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Abstract

Recent advances in automatic evaluation of
natural language generation have increasingly
relied on large language models as general-
purpose metrics. While effective, these ap-
proaches often require high-capacity mod-
els, which introduce substantial computational
costs, and remain susceptible to known eval-
uation pathologies, such as over-reliance on
likelihood. We introduce ContrastScore, a
contrastive evaluation paradigm that builds on
the widely used BARTScore formulation by
comparing token-level probabilities between a
stronger and a weaker model. Instead of re-
lying on single-model likelihoods or prompt-
based judgments, ContrastScore captures dis-
agreement between models to better reflect con-
fidence and uncertainty in generation quality.
Empirical results on summarization and ma-
chine translation benchmarks show that Con-
trastScore, instantiated with paired moderate-
scale models across both Qwen and LLaMA
families, consistently outperforms larger alter-
natives, such as Qwen 7B and LLaMA 8B, in
correlation with human ratings. In addition
to improving evaluation quality, ContrastScore
significantly reduces susceptibility to likeli-
hood bias, offering a more robust and cost-
effective alternative to larger LLM-based eval-
uation methods. !

1 Introduction

Evaluating the quality of automatically generated
text remains a fundamental challenge in natural
language processing (NLP) and, in some cases,
is nearly as difficult as generating the text itself.
Traditional evaluation methods primarily rely on
reference-based metrics such as BLEU, ROUGE,
and METEOR (Papineni et al., 2002; Lin, 2004;
Banerjee and Lavie, 2005; Shen et al., 2023; Pan
etal., 2024; Kalyan, 2024), which are inadequate as

'Source code is available at https://github.com/
sandywangxiao/ContrastScore.

they compare generated text to human-written refer-
ences based on surface-level lexical overlap, often
failing to capture semantic adequacy and fluency.
Embedding-based metrics like BERTScore (Zhang
et al., 2020) improve upon lexical approaches by
leveraging contextualized representations for better
semantic alignment. However, they remain sensi-
tive to domain shifts, depend on high-quality refer-
ences, and exhibit relatively weak correlations with
human judgments (Zhao et al., 2023). To address
these limitations, recent research has shifted to-
wards source-based evaluation methods, leveraging
large language models (LLMs). Metrics such as
BARTScore (Yuan et al., 2021) and GPTScore (Fu
et al., 2024) assess generation quality using a sin-
gle model’s probability distribution, while prompt-
based LLM evaluators process structured prompts
to evaluate text based on predefined criteria (Que
et al., 2024) or conduct comparative judgments
without an explicit rubric (Liusie et al., 2024). Al-
though these methods show promise, their effec-
tiveness is inherently constrained by the underlying
model’s capacity. Larger models generally per-
form better but are computationally expensive and
incur high API costs (Larionov and Eger, 2024).
Conversely, smaller models often have reduced ca-
pacity, resulting in unreliable evaluations. Further-
more, existing LLM-based metrics are susceptible
to biases (Deutsch et al., 2022; Sun et al., 2022; Lu
et al., 2023; Liu et al., 2024; Hong et al., 2025),
including over-reliance on likelihood, which may
not align with human evaluation criteria. These
challenges highlight the need for novel evaluation
methods that are both efficient and reliable, bal-
ancing model capacity, accessibility, and evalua-
tion robustness (Chen and Eger, 2023; Zhao et al.,
2024).

Introduced by Li et al. (2023), Contrastive De-
coding enhances both diversity and factual accu-
racy by leveraging the disparity between a stronger
expert model and a weaker amateur model, pri-

3045

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 3045-3060
December 20-24, 2025 ©2025 Association for Computational Linguistics


https://github.com/sandywangxiao/ContrastScore
https://github.com/sandywangxiao/ContrastScore

oritizing tokens with the largest probability gap.
Beyond decoding, contrastive principles have also
been applied to model architectures, such as the
Self-Contrast Mixture-of-Experts (SCMoE), where
different expert pathways within a model act as in-
ternal contrastive filters to enhance reasoning (Shi
et al., 2024). These approaches highlight the poten-
tial of contrastive mechanisms in improving model
outputs by using weaker models to generate con-
trastive signals, enabling stronger models to refine
their predictions and achieve a balance between
fluency and diversity.

Inspired by contrastive principles, we introduce
ContrastScore, an evaluation metric that lever-
ages structured disagreement between two mod-
els of differing capacities. Unlike conventional
LLM-based evaluation methods that rely solely
on a single model’s likelihood estimates, Con-
trastScore incorporates a weaker auxiliary model
as a contrastive signal, dynamically adjusting prob-
ability scores to improve alignment with human
judgements. Specifically, ContrastScore is built on
a discrepancy-based probability formulation that
measures the absolute difference between the prob-
abilities assigned by two models. By utilizing dis-
crepancies between a stronger (expert) model and
a weaker (amateur) model, it generates more cal-
ibrated and robust evaluation scores. We conduct
extensive experiments on two widely employed
text generation tasks, namely, machine transla-
tion and summarization, to evaluate the effective-
ness of ContrastScore. Our evaluation compares
ContrastScore against established metrics and var-
ious baseline models, including single-model and
ensemble-based approaches. Experimental results
show that ContrastScore achieves a higher corre-
lation with human judgments, outperforming both
single-model and ensemble-based methods. No-
tably, ContrastScore using smaller models (Qwen
3B, Qwen 0.5B) even surpasses Qwen7B with
7.0% of improvement in summarization despite
having only half the parameters, demonstrating its
efficiency. Furthermore, ContrastScore based on
smaller models substantially enhances evaluation
speed, providing at least a 1.5-fold increase in pro-
cessing speed compared to a single larger model
across both the Qwen and LLaMA families. Addi-
tionally, it effectively mitigates the likelihood biase,
enhancing robustness in automatic evaluation. By
incorporating contrastive principles into evaluation,
ContrastScore paves the way for a new paradigm
of more robust and efficient text evaluation.

The contributions of our paper are four-fold:

* We propose a simple yet highly effective
difference-based formulation for contrastive
evaluation, leveraging structured model dis-
crepancies to produce more calibrated and re-
liable evaluation scores.

* We conduct extensive experiments across mul-
tiple generation tasks, diverse datasets, and
various model families to rigorously assess
the effectiveness of our approach.

* Contrastive evaluation strongly correlates
with human judgments, outperforming single-
model and ensemble methods while effec-
tively addressing likelihood bias, which are
prevalent in automatic evaluation.

* ContrastScore achieves significantly faster
evaluation compared to larger single-model
approaches, improving inference speed by at
least 1.5 times while using only half the pa-
rameters, while maintaining comparable or
even superior performance.

2 Related Work

Automatic Evaluation of Text Generation. Au-
tomatic evaluation metrics for text generation
can broadly be categorized into task-specific and
general-purpose approaches. Early task-specific
metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and CHRF (Popovi¢, 2015)
rely on surface-level n-gram overlap with a refer-
ence. While originally designed for tasks like ma-
chine translation and summarization, these metrics
often fail to reflect actual semantic similarity due to
the variability of valid natural language expressions.
To overcome these limitations, embedding-based
metrics, such as BERTScore (Zhang et al., 2020)
and MoverScore (Zhao et al., 2019), were intro-
duced to compute token-level or document-level
similarity using contextualized embeddings . Fur-
ther improvements came from task-specific metrics
fine-tuned on human ratings, such as COMET (Rei
et al., 2020), COMET-KIWI (Rei et al., 2022),
BLEURT (Sellam et al., 2020), and Prism (Thomp-
son and Post, 2020). These models learn to di-
rectly predict human preferences but often gener-
alize poorly across domains and tasks. General-
purpose evaluation has increasingly shifted toward
leveraging LL.Ms as evaluators. Prompt-based ap-
proaches such as G-Eval (Liu et al., 2023), Chat-
Eval (Chan et al., 2024; Hong et al., 2025), and
GPT-based judge systems treat LLMs as reference-
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free annotators that directly assess text quality via
carefully crafted prompts. While these methods of-
ten achieve high correlation with human judgments,
they typically rely on proprietary models like GPT-
4, making them costly, and sensitive to prompt
phrasing (Leiter and Eger, 2024). An alternative
line of work explores probability-based evaluation
metrics, including BARTScore (Yuan et al., 2021)
and GPTScore (Fu et al., 2024). BARTScore and
GPTScore share a common formulation: they com-
pute the conditional log-likelihood of a generation
given context, using a pretrained language model
as the scoring function. However, these evaluation
methods inherit the biases and limitations of the
underlying model (Ohi et al., 2024).

Contrastive Paradigm. Contrastive methods
have recently gained attention in text generation,
where the differences between models of varying
capacities are leveraged to improve output qual-
ity (Su et al., 2022; O’Brien and Lewis, 2023; Li
et al., 2023). Rather than relying on ensemble
methods or majority voting, contrastive decoding
explicitly uses a weaker model as a contrastive
signal to refine or steer the output of a stronger
model. This approach has demonstrated success
in mitigating common generation issues such as
repetition, overconfidence, and incoherence. More-
over, contrastive principles have been extended to
model architecture optimization. Shi et al. (2024)
propose the Self-Contrast Mixture-of-Experts (SC-
MoE) framework, where different expert pathways
within the same model act as internal contrastive
filters, which improves reasoning capabilities and
overall model performance. Note that contrastive
decoding is also related to language model arith-
metic in which arithmetic combinations of LLMs
are considered for adjusted generation (Dekoninck
et al., 2024). This includes subtraction, which leads
to output favored by one LLM but disfavored by
the other, which could be leveraged in adversarial
settings (Zhang and Eger, 2024).

Inspired by these advancements, as described
in §3.3, we extend contrastive principles beyond
generation to the domain of evaluation. Instead of
refining model outputs, we propose ContrastScore—
a novel metric with a different formulation from
prior contrastive decoding work.

3 Methodology

The primary goal of this study is to overcome limi-
tations of single-model evaluators, such as capac-

ity bias and over-reliance on model-specific likeli-
hoods, by capturing where strong and weak models
disagree in token-level probabilities. This section
first reviews generative likelihood-based evaluation
and contrastive decoding, then presents the design
and formulation of ContrastScore.

3.1 Generative Evaluation

Our evaluation framework builds on probability-
based text assessment methods, such as
BARTScore, which estimate quality through
log-likelihood computations under a pretrained
generative model. Given a generated hypothesis h,
its quality is evaluated as:

Score(h|d, S) = > wilog P(he/hey, S,0) (1)
t=1

where S represents the supplementary text, which
may consist of the source text s (in a source-based
setting) or the reference output r (in a reference-
based setting). d denotes the evaluation dimension
(e.g., fluency), w; 2 refers to the token-level weight,
and 6 is the model parameters.

3.2 Contrastive Decoding

Assume an expert and amateur model assigning
probabilities

pixp = p(ht | het, S, Opxp) 2)

Phwa = p(he | het, S, 0ama) 3)

to the next token h¢, where phyp and phy . rep-
resent the probabilities of the expert and amateur
models, respectively, for h; and where fgxp and
Oama refer to the parameters of the expert and ama-
teur model. Li et al. (2023) propose the contrastive
decoding objective

t
log ZEXEif hy € Vhead(R
CD-Score = & Dla t head (h<t) @
—0o0 else

Here, Viead(h<:t) selects the top most likely tokens
x¢ under the expert model given history h;. Dur-
ing next token prediction, CD-Score effectively
only considers the most likely tokens of the expert
model as candidates, and then assigns modified

t
logits log ;Ei to them. The intuition behind CD-
AMA

Score is to consider the most likely expert tokens as
continuation for generation but then choose those

2Following prior studies (Yuan et al., 2021; Qin et al.,
2023), w; is weighed equally for all tokens in this work.
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tokens among them which the amateur might not
favor (e.g., repetitive tokens).

Unfortunately, CD-Score is unsuitable for eval-
uation because every generated sequence h con-
taining a token h; not in Vieaq(h<;) would receive
a score of —oo, essentially being ruled out as a
candidate, even though it should have been con-
sidered as part of the sequence under evaluation.
As an alternative, one might consider the division

score log Pixp. itself as an objective for evaluation.

However, as pomted out by Li et al. (2023), this
approach suffers from penalizing many standard
text sequences as unlikely, for which both expert
and amateur would hold the same probabilities. For
example, if both models assign a probability of 0.9
or 0.1 to a token, the score remains the same, mak-
ing it unable to distinguish between confidently
correct and incorrect predictions. As a result, this
approach fails to highlight important distinctions
between tokens that should matter in evaluation.
The division score also becomes instable especially
when the amateur probability is close to zero.

3.3 ContrastScore

To address this issue for evaluation, we propose
a subtraction-based contrastive formulation with
a scaling factor v € [0, 1] that downweights the
amateur model. In this way, we naturally retain
all tokens in the input sequence for evaluation, as
well as a property that favors generations preferred
by the expert model, similar to CD-Score. Impor-
tantly, the subtraction-based formulation ensures
that the scores of individual tokens remain compa-
rable across positions—unlike the division-based
approach, where small variations in the amateur
model’s likelihood can lead to disproportionately
large and unstable scores. By using a small -, we
control the influence of the amateur model’s proba-
bility and mitigate such instability, yielding more
reliable evaluation signals. Empirically, we choose
a formula for contrastive evaluation that leverages
the absolute value distance between the expert and
the scaled down amateur:

m
ContrastScore = Z wylog (|pexp — YPamal)

t=1
)
At each time step ¢, ContrastScore rewards to-
kens for which expert and (downweighted) ama-
teur generation probabilities are maximally distinct
(as the absolute value is a distance function be-

tween two distributions). This would ensure that
ContrastScore leverages the strengths of the expert
model but removes the limitations of the amateur
model; in practice, it might for example lean to-
ward generations that are less repetitive, which the
amateur model tends to favor. Note, however, that
there are probability ranges where the scaled down
amateur would be preferred over the expert—e.g.,
when phyp = 0, then our formula would still assign
the scaled probability of the amateur to h;. With
~v = 1, ContrastScore would be indifferent between
the expert and the amateur but indiscriminately fa-
vor disagreement between them, an undesirable
behavior similar to the division score above.

4 Experimental Setup
4.1 Datasets and Tasks

For summarization, we use the SummEval
dataset (Fabbri et al., 2021), which contains
model-generated summaries of CNN/DailyMail
articles, as well as QAGS-XSUM (Wang et al.,
2020), which includes 239 system outputs on
the XSUM dataset. For machine translation, we
use the MQM?22 and MQM23 datasets from the
WMT?22 (Freitag et al., 2022) and WMT23 (Freitag
et al., 2023) Metrics Shared Tasks. The language
pairs involved represent a diverse range of transla-
tion scenarios, including high-resource (EN-DE),
typologically distant (ZH-EN and EN-RU), and
low-resource (HE-EN) settings, thereby enabling
a comprehensive evaluation of our approach. See
AppendixA.1 for more details.

4.2 Baseline Metrics

We consider the following baseline metrics for
comparison: BLEU (Papineni et al., 2002),
CHRF (Papineni et al., 2002), ROUGE 1,
ROUGE 2, ROUGE L (Lin, 2004), COMET (Rei
et al., 2020), COMET-KIWTI (Rei et al., 2022),
BERTScore (Zhang et al., 2020), Mover-
Score (Zhao et al., 2019), and BARTScore (Yuan
et al., 2021). The details of these metrics can be
found in Appendix A.2. In addition, we compare
it against Single-model evaluators as well as an
Ensemble setting, where the probabilities of the
expert and amateur models are averaged per token,
using models from the LLaMA and Qwen families
to ensure generalizability. The ensemble probabil-
ity at token ¢, denoted as pk, ., is computed as:

Phns = 5 (Phxp + PAma) (6)

| =
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4.3 Meta-Evaluation

We assess the evaluation metrics in terms of quality,
biases, and efficiency.

Correlation with Human Scores (Quality). The
effectiveness of an evaluator is measured using
the Pearson correlation between its scores and hu-
man scores, where a higher correlation indicates
stronger alignment with human judgments. For
translation, Pearson correlation assesses the eval-
uator’s ability to capture differences between can-
didate translations based on the source texts, com-
paring them to human judgment scores derived
from fine-grained MQM annotations (Freitag et al.,
2021). For summarization, we compute Pearson
correlation with human judgments across different
quality aspects: coherence, fluency, consistency,
relevance, and factuality.

Bias Evaluation. We measure biases in likelihood
bias. Recent studies have shown that LLMs tend to
favor sentences they deem more likely, often assign-
ing higher evaluation scores and performing better
on such sentences, regardless of the specific task or
evaluation criteria (Ohi et al., 2024; McCoy et al.,
2024a,b). Ohi et al. (2024) find that LLM-based
evaluators systematically overrate high-likelihood
sentences and underrate low-likelihood ones com-
pared to human scores. To quantify this likelihood
bias, they propose BiasScore defined as:

BiasScore = p(LS, US) (7

where p is the Spearman correlation coefficient,
LS (Likelihood Score) represents the probability P
assigned by the LLM, and US (Unfairness Score)
captures the discrepancy between evaluator scores
and human scores. Likelihood bias measures the
extent to which an evaluation metric is influenced
by the model’s inherent probability estimates. A
lower BiasScore indicates that the metric is less
dependent on the model’s likelihood biases.

Efficiency. It is measured by the number of sam-
ples processed per second, with a higher processing
speed indicating greater efficiency.

4.4 Hyperparameters and Environment

We use models from the same family but of dif-
ferent sizes, where a larger model serves as the
expert and a smaller model as the amateur. Specif-
ically, we use LLaMA3.2-Instruct (1B, 3B) and
LLaMA3.1-Instruct (8B), as the LLaMA 3.2 ver-
sion does not include an 8B model. Additionally,

we evaluate Qwen2.5-Instruct (0.5B, 3B, and 7B).3
In all our experiments4, the scaling factor for the
amateur model, v, is set to 0.15 All experiments
were run on a GPU cluster under same conditions

and node configuration to ensure fair comparisons.
Each node of the cluster has 4 xH100 GPUs.

5 Results

We evaluate ContrastScore in terms of its correla-
tion with human scores, bias, and efficiency, com-
pared to single-model and ensemble methods.

5.1 Correlation with Human Scores

Summarization. Table 1 presents the Pearson cor-
relation between different evaluators and human
scores for summarization. Our results indicate that
ContrastScore provides best results overall. Fur-
thermore, ContrastScore consistently surpasses sin-
gle models while utilizing much fewer parameters.
Specifically, ContrastScore with Qwen(3B, 0.5B)
outperforms the single Qwen 7B by 7.0%, and Con-
trastScore with LLaMA(3B, 1B) exceeds single
LLaMA 8B by 6.2%. These results reinforce the
observation that ContrastScore can efficiently en-
hance model evaluation by leveraging smaller mod-
els. Besides improving overall correlation with
human scores, ContrastScore demonstrates notable
gains across key summarization dimensions, partic-
ularly coherence, fluency, relevance and factuality.
When applied to LLaMA(8B, 3B), it enhances co-
herence by 25.5%, fluency by 6.7%, relevance by
11.1%, and factuality by 57.6%, compared to the
single LLaMA 8B. However, its impact on consis-
tency differs across model families.

Machine Translation. Table 2 presents the Pear-
son correlation between various evaluators and hu-
man scores. The results show that, overall, Con-
trastScore outperforms both single-model and en-
semble approaches. For example, ContrastScore
based on Qwen(7B, 3B) improves correlation by
7.1% over the single Qwen 7B model and by 4.6%
over the ensemble of Qwen(7B, 0.5B). In contrast,
ensembling does not always improve performance:
While ensemble methods are generally expected to
refine predictions, they can sometimes reduce cor-

3See the discussion in the Limitations section on why we
use models from the same family.

*Following Li et al. (2023), we set the decoding tempera-
tures for the expert and amateur to 0.5 and 1.5, respectively.

>This setting is based on our pilot investigation, which
found that v = 0.1 gives the best overall performance empiri-
cally for ZH-EN in MT (Figure 2 in Appendix).
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QAGS-XSUM

SummEval

Evaluators AVG
Factuality Coherence  Consistency Fluency Relevance
ROUGE-1 0.055 0.238 0.079 0.071 0.330 0.154
ROUGE-2 0.121 0.164 0.073 0.066 0.229 0.130
Baseline ROUGE-L 0.075 0.207 0.071 0.078 0.303 0.147
! MoverScore 0.028 0.129 0.141 0.133 0.280 0.142
BERT Score 0.024 0.342 0.115 0.156 0.372 0.202
BARTScore 0.099 0.450 0.339 0.343 0.428 0.332
1B 0.064 0.417 0.549 0.542 0.344 0.383
Single 3B 0.157 0.388 0.575 0.530 0.338 0.398
8B 0.205 0.368 0.588 0.539 0.332 0.406
(3B,1B) 0.170 0.427 0.564 0.542 0.344 0.409
LLaMA Ensemble (8B,1B) 0.212 0.429 0.581 0.556 0.357 0.427
(8B,3B) 0.241 0.414 0.587 0.544 0.351 0.428
(3B,1B) 0.262 0.456 0.554 0.551 0.334 0.431
Contrast (8B,1B) 0.324 0.461 0.584 0.575 0.368 0.462
(8B,3B) 0.323 0.462 0.587 0.575 0.369 0.463
0.5B 0.107 0.386 0.536 0.520 0.315 0.373
Single 3B 0.112 0.370 0.544 0.492 0.319 0.367
7B 0.091 0.371 0.560 0.510 0.327 0.372
(3B,0.5B) 0.081 0.394 0.568 0.536 0.331 0.382
Qwen Ensemble (7B,0.5B) 0.095 0.386 0.577 0.538 0.333 0.386
(7B.3B) 0.103 0.378 0.584 0.521 0.330 0.383
(3B,0.5B) 0.128 0.397 0.594 0.546 0.323 0.398
Contrast (7B,0.5B) 0.122 0.376 0.608 0.554 0.322 0.396
(7B.3B) 0.134 0.384 0.606 0.557 0.334 0.403

Table 1: Pearson correlation of evaluators with human scores in summarization. boldface represents best overall
scores, while underline represents best scores within each model group (Baseline, LLaMA, Qwen). Overall,
ContratScore outperforms single and ensemble methods as well as baseline metrics for both LLaMA and Qwen

families.

relation with human scores. For instance, ensem-
bling LLaMA (8B, 1B) leads to a 3.3% decrease
in correlation compared to the LLaMA 8B model.
Similar trends can be observed in pairwise accu-
racy (Deutsch et al., 2023), as shown in Table 10
of the Appendix.

Beyond the cases when the amateur model is too
weak to provide a meaningful correction signal—
such as the low correlation scores observed in the
HE-EN pair for both LLaMA 1B and 3B (0.32 and
0.29, respectively), which fail to offer reliable con-
trastive feedback against LLaMA 8B—our results
demonstrate that ContrastScore can achieve correla-
tion scores comparable to, or even exceeding, those
of the largest model using only two smaller models.
Specifically, ContratScore of Qwen(3B, 0.5B) sur-
passes single Qwen 7B by 3.1%, improving from
0.449 to 0.463 with only half the parameters.

5.2 Bias Analysis

Table 3 presents the likelihood bias scores across
different evaluators of the LLaMA family. The
results clearly demonstrate that ContrastScore
substantially mitigates likelihood bias compared
to both single-model and ensemble approaches.

Specifically, ContrastScore achieves lower likeli-
hood bias than any of the individual models em-
ployed. For instance, using LLaMA (8B, 3B), it
reduces likelihood bias by 18.0% and 64.3% com-
pared to the single LLaMA 8B model on QAGS-
XSUM and MQM22, respectively.

ContrastScore is also effective in mitigating like-
lihood bias for the Qwen model family, although
the improvements are somewhat smaller than those
observed with LLaMA. Notably, ContrastScore
consistently outperforms all individual Qwen mod-
els in reducing likelihood bias, with the exception
of the 0.5B model on MQM23. These findings
suggest that ContrastScore is highly effective in
diminishing the reliance on the inherent likelihood
of individual models. See also Tables 8 and 9 in
Appendix for more details and breakdown results.

5.3 Efficiency Analysis

We report processing speeds for both machine trans-
lation and summarization evaluation tasks (see Ta-
ble 7 in Appendix C). Recall that in Tables 1 and 2,
our ContrastScore employing two smaller models
(for both LLaMA and Qwen families) achieves
higher correlation with human judgments com-
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Evaluators MQM22 MQM23 AVG

EN-DE ZH-EN EN-RU EN-DE ZH-EN HE-EN
BLEU 0.194 0.156 0.142 0.163 0.085 0.208 0.158
CHRF 0.236 0.156 0.169 0.232 0.063 0.244 0.183
Baseline BERTScore 0.263 0.311 0.197 0.325 0.236 0.336 0.278
BARTScore 0.254 0.287 0.201 0.201 0.182 0.317 0.240
COMET 0.476 0.403 0.417 0.432 0.396 0.417 0.424
COMET-KIWI 0.392 0.367 0.354 0.475 0.442 0.395 0.404
1B 0.255 0.371 0.286 0.530 0.518 0.320 0.380
Single 3B 0.284 0.366 0.293 0.578 0.526 0.293 0.390
8B 0.363 0.376 0.356 0.632 0.574 0.491 0.465
(3B,1B) 0.287 0.371 0.307 0.568 0.538 0.306 0.396
LLaMA Ensemble (8B,1B) 0.325 0.382 0.354 0.605 0.575 0.462 0.450
(8B,3B) 0.337 0.379 0.348 0.619 0.574 0.453 0.452
(3B,1B) 0.338 0.382 0.347 0.599 0.562 0.284 0.419
Contrast (8B,1B) 0.392 0.391 0.406 0.641 0.590 0.484 0.484
(8B,3B) 0.383 0.393 0.409 0.639 0.595 0.482 0.483
0.5B 0.222 0.394 0.294 0.487 0.557 0.347 0.383
Single 3B 0.306 0.413 0.299 0.573 0.594 0.415 0.433
7B 0.326 0.419 0.330 0.600 0.574 0.445 0.449
(3B,0.5B) 0.290 0.408 0.315 0.548 0.599 0.421 0.430
Qwen Ensemble (7B,0.5B) 0.301 0.412 0.331 0.567 0.598 0.446 0.443
(7B,3B) 0.333 0.424 0.341 0.599 0.608 0.456 0.460
(3B,0.5B) 0.342 0.432 0.351 0.590 0.628 0.431 0.463
Contrast (7B,0.5B) 0.359 0.435 0.382 0.611 0.628 0.465 0.480
(7B,3B) 0.362 0.439 0.384 0.605 0.629 0.466 0.481

Table 2: Pearson correlation of evaluators with human scores in machine translation. bold represents best overall
scores, while underline represents best scores within each model group (Baseline, LLaMA, Qwen). Overall,
ContrastScore outperforms single and ensemble methods, as well as baseline metrics for both LLaMA and Qwen

families.
. Machine Translation Summarization . Machine Translation Summarization
Settings Settings
MQM22 MQM23 Q-XSUM SummEval MQM22 MQM23 Q-XSUM SummEval

o 1B 0.342 0.212 0.382 0.348 o 05B 0.341 0.252 0.347 0.376
2 3B 0.323 0.245 0.289 0.385 2 3B 0.442 0451 0349 0392
2 gB 0.297 0.352 0.267 0.381 “ 7B 0.441 0.463 0.373 0.398
2 (3B,IB) 0215 0.123 0.249 0.308 = (3B0S5B) 0331 0.327 0.282 0.379
¢E> (8B,1B) 0.180 0.152 0.225 0.326 § (7B,0.5B) 0.286 0.294 0.289 0.393
£ (8B3B) 0222 0.229 0.242 0.359 5 (/B3B) 0.358 0.381 0.345 0.369
‘é (3B,1B) 0.058 0.026 0.233 0.183 % (3B,0.5B) 0.307 0.314 0.294 0.236
2 BIB) 0104 0.134 0.220 0262 £ (7BOSB) 0287 0302 0318 0.296
S (8B3B) 0106  0.137 0.219 0.240 © (B3R 02712 0287 0.353 0.329

Table 3: Likelihood bias scores for machine translation
and summarization tasks across LLaMA model family.
The lowest overall bias score is boldfaced.

pared to using a single larger model in summariza-
tion, and similar trends are observed in machine
translation within the Qwen family. To assess effi-
ciency, we compare the processing speeds of Con-
trastScore using two smaller models with those of a
single larger model. In the LLaMA family, the sin-
gle large model LLaMA 8B processes 26.43 sam-
ples/s for summarization, whereas ContrastScore
with LLaMA 3B and 1B achieves 39.12 samples/s,
respectively—approximately 1.5x faster in both
cases. Similarly, in the Qwen family, ContrastScore

Table 4: Likelihood bias scores for machine translation
and summarization tasks across Qwen model family.
The lowest overall bias score is boldfaced.

using Qwen 3B and 0.5B processes approximately
1.7x faster on summarization and 1.5x faster on
machine translation than Qwen 7B. Figure 1 further
illustrates that the ContrastScore framework with
two smaller models delivers improved efficiency
and better evaluation quality in summarization.

6 Further Analysis

Weighted Ensemble. We investigate whether
the averaged ensemble baseline used in our experi-
ment is a sufficiently strong setup, or if a weighted
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‘ Source Text ‘

7 B TR ZE R B |

‘ ‘ Tokens: Where ‘ is ‘ the ‘ anti ‘ - ‘ fe ‘ iting logo ‘ Log(P) ‘ Rank ‘
Hypothesis 1 Expert 0.2471 0.7305 0.9922 | 0.02881 0.9805 0.7969 1.000 | 0.000457 | -0.717 2
Hl};pm an Rank: 1 Amateur | 2.265e-06 | 0.5625 0.9922 | 0.000335 1.000 1.000 1.000 | 0.06592 | -1.319 1

’ Contrast 0.2471 0.6758 0.8945 | 0.02881 0.8789 0.6953 0.8984 | 0.006134 | -0.605 1
Tokens: | Where is | the | anti - fe | iting | product
Hvpothesis 2 Expert 0.2471 0.7305 0.9922 | 0.02881 0.9805 0.7969 1.000 | 0.002808 | -0.618 1
Hii} an lie{nk'Z Amateur | 2.265e-06 | 0.5625 0.9922 | 0.000335 1.000 1.000 1.000 | 5.841e-05 | -1.701 2
' Contrast 0.2471 0.6758 0.8945 | 0.02881 0.8789 0.6953 | 0.8984 | 0.002808 | -0.647 2
Tokens: What Is ‘ The ‘ National Debt Limit ‘ ‘
Hypothesis 3 Expert 0.005951 | 0.000168 | 0.2910 | 4.268e-05 | 0.001602 | 0.004944 -2.668 3
Hzpman Rank:3 Amateur | 0.000572 | 6.845e-08 | 0.1543 | 6.482e-07 | 3.123e-05 | 0.000140 -4.294 3
) Contrast | 0.005951 | 0.000168 | 0.2754 | 4.268e-05 | 0.001602 | 0.004944 -2.672 3

Table 5: Case Study: Comparison of ContrastScore with Qwen 3B as an expert and Qwen 0.5B as an amateur model
for Chinese-to-English (ZH-EN) on MQM23. Log(P) denotes mean log-probability across all target tokens.

Efficiency Quality
LLaMA 8B
40 05 Contrast(3B,1B)
Qwen 7B
@ Contrast(3B,0.5B)
2 30 =
= £ 04l
g s
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3 ]
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LLaMA Qwen LLaMA Qwen

Figure 1: Efficiency and quality of ContrastScore with
smaller models compared to single larger model on
summarization task.

combination of model probabilities could yield fur-
ther improvements. Specifically, we evaluate a
weighted ensemble approach that linearly com-
bines the output probabilities of a larger and a
smaller model, allowing us to examine whether
tuning the weight parameter provides a meaningful
advantage over uniform averaging.

Phns =7 Phxp + (1 —7) - Pama (8)

where 7 € [0, 1] is the weight factor that controls
the contribution of each model. When v = 0.5,
this formulation corresponds to that reported in our
main results. To analyze the impact of v, we con-
duct a parameter sweep on the summarization task
using LLaMA (3B, 1B), varying v from O to 1 in
increments of 0.05. The results, presented in Fig-
ure 3, show that the weighted ensemble achieves its
highest performance at y = 0.55, which is nearly
identical to the performance at v = 0.5 (i.e., the av-
eraged ensemble baseline). This indicates that the
simple averaged ensemble is already a strong and
competitive configuration, and that further weight-
ing does not lead to meaningful improvement.

Case Study. To provide a qualitative analysis,
Table 5 presents a case study comparing Con-
trastScore with a single expert model (Qwen 3B)
and an amateur model (Qwen 0.5B) for Chinese-to-
English (ZH-EN) machine translation. It can be ob-
served that the expert model misranks Hypothesis 1
as the second-best translation, whereas human eval-
uators rank it as the best (Rank 1). This misranking
is largely influenced by the expert model assigning
a very low probability (0.000457) to “logo”, a key
token in the translation. In contrast, the amateur
model assigns a significantly higher probability
(0.06592) to “logo”, demonstrating greater confi-
dence in its relevance. ContrastScore leverages this
probability discrepancy to adjust the probability
of “logo”, thereby increasing the overall score of
Hypothesis 1 and correctly ranking it as the best
translation. This case illustrates how ContrastScore
mitigates expert model underestimation of critical
tokens, leading to improved evaluation alignment
with human judgment.

In the case of Hypothesis 3, all methods (i.e., ex-
pert, amateur, and ContrastScore) correctly rank it
as the worst translation (Rank 3). This consistency
occurs because both the expert and amateur models
assign low probabilities across all tokens, indicat-
ing poor translation quality. Unlike in Hypothesis
1, where significant probability discrepancies re-
quire adjustment, ContrastScore makes minimal
modifications since the expert and amateur models
are already in agreement in their evaluation. This
demonstrates that ContrastScore does not introduce
unnecessary changes when the models agree, en-
suring that it only refines scores when meaningful
corrections are needed.
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7 Conclusion

In this paper, we introduce ContrastScore, an eval-
uation metric that leverages structured disagree-
ment between two language models of differing
capacities. Unlike conventional LLM-based evalu-
ation methods that rely solely on a single model’s
likelihood estimates, ContrastScore incorporates a
weaker auxiliary model as a contrastive signal to
adjust probability scores for better alignment with
human judgments. Extensive experiments demon-
strate that ContrastScore consistently achieves
stronger correlation with human evaluations than
both single-model and ensemble-based baselines.
Furthermore, ContrastScore is computationally-
efficient and can effectively mitigate likelihood
bias, resulting in a more robust evaluation.

Limitations

This work presents the following potential lim-
itations: (1) Our investigation is limited to the
LLaMA and Qwen families of models. While Con-
trastScore demonstrates effectiveness within these
two model families, further evaluation across a
broader range of large language model architec-
tures is necessary to establish its generalizability.
(2) This work relies on token-level probabilities
and therefore cannot combine models from differ-
ent families due to differences in their subword to-
kenization. In future work, word-level probability
could be explored to enable mixing across model
families. (3) The metrics explored in this paper are
not competitive to the state-of-the-art (SOTA) met-
rics developed for MT and summarization, such as
MetricX (Juraska et al., 2024) or XCOMET-XXL
(Guerreiro et al., 2024), which may use much larger
models and/or fine-tuning on human annotations.
We do not claim in this paper to beat SOTA met-
rics, but that contrastive principles, involving two
models, are superior to non-contrastive principles
for evaluation metric design within one evaluation
paradigm (BARTScore, in our case). To design
competitive metrics, future work should consider
involving (considerably) larger models than we did
in this work, beyond 8B parameters.
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A Datasets, Metrics and Prompts

A.1 Datasets

Machine Translation. MQM22 and MQM23
datasets are annotated by professional transla-
tors from the WMT?22 (Freitag et al., 2022) and
WMT23 (Freitag et al., 2023) Metrics Shared
Tasks, based on the Multidimensional Quality Met-
rics (MQM) framework (Lommel et al., 2014).
MQM22 covers 3 language pairs: English-German
(EN-DE), Chinese-English (ZH-EN) and English-
Russian (EN-RU), and comprises 1315, 1875, and
1315 segments for language pair EN-DE, ZH-EN,
EN-RU respectively, with every segments includ-
ing 15 system outputs. MQM?23 covers 3 language
pairs: English-German (EN-DE), Chinese-English
(ZH-EN) and Hebrew-English (HE-EN), including
460, 1177, and 820 segments and 12, 15, and 12
systems for EN-DE, ZH-EN, HE-EN respectively.

Summarization. SummEval (Fabbri et al.,
2021) contains 1600 model-generated summaries
of CNN/DailyMail articles, each annotated by 3
experts and 5 crowd workers. It covers aspects
of coherence, consistency, fluency, and relevance.
QAGS-XSUM (Wang et al., 2020) includes 239
system outputs from a fine-tuned BART on XSUM
dataset, focusing on factuality aspect.

A.2 Baseline Metrics

BLEU (Papineni et al., 2002) is based on the pre-
cision of n-grams between the MT output and its
reference weighted by a brevity penalty.

CHRF (Popovié, 2015) uses character n-grams
instead of word n-grams to compare the MT output
with the reference.

ROUGE (Lin, 2004) measures the lexical over-
lap between the hypothesis and reference. We
consider 3 variants ROUGE-1, ROUGE-2, and
ROUGE-L.

COMET (Rei et al., 2020) is a learnt metric
that is fine-tuned to produce evaluation scores for a
given translation by comparing its representation
to source and reference embeddings.

COMET-KIWI (Rei et al., 2022) is a reference-
free variant of COMET for machine translation
evaluation. It uses a multilingual encoder to take
only the source and system output as input and
predicts a continuous quality score.

BERTScore (Zhang et al., 2020) leverages con-
textual embeddings from BERT to compare words
in candidate and reference sentences using cosine

similarity.

MoverScore (Zhao et al., 2019) measures se-
mantic similarity between a candidate and a ref-
erence by combining contextualized embeddings
with Earth Mover’s Distance.

BARTScore (Yuan et al., 2021) is a generative
metric that uses BART to evaluate the generated
text by calculating the probabilities of the tokens.

A.3 Prompts

The prompts for the summarization and machine
translation tasks are presented in Table 6.

Tasks Prompts
machine Translate the following sentence
translation to {target language}:
Write an accurate, relevant,
.. and coherent summary of the
summarization

following texts:\n {Article}\n
Summary:\n

Table 6: Prompts for tasks description

A4 Additional Details
Artifact Licenses We use the following artifacts:

* Qwen 2.5 - Qwen License Agreement

LLaMA 3.1 and 3.2 - LLaMA 3.1 and 3.2
Community License Agreement

COMET?22 - Apache 2.0 License

COMET-Kiwi - CCBY NC SA 4.0

e SummEval - MIT License

WMT?23 - MIT License

Our use of those artifacts complies with license
terms and applicable intended use policies.

PII information in data We did not specifically
check whether the datasets used contain PII infor-
mation. However, we have noticed that WMT23
authors made an effort to mask PII information
with special tags. We do not disseminate any new
dataset; therefore, PII protection is out of the scope
of our work.

Package Versions and Hardware We use
‘unbabel-comet* version 2.2.0 to run baselines for
MT evaluation. Experiments were conducted on
the university SLURM computing cluster with var-
ious available GPUs. For benchmarking purposes,
we used H100 GPUs with 96GB of VRAM.
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B Analysis

B.1 The impact of hyperparameter gamma

We study how sensitive our method is to 7y in Figure
2.

We test ZH-EN language pair of machine transla-
tion task, based on LLaMA family. Figure 2 shows
that v € [0.08, 0.2] leads to good performance, ro-
bust in different model size settings. Furthermore,
~ = 0.1 produces the best performance, ensuring a
small, controlled refinement.

0.58 1
0.56
]
2
=
2
S 0.54
0.52 4 ContrastScore_Llama(8B,1B)
ContrastScore_Llama(3B,1B)
LLama(3B)
LLama(8B)
0.50 T T T T T
0.05 0.10 0.20 0.30 0.40
gamma

Figure 2: Exploration of the impacts of +. Testing
correlation between evaluator score and human score in
ZH-EN language pair on MQM?23.

B.2 Weighted ensemble

To explore whether the advantages of Con-
trastScore can be replicated by a simpler method
based on probability combination, we evaluate a
weighted ensemble approach that linearly merges
the output probabilities of the larger and smaller
models. The results are presented in the Figure 3.

C Results
C.1 Likelihood Bias

The detailed likelihood bias scores for every
datasets of machine translation and summarization
tasks are shown in Table 8 and Table 9. Con-
trastScore demonstrates consistent effectiveness
in reducing likelihood bias across both machine
translation and summarization tasks, particularly in
challenging language pairs and critical evaluation
aspects. In machine translation in Table 8, Con-
trastScore yields substantial improvements for the
LLaMA family across diverse language pairs, es-
pecially for low-resource or morphologically com-

Llama-3.2-3B & Llama-3.2-1B
Avg. Correlation

0.4695 +

0.4690 -

0.4685 -

0.4680 -

Correlation

) 0.4675

Avg

0.4670 -

0.4665

0.4660 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Y (Gamma)

—e— Avg. Correlation y=0 (Llama-3.2-1B) y=1 (Llama-3.2-3B)

Figure 3: Exploration of weighted ensemble parameter
v for LLaMA-3.2 (3B, 1B) on summarization. Best
quality occurs at v = 0.55 (star), but remains below
ContrastScore using the same models. Horizontal lines
show individual model performance.

plex pairs such as EN-RU and HE-EN. In summa-
rization in Table 9, ContrastScore offers the most
pronounced improvements in factuality and coher-
ence, which are often the most difficult dimensions
for language models. Overall, ContrastScore effec-
tively mitigates likelihood bias compared to both
single-model and ensemble baselines in both the
LLaMA and Qwen families.

C.2 Efficiency

We use processing speed as an indicator of ef-
ficiency, with detailed results for both machine
translation and summarization evaluation tasks pre-
sented in Table 7. Processing more samples per sec-
ond indicates higher evaluation efficiency. These
results demonstrate that ContrastScore offers sub-
stantial gains in evaluation efficiency, especially
when leveraging smaller models.

LLaMA SUM MT | Qwen SUM MT
o 1B 6329 339.04 | 0.5B 141.96 552.68
2 3B 4761 15325 | 3B 4821 19422
“ 8B 2643 7217 | 7B 2643 99.84
2 (3B,IB) 39.51 110.63 | (3B,0.5B) 4494 1545
E (8B,B) 2381 668 | (7B,05B) 2611 9392
£ (8B3B) 1981 5395 | (7B3B) 2035 7104
% (3B,IB) 39.12 109.31 | (3B,0.5B) 44.06 153.99
8
£ (8BIB) 2333 6611 | (7B0.SB) 2571 9341
S (8BJ3B) 19.05 5345 | (7B3B)  19.61  70.97

Table 7: Processing Speed for Machine Translation and
summarization evaluation tasks. Measured in Samples
Per Second with batch size of 16 on single H100 GPU.
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. MQM22 MQM23
Settings
EN-DE ZH-EN EN-RU AVG EN-DE ZH-EN HE-EN AVG
1B 0.437 0.312 0276 0342 0.142 0.237 0.257 0.212
Single 3B 0.426 0.290 0.253 0.323  0.146 0.284 0.304 0.245
8B 0.367 0.287 0.238  0.297 0.181 0.309 0.565 0.352
A (3B,1B) 0.324 0.219 0.101 0.215 -0.002 0.169 0202 0.123
LLaMA g cemble (8B,1B) 0.278 0.189 0.074 0.180  0.006 0.148 0.302  0.152
(8B,3B) 0.298 0.227 0.140 0.222  0.079 0.223 0.385  0.229
(3B,1B) 0.195 0.143 -0.165 0.058 -0.106  0.096 0.088  0.026
Contrast (8B,1B) 0.164 0.131 0.016 0.104 -0.044  0.093 0.353  0.134
(8B,3B) 0.187 0.141 -0.011  0.106  -0.051 0.110 0.350  0.137
0.5B 0.493 0.233 0296 0341 0.184 0.214 0.358 0.252
Single 3B 0.580 0.367 0.379 0442 0.279 0.476 0.598 0.451
7B 0.559 0.383 0.383  0.441 0.333 0.438 0.616  0.463
(3B,0.5B)  0.463 0.275 0.256 0331 0.115 0.370 0.498 0.327
Qwen Ensemble (7B,0.5B) 0.421 0.236 0.202 0.286  0.095 0.304 0.483  0.294
(7B,3B) 0.490 0.303 0.280 0.358 0.206 0.376 0.562  0.381
(3B,0.5B)  0.432 0.257 0.233  0.307 0.087 0.350 0.505 0314
Contrast  (7B,0.5B) 0.415 0.239 0.206  0.287  0.092 0.296 0.518 0.302
(7B,3B) 0.395 0.235 0.187 0.272  0.091 0.292 0499  0.287

Table 8: Likelihood bias of machine translation task for the LLaMA and Qwen family. ContrastScore can effectively
mitigate the likelihood bias compared to both single and ensemble methods on MQM?22 and MQM?23 datasets.

. Q-XUM SummEval

Settings

Factuality Coherence Consistency Fluency Relevance AVG

1B 0.382 0.104 0.471 0.539 0.279 0.348

Single 3B 0.289 0.169 0.477 0.573 0.321 0.385

8B 0.267 0.161 0.477 0.575 0.311 0.381

(3B,1B) 0.249 0.095 0.406 0.488 0.240 0.308

LLaMA = g cemble  (8B,IB)  0.225 0.119 0.417 0.507 0261 0326

(8B,3B) 0.242 0.152 0.450 0.538 0.295 0.359

(3B,1B) 0.233 -0.008 0.279 0.339 0.122 0.183

Contrast (8B,1B) 0.220 0.074 0.337 0.424 0.214 0.262

(8B,3B) 0.219 0.048 0.326 0.400 0.185 0.240

0.5B 0.347 0.139 0.489 0.567 0.308 0.376

Single 3B 0.349 0.173 0.492 0.570 0.332 0.392

7B 0.373 0.185 0.489 0.584 0.334 0.398

(3B,0.5B) 0.282 0.170 0.461 0.567 0.318 0.379

Qwen  Eicemble (7B,0.5B)  0.289 0.194 0.464 0.582 0332 0393

(7B.,3B) 0.345 0.151 0.472 0.560 0.295 0.369

(3B,0.5B) 0.294 0.017 0.364 0.410 0.152 0.236

Contrast (7B,0.5B) 0.318 0.077 0.411 0.488 0.208 0.296

(7B,3B) 0.353 0.112 0.430 0.526 0.249 0.329

Table 9: Likelihood bias of summarization task for the LLaMA and Qwen family. ContrastScore can effectively
mitigate the likelihood bias compared to both single and ensemble methods on QAGS-XSUM and SummEval

datasets.
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MQM22 MQM23

Evaluators AVG
EN-DE ZH-EN EN-RU EN-DE ZH-EN HE-EN
1B 0.407 0.493 0.495 0.655 0.625 0.440 0.519
Single 3B 0.415 0.497 0.498 0.661 0.629 0.441 0.524
8B 0.439 0.503 0.515 0.676 0.648 0.511 0.549

(3B,1B) 0.416 0.498 0.503 0.665 0.633 0.442 0.526
LLaMA  Ensemble (8B,1B) 0.426 0.504 0.518 0.674 0.646 0.489 0.543
(8B,3B) 0.430 0.504 0.515 0.675 0.647 0.490 0.544

(3B,1B) 0.435 0.502 0.509 0.674 0.639 0.438 = 0.533
Contrast (8B,1B) 0.449 0.507 0.528 0.682 0.649 0.496 = 0.552
(8B,3B) 0.445 0.509 0.530 0.683 0.652 0.496 0.553

0.5B 0395 0500 0505  0.650 0.637 0451 0.523
Single 3B 0.417 0.513 0.502 0.665 0.659 0477 0523
7B 0427 0516 0517  0.665  0.655 0494  0.539

(3B,0.5B) 0.414 0.510 0.511 0.663 0.656 0.479 0.546
Qwen Ensemble (7B,0.5B) 0.418 0.512 0.518 0.665 0.655 0.491 0.539
(7B,3B) 0.425 0.518 0.518 0.671 0.663 0.497 0.543

(3B,0.5B) 0.428 0.517 0.519 0.675 0.666 0.482 = 0.549
Contrast (7B,0.5B) 0.435 0.519 0.530 0.676 0.666 0.499 = 0.548
(7B,3B) 0.435 0.521 0.531 0.676 0.666 0.499 = 0.554

Table 10: Pairwise Accuracy of evaluators with human scores in machine translation. bold represents best overall
scores, while underline represents best scores within each model group (Baseline, LLaMA, Qwen). Overall,
ContrastScore outperforms single and ensemble methods, as well as baseline metrics for both LLaMA and Qwen
families.
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