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Abstract

Large language models (LLMs) exhibit strong
multilingual abilities, yet the neural mecha-
nisms behind language-specific processing re-
main unclear. We analyze language-specific
neurons in Llama-3.1-8B, Mistral-Nemo-12B,
and Aya-Expanse-8B & 32B across 21 typolog-
ically diverse languages, identifying neurons
that control language behavior. Using the Lan-
guage Activation Probability Entropy (LAPE)
method, we show that these neurons cluster in
deeper layers, with non-Latin scripts showing
greater specialization. Related languages share
overlapping neurons, reflecting internal repre-
sentations of linguistic proximity.

Through language arithmetics, i.e. system-
atic activation addition and multiplication, we
steer models to deactivate unwanted languages
and activate desired ones, outperforming estab-
lished replacement approaches. These interven-
tions effectively guide behavior across five mul-
tilingual tasks: language forcing, translation,
QA, comprehension, and NLI. Manipulation is
more successful for high-resource languages,
while typological similarity improves effective-
ness. We also demonstrate that neuron steering
enhances downstream performance and reveal
internal "'fallback' mechanisms for language
selection when neurons are progressively de-
activated. Our code is made publicly avail-
able at https://github.com/d-gurgurov/
Language-Neurons-Manipulation.

1 Introduction

The emergence of large language models (LLMs)
with impressive multilingual capabilities has raised
fundamental questions about how these systems in-
ternally represent and process different languages
(Wendler et al., 2024; Zhao et al., 2024). While
models like Llama-3 (Grattafiori et al., 2024) and
Gemma-3 (Team et al., 2024) perform well across
dozens of languages despite limited multilingual
training data, the neural mechanisms underlying
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Figure 1: Success rates of language forcing when deac-
tivating neurons for the input language and activating
those of a target language for Llama-3.1-8B. The input
question is presented in the language corresponding to
the deactivated neurons. Top 5% of neurons are consid-
ered.

this competence are not fully understood. Under-
standing these mechanisms is crucial not only for
advancing theoretical insights into multilingual rep-
resentation learning, but also for building more con-
trollable and interpretable language technologies
(Amodei et al., 2016; Gabriel, 2020; Singh et al.,
2024).

Recent studies have begun to explore how multi-
lingual LLMs process language internally, showing
that specific neurons may specialize in particular
languages (Tang et al., 2024; Kojima et al., 2024;
Zhao et al., 2024; Mondal et al., 2025). However,
these works often focus on narrow language sets or
specific architectures, leaving open questions about
how language-specific processing scales across ty-
pologically diverse languages and how these in-
sights can support model control and enhancement.

In this work, we present the first large-scale
investigation of language-specific neuron iden-
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tification and manipulation in the Llama-3.1-
8B (Grattafiori et al., 2024), Mistral-Nemo-12B
(Al 2024), and Aya-Expanse-8B & 32B (Dang
et al., 2024) models across 21 typologically di-
verse languages. We examine the distribution of
language-sensitive neurons, their cross-linguistic
overlap, and the evolution of output language dis-
tributions across layers. Using the Language Acti-
vation Probability Entropy (LAPE) method (Tang
et al., 2024), we identify neurons with strong lan-
guage preferences and report several key findings.
Unlike previously tested models such as Llama-2
(Touvron et al., 2023), BLOOM (Le Scao et al.,
2023), and Phi-2 (Javaheripi et al., 2023), the mod-
els we study exhibit concentrated language-specific
activity in their deeper layers. Analyzing output
language distributions with logit lens (Nostalge-
braist, 2020) across layers reveals that language
generation predominantly occurs in the final lay-
ers, aligning with the concentration of language-
sensitive neurons. Non-Latin script languages show
both a higher number of specialized neurons and
less cross-language overlap, while typologically
related Germanic and Romance languages share
more neurons—reflecting linguistic proximity and
possibly orthographic similarities in their internal
representations.

Building on these findings, we establish sim-
ple additive and multiplicative neuron intervention
techniques, which we call language arithmetics',
to test the causal role of language-specific neu-
rons in controlling language use while preserving
internal representations. Unlike prior approaches
that rely on activation replacement (Tang et al.,
2024; Kojima et al., 2024), our approach adds
target-language patterns to hidden states, while si-
multaneously multiplying unwanted language pat-
terns with 0. We demonstrate that language arith-
metics outperforms both replacement-based meth-
ods (Tang et al., 2024; Kojima et al., 2024) and
the widely used DiffMean (Marks and Tegmark,
2023) approach on a novel language forcing task,
where models are expected to answer questions
in a specific target language without being explic-
itly prompted, with especially strong results for
languages better represented in pre-training. We
further evaluate additive language arithmetic on
four downstream tasks—machine translation, ques-
tion answering, natural language inference, and

'"The naming follows conceptually similar works on task
and prompt arithmetics (Ilharco et al., 2023; Belanec et al.,
2024).

machine comprehension—and show that targeted
neuron activation improves performance without
any task-specific fine-tuning, contrasting with the
findings of Mondal et al. (2025). For example, our
intervention improves translation scores by up to
10% and enables cross-lingual transfer. Addition-
ally, we find that when dominant language signals
are suppressed, models fall back to the next most
probable language, suggesting the presence of inter-
nal "fallback'' mechanisms for language selection.

Overall, our work (1) reveals new patterns of
language-specific neuron specialization and layer-
wise processing, (2) applies a minimally invasive
steering technique to test their causal influence, and
(3) demonstrates practical benefits for multilingual
model control and performance.

2 Related Work

Recent research has focused on uncovering
language-specific mechanisms in LL.Ms. Several
works have proposed methods to identify and in-
tervene on neurons specialized for particular lan-
guages.

Tang et al. (2024) introduce the Language Acti-
vation Probability Entropy (LAPE) method, demon-
strating that certain neurons are critical to multi-
lingual capacity and can be manipulated to control
language behavior via activation (setting neurons to
their average values) or deactivation (zeroing them
out). Kojima et al. (2024), building on Cuadros
et al. (2022), similarly identify neurons selectively
active for one language and inactive for others, and
show that setting these to their median activation
can shift generation language. Tan et al. (2024)
further propose a frequency-based method to rank
FFN neurons by activation counts on language-
specific inputs, and show that fine-tuning these neu-
rons improves downstream tasks such as machine
translation. Expanding beyond FFNs, Zhao et al.
(2024) introduce Parallel Language-specific Neu-
ron Detection (PLND), which identifies language
neurons in both attention and FFN modules. They
show that deactivating these neurons reduces per-
formance in the corresponding language, and that
fine-tuning them on limited language data enhances
multilingual ability.

Meanwhile, Deng et al. (2025) highlight the
problem of superposition—where neurons encode
multiple concepts (Elhage et al., 2022)—and instead
use sparse autoencoders (SAE) (Cunningham et al.,
2023) to extract latent dimensions linked to lan-
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guage identity. Ablating these features degrades
performance, and they use them to guide steering
vector construction for better control. Following
this, Chou et al. (2025) show that modifying a
single SAE feature can steer generation language
with high accuracy and semantic preservation, es-
pecially in mid-to-late layers. Similarly, Andrylie
et al. (2025) introduce SAE-LAPE to identify in-
terpretable language-specific features in the sparse
weight space, enabling both language identification
and control.

Our work extends this line of research along
two key dimensions: (1) we analyze the inter-
nal structure of LLMs directly, without relying
on auxiliary models such as SAEs, and (2) we
examine a broader and more diverse set of lan-
guages. Specifically, we conduct a comprehensive
study of language-specific neurons in Llama-3.1-
8B (Grattafiori et al., 2024), Mistral-Nemo-12B
(Al 2024), and Aya-Expanse-8B & 32B (Dang
et al., 2024) across 21 languages. Our analysis
employs the LAPE method (Tang et al., 2024),
grounded in information theory, and systematically
investigates both neuron identification and manip-
ulation to evaluate their effectiveness for multilin-
gual control and downstream performance improve-
ment.

3 Language Neuron Identification

3.1 Identification Method

Language Activation Probability Entropy (LAPE)
(Tang et al., 2024) identifies language-specific neu-
rons within LLMs by analyzing activation patterns
across different languages in the FFN modules of a
transformer-based language model.

For each neuron j in layer 7, the activation prob-
ability when processing text in language k is com-
puted as:

p?,j = E[I(act_fn(ﬁ,—Wf)j > 0) | language k]

where I is the indicator function. The activa-
tion probabilities across all languages form a dis-
tribution p; ; = (p}7j,pl27j, . ,péj), which is L1-
normalized to obtain p; ;- LAPE is then calculated
using Shannon entropy (Shannon, 2001):

!
k k
LAPE;; = — Y pif;log(pf})
k=1
Intuitively, neurons with low LAPE values are
considered language-specific since their activation

probabilities are concentrated on one or two lan-
guages, showing minimal activity for others.We
select the bottom K% (K={1..5}) of neurons by
LAPE score as candidate language-specific neu-
rons through a three-step filtering process: (1) we
exclude neurons with weak overall activity where
none of their language activations exceed the 95th
percentile (filter rate = 0.95), (2) from the remain-
ing neurons, we select the bottom K% by LAPE
score to identify those with the most language-
specific activation patterns, and (3) we assign each
selected neuron to all languages where its activation
probability p,ﬁ ; exceeds the 95th percentile thresh-
old (activation threshold = 0.95). While neurons
can be assigned to multiple languages if they show
strong activation across them, low LAPE scores
typically result in assignments to only one or two
languages.

3.2 Per-layer Output Language

We additionally analyze how language identity
emerges across layers by computing three key
statistics, using a method referred to as logit lens
(Nostalgebraist, 2020), similar to Wendler et al.
(2024). Specifically, we apply a FastText classi-
fier (Joulin et al., 2016) to determine the language
of the model’s output at each layer. First, we
track the probability of generating the correct target
language, revealing the depth at which language-
specific behavior becomes prominent on the output
level. Second, we measure the probability assigned
to English regardless of the input, assessing the
extent of English interference across layers. Third,
we compute the entropy of the output language dis-
tribution to quantify the diversity and confidence
of the model’s predictions.

3.3 Models and Data

We use the Llama-3.1-8B base model (Grattafiori
et al., 2024) for all experiments. Notably, Llama-
3.1 is a decoder-only model that was neither explic-
itly trained for multilingual tasks nor instruction-
tuned. Its pre-training data includes approxi-
mately 5% non-English content spanning over
30 languages. We also include Mistral-Nemo
(Mistral AI Team, 2024), a slightly larger 12-
B-parameter base model, featuring strong multi-
lingual, reasoning, and coding performance in its
size class. Finally, we evaluate the Aya Expanse
family (Dang et al., 2024): Aya-Expanse-8B, an
open-weight, instruction-tuned multilingual model
optimized via data arbitrage, preference training,
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Figure 2: Neuron overlap between languages and lan-
guage families in Llama-3.1-8B, based on the top 1%
of neurons identified as language-specific. Diagonals
show counts per language; off-diagonals show overlaps.
Asterisks mark non-Latin script languages.

and model-merging; and its larger sibling, Aya-
Expanse-32B-both supporting 23 languages and
offering state-of-the-art multilingual performance.

For neuron identification, we use the CulturaX
corpus (Nguyen et al., 2023), a large-scale mul-
tilingual dataset comprising over 6.3 trillion to-
kens across 167 languages. The data is sourced
from Common Crawl (Wenzek et al., 2019) and
Wikipedia (Foundation) and has undergone exten-
sive cleaning and language identification to en-
sure high quality. To compute language-specific
activations and obtain LAPE values, we truncate
the dataset for each language to SOOMB (approx.
100M tokens) due to efficiency reasons. Our ex-
periments focus on 21 representative languages,
detailed in Appendix B. For per-layer output exper-
iments, we use 6 questions that are available in all
languages, as described in Section 4.2.

3.4 Results

Language Neuron Distribution: Figure 3 and
Appendix D show total neuron activation distri-
butions with minimal early-layer activity and pro-
nounced peaks in later layers across all 21 lan-
guages. Interestingly, language-specific processing
in Llama-3.1, as well as the other tested models,
demonstrates a strong concentration in layers 17-
28, peaking at layers 27-28. Earlier Layers 0-15
show relatively minimal language-specific activity,
with only modest peaks around layers 3-4 and 8-9.

This contrasts with previous findings by Tang et al.
(2024), Kojima et al. (2024), and Zhao et al. (2024),
who report both early- and late-layer language neu-
ron specialization.

Individual language distribution analysis (see
Appendix D) reveals typologically coherent cluster-
ing, with Germanic languages (German (de), Dutch
(nl), Afrikaans (af), Danish (da), Norwegian (no),
Swedish (sv)) showing similar language neuron
distribution patterns concentrated around layers 24-
26. Tibetan (bo) and Chinese (zh) (the only Sino-
Tibetan languages we tested) demonstrate the most
concentrated deep-layer activation, while Romance
languages display more varied patterns. These pat-
terns are observed across all tested models.

60

Figure 3: Layer-wise distribution of language-specific
neurons for individual languages in Llama-3.1-8B.
Other models exhibit similar patterns (Appendix D).

Language Neuron Overlap: The language neu-
ron overlap matrices in Figure 2 and Appendix D
show that language families exhibit internal cohe-
sion with substantial neuron overlap, as also ob-
served by Tan et al. (2024). In Llama-3.1, for
instance, Germanic languages show particularly
high overlap values (e.g., Swedish (sv) and Danish
(da): 290 neurons representing 76.3% and 74.7% of
their respective language-specific neurons; Dutch
(nl) and Afrikaans (af): 250 neurons representing
76.5% and 59.0% respectively), possibly confirm-
ing that the similar activation patterns observed in
Figure 19 of Appendix D reflect shared neurons
rather than coincidental distributions.

Non-Latin script languages display notably
higher neuron counts, with Chinese (zh*: 681),
Tibetan (bo*: 1492), and Hindi (hi*: 781) having
substantially more language-specific neurons than
their Latin-script counterparts. Interestingly, these
languages show minimal overlap with Latin-script
languages, suggesting that orthographic complexity
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requires dedicated, non-transferable neural special-
ization. This is consistent across all models.
Per-layer Language Analysis: For more
English-centric models (see Appendix E) such as
Llama-3.1 and Mistral-Nemo, we observe that the
target language tokens predominantly emerge in
the final layers (25-30), aligning with the concen-
tration of language-specific neurons in those layers.
English tokens slightly begin to appear in the ini-
tial layers and persist through to the output. This
pattern partly aligns with findings by Wendler et al.
(2024) and Schut et al. (2025). Language entropy
in these models increases across layers: the model
appears confident in its language prediction in early
layers, but entropy rises from around layer 20 on-
ward, suggesting that the decision about which lan-
guage to generate is made in the final layers.

° °
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Target Language Probability

Layer Index

Figure 4: Predicted probabilities of target languages for
Llama-3.1 using logit lens outputs from each layer and
FastText for language identification. Results for other
models are shown in Appendix E.

In contrast, more multilingual models such as
Aya-Expanse-8B and 32B exhibit English token
presence across nearly all layers, while the target
language is also weakly activated throughout and
peaks near the end. These models show an oppo-
site entropy trend: entropy starts high, indicating
early uncertainty about the generation language,
and gradually decreases toward the final layers,
where the model settles on a specific language.

4 Language Neuron Manipulation

4.1 Method

We adopt a manipulation approach inspired by
Tang et al. (2024), but instead of replacing neuron
activations with fixed values, as done in Tang et al.
(2024) (using mean activations) and Kojima et al.
(2024) (using median activations), we perform an
additive intervention. This additive strategy is

less destructive and allows the model to retain more
of its original contextual dynamics while still shift-
ing its behavior toward the target language.

Let a € RE*P be the post-activation tensor after
the gated projection layer for a single sequence,
where L is the sequence length, and D is the hidden
size. Let Z C {1,...,D} be the set of neuron
indices identified as language-specific. For each
1 € I, we define a boost value b; corresponding to
the average activation of neuron ¢ when processing
that language.

We apply the following update to the activation
tensor:

a.;<a.;+0b forallicZ

This additive manipulation shifts the activation
patterns toward those typical of the desired lan-
guage, while preserving the original contextual in-
formation encoded in the activations.

4.2 Tasks and Data

We evaluate our neuron selection and manipulation
method across five multilingual tasks to test its
effectiveness in both generative and classification
settings. For each task, we experiment with five
different fractions of language-specific neurons.

First, we design a novel controlled language-
forcing task using six simple questions ("How are
you today?", "What is your name?", "What year is
it now?", "What is your favorite color?", "What is
the weather like?", "Where are you from?") trans-
lated into 20 languages using Google Translate (Wu
etal., 2016). For each input question, we deactivate
the neurons associated with the source language by
setting their activations to zero (see Appendix F)
and activate the neurons associated with a desired
target language by applying the additive interven-
tion. We then use FastText (Joulin et al., 2016)
to identify the language of the generated output.
This setup evaluates the model’s ability to override
the input language and generate responses in the
specified target language.

We further evaluate our neuron manipulation
method across four multilingual downstream tasks
covering both generation and classification out-
puts. For generation, we use FLORES-200 (Costa-
Jussa et al., 2022) for machine translation, activat-
ing only target-language neurons during decoding
to test whether neuron-level steering can enforce
correct-language outputs, and XQuAD (Artetxe
et al., 2020) for extractive question answering. For
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Model Intervention Strategy Topl% Top2% Top3% Topd% Top 5%
Additive Activate 30.54%  36.62%  40.66%  42.67%  43.31%

Llama-3.1 Additive Deaptivate + Activate = 42.29%  47.99%  52.34%  54.65% 55.4%
’ Replacement  Activate 23.09%  27.85%  31.55%  32.35% 32.8%
Replacement  Deactivate + Activate  35.71%  38.85%  42.778%  4297%  42.78%

DiffMean Activate 28.45%  32.16%  35.52%  37.18%  37.49%

DiffMean Deactivate + Activate  40.51%  44.48%  47.96%  50.15%  51.17%

Table 1: Overall success rates (%) of language forcing for Llama-3.1-8B using three intervention types and two
manipulation strategies across different top-k% neuron thresholds. The results for Mistral-Nemo and Aya-Expanse

follow similar patterns (see Appendix F).

classification, we use XNLI (Conneau et al., 2018b)
for natural language inference and Belebele (Ban-
darkar et al., 2024) for multiple-choice reading
comprehension. We vary the ratio of manipulated
neurons to assess how language-specific activation
impacts multilingual performance. All evaluations
are performed in a zero-shot setting, with prompts
and generation hyperparameters detailed in Ap-
pendix A.

Additionally, we investigate whether models ex-
hibit a "'fallback' mechanism in language selec-
tion during generation. To this end, we use a set of
70 English questions from Vicuna (Chiang et al.,
2023) and progressively deactivate neurons associ-
ated with high-resource languages one by one.

4.3 Results

Language Forcing: For the language forcing task,
we compare two neuron manipulation strategies:
(1) deactivating neurons associated with the source
language and simultaneously activating neurons
for the target language, and (2) only activating the
neurons corresponding to the desired target lan-
guage. Our results show that the first approach
more reliably steers the model to generate output in
the target language (Table 1 and Appendix F). We
additionally compare our additive language arith-
metic intervention with the simple replacement
methods (Tang et al., 2024; Kojima et al., 2024)
and the widely used DiffMean approach (Marks
and Tegmark, 2023; Panickssery et al., 2023)2 (see
Table 1 and Appendix F). We find that the addi-
tive method performs best across all tested models,
likely because it is less disruptive to the model’s
internal representations.

Figure 1 illustrates the effects of this manipula-
tion across 21 typologically diverse languages in

ZFor DiffMean, we construct the steering vector as the
difference between the mean activation for the target language

(positive class) and that of all 20 other languages (negative
class).

Llama-3.1-8B with the top 5% neuron ratio. The re-
sults indicate that higher-resourced languages such
as Chinese (zh), Korean (ko), Japanese (ja), Ger-
man (de), etc. are more susceptible to successful
language forcing. In contrast, languages with likely
lower representation in the pretraining corpus are
more difficult to control, showing inconsistent out-
put.

Below, we provide qualitative examples demon-
strating successful language forcing, where the
model generates output in a specified target lan-
guage despite the input being in a different source
language:

Forcing Japanese

Input: Q: Wie geht es dir heute? A:
Output: 5 HIITTA T .

Forcing German

Input: Q: Orkyna Te1? A:
OQutput: Ich komme aus Deutschland.

Forcing Korean

Input: Q: Comment tu t’appelles? A:
Output: A= 2+ YU,

Downstream Tasks: We evaluate the impact of
activating language-specific neurons during infer-
ence on four multilingual benchmarks: FLORES-
200 and Belebele using all languages covered in
our study, XNLI and XQuAD using all available
languages. We conduct systematic evaluations on
Llama-3.1 and Mistral-Nemo across five neuron ra-
tios. Selected heatmap results are shown in Figures
5,7, 8, and 6.

Activating target language neurons improves per-
formance in nearly all cases across all tasks and
languages, with gains typically ranging from 5-
15%, as opposed to the negative effects reported
by Mondal et al. (2025). Cross-lingual transfer ef-
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Figure 5: FLORES performance changes over the
baseline (measured by BLEU score) when activating
language-specific neurons for Mistral-Nemo (5%).
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Figure 7: BELEBELE changes over the baseline (mea-
sured by accuracy score) when activating language-
specific neurons for Mistral-Nemo (5%).

fects vary substantially by task type. For generative
tasks—FLORES translation and XQuAD question
answering—we observe minimal cross-lingual im-
provements and frequent performance degradations
when activating non-target languages. This pat-
tern is particularly pronounced in FLORES, where
activating neurons from different languages often
causes the model to generate outputs in the acti-
vated language rather than the target language, ex-
plaining the consistent negative transfer. XQuAD
exhibits similar behavior, though somewhat less
severe, as the generative nature of the task makes
it susceptible to language confusion. In contrast,
discriminative tasks—Belebele reading comprehen-
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Figure 6: QXuAD performance changes over the base-
line (measured by F1-score) when activating language-
specific neurons for Mistral-Nemo (5%).
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Figure 8: XNLI changes over the baseline (measured
by accuracy score) when activating language-specific
neurons for Llama-3.1 (5%).

sion and XNLI natural language inference—show
markedly different patterns. Here, activating tar-
get language neurons remains beneficial, but we
also observe substantial positive cross-lingual trans-
fer, particularly from related languages within the
same family. Romance language activations ben-
efit other Romance languages, and Germanic ac-
tivations similarly help Germanic languages, with
improvements of 5-10% in many cases. Notably,
Hindi and Urdu demonstrate exceptional robust-
ness, maintaining or improving performance un-
der nearly all language activations across both task
types, possibly due to polysemantic neurons, units
encoding multiple concepts (Elhage et al., 2022).
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Figure 9: Progressive deactivation of language-specific neurons for high-resource languages in Llama-3.1-8B. In
this setting, language neurons are deactivated by setting their activations to —1; using 0 does not yield the desired
effect. After each deactivation round, the model is prompted with 70 English questions, and we then identify the

output language of its responses.

Language ''Fallbacks'': By progressively
deactivating high-resource language neurons in
Llama-3.1-8B (see Figure 9 and Appendix G), we
observe that the model exhibits internal "fallback"
strategies for language generation. When English
(en) neurons are deactivated, the model defaults
to Spanish (es), French (fr), and Russian (ru) in a
few cases. Deactivating English and French shifts
responses primarily to Russian (ru), with some in
Italian (it), Spanish (es), and Arabic (ar). Further
removal of Latin-script languages—Spanish, Italian,
and Portuguese (pt)—promotes generation in Rus-
sian, Arabic, and Chinese. Deactivating German,
Russian, and Arabic leads to "fallback" responses
in Thai, Vietnamese, and Chinese. Notably, some
English, Spanish, and French responses persist de-
spite deactivation, reflecting the model’s strong
priors for these languages. Similar patterns are ob-
served for Mistral-Nemo, but with a slightly differ-
ent language hierarchy. We leave a more detailed
investigation of these dynamics to future work.

5 Discussion

5.1 Identification Insights

The layer-wise distribution of language-specific
neurons in Llama-3.1, Mistral-Nemo, and Aya-
Expanse partially aligns with prior findings (Tang

et al., 2024; Kojima et al., 2024; Zhao et al., 2024).
We observe that these neurons are predominantly
concentrated in the later layers, whereas Tang et al.
(2024) and Kojima et al. (2024) report a dual-
peaked distribution in older models, with concen-
trations in both early and late layers. Notably, Tang
et al. (2024) also show that the more multilingual
BLOOM model (Le Scao et al., 2023) exhibits
a similar late-layer concentration, a trend further
supported by Mondal et al. (2025) with recent mul-
tilingual models. This divergence likely reflects ar-
chitectural differences or variations in pre-training
data composition and training procedures. Interest-
ingly, Chou et al. (2025) demonstrate that modify-
ing a small number of SAE features from mid-to-
late layers enables high-accuracy language steering
for high-resource languages, while Andrylie et al.
(2025) similarly find that their SAE-LAPE method
identifies language-specific features concentrated
in the same layers. These converging results, ob-
tained through entirely different methodologies,
reinforce our observation that language-specific
representations are predominantly localized in the
mid-to-late transformer layers of modern multilin-
gual LLMs.

Layer-wise logit lens analysis complements
these findings: in all tested models, English token
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probabilities emerge early on and persist, while
target language tokens appear more sharply in the
very final layers, which is in line with Wendler et al.
(2024), Schut et al. (2025), and Wang et al. (2025).
Entropy trends in more English-centric models rise
toward the end, suggesting that language genera-
tion decisions are finalized in the later layers. In
terms of cross-linguistic neuron overlap, we ob-
serve clear clustering patterns based on language
families. This supports findings from Tan et al.
(2024), who report that related languages share
substantial neural components while maintaining
distinct processing features.

5.2 Manipulation Insights

Our findings show that neuron-level interventions
can reliably steer multilingual model behavior,
with our additive language arithmetic method out-
performing activation replacement (Tang et al.,
2024; Kojima et al., 2024) and DiffMean-based ap-
proaches (Marks and Tegmark, 2023). Activating
language-specific neurons improves performance
across both generative and discriminative tasks,
with the strongest gains observed when the acti-
vated language matches the target or is typologi-
cally related, yielding positive transfer within lan-
guage families for some tasks, but more limited
benefits for structurally distant languages. Inter-
estingly, Hindi and Urdu show disproportionate
improvements across many interventions, poten-
tially due to neurons encoding multiple overlap-
ping functions (Elhage et al., 2022). Moreover,
compared to Mondal et al. (2025), who report lim-
ited improvements from activation replacement or
language neuron fine-tuning on tasks like XNLI
(Conneau et al., 2018a) and XQuAD (Artetxe et al.,
2019), our method achieves performance gains due
to three key differences. First, we evaluate across a
broader and more typologically diverse set of lan-
guages. Second, our additive interventions using
mean activation values preserve more of the origi-
nal representational context. Third, all evaluations
are conducted in a strict zero-shot setting, with-
out fine-tuning on downstream tasks in any source
language.

The effects are especially pronounced in our lan-
guage forcing experiments. Deactivating neurons
for the input language while simultaneously acti-
vating neurons for a desired target language signifi-
cantly increases the likelihood of generating output
in the target language—even when the input and
output languages are typologically distant. These

results suggest that target-language neurons contain
sufficient signal to override source-language priors,
especially for languages better represented in pre-
training. In contrast, low-resource languages are
harder to control, likely due to weaker or less dis-
tinct neural representations resulting from limited
pretraining exposure. Importantly, manipulation
also reveals internal "fallback" mechanisms: when
dominant language neurons like English or French
are deactivated, the model switches to secondary
high-resource languages such as Russian or Ara-
bic. This "fallback" hierarchy varies slightly across
models and language deactivation orders but consis-
tently exposes the model’s internal language prefer-
ences. The persistence of certain languages despite
deactivation—particularly English—highlights the ro-
bustness of high-priority language priors in LLMs.

6 Conclusion

Our large-scale study demonstrates that language-
specific neurons encode meaningful linguistic fea-
tures that can be identified, analyzed, and manipu-
lated to steer model behavior across languages. By
employing a novel additive intervention method,
we show that activating these neurons allows for
generation language control and improves perfor-
mance on various multilingual tasks. These find-
ings underscore the potential of neuron-level con-
trol as an interpretable mechanism for guiding mul-
tilingual model outputs.

Limitations

Our study has several limitations. First, while we
demonstrate the effectiveness of neuron-level inter-
ventions across multiple tasks, a broader evaluation
spanning more diverse downstream settings—such
as dialogue, summarization, or code generation—
is needed to assess the generality and robustness
of our approach. Second, although our interven-
tions often produce outputs in the desired lan-
guage, the quality and fluency of these forced out-
puts across different languages—especially lower-
resourced ones—remain underexplored and require
more rigorous evaluation. Third, our current analy-
sis primarily focuses on isolated neurons with high
language specificity. This overlooks the possibility
that language representations may be distributed
across larger sub-networks or circuits; future work
should investigate the interactions and dependen-
cies between such neurons to better understand the
network-level mechanisms supporting multilingual
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processing.

Additionally, due to computational constraints,
not all experiments were run across every model in
our study. In particular, some analyses (large-scale
downstream evaluation) were limited to smaller
models—LLama-3.1-8B and Mistral-Nemo-14B.
Expanding these evaluations to include larger mod-
els could reveal further insights but requires signif-
icantly more resources.
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Appendix
A Prompt Templates
A.1 FLORES-200 Machine Translation

For the machine translation task, we use the follow-
ing prompt format to instruct the model to translate
from a source language into a target language:

Translate this {source_name}
sentence into {target_name}:
{source_text}. Translation:

Here, {source_name} and {target_name} are
replaced by the names of the source and target lan-
guages (e.g., French, Hindi), and {source_text}
is the input sentence.

A.2 XQuAD Question Answering
For extractive question answering, we prompt the
model to find an answer span in a given context:

Answer the question based on the
{language_name} context provided.
Extract the exact answer from the
context.

Context: {context}
Question: {question}
Answer:

Here, {1anguage_name} is the name of the lan-
guage (e.g., Hindi), and {context}, {question}
are the inputs.

A.3 Belebele Machine Comprehension
For the multiple-choice machine comprehension

task, we use:

Read the following
{language_name} passage and
answer the question.

Passage: {passage}
Question: {question}
A. {option_A}
B. {option_B}
C. {option_C}
D. {option_D}
Answer:
Each {option_X} is a possible answer choice,

and the model is expected to return one of A, B, C,
or D.

A.4 XNLI Natural Language Inference

To classify the relationship between a premise and
hypothesis, we use:

Given the following
{language_name} premise and
hypothesis, determine the

relationship between them.
Premise: {premise}
Hypothesis: {hypothesis}
Options:
1. Entailment
2. Neutral
3. Contradiction
Answer:
The model is expected to return one of the listed
option numbers or labels.
A.5 Generation Settings

We use the same decoding configuration across all
tasks unless specified otherwise. The generation is
performed using the following sampling parame-
ters:

SamplingParams( temperature=0,
repetition_penalty=1.1,
stop_token_ids=[eos_token_id]

if eos_token_id is not None else
[1, skip_special_tokens=True )

We vary the max_tokens parameter depending
on the task:

e FLORES-200 (Machine Translation):
max_tokens = 128
* XQUAD (Question Answering):

max_tokens = 64

* XNLI (Natural Language Inference):
max_tokens = 32

* BELEBELE (Machine Comprehension):
max_tokens = 32

* Language Forcing
max_tokens = 256

Experiments:

These settings ensure deterministic generation
(due to temperature=0) while reducing repetition
and enabling flexible truncation across task types.
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B Selected Languages

Language Code Language Name Language Family

bo Tibetan Sino-Tibetan

mt Maltese Afro-Asiatic

it Italian Indo-European (Romance)
es Spanish Indo-European (Romance)
de German Indo-European (Germanic)
ja Japanese Japonic

ar Arabic Afro-Asiatic (Semitic)

zh Chinese Sino-Tibetan

af Afrikaans Indo-European (Germanic)
nl Dutch Indo-European (Germanic)
fr French Indo-European (Romance)
pt Portuguese Indo-European (Romance)
ru Russian Indo-European (Slavic)

ko Korean Koreanic

hi Hindi Indo-European (Indo-Aryan)
tr Turkish Turkic

pl Polish Indo-European (Slavic)

Y Swedish Indo-European (Germanic)
da Danish Indo-European (Germanic)
no Norwegian Indo-European (Germanic)
en English Indo-European (Germanic)

Table 2: Language codes, names, and families of the 21 languages used in our experiments. Language family
classification follows Glottolog (Hammarstrom et al., 2024).
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C Neuron Counts
Lang. 1% 2% 3% 4% 5%

Lang. 1% 2% 3% 4% 5% bo 1636 3343 4947 6551 8085
bo 1492 2687 3723 4708 5687 mt 433 1169 2108 3079 4150
mt 617 1578 2687 3853 5043 it 231 591 981 1393 1850
it 337 761 1198 1653 2104 es 277 621 1016 1383 1745
es 208 667 1007 1358 1717 de 211 509 874 1245 1674
de 284 651 1065 1509 1965 ja 636 1171 1580 1983 2393
ja 638 1084 1503 1887 2286 ar 383 662 962 1251 1566
ar 400 708 1093 1472 1913 zh 702 1348 1933 2512 3030
zh 681 1150 1564 1929 2286 af 206 781 1440 2181 2925
af 455 1174 1966 2852 3803 nl 181 485 859 1243 1633
nl 363 901 1432 2040 2680 fr 211 489 842 1229 1636
fr 269 615 988 1376 1786 pt 280 621 1007 1408 1811
pt 310 698 1072 1449 1844 ru 381 708 1052 1356 1671
ru 394 717 085 1248 1546 ko 597 1051 1405 1763 2110
ko 556 830 1054 1264 1484 hi 459 80 1269 1668 2063
hi 781 1456 2071 2644 3199 tr 322 734 1126 1512 1927
tr 476 1031 1681 2307 2916 pl 260 633 1003 1364 1746
pl 378 900 1455 2065 2744 sV 282 837 1595 2437 3331
sv 420 990 1614 2358 3089 da 303 886 1688 2628 3569
da 431 1055 1771 2557 3344 no 290 866 1672 2576 3496
no 433 1041 1743 2499 3268 en 55 80 115 141 169

en 61 88 116 140 151

Table 5: Number of language-specific neurons at differ-
Table 3: Number of language-specific neurons at differ-  ent top-k thresholds in Aya-Expanse-8B.
ent top-k thresholds in Llama-3.1.

Lne 1% 2% 3% 4% 5% Lang. 1% 2% 3% 4% 5%
bo 1107 2241 3314 4403 5541
Eft 1215503 179f'71 fgg fgfg ;ggg mt 568 1431 2403 3427 446l
o 5 343 530 766 969 it 353 758 1192 1629 2076
= 3 3 s 70 907 es 344 711 1100 1483 1805
o 30 501 160 636 859 de 240 631 1105 1557 1986
p R 70 1113 1M6 1808 ja 676 1249 1703 2152 2563
- 375 490 705 912 1131 ar 361 643 902 1163 1436
o e 717 1076 1380 1703 zh 656 1306 1920 2507 3032
" 519 567 101> 1549 2113 af 364 978 1672 2368 3021
nl 184 458 791 1207 1646 nl 235 607 990 1371 1691
o 156 33 475 650 81 fir 280 593 943 1332 1717
o 5 3% s89 799 1001 pt 362 709 1134 1548 1940
P o3 337 20 653 764 ru 355 757 1138 1514 1860
- 235 e 852 1070 1299 ko 549 1000 1383 1746 2091
" 30 el o 1193 1443 hi 498 956 1296 1604 1899
o 513 86 1027 1510 1o tr 331 728 1138 1524 1902
ol 86 16 75 1106 1470 pl 276 656 1036 1467 1823
b 60 431 807 1201 1637 sv 322 897 1585 2273 2925
o 71 486 886 1335 1812 da 343 980 1739 2488 3162
. 18 464 836 D3 1643 no 320 968 1705 2448 3102
o AR A s en S1 85 122 148 171

Table 4: Number of language-specific neurons at differ- Table 6: Number of language-specific neurons at differ-

ent top-k thresholds in Mistral-Nemo-Base-2407. ent top-k thresholds in Aya-Expanse-32B.
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D Language Neuron Distributions
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Figure 13: Distribution of identified language-specific
Figure 10: Distribution of identified language-specific ~ neurons across Aya-Expanse-8B layers for all 21 evalu-
neurons across Llama-3.1-8B layers for all 21 evalu-  ated languages.

ated languages. The neuron distributions for individual
languages are further in the Appendix.
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Figure 11: Distribution of identified language-specific ~ Figure 14: Distribution of individual language-specific
neurons across Mistral-Nemo layers for all 21 evalu-  neurons across Aya-Expanse-8B layers for all 21 lan-
ated languages. The neuron distributions for individual ~ guages.

languages are further in the Appendix.
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Figure 15: Distribution of identified language-specific
neurons across Aya-Expanse-32B layers for all 21 eval-
uated languages. The neuron distributions for individual
languages are further in the Appendix.
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Figure 12: Distribution of individual language-specific
neurons across Mistral-Nemo layers for all 21 lan-
guages.
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Figure 16: Distribution of individual language-specific
neurons across Aya-Expanse-32B layers for all 21 lan-
guages.
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Romance Germanic Slavic ~ Sino-Tibetan Other

it| 155 48 42 57 10 4 6 9 8 6 3 5 15 H 5 64 ¢ 15 4 1 9
es| 48 154 38 97 4 7 8 9 8 7 3 9 14 5 5 24 6 11 9 2 13
1000
fr| 42 38 156 35 11 7 10 6 7 5 5 6 10 1 7 17 12 9 1 =] 8
pt| 57 97 35 175 4 5 4 7 7 6 3 7 18 6 6 29 3 20 5 ] 12
de| 10 4 11 4 130 48 63 48 53 43 5 8 9 4 2 6 6 1 3 2 5
af| 4 7 7 5 48 219 128 60 7 63 3 4 28 1 7 31 14 21 14 18 29
800
nl| 6 8 10 4 63 128 184 67 77 69 3 3 26 1 3 15 13 15 14 17 26
sv| 9 9 6 7 48 60 67 160 124 118 4 6 21 2 3 22 3 13 4 8 18
da| 8 8 7 7 53 7 77 124 171 133 3 4 21 2 1 19 3 13 5 6 18 E'
5
o
no 6 7 5 6 43 63 69 118 133 148 2 4 20 1 1 18 4 14 4 7 19 %
600 T‘S
en| 3 3 5 3 5 3 3 4 3 2 32 3 0 2 8 2 2 2 2 3 0 g
S
ru* 5 9 6 7 8 4 3 6 4 4 3 213 93 25 31 4 27 27 35 25 13 g
e
5
pl* 15 14 10 18 8 28 26 21 21 20 0 93 186 7 6 27 21 28 22 28 38 Z
zh* 5 5 1 6 4 1 1 2 2 1 2 25 7 346 145 9 170 22 157 50 38
400
bo* 5 5 7 6 2 7 3 3 1 1 8 31 6 132 42 128 90 49
mt| 64 24 17 29 6 31 15 22 19 18 2 4 27 8 53 13 20 37
ja*| 3 6 12 3 6 14 13 3 3 4 2 27 21 170 132 8 384 37 244 88 66
ar*| 15 1 9 20 1 21 15 13 13 14 2 27 28 22 42 53 37 275 59 87 49
200
ko*| 4 9 1 5 3 14 14 4 5 4 2 35 22 157 128 13 244 59 335 102 73
hi*| 1 2 3 3 2 18 17 8 6 7 3 25 28 50 90 20 88 87 102 310 66
tr] 9 13 8 12 5 29 26 18 18 19 0 13 38 38 49 37 66 49 73 66 213
. T < * ¥ 2
R N I B I e N BN .

Figure 17: Overlap of language-specific neurons between individual languages and language families in Mistral-
Nemo when considering top 1% of neurons as potentially language-specific. Diagonal values indicate the number
of language-specific neurons for each language; off-diagonal values indicate the number of overlapping neurons.
Asterisks denote languages with non-Latin scripts.
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Romance Germanic Slavic  Sino-Tibetan Other

1600
it|231 8 6 8|4 7 6 10 12 8 1 7 1|2 9w 1 15 0o 3 8
es| 80 277 &1 13| 8 7 6 8 8 8 2|17 1w|s5 4|4 5 20 4 2 9
fr| 67 61 211 58 7 8 12 5 7 7 2 6 10 0 7 30 3 19 0 2 3 1400
pt| 8 13 s8 2|2 w0 s5 7 7 6 2|14 15|09 8|3 6 20 1 6 8
defa 8 7 2|2 73 96 77 s 73 2|26 2|5 6|12 6 6 9 7 12
1200
aff 7 7 8 10|73 206 131 127 131 129 6 |11 19| 1 47 |8 8 4 5 11 19
nlf 6 6 12 5 |9 131 188 s 8 77 4 |12 18] 1 9 |16 7 3 4 8 13
sv[10 8 5 7 |77 127 8 282 242 243 3 |15 33| 1 3|7 1 6 4 a4 23
1000
daf 12 8 7 7 |8 131 8 242 303 263 5 [16 31| 2 4| 2 1 4 3 2n k-]
=1
15
mof 8 8 7 6 |73 120 77 243 263 200 2 [12 32| 1 a8 1 8 4 4 22 g
Kl
en| 1 2 2 2|2 6 4 3 5 2 s|o o4 7|2 5 5 5 5 1 3
800 2
o
re*| 7 17 6 14|28 11 12 15 16 12 o0 [381 153)|67 71| 9 41 56 54 64 26 g
2
8
p¥| 17 10 10 15|23 19 18 33 31 32 0 |153 260 18 22 |3 11 2 15 19 37 z
zhvl 2 5 o 9|5 1 1 1 2 1 4 |67 18 223 67 228 8 59 600
bo*| 9 4 7 8|6 47 9 3 44 4 7|71 22 222 94 196 208 76
mt[107 41 30 36 [12 8 16 76 8 8 2 |9 35| 3 119|433 o0 43 2 11 33
. 400
ja*| 1 5 3 6|6 8 7 1 2 1 5 |41 11 [223 222| o 636 60 347 114 84
arf| 15 20 19 21| 6 4 3 6 11 8 5 |56 20|67 9a)|43 60 38 6 75 31
ko*[ 0 4 o 1 9 5 4 4 4 4 5 |5 15 |228 196| 2 347 65 597 120 99
200
hi*l 3 2 2 6|7 1 8 4 3 4 5 |64 198 208| 11 114 75 120 459 100
t| 8 9 3 8 |12 19 13 23 20 22 1 |26 37|59 76|33 8 31 9 100 322
& N S > & ¥ ¢ *  F & F R
A T R I S SN S S S S .
Romance Germanic Slavic  Sino-Tibetan Other
it|353 100 78 97| s 7 a4 10 12 10 4|8 15|12 9 |157 7 23 7 7 14
es| 101 344 62 163 | 2 8|8 |8 1 o 4|16 1a|n 16|37 6 19 4 5 11 1000
fr[78 6 280 s5|7 13 11 7 8 10 3|12 8|4 18|36 9o 18 6 5 14
ptl] 97 163 s5 32| 4 7 6 3 2 2 2|14 12|17 9|4 9 19 9 1 13
defs 2 7 4|20 59 92 78 8 7 9|14 2|5 5|1 6 4 a4 7 13
aff 7 5 13 7 |59 |34 147 147 154 148 5 | 8 2|9 a1l 11 9 7 2 19 800
nf 4 5 11 6 |9 147 25 1m2 117 105 5 |1 19| 4 a4l & 2 6 1 12
sv1o 3 7 3|78 147 m2 322 253 261 7 |13 24| 6 31|68 8 4 3 14 18
daf 12 1 8 2 |8 154 117 253 343 284 7 |12 23| 6 28|75 9 3 2 12 16 2
=]
5
mof 10 o 10 2|78 148 105 260 284 329 7 [12 20| 6 20|77 o 6 4 9 17 600 LQ"
=
el 4 4 3 2|9 s s 7 7 7 s |1 3|4 s5|s 6 5 3 4 1 §
o
x| 8 16 12 14 |14 8 1 13 12 12 1 |35 125|37 40| 8 26 34 37 45 14 g
£
g
p¥l 15 14 8 12|20 2 19 24 23 20 3 |125 226|100 8 |37 1 9 7 15 25 z
zhf[12 1 4 17| s o 4 6 6 6 a4 |37 10 [N 14413 144 27 127 44 35 400
bo*| 9 16 18 9 |5 a1 a4 31 28 20 5 |4 8 |14 84 103 46 96 112 41
mt[157 37 36 44 |14 11 19 6 75 77 5 | 8 37|13 84 13 94 10 22 36
ja*{ 7 6 9 9|6 11 8 8 9 9 6 |2 11 |144 103]| 13 NN 38 235 61 62
art| 23 19 18 19| 4 9 2 4 3 6 5 |38 9 |27 46|94 38 361 35 45 27 200
k! 7 4 6 9|4 7 6 3 2 4 3|3 7 |127 96|10 285 35 E 67 66
hi*/ 7 5 5 1|7 20 1 14 12 9 4 |45 15|44 11222 61 45 67 498 77
tr| 4 11 14 13|13 19 12 18 16 17 1 |14 25|35 41|36 62 27 66 77 331
s @ 5 N ¥ ¢ x o~ F ¥ ¥ S
R R S A R P I & $ § s .

Figure 18: Overlap of language-specific neurons between individual languages and language families in Aya-
Expanse-8B and 32B when considering top 1% of neurons as potentially language-specific. Diagonal values
indicate the number of language-specific neurons for each language; off-diagonal values indicate the number of
overlapping neurons. Asterisks denote languages with non-Latin scripts.
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Figure 19: Distribution of individual language-specific neurons across Llama-3.1-8B layers for all 21 languages.
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Figure 20: Distribution of individual language-specific neurons across Mistral-Nemo layers for all 21 languages.
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Figure 21: Distribution of individual language-specific neurons across Aya-Expanse-8B layers for all 21 languages.
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Figure 22: Distribution of individual language-specific neurons across Aya-Expanse-32B layers for all 21 lan-
guages.
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E Output Analysis with Logit Lens
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Figure 23: Peeking into language prediction across layers using the logit lens for Llama-3.1-8B.
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Figure 24: Peeking into language prediction across layers using the logit lens for Mistral-Nemo.
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Figure 25: Peeking into language prediction across layers using the logit lens for Aya-Expanse-8B.
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Figure 26: Peeking into language prediction across layers using the logit lens for Aya-Expanse-32B.
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F Language Forcing
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Figure 27: Detailed language forcing results across 2 neuron ratios for two manipulation strategies - activate-only
and deactivate-activate for Llama-3.1-8B. For deactivation, we set the neurons to 0.
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Model Intervention Strategy Topl% Top2% Top3% Topd4% Top5%
Additive Activate 1749%  1893%  1999%  2245%  22.75%
Mistral-Nemo Additive Deactivate + Activate | 25.54% = 27.51% 2959%  3239%  33.22%
Replacement  Activate 12.43% 12.69% 13.86% 15.19% 14.47%
Replacement  Deactivate + Activate  20.03%  21.08%  22.22%  24.75%  25.88%
DiffMean Activate 14.51%  16.18%  16.55%  17.15%  18.14%
DiffMean Deactivate + Activate  21.96%  23.69%  25.62%  27.36%  28.11%

Table 7: Overall success rates (%) of language forcing for Mistral-Nemo-12B using three intervention types and
two manipulation strategies across different top-k% neuron thresholds.

Model Intervention  Strategy Topl% Top2% Top3% Top4% Top 5%
Additive Activate 66.40%  77.48%  81.29%  82.58%  84.73%
Aya-Expanse-8B Additive Deaptivate + Activate  75.59%  83.30% 8522% 8447%  86.81%
Replacement ~ Activate 49.62%  61.19%  6531% 65.61%  69.39%
Replacement  Deactivate + Activate  65.72%  73.96%  73.99%  74.11%  77.06%
DiffMean Activate 62.85%  70.52%  7543%  77.82%  80.88%
DiffMean Deactivate + Activate  73.74%  78.87%  81.67%  82.20%  84.24%

Table 8: Overall success rates (%) of language forcing for Aya-Expanse-8B using three intervention types and two
manipulation strategies across different top-k% neuron thresholds.
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Figure 28: Progressive deactivation of language-specific neurons for high-resource languages for Llama-3.1-8B.
We set the language neurons to -1 for deactivation in this scenario; 0 does not produce the required effects.
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Figure 29: Progressive deactivation of language-specific neurons for high-resource languages for Mistral-Nemo.
We set the language neurons to -2.5 for deactivation in this scenario; values from O to -2 do not produce the required
effects.
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