmented Generation (Lewis et al.,
2020) pipelines or guardrails systems (Neill
et al., 2024). Notable examples include Google’s
EmbeddingGemma (Vera et al., 2025), the BGE
family of 33 models (Chen et al., 2024; Xiao
et al., 2023), and multilingual encoders such as
multi-ligual modernBERT (Marone et al., 2025)
and EuroBERT (Boizard et al., 2025), alongside
GTE-ModernBERT (Li et al., 2023; Zhang et al.,
2024).

Continuous architectural and training objective
improvements have led to more performant and
efficient encoder-only transformer variants, among
which DeBERTaV3 (He et al., 2021a) and the
recently proposed ModernBERT (Warner et al.,
2024) stand out as major improvements. According
to Warner et al. (2024), their model reports
superior performance relative to DeBERTaV3,
the previous state-of-art model, across several
popular NLP benchmarks. However, interpreting
these performance improvements is challenging
due to the lack of details regarding their training
data. Without comparisons conducted on identical
datasets, it remains unclear whether the reported
gains reflect genuine architectural advances or
simply differences arising from the choice of
training data.

This uncertainty motivates our study aimed to
evaluate the impact of architecture versus training
data by conducting a controlled comparison
among ModernBERT, DeBERTaV3, and RoBERTa
models. We select CamemBERTaV2 (Antoun
et al.,, 2024, 2023), a French DeBERTaV3
model trained from scratch, as our primary
reference since both its intermediate checkpoints
and training dataset are publicly available.
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Additionally, we include CamemBERTv2 (Antoun
et al., 2023, 2024), a RoBERTa (Liu, 2019)
based model pretrained on the same dataset,
to comprehensively assess how ModernBERT’s
architectural advancements compare not only
against the latest DeBERTaV3-based models but
also against more traditional BERT/RoBERTa
architectures. Leveraging these resources, we
pretrained a French ModernBERT using the
exact same dataset as CamemBERTaV2 and
CamemBERTYV2, thus ensuring that differences in
performance directly reflect architectural variations
rather than dataset composition or quality. In
addition, we pretrained another ModernBERT
variant on a carefully curated, high-quality French
corpus to further explore the role of dataset quality
in model performance.

The key takeaways from our comprehensive
experiments are as follows:

* When controlling for dataset differences,
DeBERTaV3 outperforms ModernBERT in
terms of overall benchmark performance
and training sample efficiency, with the
notable exception of text retrieval tasks where
DeBERTaV3 fails completely. This indicates
that while DeBERTaV3’s architecture and
training objective optimization provide
superior learning capabilities compared to
ModernBERT’s efficiency-oriented design,
they do not generalize to all tasks.

* Nonetheless, ModernBERT  presents
a clear practical advantage due to its
significantly faster training and inference
speeds, driven by an orthogonal set of
optimizations. Moreover, while ModernBERT
may not surpass DeBERTaV3, it offers
meaningful improvements over previous
transformer-based models such as BERT and
RoBERTa.

* We also observe that training models on
high-quality, filtered datasets results in
faster convergence but does not substantially
increase final performance metrics. This
finding highlights a potential limitation
of current NLP benchmarks, suggesting
possible saturation that prevents fine-grained
discrimination between models of similar
performance.

Our findings show the importance of clearly
separating respective effects of architectural

changes and training datasets when evaluating NLP
models. Our controlled comparison using the same
pretraining dataset provides more accurate insights
into the strengths and limitations of ModernBERT
and DeBERTaV3 architectures.

To promote further research and ensure
reproducibility, we publicly release our two
pretrained French ModernBERT  models,
collectively named  ModernCamemBERT,
including one trained on the CamemBERTaV2
dataset and another on our high-quality filtered
corpus. These models, along with intermediate
checkpoints, and evaluation results, are available
on HuggingFace'.

2 Related Works

Transformer-based language models have become
the cornerstone of modern NLP, starting with
BERT (Devlin et al., 2019), which introduced
masked language modeling (MLM) and next
sentence prediction as self-supervised pretraining
tasks used to pretrain encoder-only transformer
models. RoBERTa (Liu, 2019) subsequently
improved upon BERT by removing the next
sentence prediction objective, training on larger
corpora, and applying more robust optimization
techniques.

Despite these advances, both BERT and
RoBERTa shared a fundamental architectural
limitation: they used absolute positional
embeddings and standard attention mechanisms
that lacked efficiency and fine-grained contextual
representation. To address these limitations,
DeBERTa (He et al., 2021b) introduced a
disentangled attention mechanism, decoupling
content and positional information, thereby
improving the model’s ability to generalize across
contexts. DeBERTaV3 (He et al., 2021a) further
extended these innovations by incorporating
Replaced Token Detection (RTD) (Clark et al.,
2020) for more sample-efficient training, as
well as Gradient-Disentangled Embedding
Sharing (GDES) to prevent conflicting updates
in shared embeddings between the generator and
discriminator during training.

In parallel, architectural and efficiency-driven
improvements have become an active area of
research. ModernBERT (Warner et al., 2024)
was recently proposed to modernize the BERT

"https://huggingface.co/collections/almanach/
moderncamembert
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architecture by incorporating a suite of design
choices aimed at improving inference speed,
training throughput, and context window size.
These include FlashAttention (Dao et al., 2022;
Dao, 2024; Shah et al., 2024), alternating global
and local attention layers (Team et al., 2024),
sequence packing (Portes et al., 2023), and rotary
positional embeddings (RoPE) (Su et al., 2021).
ModernBERT also removes architectural elements
such as bias terms and introduces GeGLU (Shazeer,
2020) activations, making it a strong contender for
production scenarios requiring high efficiency.

While ModernBERT has gained popularity other
models have also made significant contributions
to the field. For instance, MosaicBERT (Portes
et al, 2023) was the first to focus on
enhancing training efficiency and performance by
increasing masking rates, sequence packing and
FlashAttention. NomicBERT (Nussbaum et al.,
2025) introduced architectural improvements like
SwiGLU activation functions, RoPE positional
encoding and extended context lengths, enhancing
its ability to handle longer sequences up to 2048
tokens. NeoBERT (Breton et al., 2025) further
advanced these developments by optimizing the
depth-to-width ratio and doubling the context
length, while also significantly increasing training
corpus size.

We chose to compare against ModernBERT
because it was the best available model at the
moment we started our experimentation and it
is the most popular encoder in the field. While
the authors of ModernBERT report superior
benchmark performance over DeBERTaV3, the
absence of transparent training data and lack
of head-to-head comparisons on shared datasets
introduces ambiguity. It is thus unclear whether the
reported improvements are driven by architectural
enhancements or the underlying training data.

3 Methodology

We conduct a controlled study focusing on
the performance of ModernBERT compared to

DeBERTaV3-based and RoBERTa-based models.

Our goal is to identify and separate architectural
improvements from data-driven performance
differences, addressing ambiguities in prior studies
that used undisclosed datasets.

3.1 Pre-training Datasets

Our experiments involve two distinct pre-training
datasets:

CamemBERTaV2 Original Dataset. We first
make use of the publicly available French
dataset originally used by the authors of
CamemBERTaV2 (Antoun et al., 2024). This
dataset has 275 billion tokens, sourced from:

* CulturaX-FR Corpus (Nguyen et al., 2023):
The French subset of a multilingual corpus
containing around 265 billion French tokens,
constructed from multiple snapshots of
OSCAR (Ortiz Sudrez et al., 2019; Abadji
et al., 2021, 2022) and mC4 (Xue et al., 2021)
corpora.

* HALvesting Corpus (Kulumba et al., 2024):
Approximately 4.7 billion tokens of academic
and scientific content from French theses and
research papers.

* French Wikipedia: Roughly 0.5 billion
tokens from Wikipedia, intentionally
upsampled to enhance general knowledge
representation.

This dataset serves as a reference point, allowing
us to directly compare models under identical
training dataset conditions.

High-Quality Filtered Dataset. We also feature
a second significantly larger 1T tokens French
dataset created by applying heuristic and semantic
filters in addition to full deduplication to the French
section of the RedPajamaV2 corpus (Weber et al.,
2024), combined with the HALvesting corpus and
French Wikipedia. Semantic filtering was done
following the FineWeb-Edu (Penedo et al., 2024)
methodology. This method has been effective in
increasing the overall quality of a corpus used for
LLM training and has been widely adopted in the
literature (Li et al., 2024; Su et al., 2025). First, We
annotated 200K samples from the RedPajamaV?2
dataset with quality labels (low, medium, high),
using the LLama-3 70B model (Grattafiori et al.,
2024) and the prompt provided in Appendix A.
This annotated subset was then used to fine-tune
XLM-V-base (Liang et al., 2023), which we use
to annotate the whole RedPajamaV2 corpus. The
semantic score was combined with the perplexity
score from a language model trained on Wikipedia,
as included in the RedPajama dataset. The
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RedPajama authors categorize data into head,
middle, and tail buckets based on perplexity. We
only select data if it is either from the head bucket
or has a high score from the quality classifier, while
disgrading any tail or low labeled documents.

3.2 Model Training

We pretrained two variants of the ModernBERT
model, one on the CamemBERTaV2 dataset,
which we call ModernBERT-CV2, and the
other on our high-quality filtered dataset,
named ModernBERT-HQ, periodically saving
intermediate checkpoints.” Both variants are
base-sized models trained with Masked Language
Modeling (MLM) for 1 trillion tokens, with a
maximum sequence length of 1024, and use
the same tokenizer as CamemBERTaV2. We
maintained the rate of dynamic token masking to
30%, while retaining all other hyperparameters
consistent with those of ModernBERT-base.
Training was done on 48 NVidia H100 80GB
GPUs using Pytorch’s FSDP full sharding with
bfloat16 mixed precision to speed up training?.

Since our models were trained using a
Warmup-Stable-Decay (WSD) learning rate
schedule, each intermediate checkpoint underwent
additional cooldown training over an extra 50
billion tokens, during which the learning rate
decayed fully to zero, ensuring fair comparisons
across checkpoints.

Additionally, we  leveraged  publicly
available intermediate checkpoints from the
CamemBERTaV2 and CamemBERTV2 models,
allowing direct comparisons of learning trajectories
and data efficiency across different architectures.

4 Experiments and Results

4.1 Downstream Evaluation Tasks

To evaluate our models, we consider a range of
French downstream tasks and datasets, including:

* Question Answering (QA): using FQuAD
1.0 (d’Hoffschmidt et al., 2020)

* Named Entity Recognition (NER): on the
2008 FTB version (Abeillé et al., 2000;
Candito and Crabbé, 2009) with NER
annotations by Sagot et al. (Sagot et al., 2012)

We use the publicly available ModernBERT
codebase https://github.com/AnswerDotAl/ModernBERT
3See pretraining hyperparameter details in Appendix B

» Text Classification capabilities assessed
using the FLUE benchmark (Le et al., 2020)
using the CLS amazon reviews classification
task, the PAWS-X paraphrase identification
task and XNLI task.

» Text Retrieval: We used the French subset
of the translated Semantic Textual Similarity
(STS) benchmark (May, 2021) for training
and then evaluated the resulting models
using the French Massive Text Embedding
Benchmark (MTEB) (Ciancone et al., 2024;
Enevoldsen et al., 2025; Muennighoff et al.,
2022).

We re-used the same splits from the
CamemBERTaV2 authors and performed
hyper-parameter tuning on all models and datasets
with 5 seed variations.

4.2 Downstream Results Analysis

The downstream evaluation results summarized in
Table 1 show the following insights into model
architectures and pretaining dataset effects:

Architecture Impact. Comparing the models
trained on identical datasets (ModernBERT-CV2
and CamemBERTaV2/CamemBERTV2), we
observe that ModernBERT-CV2 consistently
outperforms CamemBERTV2 with the exception
of text retrieval, thus showing ModernBERT’s
improvements over BERT/RoBERTa. However,
it fails to surpass CamemBERTaV2 on any
non-retrieval task, even though the latter being only
trained for a single epoch on the dataset compared
to three epochs (1T tokens) for ModernBERT-CV2.
This clearly demonstrates that while ModernBERT
offers valuable throughput-driven architectural
enhancements, these improvements do not match
the contextual learning capabilities provided
by DeBERTaV3’s disentangled attention and
RTD-based pretraining objective. Our results
also confirm the observation that DeBERTaV3
fails on text embedding tasks. Despite its
strong performance on NLU tasks, its sentence
representations are poorly structured in the
embedding space.

Data Quality Impact. Interestingly,
switching to our high-quality filtered dataset
(ModernBERT-HQ) only marginally improved
performance on downstream tasks, despite the
dataset containing three times more unique
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NER QA CLS PAWS-X XNLI MTEB
MODEL
F1 F1 EM Acc Acc Acc AVG
CamemBERTV?2 91.99+096 80.39+036 61.35+£039 95.07+011 92.00+02¢4 81.75+062 51.67+0.57
CamemBERTaV2 93.40+062 83.04+1019 64.29+031 95.63+016 93.06+045 84.82+054 31.15+526
ModernBERT-CV2  92.03+0.14 81.34+035 61.47+046 95.18+020 92.79+022 83.28+034 49.44+136
ModernBERT-HQ  91.80+047 81.11x026 62.07+044 95.041000 92.55+054 83.66+067 49.93+0.60

Table 1: Downstream tasks results.

Bold indicates best score overall while underline indicates best score

between the ModernBERT models. ModernBERT-CV2 is the ModernBERT model trained on the same data as
CamemBERTaV2 while ModernBERT-HQ is the one trained on the high-quality filtered dataset. Scores are the
5-seed average of the best performing set of hyperparamters for each model. MTEB scores are the average over all

tasks. Full MTEB scores are available in Table 6

tokens than the original CamemBERTaV2
dataset. ModernBERT-HQ slightly outperformed
ModernBERT-CV2 on QA (FQuad), CLS,
XNLI and text retrieval tasks, but improvements
remained within small margins. This limited gain
suggests two potential explanations: either current
transformer architectures exhibit diminishing
returns when exposed to additional data beyond a
certain threshold, or standard French benchmarks
are becoming saturated and unfit to measure
model quality with further improvements in model
performance. The latter possibility stresses the
need for more challenging and diverse benchmarks
that can effectively capture the improvements
brought by higher-quality data.

4.3 Pre-training Dynamics and Sample
Efficiency

We further explored the learning trajectories of
the various models by evaluating intermediate
checkpoints on QA (FQuad) and NER tasks. This
analysis offers a more detailed view of the training
dynamics and sample efficiency:

Architectural Efficiency. The training curves
(shown in Figures 1 and 2) indicate that
CamemBERTaV2 reaches higher performance
significantly earlier in training compared to
ModernBERT-CV2.  The DeBERTaV3-based
model’s faster improvement rate strongly suggests
its better sample efficiency is due to optimizations
like RTD and gradient-disentangled embedding
sharing (GDES). Moreover, in scenarios where
pre-training data is limited or scarce, its
architectures might be more advantageous.

Impact of Data Quality on Convergence.

When comparing ModernBERT-CV2  and
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ModernBERT-CV2
CamemBERTv2
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ModernBERT-HQ-wsd
CamemBERTav2

Figure 1: Downstream Performance on QA throughout
the pre-training stage. wsd are the models tested before
the cooldown period.

ModernBERT-HQ downstream performance
throughout the training on the challenging QA
tasks 1, we observed that the model trained on the
higher-quality dataset achieved its performance
plateau faster, indicating that improved data
quality enhances training efficiency and accelerates
convergence. Yet, it does not substantially increase
the final task-specific performance scores, further
confirming the hypothesis of saturation effects on
standard NLP benchmarks.

Task-specific Dynamics. The intermediate
checkpoints downstream score shows a clear
difference in learning dynamics between the QA
and NER tasks. While QA scores continued to
improve gradually throughout training for all
models, NER performance plateaued relatively
early, with minimal further improvements, except
for the CamemBERTaV2 NER scores which
increased steadily.  This difference suggests
that the disentangled attention mechanism,
which separately encodes content and positional
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NER QA CLS PAWS-X XNLI MTEB
MODEL
F1 F1 EM Acc Acc Acc AVG
ModernBERT-CV2 92.03+0.14 81.34+035 61.47+046 95.18+020 92.79+022 83.28+034 49.49+136
ModernBERT-HQ 91.80+047 81.11+026 62.07+044 95.04+0.09 92.55+054 83.66+0.67 49.93+0.60
ModernBERT-CV2-final 92.17+0481 81.68+046T 62.00+0531T 94.86+0164  92.71+039 82.85+045d  48.79+0454
ModernBERT-HQ-final ~ 91.33x0274  82.19x0461T 62.66+0791T 94.921006T 92.521036 83.62+0.67 49.29+0814

Table 2: Downstream tasks results after context extension and cooldown. 7T, |, and

indicate an increase, decrease

or no change in scores after continual pretraining. Scores are the 5-seed average of the best performing set of

hyperparamters for each model.

F1 score

0.2T 0.47 0.6T 0.8T 1T
Tokens

ModernBERT-CV2-wsd
ModernBERT-HQ

ModernBERT-HQ-wsd
CamemBERTav2

ModernBERT-CV2
CamemBERTv2

Figure 2: Downstream Performance on NER throughout
the pre-training stage. wsd are the models tested before
the cooldown period.

MLDR (NDCG@10)
MODEL CONTEXT ——M———

Max Avg
CamemBERTV2 1024 32.59 28.37+277
CamemBERTaV2 1024 2.44 00.91+1.08
ModernBERT-CV2 1024 21.45 10.39+4.33
ModernBERT-CV2-final 8192 26.93 22.59+273
ModernBERT-HQ 1024 31.76 25.80+1.99
ModernBERT-HQ-final 8192 39.07 34324544

Table 3: Maximum and highest 5-seed averaged
NDCG@10 score for the Multi Long Doc Retrieval
task.

embeddings, provides an advantage on token-level
tasks such as NER.

4.4 Context Length Extension and Final
Model Release

One of ModernBERT’s advantages is supporting
longer context length due to it’s more efficient
attention implementation and alternation of local
and global attention layers. On the other hand,
the older models had limited context length due
to the high memory usage of their attention layer
implementation. Hence, in order to study the

effect of context length extension, we continue
our ModernBERT"s pretraining, as in the original
model’s strategy, and increase its maximum input
length to 8,192 tokens. This phase also includes a
cooldown stage, during which the learning rate
is gradually reduced to zero over high-quality,
long-context data.

To support this phase, we curated two dataset
variants:

* Long-Context Subset: We filtered
documents longer than 2,048 tokens
and retained them fully. Shorter documents
were retained with a 10% probability to
preserve some distributional diversity.

* High-Quality Long-Context Subset: For
this version, we upsampled high-quality,
long-form sources such as French Wikipedia
and academic literature, while only retaining
documents rated as "high quality" by our
semantic filter within the HQ dataset.

We resumed training for both model variants, the
one trained on the CamemBERTaV2 dataset and
our High-Quality dataset, using their corresponding
long-context subsets. Training was done for an
additional 150 billion tokens to extend context
capabilities, using a fixed learning rate of 3 x 1074,
This was followed by a final 100 billion token
cooldown phase, during which the learning rate
was linearly decayed to zero.

Impact on Downstream Performance. We
observe in Table 2, that ModernBERT-CV2
provides modest gains in NER (+0.14 F1) and
QA (+0.34 F1 / +0.53 EM), while performance
slightly decreases on classification (CLS: —0.32
Acc, XNLI: -0.43 Acc), with PAWS-X remaining
stable. Meanwhile, ModernBERT-HQ-final
displays clear improvements in QA (+1.08 F1
/ +0.59 EM) and CLS (+0.88 Acc), while
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maintaining stable results on PAWS-X and XNLI.
Although NER and text retrieval performance drops
slightly (—0.47 F1 and -0.64), the overall trend
indicates that high-quality long-context pretraining
primarily benefits tasks requiring deeper semantic
understanding or longer-range dependencies.

To better understand the models’ long context
extrapolation, we evaluate all models trained on
the French STS dataset from earlier on the French
test subset of the Multi Long Doc Retrieval
(MLDR) and present the results in Table 3. The
results clearly demonstrate the importance of the
long-context pretraining stage. As expected from
the MTEB evaluation, CamemBERTaV?2 performs
poorly on this retrieval benchmark, further
highlighting the unsuitability of its architecture for
sentence embedding tasks. Both ModernBERT
variants show remarkable improvements after
the final training phase, with context-extended
ModernBERT-HQ achieving the highest max and
average score.

However, the performance of
ModernBERT-CV2 (the ModernBERT variant
trained on the original CamemBERTaV?2 dataset) is
unexpectedly poor, scoring significantly lower than
both CamemBERTV?2 and its counterpart trained
on our high-quality dataset, ModernBERT-HQ.
We currently lack a definitive explanation for this
gap. One hypothesis relates to the fundamental
differences between the two datasets used in our
study. The original CamemBERTaV2 dataset
(275B tokens) consists primarily of web-crawled
content from CulturaX-FR (constructed from
OSCAR and mC4 snapshots). In contrast, our
high-quality filtered dataset (1T tokens) underwent
extensive semantic filtering using FineWeb-Edu
methodology, perplexity-based selection, and
full deduplication on the RedPajamaV2 corpus,
resulting in a more coherent and diverse collection
of texts. The original dataset’s heavy reliance
on statistical filters may lack the semantic
coherence necessary for learning robust long-form
representations, whereas our filtered dataset’s
emphasis on high-quality, diverse sources appears
better suited for supporting complex semantic
understanding required in retrieval tasks.

4.5 Downstream Training Stability

During fine-tuning on downstream tasks, we
observed differences in training stability between
the newer and older model families. We had several
cases where only ModernBERT variants failed to

converge on the FQuAD question-answering task,
as illustrated in Figure 3.

Furthermore, during hyperparameter tuning
of the final checkpoint, we found the newer
architecture to be particularly sensitive to learning
rate choices. * Despite hyperparameter tuning,
the instability persisted. Further investigation
revealed that NaN values appear in the loss from
the very first training batch. This strongly supports
our hypothesis of a numerical instability in the
underlying implementation (e.g., FlashAttention)
rather than a simple hyperparameter mismatch.

4.6 Training Efficiency

In addition to model accuracy, training efficiency
is a crucial factor in practice, impacting both
resource costs and environmental footprint. For
pretraining time, our ModernBERT training
required 1300 H100 GPU-hours to complete one
trillion tokens. On the other hand, CamemBERTv2
took roughly 2100 GPU-hours to train on the
same dataset size while CamemBERTaV2 required
around 2700 GPU-hours to complete just a
single epoch, despite processing one-third of
the tokens (275B). This clearly demonstrates
ModernBERT’s efficient architecture advantages
and its practical edge during training. However, it
should be noted a significant portion of the speedup
over DeBERTaV3-based models comes from
engineering optimizations such as unpadding and
FlashAttention, both of which are not implemented
in the DeBERTa models at the time of this study.

The key takeaway from these experiments
is the trade-off between ModernBERT, which
offers significantly faster training and inference
speeds, making it more efficient for time-sensitive
applications, and DeBERTa, which delivers higher
raw performance through its most effective use of
training data.

5 Discussion

Confirming recent results (Warner et al., 2024;
Breton et al., 2025), our experiments showed a
weakness in DeBERTaV3, which failed at the
text retrieval task, despite its strong performance
across other benchmarks. We hypothesize that its
architecture may lack the mechanisms to build
a global document representation suitable for
retrieval using pooling of token embeddings. In

*The search space included multiple learning rates (5e-5
to Se-4), schedulers, batch sizes, and seeds.
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Figure 3: Instances of divergence during QA fine-tuning. Colored lines illustrate the maximum score at a given step.

contrast, ModernBERT performed well on this
task, suggesting its alternating global and local
attention layers provide a suitable architecture for
text retrieval.

However, the strengths of ModernBERT in
text retrieval did not extend to all tasks.
Our experiments showed a deficiency in the
ModernBERT question-answering experiments.
We suspect that ModernBERT’s architecture,
may face challenges in learning the long-range
dependencies that are needed for QA tasks,
particularly when informative signals are sparse.
For instance, the model needs to propagate the
signal from the correct answer start/end token
across long distances to the question context,
which resides at the beginning of the input. We
hypothesize that while local attention layers are
efficient, they might occasionally interrupt the
direct propagation path for such sparse signals. The
global attention layers are then tasked with bridging
these segments, leading to potential difficulties in
predicting the answer span based on the distant
question. Other tasks such as NER, which rely on
token-level prediction, do not require long-range
dependencies since the model can infer the correct
label based on local context, in addition to the
richer learning signal, since named entity tokens
are more frequent than a single start/end token per
example.

Our work contributes to the renewed debate on
encoder architectures versus the prevailing trend
of using decoder-only models for all tasks (see
(Gisserot-Boukhlef et al., 2025) and references
therein). This discussion centers on whether a

single, large architecture can be adapted for any
task, or if specialized models remain superior
for certain domains like NLU. The recent paper
by Weller et al. (2025) offers new evidence by
training paired encoder and decoder models under
the same conditions. Their experiments confirm
that encoders are better suited for classification
and retrieval, which aligns with our results
showing ModernBERTs strength in text retrieval.
Furthermore, the paper demonstrates that adapting
a model to a task for which it was not designed is
an ineffective strategy. This puts our own results
into a broader context, suggesting that specialized
encoders are not obsolete, and that architectural
choice remains a key factor for task performance.

Looking ahead, future work could explore
integrating recent efficiency improvements such as
FlashDeBERTa , which applies FlashAttention to
the disentangled attention mechanism and greatly
reduces DeBERTa’s memory and latency costs.
Another promising direction is investigating why
DeBERTaV3 fails so strongly on embedding-based
tasks. Examining its pooling mechanisms and
representation geometry may help clarify the limits
of disentangled attention for retrieval-oriented
objectives.

6 Conclusion

We set out in this work to critically evaluate the
claims made in the original ModernBERT paper
by reproducing its setup under tightly controlled
conditions. We isolated the authors’ contributions
by retraining their model under the same conditions

>https://github.com/Knowledgator/FlashDeBERTa
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as the previous state-of-the-art models, to assess
their actual impact on training dynamics, efficiency,
and downstream performance.

Our findings show that while ModernBERT
does offer improvements in training and inference
speed compared to older architectures, these do
not translate into better sample efficiency or
task performance under matched conditions. In
fact, under careful evaluation, we found that
DeBERTaV3’s architecture and training objectives
are more advantageous in low-data scenarios
or if the goal is to get the absolute best task
performance, except for the case of text retrieval
where DeBERTaV3 fails completely.

We also observed that increasing the size
and quality of pretraining data only yielded
marginal gains for the newly proposed
architecture, suggesting that current benchmarks
may be reaching saturation, or at least they
are insufficiently sensitive to capture finer
improvements. During fine-tuning, we faced a
problem with sensitivity to hyperparameters, which
the V2 baselines did not have. These stability
concerns present challenges for reproducibility and
deployment, and deserve further investigation.

In summary, ModernBERT offers a fast and
efficient alternative for scenarios where training
and inference speed are critical, but DeBERTaV3
remains the stronger choice when performance
and sample efficiency are required. Our study
reinforces the importance of evaluating models
under shared conditions to truly understand the
contributions of architecture, training data, and
design choices.

Limitations

Our study has several important limitations. First,
we observe that ModernBERT exhibits training
instability during fine-tuning, this might be due
to numerical instabitlity of the flashattention
implementation. Second, our downstream
evaluation relies on established NLP benchmarks
that may be reaching saturation, potentially
masking more nuanced performance differences
between architectures. Finally, our analysis focuses
on base-sized models, and the relative performance

characteristics may differ for larger model variants.

Future work should address these limitations
through stability analysis, development of more
discriminative benchmarks, and evaluation across
different model scales.

Ethics Considerations

This work involves training large-scale language
models using publicly available data, with special
attention given to data quality, filtering, and
documentation. We applied both heuristic and
semantic filters to reduce harmful, biased, or
low-quality content. Nonetheless, we acknowledge
that pretrained models may still reflect societal
biases present in the underlying data. We
encourage responsible use of our models and
welcome future research focused on auditing and
mitigating bias and potential misuse.
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A Quality Labeling Prompt

Prompt used to annotate text quality

Below is an extract from a web page. Evaluate the quality of the content based
on the following factors:

1. Content Accuracy: Assess the correctness and reliability of the
information presented. Consider the factual accuracy, use of credible
sources (if mentioned), and absence of misinformation.

2. Clarity: Evaluate how well the information is communicated. Look for
clear explanations, well-defined terms, and logical flow of ideas.

3. Coherence: Analyze the overall structure and organization of the
content. Consider how well ideas are connected and if the content follows
a logical progression.

4. Grammar and Language: Assess the quality of writing, including correct
grammar, spelling, and punctuation. Consider the appropriateness of
language for the intended audience.

5. Depth of Information: Evaluate the level of detail and thoroughness of
the content. Consider whether it provides surface-level information or
delves into more comprehensive explanations.

6. Overall Usefulness: Assess the practical value and relevance of the
information for a general audience. Consider how applicable or helpful the
content would be for someone seeking information on the topic.

Based on these factors, give an overall quality score of low, medium, or high.

The extract:
{input}

After examining the extract:

- Briefly justify your quality classification, up to 100 words on one line
using the format: "Explanation: <justification>"

- Conclude with the quality classification using the format: "Quality score:
<classification>" (on a separate line)

Remember to assess from the AI Assistant perspective, utilizing web search
knowledge as necessary. Evaluate the content based on the quality factors
outlined above.

\.

B Pretraining Details and Hyperparamters

We closely follow the original ModernBERT recipe. We present the model parameters in Table 4 and
pretraining hyperparamters in Table 5

C Detailed MTEB Scores
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Parameter Base
Vocabulary 32,768
Unused Tokens 418
Layers 22
Hidden Size 768
Transformer Block Pre-Norm
Activation Function GeLU
Linear Bias False
Attention Multi-head
Attention Heads 12
Global Attention Every three layers
Local Attention Window 128
Intermediate Size 1,152
GLU Expansion 2,304
Normalization LayerNorm
Norm Epsilon le-5
Norm Bias False
ROPE theta 160,000
Local Attn RoPE theta 10,000

Table 4: ModernBERT model parameters

Pretraining  Context Extension Context Ext & High Quality
Training Tokens 1 trillion 150 billion 100 billion
Max Sequence Length 1,024 8,192 8,192
Batch Size 4,608 768 768
Warmup (tokens) None
Microbatch Size 96 8 8
Learning Rate 8e-4 3e-4 3e-4
Schedule Trapezoidal Trapezoidal 1-sqrt (50B tokens delayed)
Warmup (tokens) 3 billion None None
Weight Decay le-5
Training Time (hours) 22.7 4.5 4
Model Initialization Megatron - -
Dropout (attn out) 0.1
Dropout (all other layers) 0.0
Optimizer DecoupledAdamW
Betas (0.90, 0.98)
Epsilon le-06

Training Hardware
Training Strategy

48 GPUs - 12x(4xH100)
FSDP - Full Sharding

Software Libraries PyTorch 2.5.1, Cuda 12.4, Composer 0.28, Flash Attention 2.6.3-Hopper

Table 5: Pre-training hyperparameters

CLUSTERING CLASSIFICATION PAIR CLASSIFICATION RETRIEVAL RERANKING STS SUMMARIZATION  OVERALL
CamemBERTV2 39.40-+1.67 62.40+0.55 56.60=+0.55 39.40-+055 65.20+1.92 75.60=0.55 31.00+071 51.67+057
CamemBERTaV2 26.80+1.92 41.00-+6.04 55.60+321 6.80+2.68 35.20+3.83 52.00:+2065 28.20+1.92 31.15+526
ModernBERT-CV2 39.20£1.79 62.60-0.55 59.60-+1.14 32.20+3.70 56.80+295 74.20+1.30 29.80-0.84 49.45+136
ModernBERT-CV2-final 39.20+1.30 61.40+055 59.40+2.07 31.20+084 55.20+045 73.40+055 31.20-+0.84 48.79+045
ModernBERT-HQ 39.20+084 62.00+0.71 57.40+039 34.20+1.64 58.60+152 75.00+1.22 31.00+071 49.93+0.60
ModernBERT-HQ-final 38.40+055 60.00+071 57.60-+0.89 33.80+239 60.80+239 74.80+0384 30.00+1.22 49.29+031

Table 6: MTEB task type results. Bold indicates best score overall. Scores represent the average performance across
all tasks within each task type category with standard deviations.
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