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Abstract
Question Generation (QG) is central to infor-
mation retrieval, education, and knowledge as-
sessment, yet its progress is bottlenecked by
unreliable and non-scalable evaluation prac-
tices. Traditional metrics fall short in struc-
tured settings like document-grounded QG, and
human evaluation, while insightful, remains
expensive, inconsistent, and difficult to repli-
cate at scale. We introduce AURA-QG: an
Automated, Unsupervised, Replicable Assess-
ment pipeline that scores question sets using
only the source document. It captures four or-
thogonal dimensions i.e., answerability, non-
redundancy, coverage, and structural entropy,
without needing reference questions or rela-
tive baselines. Our method is modular, effi-
cient, and agnostic to the question generation
strategy. Through extensive experiments across
four domains i.e., car manuals, economic sur-
veys, health brochures, and fiction, we demon-
strate its robustness across input granularities
and prompting paradigms. Chain-of-Thought
prompting, which first extracts answer spans
and then generates targeted questions, consis-
tently yields higher answerability and coverage,
validating the pipeline’s fidelity. The metrics
also exhibit strong agreement with human judg-
ments, reinforcing their reliability for practical
adoption. The complete implementation of our
evaluation pipeline is publicly available.1

1 Introduction

Question Generation (QG) is a fundamental NLP
task for many downstream applications (Jiang et al.,
2023), including education, automated knowledge
assessment, information retrieval, and conversa-
tional AI systems. In Knowledge Base (KB)-
grounded settings, the ability to generate high-
quality, relevant, and diverse questions is essential
for building systems that can engage with struc-
tured information effectively. However, as research

1https://github.com/rk620/AURA-QG All rights to the
code and accompanying materials are reserved by the authors.

in QG continues to evolve, the challenge of evalu-
ating generated questions remains a critical bottle-
neck (Zhang et al., 2021).

Human evaluation, although reliable, is time-
consuming, expensive, and difficult to scale. It
often involves manual annotation for factors such
as relevance, fluency, answerability, and cover-
age, introducing inconsistencies and making large-
scale benchmarking infeasible. Automatic evalua-
tion metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), or METEOR (Banerjee and
Lavie, 2005), while commonly used, fail to capture
the nuanced aspects of question quality, especially
in structured or semantic contexts like KB-QG.
These metrics typically rely on surface-level lexical
overlap and require reference questions, limiting
their applicability and generalizability.

To address these limitations, AURA-QG is de-
signed to score question sets generated from plain-
text documents such as PDF manuals, reports, fic-
tion, or health brochures. Our current pipeline
focuses exclusively on unstructured text and inten-
tionally ignores tables, figures, and other structured
layout elements. For any given input document
and its corresponding question set, our system pro-
duces independent scores along four interpretable
dimensions. Furthermore, our evaluation pipeline
is designed for factoid or informational questions
and does not extend to assessment-style questions
requiring inference, abstraction, or synthesis. It pri-
marily targets the base levels of Bloom’s taxonomy
(remembering and understanding) as elaborated in
Appendix A. These dimensions aim to capture core
qualities of effective question sets and are defined
as follows:

• Answerability: (Nema and Khapra, 2018)
Whether each question can be answered using
information present in the source document.

• Redundancy: (Mai and Carson-Berndsen,
2023) The degree of semantic overlap be-
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tween the retrieved answer units of different
questions in the set.

• Coverage: How well the collective set of
questions captures the breadth and diversity
of the input content (Laban et al., 2022).

• Structural Entropy: A proxy for the diver-
sity of question templates used (Fabbri et al.,
2020), capturing variation in syntactic patterns
and structural forms across generated ques-
tions, indicating the use of question templates
over repetitive phrasing.

These metrics reflect essential dimensions of ques-
tion set quality such as semantic relevance, infor-
mational breadth, non-redundancy, and linguistic
diversity, making the evaluation both principled
and aligned with human expectations. While this
captures their intuitive motivation, we formally de-
fine and operationalize each metric in the subse-
quent sections of the paper. Our contributions are:

• AURA-QG Evaluation Pipeline: We intro-
duce a reference-free, interpretable, and fully
automated evaluation framework for assessing
document-grounded question sets across four
axes-Answerability, Redundancy, Coverage,
and Structural Entropy.

• Multi-domain Applicability: The pipeline
supports question sets generated from diverse
textual domains including manuals, health
brochures, and narrative fiction, without re-
lying on reference questions or gold answers.

• Human Alignment Validation: We conduct
a large-scale human evaluation with up to
7 annotators per example and show that the
pipeline’s preferred question set agrees with
the human majority in 75% of cases, with an
80% individual-level agreement when aligned
(Section 6.5).

• Metric-wise Agreement Analysis: We
present per-metric agreement statistics and
directional consistency analysis, demonstrat-
ing that individual metrics frequently favor
human-preferred sets (Section 6.1).

• Open Evaluation Recipe: We release a repli-
cable, modular evaluation methodology, de-
signed to scale across new datasets and QG
systems, offering the community a practical
alternative to manual evaluation (Appendix
C).

2 Related Work

In this paper, we are concerned with the quality
of a question set based on a given corpus of text.
Note that this contrasts with related but different
problems in reading comprehension (Deutsch et al.,
2021) or conversational systems (Griol et al., 2013).
Our objective (see Section 3 for details) is to mea-
sure the appropriateness of a set of questions as a
collection, given a corpus of text, in order to antici-
pate possible queries raised about the content.

Previously, the topic of question generation has
been considered from the point of view of educa-
tional material and assessment (Wang et al., 2022;
Gorgun and Bulut, 2024). The focus of these
studies is to comprehensively cover the material
(which we call coverage), and to generate ques-
tions with different levels of difficulty. The latter
is not relevant to this study, because our document-
question sets are related to Frequently Asked Ques-
tions (FAQ) type of settings. Historically (Heilman
and Smith, 2010; Kurdi et al., 2020; Mulla and
Gharpure, 2023) automated question evaluation
has tended to focus on semantic matching between
the question-document pair or between generated
and gold standard questions. While the former ap-
proach misses out on a strong comparison across
the set of questions (for example, redundancy), the
latter approach is difficult in practice because of
the need to have access to gold standard questions.

An automated pipeline called QGEval (Fu et al.,
2024) attempted to address the FAQ setting us-
ing seven proposed metrics in literature, including
some metrics related to the ones we use in Sec-
tion 4. However, they found that several of the
metrics (either by definition or by method of com-
putation) do not align well with human evaluation,
which is considered gold standard. In this work,
we show that our proposed methodology does have
good agreement with human evaluation. Similarly,
Nema and Khapra (2018) have shown that standard
n-gram based metrics such as BLEU score also do
not have good overlap with human evaluation. An
older study (before the release of modern LLMs)
also emphasizes the need for an independent evalu-
ation mechanism (Kumar et al., 2018).

We believe that there is a need to define com-
prehensive QG evaluation metrics that can be au-
tomatically computed, and be aligned with human
evaluation. In the rest of this paper, we define the
problem formally and propose AURA-QG with
accompanying experiments and ablation studies.
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Figure 1: Overview of the evaluation pipeline. Given a document, Mistral OCR extracts Markdown text, from which
necessary and optional Information Units (IUs) are constructed and indexed. For each question qi in the question
set (represented by overlapping rectangles), we retrieve and rerank top spans using semantic similarity, yielding a
best-matching IU for metric computation (Answerability, Redundancy, Coverage, Structural Entropy).

3 Problem Description

Consider a raw document A, on which questions
are to be generated. The document contains arti-
facts which are not relevant for question genera-
tion, such as headers, image references, and other
content. Therefore we consider a clean corpus
B ⊂ A which is relevant to question generation
(QG). We also assume that a question set Q is
provided through external means (we compare dif-
ferent approaches for generating Q in Section 5).

Then the automatic evaluation problem is to de-
fine and compute a set of n metrics M : B ×Q →
Rn that are aligned with human evaluation. For-
mally, this implies that some preference scoring
function S(M) : Rn → R exists such that,

P
(
S(M(Q1)) >S(M(Q2))|

H(Q1) > H(Q2)
)
> 0.5, (1)

where H(Qi) is an aggregated human annotated
score for question set Qi. We do not explicitly
use the corpus B in the notation above, but it is
understood that all scores (automatic and human)
are on the same corpus.

The intuition behind (1) is that if the aggregated
human-annotated score for one set of questions Q1

on B is higher than for an alternative set Q2, then
it is likely that the automated score S based on the

metrics M follows the same ranking order. In the
next section, we propose the metrics M and the
scoring function S that align with this objective.

4 Methodology

We present a modular pipeline designed to evalu-
ate the alignment between a document and a set
of questions generated from it. Our approach com-
bines semantic indexing, answer span retrieval,
structural refinement, and metric-based evaluation
to comprehensively measure the quality of gen-
erated questions. The methodology is content-
grounded and does not rely on external gold an-
swers, making it adaptable across domains.

4.1 Information Unit Construction
To ground evaluation in the source text, we prepro-
cess the document into Information Units (IUs),
which serve as candidate answer spans. These
include necessary units (core sentences and list
blocks) and optional units (auxiliary spans such
as sliding windows or decomposed list items) that
enhance fine-grained retrieval. Optional units are
semantically linked to their parent necessary units
through similarity matching, ensuring hierarchical
coverage and supporting more precise redundancy
and coverage computation.

For list-type spans, we incorporate a refinement
mechanism that adaptively narrows down multi-
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item content into smaller, more relevant subsets
whenever entire lists are too broad to be aligned
with specific questions. While the full procedure
relies on model confidence scores to decide when
and how this refinement is triggered, we defer these
technical details to Appendix B.

The complete methodology for IU construction,
optional-unit similarity linkage, and dynamic list
refinement is described in Appendix B.

4.2 Semantic Indexing and Span Retrieval
To assess answerability, we identify which
IUs are most semantically aligned with it.
All IUs I are encoded using a bi-encoder
(multi-qa-MiniLM-L6-cos-v1), and the resulting
vectors are indexed using FAISS (Facebook AI
Similarity Search) (Johnson et al., 2019). For each
question q ∈ Q, we perform the matching process,

1. Top-k retrieval is performed using FAISS
similarity search in the embedding space:

Retrieve(q) = {i1, i2, ..., ik} ⊂ I

2. Reranking with cross-encoder
(ms-marco-MiniLM-L-6-v2) refines the
ranking by assessing the contextual alignment
between each candidate span and the question.
A relevance score is assigned:

sq,ij = Score(q, ij)

3. Top span selection identifies the most proba-
ble answer span:

i∗q = argmax
ij

sq,ij

This two-stage approach, semantic retrieval fol-
lowed by precise reranking, ensures that ques-
tion–answer mappings are both efficient and se-
mantically meaningful.

4.3 Evaluation Metrics
Our evaluation framework comprises four comple-
mentary metrics, each targeting a different facet of
quality in the question set. These metrics are de-
signed to be maximizable, offering a consistent in-
terpretation of higher values as better performance.

The metrics are: Answerability – proportion of
questions that can be confidently grounded in the
source document.

Coverage – how comprehensively the question
set spans the document’s core content.

Non-Redundancy Score (NRS) – degree to
which distinct questions map to distinct informa-
tion units, rewarding diversity.

Structural Entropy – variation in question tem-
plates (e.g., what/why/how), capturing structural
diversity.

4.3.1 Answerability
Answerability quantifies the proportion of ques-
tions that can be confidently grounded in the source
document. A question is marked as ‘answerable’ if
its top-ranked IU achieves a relevance score above
a set threshold δ = 2.5 (See Section 6.3 for exper-
iments on optimal threshold consideration). For-
mally,

Answerability =
|{q ∈ Q | sq,i∗q > δ}|

|Q|
This metric reflects the reliability of the question
generation process with respect to content.

4.3.2 Coverage
Coverage measures how comprehensively the gen-
erated questions span the document’s core con-
tent. It focuses only on necessary IUs, evaluating
what fraction of them are addressed by the ques-
tion set. A necessary IU is considered covered
either through direct retrieval or via indirect link-
age through optional IUs, as detailed in Section 4.4.
Let Ncovered ⊆ N be the set of covered necessary
IUs. Then:

Coverage =
|Ncovered|

|N |
This metric captures the breadth of semantic align-
ment between the document and the question set.

4.3.3 Non-Redundancy Score (NRS)
Redundancy in question generation often manifests
as multiple questions pointing to the same answer
span. To reward diversity, we compute redundancy
as the proportion of such repeated mappings and
invert it to create a maximizable Non-Redundancy
Score (NRS). Let R ⊂ Q be the set of redundant
questions, then:

Redundancy =
|R|
|Q|

Non-Redundancy Score (NRS) = 1−Redundancy

The NRS encourages distinct questions to corre-
spond to distinct pieces of information, improving
the utility and informativeness of the question set.
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4.3.4 Structural Entropy
Each WH-template targets a distinct informational
need: what and where seek factoid answers, why
prompts causal explanations, and how elicits proce-
dural responses. A question set with high structural
entropy thus reflects varied reasoning demands and
serves as a proxy for evaluating the informativeness
and functional breadth of a question set.

To assess the diversity of question templates,
we extract the question-template type) from each
question. Let T be the empirical distribution of
question templates in the set. We first compute the
standard entropy:

SE = −
∑

t∈T
P (t) log2 P (t)

Since the number of generated questions varies
across passages and prompts, we normalize entropy
using a length-aware adjustment. Let |C| denote
the number of possible question template classes
(e.g., what, why, how, etc.). We define the balanced
entropy as:

Balanced SE =
SE · (|Q|/|C|)

SE · (|Q|/|C|) + |C|
Unless otherwise stated, all mentions of “Structural
Entropy” or “Entropy” throughout the paper refer
to this balanced form.

4.4 IU Coverage Propagation via Metadata
Determining whether a necessary IU is "covered"
requires a nuanced treatment of retrieval paths. We
extend coverage beyond direct retrievals by lever-
aging IU metadata that encodes parent-child rela-
tionships and semantic linkages.

A necessary IU n ∈ N is marked as covered, if
it satisfies any of the following:

• Direct match: n is selected as the top span
for some question.

• Linkage via optional window: An optional
IU o ∈ O is selected, and n ∈ Link(o)
where Link(o) denote the set of necessary IUs
n ∈ N such that n is semantically linked
to optional IU o via subtype-specific similar-
ity matching as defined in Section B.1. This
linkage is reflected in the parent_chunk_id
metadata of o.

• List-item propagation: A bullet-type op-
tional IU is selected, and its parent_chunk_id
refers to a necessary list IU n.

These coverage rules are resolved by traversing
the metadata structure generated during IU con-
struction. This ensures that our coverage metric
accurately reflects meaningful content engagement,
even when the retrieval paths are indirect or span
multiple IU levels.

In summary, the proposed methodology intro-
duces a pipeline to evaluate question sets based
on semantic alignment and structural diversity.
By leveraging a hierarchy of information units,
subtype-aware retrieval, and maximizable metrics
grounded in coverage and linguistic variation, the
framework ensures both depth and breadth. It
moves beyond surface-level matching to assess the
true informativeness of generated questions.

5 Experiments

We begin by validating our evaluation pipeline
through human preference judgments to ensure
that the automatic metrics align with human ex-
pectations. The results of this agreement analysis
are presented in Table 1. Once established, we
analyze metric behavior across domains, passage
granularities, and prompting strategies. The main
experimental results are summarized in Table 2.

5.1 Human Evaluation Setup
We evaluate the alignment of our automatic met-
rics with human judgment on 24 (passage, Q1, Q2)
triplets, where Q1 and Q2 denote two alternative
question sets generated for the same passage. In
total, this setup results in roughly 1200 human-
evaluated questions across all pairs. Two groups of
5-7 annotators (instructions given in Appendix C)
independently select the better question set per
triplet, based on answerability, coverage, redun-
dancy, and structural entropy. Ties are resolved
by a separate tie-breaker annotator, and the result-
ing preferences serve as ground truth for align-
ment analysis in Section 6. Throughout this paper,
the term triplet refers to a combination of a pas-
sage and its two corresponding question sets, i.e.,
(passage,Q1,Q2).

5.2 Domains and Data
To evaluate generalizability across content styles,
we select four document types with distinct struc-
ture and semantics:

• Car Manuals (technical, procedural),

• Economic Surveys (expository, policy-
heavy),
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• Fictions (narrative, open-ended),

• Health Brochures (concise, instructional).

These span instructional, analytical, narrative, and
public-health genres ensuring that our metrics do
not overfit to any single domain.

We segment the corpus into four levels of con-
text: paragraph, page, chapter, and full-document,
yielding 200 paragraphs, 200 pages, 40 chapters,
and 4 full-documents in total. This experiment
tests whether our metrics remain stable across vary-
ing passage sizes, and whether they appropriately
reflect the contextual tradeoffs in question qual-
ity. For example, full-document inputs yield lower
coverage due to token limits but higher structural
entropy, while paragraph-level inputs show the op-
posite trend due to the limited scope. Validating
the pipeline across granularity helps ensure it can
scale across real-world use cases where document
size varies significantly.

5.3 Prompting Strategies

We compare two prompting paradigms for question
generation:

Zero-shot prompting, which directly asks the
model to generate questions,

Chain-of-Thought (CoT) prompting, which
encourages intermediate reasoning before question
formulation by first extracting answer spans and
then generating questions for each.

We used these prompting techniques to generate
questions using gemini-2.0-flash (DeepMind,
2024), a model with built-in CoT reasoning capa-
bilities. This axis allows us to evaluate whether
our metrics can reflect established intuition that
CoT-based prompting yields better questions. If
our pipeline is sound, CoT-generated sets should
consistently score higher in answerability and cov-
erage, with non-redundancy and structural entropy
being desirable but optional.

5.4 Cross-factor Validation

All prompting strategies are applied across all pas-
sage granularities and all document domains, yield-
ing a dense evaluation matrix. This setup ensures
that the observed trends are not artifacts of a spe-
cific prompt, length, or domain, but rather reflect
the consistent behavior of the evaluation framework
under diverse conditions.

Sign Agreement Proportion
Agreement Count
Answerability 17 0.71
Coverage 19 0.79
Redundancy 12 0.50
Entropy 14 0.58
Majority Vote 18 0.75

Table 1: Sign agreement of individual metrics and
majority-vote-based agreement with human preference
across 24 triplets.

6 Results and Analysis

We begin by assessing the alignment between our
automatic metrics and human judgments through
a preference-based evaluation. Once validated,
we analyze question generation quality across do-
mains, passage granularities, and prompting strate-
gies. The analysis highlights clear performance
trends and architectural tradeoffs observed across
the four metrics.

6.1 Metric Agreement with Human Scoring

We analyze the alignment between each automatic
metric and human preferences over the 24 evalu-
ated triplets. For each metric, we compute how of-
ten it assigns a higher score to the human-preferred
question set, reporting both the count and the cor-
responding fraction. We additionally report how
often the aggregate score across all four metrics
favors the human choice. Full details of this agree-
ment procedure are provided in Appendix C, and
results are summarized in Table 1.

This initial agreement analysis provides strong
empirical support for the alignment claim in (1),
demonstrating that our automatic metrics consis-
tently reflect human preferences, unlike prior ap-
proaches which lacked such validation.

6.2 Individual-Level Human Agreement

To further quantify how well the pipeline reflects
individual human judgments, we compute the con-
ditional probability of a randomly chosen human
agreeing with the pipeline’s decision, conditioned
on whether it matched the set with the highest
score.

When the pipeline’s prediction aligns with the
human majority, individual annotators agree with
it in approximately 80% of cases, indicating a
strong and consistent correspondence between auto-
matic and human evaluation. Even when it diverges
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Domain Passage Level Zero-Shot Prompting CoT Prompting
Qs Ans Cov NRS Ent Qs Ans Cov NRS Ent

Car
Manual

Paragraph 8 86.5 92.9 64.2 42.6 15 88.0 94.4 56.2 44.6
Page 16 94.4 85.1 72.9 55.1 29 94.5 87.3 72.0 58.2

Chapter 58 92.6 53.2 88.8 68.6 110 93.9 74.6 76.3 79.7
Full PDF 191 95.8 6.2 95.1 41.3 463 92.5 15.1 88.5 40.0

Economic
Survey

Paragraph 12 89.2 87.8 71.8 56.0 18 93.8 89.0 73.9 52.6
Page 15 90.4 77.8 77.6 56.0 31 91.4 83.6 73.2 57.5

Chapter 56 93.1 56.1 88.2 72.8 133 93.4 82.9 84.3 73.9
Full PDF 212 86.0 8.9 94.8 83.7 396 92.2 10.0 90.7 55.6

Narrative
Fiction

Paragraph 8 40.8 57.9 77.3 32.5 12 54.7 68.7 71.7 38.9
Page 18 47.8 26.7 85.5 48.2 35 57.1 49.7 81.5 56.7

Chapter 45 56.6 7.9 81.1 60.6 257 63.3 38.8 77.8 74.9
Full PDF 220 45.9 1.6 91.1 73.0 513 51.3 3.4 82.1 71.0

Health
Brochure

Paragraph 7 69.4 88.3 72.7 35.2 9 71.6 91.4 78.6 29.8
Page 14 72.6 75.7 77.2 42.7 20 79.3 83.1 70.8 52.6

Chapter 48 83.4 42.7 85.1 68.0 106 79.7 68.0 84.5 70.3
Full PDF 358 60.9 18.0 96.3 67.5 526 75.7 24.3 87.2 51.6

Table 2: Evaluation scores across domains, passage granularities, and prompting strategies. Qs: Average number of
questions in that level, Ans: Answerability, Cov: Coverage, NRS: Non-Redundancy Score, Ent: Structural Entropy.

from the majority, around 43% of annotators still
concur with its choice - showing that the pipeline’s
alternative selections are not arbitrary, but often
represent legitimate minority perspectives within
natural human variability. This sustained level of
individual agreement across both consensus and
disagreement cases underscores the robustness of
the proposed evaluation framework and its reliabil-
ity as a proxy for human judgment. A detailed ex-
planation of this analysis is provided in Section 6.5
and further contrasted with standard inter-annotator
agreement techniques in Section 6.6.

6.3 Mean Shift Analysis w.r.t. Threshold

We analyze the sensitivity of the evaluation
pipeline to the relevance threshold (δ) used in
answer span retrieval. Six thresholds (δ ∈
0, 1.5, 2.5, 3.5, 5, 7.5) were tested on the dataset.
For each threshold, the four evaluation metrics
were computed for both question sets (Q1, Q2),
averaged within each passage, and then across all
passages to obtain the mean metric value per thresh-
old. This mean shift analysis captures how the aver-
age metric behavior changes as the model becomes
more selective in accepting retrieved spans.

Unlike standard deviation analysis, which is af-

fected by varying sample sizes, mean shift provides
a clearer and more stable view of systematic trends.

Figure 2: Mean metric variation across thresholds show-
ing optimal balance at δ = 2.5.

As shown in Figure 2, Answerability and Cover-
age drop with increasing threshold, since stricter fil-
tering removes lower-confidence questions whose
spans fall below the cutoff. In contrast, NRS
increases steadily, as many overlapping or low-
confidence questions are dropped at higher thresh-
olds, naturally reducing repetition across the re-
tained set. Structural Entropy remains mostly
stable, indicating that question diversity is unaf-
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fected by retrieval strictness.
A threshold of δ = 2.5 offers the best trade-off.

At this point, the system retains strong Answer-
ability and Coverage while achieving high Non-
Redundancy. Beyond this, further NRS gains come
at the expense of sharp coverage losses. Human
evaluation agreement remains stable, as the com-
parative setup ensures consistent relative rankings
across thresholds. Hence, we adopt δ = 2.5 as the
default threshold for subsequent experiments.

6.4 Quantitative Analysis

Higher Non-Redundancy in Zero-Shot Prompt-
ing: Zero-Shot Prompting consistently exhibits
higher non-redundancy scores (NRS) across almost
all domains and passage granularities. This is be-
cause Zero-Shot strategies tend to generate fewer
questions (almost half the number of questions gen-
erated by CoT prompting method), naturally reduc-
ing the chances of semantic overlap or repetitive
patterns. The lower question volume results in a
concise and less redundant question set, reinforcing
the trend across domains.

High Coverage in CoT Prompting: CoT
Prompting significantly outperforms Zero-Shot in
Coverage (Cov) scores across nearly all passage
levels and domains. This is an outcome of the two-
step strategy in the CoT prompt: first, extracting
all answer spans and then generating specific ques-
tions for each. This leads to thorough coverage
of the passage. This validates the strength of CoT
prompting for maximizing coverage.

Coverage–Redundancy Tradeoff in CoT: This
increase in coverage from CoT prompting comes
with a tradeoff. Non-redundancy scores drop as
the model generates several closely related ques-
tions when multiple answer spans are extracted
from the same sentence or block. During reranking,
these often map back to the same blocks, reduc-
ing uniqueness. Thus, CoT’s aggressive coverage
yields denser but more overlapping question sets.

Low PDF Coverage Due to Token Limits: Cov-
erage drops significantly at the Full PDF level, par-
ticularly under CoT, due to the token limit of the
question-generating model. When presented with
entire PDFs (often exceeding 250 pages), the model
fails to process content holistically. This causes the
model to either truncate inputs/outputs or focus on
selective segments, resulting in undercoverage.

CoT Yields Higher Answerability: Answerabil-
ity (Ans) is higher under CoT prompting in nearly
88% of test cases. The span-based prompting re-
sults in clearer, grounded and focused questions.

Weak Performance on Fiction Domain: The
scores across all metrics for Fiction domain is no-
tably lower. This is because, dialogues, narrative
implicit context, and unstructured nature of narra-
tives complicate the extraction of factual content.

Structural Diversity Reflected in Entropy: We
also observe that Entropy generally increases from
Paragraph to Chapter level across all domains and
prompting strategies. This is expected, as larger
content windows provide more freedom to frame
structurally diverse questions. An exception is the
Full PDF level, where the model’s token constraints
limit expressiveness, suppressing potential entropy
gains.

Overall, Chain-of-Thought prompting shows
strong gains in answerability and coverage, while
Zero-Shot performs better in minimizing redun-
dancy. Domain-specific behaviors and structural
challenges further influence the quality of gener-
ated questions.

6.5 Conditional Probability of
Human–Pipeline Agreement

As a proxy for measuring human–pipeline agree-
ment, we compute the conditional probability that
a randomly selected human annotator agrees with
the pipeline’s decision, conditioned on whether the
pipeline’s prediction aligns with the human major-
ity. This formulation is particularly relevant in our
majority-vote evaluation setup, as it captures how
closely the pipeline’s choices resonate with individ-
ual human judgments rather than only aggregate
consensus.

Let:

• Hi: the number of human annotators for ex-
ample i (typically 5 or 7),

• YH : the question set chosen by a randomly
sampled human annotator,

• YP : the question set chosen by the pipeline,

• AGREE: event that YP matches the majority
human vote,

• DISAGREE: event that YP does not match
the majority human vote.
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We compute:

P(YH = YP | AGREE) = 0.80,

P(YH = YP | DISAGREE) = 0.43.

Condition Agreement Interpretation
Rate on alignment

Agreement 0.80 Strong alignment
Disagreement 0.43 Mild divergence

Table 3: Conditional human-pipeline agreement rates
across 24 triplets with Hi ∈ {5, 7}.

The conditional probabilities reported in Table 3
provide a deeper view into how the pipeline’s de-
cisions relate to individual human judgments. A
high value of P(YH = YP | AGREE) = 0.80 sug-
gests that when the pipeline’s preference coincides
with the majority human vote, this consensus is
not superficial-most individual annotators also tend
to choose the same question set. This reinforces
that the automatic metrics not only approximate
collective preferences but also capture consistent,
human-interpretable patterns at the level of individ-
ual decision-making.

In contrast, P(YH = YP | DISAGREE) = 0.43
reveals a complementary insight. Even when the
pipeline’s overall decision differs from the majority
vote, nearly half of the human evaluators still side
with it. This behavior indicates that the pipeline’s
disagreements are not random deviations but rather
align with legitimate minority opinions that emerge
in inherently subjective tasks like question evalu-
ation. Such outcomes are common in linguistic
assessments, where multiple interpretations can
coexist and human consensus may not always rep-
resent the only valid perspective.

Together, these two probabilities suggest that
the pipeline exhibits a stable, interpretable align-
ment with human reasoning patterns across both
consensus and contested cases. The relatively high
conditional agreement even under disagreement
scenarios demonstrates that the evaluation pipeline
captures underlying semantic and structural quali-
ties that are meaningful to humans, rather than over-
fitting to surface patterns or majority biases. This
further substantiates its reliability as an objective,
replicable proxy for large-scale human evaluation,
especially in domains where subjective variability
is expected.

6.6 Comparison with Inter-Annotator
Agreement Techniques

Traditional inter-annotator agreement (IAA) met-
rics such as Cohen’s κ or Fleiss’ κ quantify consis-
tency among human annotators when assigning cat-
egorical labels. However, in our evaluation setup,
annotators express relative preferences between
two question sets rather than absolute labels, ren-
dering such measures less informative. Our con-
ditional probability formulation instead measures
alignment between the pipeline and the distribution
of human opinions, directly estimating the likeli-
hood that a randomly chosen annotator agrees with
the pipeline’s decision under both consensus and
disagreement scenarios. This approach thus pro-
vides a more interpretable and contextually appro-
priate proxy for human agreement in pairwise com-
parison settings, reflecting the pipeline’s fidelity to
human reasoning rather than mere annotator con-
sistency.

7 Summary and Conclusion

In this work, we present a novel, fully auto-
mated, deterministic, LLM-free and reference-
independent evaluation pipeline for document-
grounded question generation, assigning inter-
pretable scores across four axes: Answerability,
Non-Redundancy, Coverage, and Structural En-
tropy. It evaluates questions with respect to the
source document alone, making it highly scalable
and adaptable to various domains and granularities.
The pipeline is modular, transparent, and designed
for integration into automated benchmarking work-
flows.

We validate our method across four diverse do-
mains and four levels of input granularity, compar-
ing Zero-Shot prompting with a Chain-of-Thought
(CoT) strategy that first extracts all potential answer
spans before question generation. Results show
CoT significantly improves answerability and cov-
erage, while revealing redundancy tradeoffs. We
also observe that broader contexts yield higher en-
tropy but may reduce coverage due to token limits.

Finally, strong alignment with human prefer-
ences confirms the reliability of our metrics, es-
tablishing this pipeline as a practical and insightful
tool for benchmarking, model development, and
deployment in real-world applications for scalable
QG evaluation.
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Limitations

Our evaluation pipeline is primarily tailored for
lower-order cognitive tasks in Bloom’s taxonomy,
specifically, factoid or FAQ-style question sets
that involve remembering and understanding dis-
crete information. It does not support assessment-
oriented questions that require higher-order reason-
ing such as application, analysis, or evaluation (e.g.,
inference-based MCQs or comprehension-style
questions). Although our metrics are reference-free
and interpretable, they do not account for concep-
tual breadth, while structural entropy captures WH-
template diversity, it does not measure whether the
questions span varied underlying concepts or in-
formation units. Additionally, our current pipeline
does not handle scenarios where answering a ques-
tion requires referring to structured elements such
as tables, charts, or figures embedded in the docu-
ment. Lastly, while we use Gemini-2.0-Flash for
generation, our evaluation pipeline is not integrated
with generation models and does not perform joint
optimization, leaving room for co-adaptive design
in future work.
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A Bloom’s Taxonomy and Evaluation
Scope

Bloom’s Taxonomy is a hierarchical classification
of cognitive skills used to assess learning outcomes,
ranging from basic knowledge recall to advanced
creative tasks. The taxonomy is structured in six
ascending levels of complexity:

• Remember: Recall of facts and basic con-
cepts (e.g., define, list, memorize)

• Understand: Explain ideas or concepts (e.g.,
describe, identify, classify)

• Apply: Use information in new situations
(e.g., implement, solve, demonstrate)

• Analyze: Draw connections among ideas
(e.g., differentiate, compare, test)

• Evaluate: Justify a decision or position (e.g.,
argue, critique, judge)

• Create: Produce new or original work (e.g.,
design, write, formulate)

Figure 3: Bloom’s Revised Taxonomy pyramid with
verbs and descriptions for each cognitive level.

Image source: Wikimedia Commons

Our evaluation framework is designed for fac-
toid or FAQ-style question sets that correspond
to the two foundational levels: Remember and
Understand. These include questions that require
recalling factual information or explaining basic
concepts. Higher-order cognitive tasks such as ap-
plying, analyzing, or synthesizing information are
beyond the current scope of our automatic evalua-
tion pipeline. Hence, this work does not evaluate
assessment-type questions that aim to test deeper
reasoning, judgment, or creativity.

B Information Units (IU) Construction

The pipeline begins by processing the source doc-
ument, typically provided as a PDF file. We em-
ploy an OCR-based Markdown extractor to convert
each page into text while preserving some struc-
tural cues like headings and bullet points. However,
many of these visual artifacts (e.g., headings, im-
age references, captions, footnotes, and tables) are
not meaningful for content understanding and are
filtered out during preprocessing.

The resulting clean text is split into a set of con-
tent blocks, denoted as B = {b1, b2, ..., bn}. These
blocks are further categorized based on structural
features: paragraph-type blocks consist of contin-
uous prose and are segmented into individual sen-
tences, while list-type blocks are preserved as full
bulleted or numbered lists without splitting into in-
dividual items. After cleaning, paragraph sentences
undergo filtering to remove short or content-poor
units, whereas list blocks are retained as compos-
ite spans. Each selected sentence or complete list
block is treated as a candidate answer span and re-
ferred to as an Information Unit (IU). These IUs
are grouped into:

• N : the set of necessary IUs, consisting of
individual sentences from cleaned paragraphs
and full list blocks that represent the core doc-
ument content.

• O: the set of optional IUs, which includes
sliding sentence windows extracted from
paragraph-type blocks and decomposed list
items used for auxiliary coverage.

This distinction between N and O is intentional
and grounded in their functional roles during eval-
uation. While N anchors the evaluation to core
content that a high-quality question set should col-
lectively cover, O provides finer-grained and over-
lapping units that support flexible retrieval for per-
question scoring. Using smaller windows or de-
composed items in O enables more precise detec-
tion of answerability and redundancy, without com-
promising the semantic grounding ensured by N .
The complete IU space is given by:

I = N ∪O

This pool (I) of necessary and optional IUs forms
the content grounding against which the generated
questions are evaluated.
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Each IU is associated with a metadata dictionary
that supports downstream operations such as an-
swer tracing and coverage propagation. This meta-
data includes the type, which specifies whether the
IU is necessary or optional; the subtype, indicating
its structural form such as paragraph, list, window,
or bullet; a unique chunk_id assigned to every IU;
and a parent_chunk_id, which links optional IUs to
their corresponding necessary IUs when applicable.

B.1 Semantic Similarity For Optional Units

To semantically align optional IUs with their origi-
nating content, we establish subtype-specific link-
ages to necessary IUs using sentence-level cosine
similarity. For optional IUs of subtype window,
each constituent sentence is compared individu-
ally against all sentence-type necessary IUs (i.e.,
paragraph-derived units). If a sentence in the
optional window surpasses a similarity threshold
when compared to a necessary IU sentence, the
corresponding chunk ID is added to the optional
IU’s parent_chunk_id list.

For optional IUs of subtype bullet, which repre-
sent decomposed items from original list blocks,
we first break down each list-type necessary IU
into individual items. Each optional bullet is then
matched to these decomposed items, and if similar-
ity exceeds the threshold, the chunk ID of the origi-
nal necessary IU list block is mapped as the parent.
This linkage process is conditional on the structural
subtype of both optional and necessary IUs and re-
sults in a set of parent_chunk_id annotations that
support hierarchical coverage propagation.

B.2 Dynamic Refinement of List Answers

Certain IUs, especially those of subtype list, may
include several loosely related points, making it dif-
ficult for a cross-encoder to assign high relevance
to the entire span. To address this, we implement
a dynamic refinement mechanism that performs
windowed span extraction over list items, but only
when the cross-encoder score falls below a thresh-
old. This ensures finer-grained retrieval for other-
wise diffuse content blocks.

Given a list of items L = [l1, l2, ..., lm],we gen-
erate overlapping candidate windows using a pre-
defined size w. The windows are constructed as:

W = {li ⊕ · · · ⊕ li+w−1 | i = 1, ...,m− w + 1}

Each window is scored using the same cross-
encoder as in Section 4.2. The highest scoring

window is retained as the refined answer span if
it outperforms the original full list in terms of rel-
evance to the question. This strategy allows the
system to zoom in on the most contextually appro-
priate subset of a long list.

C Human Evaluation and Agreement
Computation

Figure 4 provides the precise instructions given to
human annotators. Given the short nature of the
task, the annotators voluntarily agreed to partici-
pate without payment.

To validate our automatic evaluation pipeline,
we conducted a human study with 7 independent
annotators. Each annotator was presented with a
passage and two question sets (generated by differ-
ent systems) and was asked to select the set they
preferred based on clarity, informativeness, and an-
swerability. All annotators were South Asian and
postgraduate level researchers affiliated with the
Indian Institute of Technology Bombay.

Majority Vote: For each example, we recorded
the votes from all 7 annotators. The question set
with the majority of votes was treated as the human-
preferred set. If there was no clear majority (e.g.,
a tie), the case was resolved by a separate tie-
breaker annotator to ensure a definitive preference
for agreement analysis.

Pipeline Prediction: The same pairs of question
sets were scored using our automated evaluation
pipeline. For each pair, the set with the higher
aggregate score across metrics was selected as the
pipeline’s preferred set.

Agreement Computation: We then compared
the pipeline’s selected set to the majority human
vote.

• If the pipeline’s choice matched the majority
vote, the example was counted as an agree-
ment.

• For each metric individually, we computed
how many times it assigned a higher score
to the human-preferred question set. We re-
ported both the raw count and the correspond-
ing fraction across all examples.

• Finally, we counted how often the aggregate
score (across all metrics) was higher for the
human-preferred set. This overall fraction re-
flects how frequently the pipeline ranked the
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Figure 4: Instruction provided to human evaluators

human choice higher, even without access to
human votes.

For disagreement cases, we also computed the
mean human agreement with the pipeline-selected
set, capturing how controversial or borderline those
decisions were.
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