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Abstract

Extracting sensory information from text, par-
ticularly olfactory references, is challenging
due to limited annotated datasets and the im-
plicit, subjective nature of sensory experi-
ences. This study investigates whether GPT-
4o-generated data can complement or replace
human annotations. We evaluate human- and
LLM-labeled corpora on two tasks: coarse-
grained detection of olfactory content and fine-
grained sensory term extraction. Despite lex-
ical variation, generated texts align well with
real data in semantic and sensorimotor embed-
ding spaces. Models trained on synthetic data
perform strongly, especially in low-resource
settings. Human annotations offer better recall
by capturing implicit and diverse aspects of
sensoriality, while GPT-4o annotations show
higher precision through clearer pattern align-
ment. Data augmentation experiments confirm
the utility of synthetic data, though trade-offs
remain between label consistency and lexical
diversity. These findings support using syn-
thetic data to enhance sensory information min-
ing when annotated data is limited.

1 Introduction

Despite the key role of sensory experiences in hu-
man communication, computational methods for
detecting and interpreting olfactory—and more
broadly sensory—references in text remain limited,
mainly due to the lack of high-quality annotated
datasets. Annotating olfactory references is chal-

lenging because they can be implicit, metaphorical,
and culturally dependent. Unlike concrete cate-
gories like named entities, smell-related references
are context-dependent and subjective, requiring hu-
man judgment to disambiguate.

We explore synthetic data generated by large lan-
guage models (LLMs), specifically GPT-4o (Ope-
nAI, 2023), to address these challenges. We investi-
gate whether generated data can substitute or com-
plement real-world datasets in sensory information
mining. Focusing on olfaction, we introduce the
Olfactory Synthetic Dataset (referred to as D2 in
this paper), a novel resource designed to mirror the
real-world Odeuropa Corpus (D1) (Menini et al.,
2022)1. We release the full dataset2, including GPT-
4o and expert-annotated versions, as a contribution
to the research community. The dataset generation
and annotation process, and source code for experi-
ments are fully documented for reproducibility.

We evaluate synthetic data utility across three
axes: (1) Corpus-level similarity, assessing lex-
ical and semantic alignment between D1 and D2

to gauge how closely generated texts match real
sensory language; (2) Model performance, com-
paring sentence classification and sensory term ex-
traction on both datasets to test if models trained on
synthetic data perform comparably; and (3) Data

1https://github.com/Odeuropa/benchmarks_and_corpora
2https://github.com/cfboscher/ olfactory_data_

augmentation
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augmentation, measuring the effect of adding syn-
thetic examples to samples of real-world datasets.

Our study shows synthetic data can effectively
support sensory information extraction, offering a
scalable alternative for domains with limited anno-
tations, notably for other sensory modalities like
sound and taste. Unlike prior work, we compare
models trained on LLM-labeled synthetic data with
those trained on human-labeled data to assess trade-
offs in sensory domain labeling methods.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work; Section 3
details dataset generation and both human and au-
tomatic labeling protocols; Section 4 describes
the dataset comparison methodology; Section 5
presents our experimental results; Section 6 draws
conclusions, and Section 7 discusses limitations
and future directions. Additional information pro-
vided is in the appendix.

2 Related Work

Recent advances in large language models (LLMs)
have increased interest in data creation, annotation,
and augmentation across NLP tasks. One grow-
ing line of research explores LLMs as synthetic
data generators to reduce reliance on costly man-
ual annotations, especially in specialized domains
involving complex or subjective phenomena such
as sensory information extraction.

Synthetic Data Generation with LLMs in NLP
Several studies evaluate the potential and limits
of LLM-driven synthetic data generation. Long
et al. (2024) survey the expanding use of LLMs for
NLP benchmark creation. Li et al. (2023) analyze
synthetic data’s impact on text classification, show-
ing benefits in low-resource settings but limited
semantic depth and contextual realism. Almeida
and Matos (2024) explore zero-shot data genera-
tion for information retrieval, highlighting prompt
design’s importance.

Methodological gaps raise reproducibility con-
cerns, including inconsistent evaluation protocols
and limited expert involvement (Nafis et al., 2025;
Chim et al., 2025). Overuse of synthetic examples
may cause model collapse; Shumailov et al. (2024)
and Seddik et al. (2024) identify thresholds where
performance drops, implying stricter control over
synthetic-to-real data ratios.

The trade-off between synthetic and human-

labeled data is discussed by Møller et al. (2024),
showing classifiers trained on human data generally
outperform those using LLM-generated examples,
except for rare classes where synthetic augmenta-
tion helps. Zero-shot LLMs underperform small
human-trained models, underscoring expert anno-
tation’s value.

These issues are especially relevant for sensory
information extraction, where LLMs exhibit lexical
bias and struggle with subjective nuance, limiting
their effectiveness as substitutes for human annota-
tors (Mohta et al., 2023).

Sensory Information Mining Contextual lan-
guage models have been applied to detect sen-
sory references in text. Menini et al. (2022) used
MacBERTh (Manjavacas and Fonteyn, 2021) to de-
tect olfactory information in historical texts. Rule-
based systems like Massri et al. (2022) offer inter-
pretability but lack adaptability.

Khalid and Srinivasan (2022) used BERT with
Lancaster Sensorimotor Norms (Lynott et al., 2020)
to predict sensory modalities as bag-of-words. Ken-
nington (2021) integrated sensorimotor features
into ELECTRA (Clark et al., 2020), while Boscher
et al. (2024) combined contextual embeddings with
sensorimotor representations using lexical heuris-
tics (Mpouli et al., 2020), word embeddings, and
multilingual dictionaries (Sagot and Fišer, 2012).
Despite promising results, these methods strug-
gle with subjective content without expert over-
sight (Zhao et al., 2023).

Real-World vs. Synthetic Data in Sensory Do-
mains Boscher et al. (2024) compared a real-
world olfactory corpus, Odeuropa (Menini et al.,
2022) with a GPT-4o-generated auditory dataset,
but did not analyze real vs. synthetic data for
the same modality. Their auditory dataset (1,000
balanced sentences) was a proof-of-concept, not
benchmarked against annotated corpora.

This reveals a broader gap: the lack of validated
real-world sensory datasets and rigorous compar-
isons between synthetic and real data within the
same modality. Current pipelines often over-rely
on LLMs, have limited expert validation, and suffer
from cultural or subjective generation biases.

Positioning of the Present Work This paper ad-
dresses these issues by evaluating LLM-generated
olfactory datasets against real-world annotated
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corpora. Unlike prior work focused on modal-
ity comparison or raw generation, we perform a
fine-grained analysis of lexical coverage, semantic
variability, and trained model performance. Our
pipeline includes expert intervention during gen-
eration and annotation and ensures reproducibility
by providing prompts, annotation guidelines, and
the full dataset with both human and model-based
annotations for comparison.

3 Dataset Generation

We aim to generate a synthetic dataset D2, com-
parable to the real-world dataset D1—the Odeu-
ropa Text Dataset (Menini et al., 2022)—to eval-
uate whether it can support sensory information
extraction tasks. We focus on the English subset
of Odeuropa. All original documents were used,
regardless of their genre. Following Boscher et al.
(2024), each document was split into sentences;
those with at least one token labelled Smell Source,
Smell Word, Quality, Odour Carrier, or Evoked
Odorant were labelled as positives; others were
negatives. The obtained dataset, denoted by D1,
includes 2,176 sentences, with 602 (28%) labeled
as olfactory by experts, featuring over 5,500 odor-
related terms such as aroma, scent, or sweet.

This section details the synthetic generation pro-
tocol of D2 via the GPT-4o (OpenAI, 2023) web
interface, prompting strategies, annotation proce-
dures, and evaluation of model-human agreement
at both sentence and token levels.

3.1 Generation Protocol and Prompt Design

We adapted prompting strategies from Boscher et al.
(2024), initially designed for auditory data. We
design two distinct prompts intended to generate
syntactically and semantically diverse positive (P1)
and negative (P2) sentences. The dataset generation
prompts are provided in Section A in Table 6.

A total of 500 positive (olfactory) and 1,700
negative (non-olfactory) sentences were generated
to match the class ratio of the original corpus D1,
resulting in 2200 examples in D2 . Examples of
synthetic positive and negative sentences are given
in Table 1, with sensory terms in bold for positive
sentences.

3.2 Annotation Protocol

Each generated sentence undergoes a two-levels
annotation, consistent with D1: (1) sentence-level

Table 1 Positive vs. Negative Sentences Examples

Positive Negative

“The aroma of fresh-
baked bread lingered
warmly.”

“A fearless diver plumbed
unexplored reefs below.”

classification (positive/negative) and (2) token-
level annotation for sensory terms in positive ex-
amples. We compare two annotation methods:

Automatic Annotation with GPT-4o (DLM
2 ) : In

the first scenario, all annotations are performed au-
tomatically by the same model used for data gen-
eration, without any human correction. Sentences
generated using prompt P2 are labeled as negative,
while those generated with prompt P1 are labeled
as positive. Then, positive sentences are passed to
the LLM, which is queried using prompt P3 (see
Table 6 in Appendix Section A) to extract olfactory
terms.

Human Expert Annotation (DEX
2 ): In parallel,

we conduct a human-guided annotation process led
by a domain expert. Annotation is carried out by
a research engineer specialized in digital human-
ities. Each sentence is first labeled as potentially
positive or negative based on expert judgment. Pos-
itive sentences are then manually annotated at a
token level to identify terms conveying olfactory
information, whether explicitly or implicitly. In am-
biguous cases, only tokens that are clearly olfactory
in context are retained. Each sentence is ultimately
classified as positive if it contains at least one such
token, and as negative otherwise.

3.3 Human vs. Model Annotation Agreement

While GPT-4o provides scalable generation and
initial annotation, manual expert validation may
be necessary to ensure quality for nuanced sen-
sory datasets like D2. To assess annotation relia-
bility, we evaluate the agreement between DEX

2 and
DLM

2 for both sentence- and token-level labeling.

Sentence Classification: Among 1,700 negative
sentences produced by GPT-4o, 596 (35%) were
reclassified as positive by the expert. Conversely,
no positive sentence had to be reclassified as neg-
ative. These typically contained implicit olfac-
tory cues—such as references to nature or ani-
mals—highlighting GPT-4o’s reliance on explicit
keyword detection. For example, sentences like

“Puppy chased butterflies beside flowering back-
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yard fence” and “Blue jays perched on cedar
branches in spring” were labeled as negative by
GPT-4o but judged as positive by the expert due
to their olfactory context, especially inferred from
tokens in bold.

Moreover, we obtain a Cohen’s Kappa coeffi-
cient (Cohen, 1960) κ equal to 0.52 for binary sen-
tence classification of DEX

2 v.s. DLM
2 , confirming a

moderate agreement between the two annotation
methods (Landis and Koch, 1977). This suggests
that while there is a fair level of consistency be-
tween the automatic and expert annotations, some
divergences remain, particularly for sentences with
implicit or context-dependent olfactory cues, which
are more challenging for the LLM to detect.

Token-Level Annotation: We compared token-
level labels across both annotations. The resulting
score of κ = 0.503 confirms only moderate align-
ment between human- and model-based annota-
tions, consistent with findings at the sentence level
and justifying an analysis of both strategies. More-
over, Xu et al. (2025) showed that LLMs struggle to
capture the sensory essence of lexical concepts, of-
ten disagreeing with humans on sensoriality ratings.
Thus, a high disagreement between both annotation
methods is plausible and expected. Thus, Section C
discusses the sensory vocabulary divergences be-
tween both annotations.

In Section 5, we discuss how the annotation
method affects D2’s similarity to D1 and the im-
pact on model performance when augmenting data
with synthetic examples.

4 Methodology

After generating the synthetic dataset D2, it is com-
pared to the real-world dataset D1 to: (1) assess lin-
guistic and semantic similarity; (2) evaluate model
performance when trained on each; and (3) deter-
mine D2’s utility for augmentation or substitution.

4.1 Corpus Comparison
To quantify lexical and semantic similarity between
D1 and D2, we adopt the corpus comparative met-
rics suggested by Møller et al. (2024):

Token Overlap: We measure similarity by comput-
ing the Jaccard similarity between each sentence
s2 ∈ D2 and its most similar sentence s1 ∈ D1,
based on the overlap of their token sets.

Semantic Similarity: Cosine similarity between

the sentence embeddings of s1 and s2 is computed
using (1) SentenceBERT (Reimers and Gurevych,
2019) (with bert-base-uncased parameters) and
(2) 11-dimensional sensorimotor sentence embed-
dings proposed by Boscher et al. (2024); Lynott
et al. (2020). For both embedding models and for
each sentence s2, the highest similarity score with
any s1 ∈ D1 is retained, and distributions are visu-
alized via density plots.

4.2 Corpus Classification
We compare classification performances obtained
either on D1 or D2, through two sensory informa-
tion extraction tasks:

Task 1 — Binary Sentence Classification: Clas-
sify sentences to determine whether they con-
tain olfactory references or not using three mod-
els: SENSE-LM (Boscher et al., 2024), vanilla
BERT (Devlin et al., 2019), and Logistic Regres-
sion over sentence sensorimotor features as defined
by (Lynott et al., 2020).

Task 2 — Sensory Term Extraction: Identify
sensory expressions (e.g., “coffee,” “tobacco”)
from positively labeled sentences with two con-
sidered models, BERT and SENSE-LM.

Evaluating model performance on D1 vs. D2

assesses whether they yield comparable scores and
similar model rankings. For both tasks, macro-
averaged Precision, Recall, and F1-score are com-
puted and averaged over 10 cross-validation folds,
with standard deviations reported.

4.3 Data Augmentation with Synthetic
Examples

To assess the impact of synthetic data on model
performance, we augment the real-world dataset
D1 with examples from D2, evaluating both clas-
sification tasks from Section 4.2. The training set
is defined as Dtrain = Dn1

1 ∪ Dn2
2 with n1 the

number of real examples, and n2 the number of
artificial examples, and the test set as Dtest = Dn3

1 ,
with n3 = 0.2 × |D1|. The total training size is
N = n1 + n2, and the values of n1 and n2 vary by
scenario. Results are reported as the average over
10 folds with standard deviation.

4.3.1 Data Augmentation with Constant
Real-World Data Sample

In this setup, n1 is fixed, and synthetic samples are
progressively added, increasing n2. In our exper-
iments n1 is set to 100, while n2 reaches 1750 in
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Task 1, and 400 in Task 2. This setup allows exam-
ining how models benefit from increasing synthetic
input in low-data regimes.

4.3.2 Data Augmentation with Variable Size
Real-World Data Sample

We consider an initial training dataset composed
only of n1 examples from D1, and we gradually
add synthetic examples from D2 by augmenting a
coefficient p ∈ {0, 10, . . . , 100}, s.t. n2 = p

100 ×
n1 with n1 ∈ {50, 100, 200, 500, 1000, 1750}
for binary sentence classification , and n1 ∈
{50, 100, 200, 300, 400} for sensory terms extrac-
tion. This setup tests how model performance
evolves as the addition of synthetic data supple-
ments real data under several initial dataset sizes.

4.3.3 Data Augmentation with Variable Ratio
of Synthetic Data

In this scenario, we fix the training set size N
to several values (50–1750 for binary sentence
classification, 50–400 for sensory term extrac-
tion) and vary the proportion of synthetic data
p ∈ {0, 10, . . . , 100}, such that n2 = p

100 × N
and n1 = N − n2. This setup evaluates how much
synthetic data can replace real data without sig-
nificantly affecting classifier performance, and to
what extent scores remain stable or degrade as the
synthetic ratio increases.

5 Evaluation

This section evaluates how synthetic corpora D2

compare with the real-world corpus D1 across
the three axes defined in Section 4: (1) similar-
ity between corpora, (2) model ranking consistency
across datasets, and (3) efficacy of synthetic data
in substituting real-world data. Text pre-processing
pipelines and experimental hyperparameters are
reported in Section B.

5.1 Corpus Comparison
Section 5.1 presents the similarity between D1 and
D2 across all terms using the metrics from Sec-
tion 4.1: token overlap (left), Sentence-BERT se-
mantic similarity (middle), and sensorimotor sim-
ilarity (right) (Boscher et al., 2024). The X-axis
shows the best token overlap or cosine similarity
for each generated sentence annotation compared
to D1; the Y-axis shows sentence density per metric
bin.

Token overlap (left panel) is low, indicating dis-
similar vocabulary. Semantic similarity (middle) is

moderate, while sensory similarity (right) is higher,
typically between 0.8 and 1. Despite lexical differ-
ences, due to a contextual and historical domain
shift between both datasets (historical texts in D1

and contemporary data in D2), generated sentences
exhibit shared semantic and sensorimotor features
with real-world data, supporting the use of syn-
thetic corpora for classification tasks. Extended
results in Section D show stronger alignment when
limited to positive terms.

Regarding sensory vocabulary, DLM
2 uses a re-

stricted range of positive terms (318), often repeat-
ing generic words like scent, aroma, and perfume.
In contrast, DEX

2 is more lexically diverse (902
unique positive terms) and aligns more closely with
D1 annotations. Extended statistical analyses and
tests in Section C show that the distribution and
ranking of positive terms in DEX

2 do not signifi-
cantly differ from D1, unlike DLM

2 .

5.2 Corpus Classification

We compare classification model performance on
D1 and D2 for two tasks: binary sentence classifi-
cation and sensory term extraction (see Section 4.2).
Our goal is to assess if models perform consistently
across datasets and if their ranking remains stable
between real and synthetic data.

Binary Sentence Classification Table 2 shows
the performance of SENSE-LM, BERT, and lo-
gistic regression evaluated using 1) D1 (left), 2)
D2 with human annotations DEX

2 (center), and 3)
automatic annotations DLM

2 (right). While models
perform better on synthetic data—regardless of an-
notation source—model rankings remain consistent
across datasets. This suggests that synthetic cor-
pora can serve as reliable proxies for evaluating
model performance rankings, even if they do not
fully reflect real-world complexity.

Sensory Term Extraction As shown in Ta-
ble 3, performance is slightly higher with
DLM

2 annotations, likely due to lower lexical diver-
sity and more homogeneous positive terms. In
contrast, DEX

2 —with its greater term variety— pro-
vides results closer to the Odeuropa dataset (see
Section C). Despite differences in absolute scores,
model rankings remain stable, confirming that arti-
ficial datasets can be reliable substitutes for com-
paring models in olfactory term extraction.
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Figure 1: Comparison of sentence similarity distributions between positive sentences of generated (D2) and original
(D1) corpora, using three metrics—token overlap, cosine similarity based on BERT embeddings, and cosine
similarity based on sensorimotor embeddings.

Table 2 Comparative evaluation of the binary sentence classification task performed by considered models.
Odeuropa Dataset (D1) Olfactory Synthetic Dataset (DEX

2 ) Olfactory Synthetic Dataset (DLM
2 )

Method Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BERT 91.51 ± 1.12 90.12 ± 0.61 90.80 ± 0.85 99.10 ± 0.90 98.93 ± 0.80 99.01 ± 0.85 98.00 ± 0.35 97.81 ± 0.28 97.90 ± 0.30
Logistic Regression 82.25 ± 1.51 72.33 ± 1.22 76.97 ± 1.36 91.00 ± 1.30 90.52 ± 1.70 90.76 ± 1.49 91.40 ± 2.10 91.09 ± 2.20 91.24 ± 2.78

SENSE-LM 94.09 ± 0.81 92.26 ± 0.72 93.16 ± 0.76 99.80 ± 0.45 99.66 ± 0.39 99.73 ± 0.42 99.40 ± 0.65 99.23 ± 0.61 99.31 ± 0.63

5.3 Data Augmentation with Synthetic
Examples

In the following, we conduct the experiments re-
lated to the protocol introduced in Section 4.3, to
measure the impact of data augmentation on the
utility of classifiers. The results are presented only
for the SENSE-LM model in Section 5.3.2 and Sec-
tion 5.3.3, and the other models are provided in
Section E as the conclusions are similar.

5.3.1 Data Augmentation with A Constant
Real-World Data Sample

Following the method described in Section 4.3.1,
we first assess the impact of adding synthetic ex-
amples from D2 to a constant base of n1 = 100
real sentences from D1. For both tasks, the per-
formances are evaluated in terms of F1-score as
a function of the amount of synthetic data added,
using for ground truth either human labels DEX

2 or
automatic annotation DLM

2 .

Binary Sentence Classification. Figures 2a
and 2b show the performances obtained on the bi-
nary sentence classification task. Models trained
with DEX

2 outperform DLM
2 in low-resource settings

(n2 ∈ [20; 150]) for all models, with statistically
significant differences according to the Student Fis-
cher’s t-test (Student, 1908) applied to the F1-Score
distribution by folds for each annotation, showing
p-values inferior to 0.05. However, at higher vol-
umes (n2 = 1750), models trained on DLM

2 catch

up and occasionally surpass DEX
2 . This highlights

that annotation quality provided by experts is more
impactful at a small data scale.

Sensory Term Extraction. Figure 2c and ??
shows that models trained on DEX

2 outperform those
with DLM

2 for small synthetic additions, with signifi-
cant gaps for n2 ∈ [50, 200]. Beyond, models with
DLM

2 gather and sometimes surpass DEX
2 (although

non-significantly). These results support the ad-
vantage of using human labeling (DEX

2 ) in low-
resource settings and the efficiency of automatic
labeling (DLM

2 ) at a larger scale. In both cases,
F1-score degrades for n2 ≥ 100 (over 50% syn-
thetic data), aligning with prior work on model
collapse (Seddik et al., 2024; Kazdan et al., 2024).

5.3.2 Data Augmentation with a Variable Size
Real-World Data Sample

In Section 5.3.1, we showed that adding synthetic
examples to a fixed base of 100 real Odeuropa
samples improves model utility up to a threshold.
Building on findings that DEX

2 benefits from less
data while DLM

2 improves with more, we now test
whether synthetic data augments real data across
varying initial sizes. Starting with D1 only (N =
n1), we progressively add synthetic examples until
N = 2 × n1 to assess how augmentation scales.
For both binary classification and sensory term
extraction, we follow the protocol in Section 4.3.2.
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Table 3 Comparative evaluation of the sensory terms extraction task by considered models.
Odeuropa Dataset (D1) Olfactory Synthetic Dataset (DEX

2 ) Olfactory Synthetic Dataset (DLM
2 )

Method Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BERT 80.01 ± 2.22 66.32 ± 1.13 72.52 ± 1.68 86.19 ± 0.92 75.60 ± 1.47 80.74 ± 0.52 85.45 ± 0.84 79.01 ± 1.10 82.06 ± 0.76
SENSE-LM 82.01 ± 1.81 73.62 ± 1.56 77.58 ± 1.65 86.65 ± 0.52 78.54 ± 0.76 82.37 ± 0.63 85.53 ± 0.62 81.73 ± 0.77 83.59 ± 0.15
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Figure 2: F1-score of models’ evolution with n1 = 100 examples from Odeuropa and progressive augmentation of
n2 synthetic examples.

Binary Sentence Classification Figures 3a
and 3b show SENSE-LM’s F1-Score for varying
initial real-dataset sizes n1 and two ground truths
–human annotation (DEX

2 , left) and automatic anno-
tation (DLM

2 , right)–plotted against the percentage
of synthetic data supplementing the original real
data (0% means training only on real data, 100%
means equal amounts of generated and real data).
The shaded areas report standard deviation values.
For n1 ≥ 500, adding synthetic data does not im-
prove performance. However, for smaller sizes
(n1 ∈ [50; 200]), both DLM

2 and DEX
2 benefit, with

stronger gains for DEX
2 . This likely comes from

DEX
2 ’s finer capture of implicit sensory cues at the

sentence level, as discussed in Section 3.3.

Sensory Terms Extraction The results for sen-
sory terms extraction in Figures 3c and 3d show
that models trained with DLM

2 yield higher and more
consistent gains, especially for n1 ≥ 200, with sta-

tistically significant gaps over DEX
2 . As detailed

in Table 4 for n1 = 400 with SENSE-LM, DLM
2 -

trained models achieve higher F1-scores by improv-
ing precision at a slight recall cost as generated
examples increase. This reflects DLM

2 ’s pattern-
guided annotation focusing on explicit, restricted
vocabulary, limiting predicted terms. Conversely,
DEX

2 improves recall through richer, more diverse
annotations but reduces precision due to more false
positives. Overall, DLM

2 offers the best precision-
recall trade-off and highest F1-score.

5.3.3 Data Augmentation with a Variable
Ratio of Synthetic Data

In Section 5.3.2, we saw that gradually adding
generated data to a fixed real train set generally
improves prediction quality. However, prior ex-
periments did not fully assess how varying the
synthetic-to-real data ratio affects performance.
Therefore, following Section 4.3.3, we keep the

3010



0 20 40 60 80 100
Generated examples added 
 (% of Initial Dataset Size)

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re
F1 Score vs Training Dataset Augmentation

Initial Dataset Size
n1 = 50
n1 = 100
n1 = 200
n1 = 500
n1 = 1000
n1 = 1750

(a) Binary sentence classification – Human labels DEX
2

0 20 40 60 80 100
Generated examples added 
 (% of Initial Dataset Size)

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

F1 Score vs Training Dataset Augmentation

Initial Dataset Size
n1 = 50
n1 = 100
n1 = 200
n1 = 500
n1 = 1000
n1 = 1750

(b) Binary sentence classification – Generated labels DLM
2

0 20 40 60 80 100
Generated examples added 
 (% of Initial Dataset Size)

0.60

0.65

0.70

0.75

0.80

F1
 S

co
re

F1 Score vs Training Dataset Augmentation
Initial Dataset Size

n1 = 50
n1 = 100
n1 = 200
n1 = 300
n1 = 400

(c) Sensory terms extraction – Human labels DEX
2

0 20 40 60 80 100
Generated examples added 
 (% of Initial Dataset Size)

0.60

0.65

0.70

0.75

0.80

F1
 S

co
re

F1 Score vs Training Dataset Augmentation
Initial Dataset Size

n1 = 50
n1 = 100
n1 = 200
n1 = 300
n1 = 400

(d) Sensory terms extraction – Generated labels DLM
2

Figure 3: F1-score evolution of SENSE-LM on binary sentence classification (top row) and sensory terms extraction
(bottom row), across various initial dataset sizes n1 and progressive augmentation with synthetic data.

Table 4 Precision and Recall (% ± std) for human
(DEX

2 ) and generated (DLM
2 ) labels on Binary Sen-

tence Classification (SENSE-LM, N=400) with
data augmentation. DEX

2 values match Figure 3c,
DLM

2 values match Figure 3d.

Gen. Data DEX
2 DLM

2

Added (%) Prec. Rec. Prec. Rec.

0 72.95 ± 3.17 64.72 ± 2.91 72.95 ± 3.17 64.72 ± 2.91

20 72.63 ± 2.37 66.76 ± 2.28 73.29 ± 2.83 63.97 ± 3.24

40 71.67 ± 0.75 68.72 ± 3.04 76.04 ± 2.81 62.02 ± 2.12

60 72.44 ± 1.36 67.63 ± 1.87 75.54 ± 2.34 64.37 ± 4.12

80 71.49 ± 1.83 67.13 ± 1.37 75.75 ± 4.13 61.73 ± 2.03

100 69.11 ± 4.68 68.66 ± 2.66 77.08 ± 3.33 61.59 ± 4.53

train size constant while varying this ratio.

Binary Sentence Classification. For different
dataset sizes N , Figures 4a and 4b show F1-Score
results as a function of the ratio of generated data
in the training set (0% = all real data; 100% = all
synthetic). Performance generally degrades as syn-
thetic data dominates, except for small N , where
performance is already low. This drop is sharper
for larger N . With DEX

2 , performance stays higher
at low synthetic ratios, especially for N = 100
or 200. Across all sizes, models collapse beyond

60% synthetic data, approaching random classifi-
cation (F1 ≈ 0.5). As the structure of D2 diverges
from D1 in vocabulary and complexity, introduc-
ing excessive synthetic data degrades performance,
highlighting the need to retain at least 40% real
data to prevent model collapse.

Sensory Term Extraction. As shown in Fig-
ures 4c and 4d, performance remains stable when
generated data stays below 40%. Beyond this,
DEX

2 causes sharp F1 drops—up to 12 points for
N = 400 while DLM

2 degrades from a ratio of 20%,
but only by 2–3 points. Table 5 details precision
and recall at N = 400: with DEX

2 , Recall improves
but Precision drops; DLM

2 shows the reverse. These
trends support our hypotheses in Section 5.3.2:
though DLM

2 often yields better F1, each annotation
shows advantages depending on the objective.

6 Conclusions and Perspectives

In this paper, we explored using synthetic data from
LLMs to support olfactory information extraction,
a domain challenged by subjective sensory experi-
ences.We introduced the synthetic dataset D2, gen-
erated with GPT-4o, and compared it to the real
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(c) Sensory terms extraction – Human Labels DEX
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(d) Sensory terms extraction – Generated labels DLM
2

Figure 4: F1-score evolution of SENSE-LM on binary sentence classification (top row) and sensory terms extraction
(bottom row), for various dataset sizes N and varying real-to-generated data ratios.

Table 5 Precision and Recall (% ± std) for hu-
man (DEX

2 ) and generated (DLM
2 ) labels on Sen-

sory Terms Extraction (SENSE-LM, N=400) with
data augmentation. Values for DEX

2 match with Fig-
ure 4c, DLM

2 match Figure 4d.

Gen. Data DEX
2 DLM

2

Ratio (%) Prec. Rec. Prec. Rec.

0 74.64±2.06 60.49±0.85 74.64±2.06 60.49±0.85

20 73.82±1.73 64.98±2.67 72.89±0.43 65.73±0.39

40 67.88±2.41 71.12±2.42 76.67±2.12 60.08±0.72

60 63.33±1.95 71.68±1.34 77.78±2.05 58.61±2.51

80 57.92±2.45 75.38±1.72 75.80±1.64 59.45±1.09

100 45.08±2.30 77.68±1.64 76.87±0.87 56.92±1.41

Odeuropa corpus (D1). Our analysis covered lex-
ical and semantic similarity, classification and ex-
traction performance, and data augmentation with
GPT-based (DLM

2 ) and expert-curated (DEX
2 ) an-

notations. Despite lexical differences, D1 and D2

align in sensorimotor and semantic space. Mod-
els behaved similarly across datasets in F1-score
and ranking. Synthetic data improved performance,
especially in low-resource settings. DLM

2 -trained
models sometimes outperformed DEX

2 using con-
sistent pattern-based labeling, boosting precision

by reducing false positives. DEX
2 ’s human anno-

tations capture finer nuances and broader vocab-
ulary, improving recall. This trade-off suggests
LLM-based annotations are convenient for preci-
sion tasks, while human annotations offer advan-
tages for recall-oriented applications.

Future work includes enhancing data realism via
prompt diversification and seed-based generation,
and evaluating impacts of realism and subjectivity
on performance. This study tested whether sim-
ple, generic prompts can replace annotated data
in sensorial domains lacking resources or guide-
lines (e.g., taste, sound, haptics). For that reason,
we deliberately dit not consider the olfactory ex-
traction detailed guidelines from Odeuropa3. How-
ever, a valuable future direction would consist in
quantifying the gap between guideline-informed
and guideline-free prompting with the help of such
guildelines. Finally, we may even explore applica-
tions to other subjective tasks, beyond sensoriality.

3https://odeuropa.eu/wp-content/uploads/2022/05/D3.1-
Annotation-Scheme-and-Multilingual-Taxonomy.pdf
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7 Limitations

While our study highlights the potential of LLM-
generated data for olfactory information extraction,
some aspects warrant further exploration and re-
finement in future work.

Annotation Quality and Agreement. Our com-
parison of human (D2

EX ) and model-based (D2
LM )

annotations shows moderate inter-annotator agree-
ment (Cohen’s κ ≈ 0.5), particularly at the token
level. This reflects the inherently subjective and
nuanced nature of olfactory language, which poses
challenges for both human and machine annota-
tion. Notably, D2

EX contributes valuable lexical
diversity that enriches model learning, though it
may also introduce variability that slightly affects
classification precision. Additionally, since D1 and
D2

EX were annotated by different experts, some
divergence in their interpretation of sensoriality is
natural. Addressing these cross-annotator differ-
ences in future work—for instance, via consensus-
building or multi-annotator validation—could fur-
ther enhance the robustness of human-annotated
sensory corpora.

Domain Specificity. Our experiments center on
olfactory content, a domain with particularly rich
and complex linguistic characteristics. While our
results suggest that synthetic olfactory data can
effectively support classification tasks, further re-
search is needed to determine how well these
findings generalize to other sensory modalities.
Each sensoriality (e.g., auditory, gustatory) brings
its own cultural, lexical, and perceptual dimen-
sions (Geldard, 1953), and extending this frame-
work to new modalities would be a valuable direc-
tion. Encouragingly, the shared features between
olfactory and gustatory language suggest that some
transferability may be possible.

LLM Prompt Sensitivity. The success of syn-
thetic data generation depends in part on prompt
design. While our prompts were adapted from
prior work and proved effective for our tasks, small
changes in phrasing can result in substantial vari-
ations in the generated data. This highlights the
importance of developing more standardized, re-
producible prompting methodologies. Exploring
prompt engineering techniques such as few-shot
prompting or style-conditioning based on real cor-
pora—e.g., using examples from the Odeuropa
dataset—could further align generated data with

domain-specific characteristics and make data aug-
mentation with synthetic examples more efficient.

Prompt: Using the following examples,
generate 200 new sentences incorporat-
ing olfactory references. Maintain a simi-
lar tone, vocabulary, and structure, while
ensuring all sentences contain references
to scent or smell. Avoid repetition or re-
producing real-world examples.

Example source: “Honey is gathered
with much art from great variety of trees
and flowers; and joy is a honey, a fra-
grancy made from above with much pick-
ing, choosing, and composing.”

LLMs Openness and Transparency In addi-
tion to proprietary models such as GPT-4, recent
open-source LLMs like Qwen (Yang et al., 2025),
LLaMA (Touvron et al., 2023), and Mistral (Jiang
et al., 2023) have shown strong capabilities in gen-
eration and controllability. These models offer
promising alternatives for institutions with data pro-
priety or cost constraints, and may support broader
reproducibility in future synthetic data pipelines.
Evaluating their behavior under controlled prompt-
ing conditions remains a valuable direction for fu-
ture work.

Overall, while some challenges re-
main—particularly in annotation consistency and
generalization beyond the olfactory domain—our
findings underscore the promise of synthetic text
data in low-resource settings. We believe this
work contributes to expanding sensory NLP with
LLM-driven resources, and we are optimistic about
the scalability and adaptability of these methods in
future applications.
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Ethical Considerations

There is no risk of non-compliance with current leg-
islation, such as GDPR or copyright law, since the
generated data contains no sensitive information
and is in the public domain. The real-world datasets
used, notably Odeuropa, are public and open, made
available by original authors for reuse. Composed
of data from public-domain historical texts, this
reuse complies with public-law standards.

However, Odeuropa data (historical) and LLM-
generated data (contextualized in the contemporary
world) may carry different biases, such as cultural
diversity and contextual nuances, which must be
considered.

At the same time, since our study relies on syn-
thetic data generated by GPT-4o, it is important
to note that this data may contain factual inaccu-
racies, as GPT-4o does not incorporate any robust
fact-checking mechanisms during text generation.

Acknowledgements

We gratefully acknowledge the support of the
French Auvergne-Rhône-Alpes Region for the
Symtesens project, funded through the Pack Am-
bition Recherche 2020–2024 Program. This ini-
tiative brings together the French National Centre
for Scientific Research (CNRS), three academic
research teams, and the French heritage institution,
the Lyon Municipal Archives.

References
Tiago Almeida and Sérgio Matos. 2024. Exploring

efficient zero-shot synthetic dataset generation for
information retrieval. In Findings of the Association
for Computational Linguistics: EACL 2024, pages
1214–1231, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Cédric Boscher, Christine Largeron, Véronique Eglin,
and Elöd Egyed-Zsigmond. 2024. SENSE-LM : A
synergy between a language model and sensorimotor
representations for auditory and olfactory informa-
tion extraction. In Findings of the Association for
Computational Linguistics: EACL 2024, pages 1695–
1711, St. Julian’s, Malta. Association for Computa-
tional Linguistics.

Jenny Chim, Julia Ive, and Maria Liakata. 2025. Evalu-
ating synthetic data generation from user generated
text. Computational Linguistics, 51(1):191–233.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training

text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. arXiv preprint. ArXiv:1810.04805 [cs].

Frank A Geldard. 1953. The human senses. Wiley.

Dongsheng Jiang, Yuchen Liu, Songlin Liu, Jin’e Zhao,
Hao Zhang, Zhen Gao, Xiaopeng Zhang, Jin Li, and
Hongkai Xiong. 2023. From clip to dino: Visual
encoders shout in multi-modal large language models.
arXiv preprint arXiv:2310.08825.

Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias
Gerstgrasser, Rafael Rafailov, David L Donoho, and
Sanmi Koyejo. 2024. Collapse or thrive? perils and
promises of synthetic data in a self-generating world.
arXiv preprint arXiv:2410.16713.

Casey Kennington. 2021. Enriching Language Mod-
els with Visually-grounded Word Vectors and the
Lancaster Sensorimotor Norms. In Proceedings of
the 25th Conference on Computational Natural Lan-
guage Learning, pages 148–157, Online. Association
for Computational Linguistics.

Osama Khalid and Padmini Srinivasan. 2022. Smells
like Teen Spirit: An Exploration of Sensorial Style in
Literary Genres. arXiv preprint. ArXiv:2209.12352
[cs].

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1).

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming
Yin. 2023. Synthetic data generation with large lan-
guage models for text classification: Potential and
limitations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10443–10461, Singapore. Association for
Computational Linguistics.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On
LLMs-driven synthetic data generation, curation, and
evaluation: A survey. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024, pages
11065–11082, Bangkok, Thailand. Association for
Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. ArXiv,
abs/1711.05101.

Dermot Lynott, Louise Connell, Marc Brysbaert, James
Brand, and James Carney. 2020. The Lancaster Sen-
sorimotor Norms: multidimensional measures of per-
ceptual and action strength for 40,000 English words.
Behavior Research Methods, 52(3):1271–1291.

3014

https://aclanthology.org/2024.findings-eacl.81/
https://aclanthology.org/2024.findings-eacl.81/
https://aclanthology.org/2024.findings-eacl.81/
https://aclanthology.org/2024.findings-eacl.119/
https://aclanthology.org/2024.findings-eacl.119/
https://aclanthology.org/2024.findings-eacl.119/
https://aclanthology.org/2024.findings-eacl.119/
https://doi.org/10.1162/coli_a_00540
https://doi.org/10.1162/coli_a_00540
https://doi.org/10.1162/coli_a_00540
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://psycnet.apa.org/record/1953-07552-000
https://doi.org/10.18653/v1/2021.conll-1.11
https://doi.org/10.18653/v1/2021.conll-1.11
https://doi.org/10.18653/v1/2021.conll-1.11
http://arxiv.org/abs/2209.12352
http://arxiv.org/abs/2209.12352
http://arxiv.org/abs/2209.12352
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://api.semanticscholar.org/CorpusID:3312944
https://api.semanticscholar.org/CorpusID:3312944
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.3758/s13428-019-01316-z
https://doi.org/10.3758/s13428-019-01316-z


Enrique Manjavacas and Lauren Fonteyn. 2021.
Macberth: Development and evaluation of a histori-
cally pre-trained language model for english (1450-
1950). In Proceedings of the Workshop on Natural
Language Processing for Digital Humanities, pages
23–36.

M. Besher Massri, Inna Novalija, Dunja Mladenić,
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A Dataset Generation Prompts

We report the parameters considered for dataset
generation using GPT4-o : the model build ver-
sion used was gpt-4o-2024-11-204, as the exper-
iments were conducted on early January 2025. As
the generation process was conducted through the
web interface, we consider the model uses typical
hyperparameter values5 : the temperature value is
set to 1.0, the top_p to 1.0 and max_tokens is set to
null (resulting in no length restriction for generated
texts).

We then provide the prompts used for the gener-
ation and automatic annotation of the D2 dataset
in Table 6. The P1 prompted is used to generate
positive examples, and conversely, P2 is used to
generate negative examples. Considering the limi-
tations of the GPT-4o web application, we ask the
model to generate the dataset by batch of 100 ex-
amples, that we compile into a CSV file along with
their class at a sentence level (positive / negative).

Then, the prompt P3 is used on positive exam-
ples to extract positive terms of DLM

2 annotation.

B General Experimental Settings

In the following experiments, all texts are prepro-
cessed ahead of the model input. The text nor-
malization involves spellchecking, removal of stop
words and punctuation, lowercasing, and lemmati-
zation. After normalization, tokenization is per-
formed by splitting the text into tokens using
whitespace as the delimiter.

In the classification experiments provided from
Section 5.2 to Section 5.3.3, the SENSE-LM model
uses BERT with MacBERTh pretrained parame-
ters (Manjavacas and Fonteyn, 2021) as a backbone,
considering the same number of training parame-
ters than the base BERT model (110M parameters).
The latter is pre-trained on 1450–1950 data, aid-
ing cross-period matching. It is trained using the
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 2× 10−5 and ϵ = 1× 10−8

for 30 epochs. BERT follows the same setup. For
logistic regression, sensorimotor representations
of sentences are extracted from the text following
the method proposed by Boscher et al. (2024), and

4https://platform.openai.com/docs/models/gpt-4o-2024-
11-20

5https://platform.openai.com/docs/api-
reference/responses/create

used to fit a logistic regression model with up to
1000 training iterations.

All experiments are conducted using an NVIDIA
RTX A5000 Laptop GPU when relevant, and ran-
dom seeds used for folds are fixed to 42 to ensure
reproducibility. Training and inference costs are
equivalent to the costs provided in Boscher et al.
(2024).

C Lexical Dissimilarity between
real-world and generated data

The lexical dissimilarity between D1 and D2’s an-
notations is observed in Table 7 to Table 9, which
show the frequency ranks of overlapping olfactory
terms across distinct corpora. For example, while
terms like smell, scent, and aroma are common
in both corpora, their ranks vary considerably be-
tween real-world and synthetic corpora, pointing
to a stylistic shift in expression across corpora.

Tables 7 and 8 show the top 20 overlapping olfac-
tory terms between D1 and each annotation of the
generated corpus. The LM annotation (DLM

2 ) has a
more compact and repeated vocabulary (318 unique
olfactory terms), with terms like scent and aroma
ranking significantly higher than in D1, indicating
possible over-representation. The expert annota-
tion (DEX

2 ), on the other hand, maintains greater
lexical diversity (902 unique olfactory terms) and
alignment with D1’s vocabulary and rank order.

We statistically validate these observations us-
ing the Wilcoxon signed-rank test to compare
the rankings presented respectively in Tables 7
and 8 (Wilcoxon, 1992):

• Between D1 and DLM
2 , the p-value obtained is

2.58×10−6, which is much lower than the sig-
nificance level α = 0.05. This result provides
strong evidence to reject the null hypothesis
and supports the claim positive terms labelled
by a LLM in DLM

2 differ from terms labels by
humans in D1.

• In contrast, the comparison between D1 and
DEX

2 yields a p-value of 0.175, suggesting no
significant difference in the distribution of an-
notated terms.

Table 9 directly compares positive labelled terms
between DLM

2 and DEX
2 , confirming that while

they share a core vocabulary, the LM-annotation
DLM

2 centers on explicit and non-ambiguously ol-
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Table 6 Prompts Used for Generating Synthetic Sentences

Type Prompt Description

P1 (Positive) “Could you generate 100 sentences of 10 words each, containing references to olfactory
experiences, and avoid repeating the same sentence structures? You may include different
kinds of descriptions: what produces the olfactory experience or the quality of smell, for
different types of scents (people, objects, or environment).”

P2 (Negative) “Could you generate 100 sentences with 10 words for each, making sure they absolutely
do not make any reference to any olfactory experience, and avoid repeating the same
sentence structures?”

P3 (Positive Terms Annota-
tion)

“Extract words from the following sentences that evoke smells, explicitly or implicitly
(e.g., describing smell quality or source). For example, from ‘Musk pots generally
moist exhales disagreeable predominant ammoniacal smell...’ extract ‘disagreeable,
predominant, ammoniacal, musk, smell.’”

factory vocabulary, with a restricted range of
unique terms (318) compared to DLM

2 , which
counts 912 unique olfactory terms. In proportion,
obvious terms such as scent, smell or aroma, are
more representative in DLM

2 , showing higher rela-
tive frequencies.

Conversely, Table 10 lists the terms showing the
greatest divergence between the two annotation
sets (i.e., those with the largest rank gaps between
DEX

2 and DLM
2 ), highlighting the words that gen-

erate the highest disagreement in terms of their
perceived sensoriality within context.

D Additional Results on Corpus
Comparison

This appendix provides extended results for the
experiment conducted in Section 5.1. We provide
corpus comparisons not only for all terms of D1

and D2, but also a comparison of positive terms
in D1, and respectively positive terms in DEX

2 and
DLM

2 .

We show the obtained histograms in Figure 5.
Whatever the terms considered, all terms or only
positive terms and for these last last the way they
have been labeled ( automatically or by human), we
obtain low token overlap (left column), indicating a
highly dissimilar vocabulary. Semantic similarity is
moderate (middle), and sensory similarity is higher
(right), especially for DEX

2 (on bottom), showing
alignment in olfactory semantics despite varying
vocabulary.

E Additional Results on Data
Augmentation Across Models

In the main paper, we only reported results for
the SENSE-LM model due to space constraints.

This appendix provides the full results for all mod-
els (SENSE-LM, BERT, and Logistic Regression)
across the data augmentation settings introduced in
Sections 4.3.2 and 4.3.3.

E.1 Data Augmentation with Varying
Real-Data Sizes

This appendix expands on the results presented
in the main paper for SENSE-LM by analyzing
how synthetic data impacts model performance
across different quantities of real-world training
data. Specifically, we fix the number of real ex-
amples N and progressively introduce additional
synthetic examples. We report results on both the
binary sentence classification and sensory term ex-
traction tasks.

Binary Sentence Classification We eval-
uate model performance at real-data sizes
n1 ∈ {50, 100, 200, 500, 1000, 1750}, tracking F1
scores as increasing amounts of synthetic data are
added. Figure 6 presents results across models
and annotation types. The X-axis represents the
percentage of synthetic data relative to real data,
while the Y-axis reports F1 score. Each curve
corresponds to a different value of n1.

For SENSE-LM, we observe consistent perfor-
mance improvements when synthetic data is added,
especially for DEX

2 at low and moderate values of
n1. Gains diminish as real-data availability in-
creases, with performance largely plateauing be-
yond n1 = 500. BERT shows more modest and
variable improvements. Augmentation is more ef-
fective for DEX

2 than DLM
2 , with the clearest gains

observed in the n1 = 100 to n1 = 200 range.
For logistic regression, DLM

2 augmentation offers
more reliable benefits than DEX

2 at small dataset
sizes. However, these gains reduce as more real
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Table 7 Top 20 olfactory terms from the model labelled generated corpus (DLM
2 ) that most frequently

appear in the original corpus (D1 ). Columns show the term, its relative frequency in D1 and DLM
2 (as

percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. D1 % Freq. DLM
2

Rank in D1

(over 777 terms)
Rank in DLM

2

(over 318 terms)

1 scent 2.16 9.95 4 1
2 smell 9.80 8.58 1 2
3 aroma 0.04 4.48 634 3
4 odor 6.69 3.92 2 4
5 sweet 0.69 2.55 17 5
6 perfume 3.19 1.68 3 7
7 smoke 0.17 1.49 82 9
8 fragrance 0.17 1.49 83 8
9 floral 0.22 1.31 77 11
10 pungent 0.43 1.06 29 12
11 fresh 0.26 0.93 50 13
12 lavender 0.22 0.87 72 14
13 whiff 0.09 0.81 175 16
14 garlic 0.30 0.75 42 20
15 onion 0.13 0.75 119 19
16 vanilla 0.04 0.75 626 17
17 acrid 0.22 0.68 71 22
18 oil 0.91 0.68 14 23
19 cinnamon 0.09 0.62 235 29
20 rise 0.26 0.56 58 31
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Table 8 Top 20 olfactory terms from the human-labeled generated corpus (DEX
2 ) that most frequently

appear in the original corpus (D1). Columns show the term, its relative frequency in D1 and DEX
2 (as

percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. D1 % Freq. DEX
2

Rank in D1

(over 777 terms)
Rank in DEX

2

(over 902 terms)

1 smell 9.80 4.05 1 1
2 scent 2.16 3.38 4 2
3 aroma 0.04 3.22 634 3
4 faint 0.30 1.80 41 5
5 sweet 0.69 1.47 17 7
6 warm 0.04 1.25 720 10
7 air 0.35 1.22 36 11
8 fresh 0.26 0.91 50 12
9 rise 0.26 0.86 58 15
10 odor 6.69 0.80 2 17
11 rich 0.04 0.78 325 20
12 fragrance 0.17 0.75 83 21
13 floral 0.22 0.72 77 23
14 perfume 3.19 0.67 3 26
15 burn 0.09 0.64 194 28
16 acrid 0.22 0.61 71 29
17 pungent 0.43 0.61 29 30
18 damp 0.04 0.53 761 33
19 leave 0.43 0.44 30 38
20 old 0.04 0.44 430 39
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Table 9 Top 20 olfactory terms from the model-labelled generated corpus (DLM
2 ) that most frequently

appear in the human-labelled generated corpus (DEX
2 ). Columns show the term, its relative frequency in

DEX
2 and DLM

2 (as percentages of total tokens), and its frequency rank within each corpus.

# Term % Freq. DEX
2 % Freq. DLM

2
Rank in DEX

2

(over 902 terms)
Rank in DLM

2

(over 318 terms)

1 scent 3.38 9.95 2 1
2 smell 4.05 8.58 1 2
3 aroma 3.22 4.48 3 3
4 odor 0.80 3.92 17 4
5 sweet 1.47 2.55 7 5
6 sharp 1.61 1.99 6 6
7 perfume 0.67 1.68 26 7
8 fragrance 0.75 1.49 21 8
9 smoke 0.25 1.49 66 9
10 earthy 1.36 1.37 8 10
11 floral 0.72 1.31 23 11
12 pungent 0.61 1.06 30 12
13 fresh 0.91 0.93 12 13
14 lavender 0.22 0.87 74 14
15 musty 0.30 0.87 52 15
16 whiff 0.08 0.81 215 16
17 vanilla 0.22 0.75 76 17
18 spicy 0.78 0.75 19 18
19 onion 0.08 0.75 251 19
20 garlic 0.14 0.75 118 20
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Table 10 Top 20 terms with the largest frequency rank gaps between human annotation (DEX
2 ) and corpus

(DLM
2 ). The table lists each term’s frequency rank within its respective corpus and the absolute rank

difference.

# Term
Rank in DEX

2

(over 318 terms)
Rank in DLM

2

(over 678 terms)
Rank gap

(|DEX
2 - DLM| )

1 grease 97 668 571
2 ink 33 570 537
3 tart 102 614 512
4 stew 153 665 512
5 rain 52 562 510
6 charcoal 124 623 499
7 sweat 46 545 499
8 tango 148 637 489
9 rosewater 208 667 459
10 beef 216 664 448
11 rind 226 673 447
12 musky 51 497 446
13 chicken 98 533 435
14 salt 82 510 428
15 plum 253 676 423
16 acetone 141 524 383
17 brine 260 643 383
18 paper 164 530 366
19 cabbage 143 507 364
20 cumin 138 502 364
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examples are introduced. Overall, synthetic data
augmentation is most beneficial under low-resource
conditions. As the amount of real data increases,
the marginal utility of synthetic examples declines.

Sensory Terms Extraction We apply the same
evaluation protocol to the sensory term ex-
traction task, using real dataset sizes n1 ∈
{50, 100, 200, 300, 400}. Results are shown in Fig-
ure 7.

For SENSE-LM, adding synthetic data leads to
consistent improvements across both DEX

2 and DLM
2 .

Notably, DLM
2 annotations outperform DEX

2 , partic-
ularly at larger values of n1. BERT shows more sta-
ble gains with DLM

2 , especially at medium and large
dataset sizes. Improvements with DEX

2 are less con-
sistent, and in some cases, augmentation has lim-
ited effect. We also observe a trade-off in precision
and recall between annotation types. DLM

2 tends
to improve precision, whereas DEX

2 primarily en-
hances recall. Detailed metrics are presented in
Table 4.

E.2 Data Augmentation with Variable Real vs.
Generated Ratio

We now examine how model performance is af-
fected when real examples are progressively re-
placed with synthetic ones, keeping the total dataset
size fixed.

Binary Sentence Classification Figure 8 shows
the F1 scores across different ratios of synthetic to
real data, for several values of real dataset size N .
Each subplot presents results for a specific model
and annotation type.

Across all settings, performance begins to de-
grade once the proportion of synthetic data exceeds
roughly 80%. This trend is consistent across mod-
els and annotation types. When using only syn-
thetic data (i.e., 100% generated), model perfor-
mance approaches the level of a random classifier.

At smaller real-data sizes, DEX
2 tends to yield bet-

ter results than DLM
2 , particularly when synthetic

data is limited. However, as N increases, this ad-
vantage diminishes and the gap between annotation
types narrows.

Sensory Terms Extraction Figure 9 reports re-
sults for the sensory term extraction task under
varying real-to-generated data ratios. Precision and
recall dynamics for each annotation strategy are
presented in Table 5.

As synthetic data increases, DEX
2 annotations

tend to improve recall but reduce precision. Con-
versely, DLM

2 annotations improve precision while
sacrificing recall. In most settings, DLM

2 achieves
more balanced F1 scores, indicating more favorable
precision-recall trade-offs overall.
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Figure 5: Comparison of sentence similarity distributions between positive sentences of generated (D2) and original
(D1) corpora, using three metrics—token overlap, cosine similarity based on BERT Embeddings, and cosine
similarity based on sensorimotor embeddings —under three conditions: (a) full-text comparison (D1 vs. D2), (b)
sensory terms only for D1 v.s. DLM

2 , and (c) for D1 vs DEX
2 .
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Figure 6: F1-Score evolution on binary sentence classification as synthetic data is added, for various initial dataset
sizes n1.
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Figure 7: F1-Score evolution on sensory terms extraction as synthetic data is added, for various real dataset sizes.
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Figure 8: F1-Score evolution on binary sentence classification as the ratio of synthetic data varies, with a constant
training dataset size N .
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Figure 9: F1-Score evolution on sensory terms extraction as the ratio of synthetic data varies, with a constant
training dataset size N .
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