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Abstract

This paper investigates the relationship be-
tween large language models’ (LLMs) ability to
recognize repetitive input patterns and their per-
formance on in-context learning (ICL). In con-
trast to prior work that has primarily focused on
attention heads, we examine this relationship
from the perspective of skill neurons, specifi-
cally repetition neurons. Our experiments re-
veal that the impact of these neurons on ICL
performance varies depending on the depth of
the layer in which they reside. By comparing
the effects of repetition neurons and induction
heads, we further identify strategies for reduc-
ing repetitive outputs while maintaining strong
ICL capabilities 1.

1 Introduction

Recent advances in LLMs have led to substantial
performance improvements across a wide range of
tasks through in-context learning (ICL). ICL can
be understood as the model’s capability to identify
repeated patterns within few-shot demonstrations
and to learn to perform the target task based on
those patterns (Brown et al., 2020). Despite these
advances, repetitive generation (i.e., where models
produce overly redundant outputs) remains a fun-
damental challenge that can degrade output quality
and potentially impair ICL performance (Chiang
and Chen, 2021; Li et al., 2023).

Prior research has identified induction heads as
key attention mechanisms within LLMs, essential
for recognizing repeated patterns that underlie their
ICL capabilities (Olsson et al., 2022; Bietti et al.,
2023; Dong et al., 2024). The experimental re-
sults in the prior work suggest that these attention
heads might affect the repetitive outputs. However,
removing these induction heads has been shown
to severely impair ICL performance due to their
critical role in pattern recognition (Crosbie and

1Code: https://github.com/hnhine/repnr_ind

T U N G: non-Pattern
V Z V Z: Pattern

O P W B: non-Pattern

L K L P: non-Pattern

X H X H: Pattern

N T N T: ???

U I A B A B ...

In-context learning

Text Generation

N T N T: Pattern

Deactivated 

Original

Deactivated

N T N T: non-Pattern

Deactivated

N T N T: Pattern

N T N T: Pattern

U I A B A B A B O

U I A B A B A T M

U I A B A B X G W

U I A B A B A B A 

1  2  3  4  5  6  7  8  9
Layer index

Figure 1: Repetition neurons (orange nodes), known
for their strong activation in repetitive text generation,
play a causal role in few-shot ICL. Layer-wise abla-
tion shows that deactivating: initial layers→ negligible
effect on ICL or generation; middle layers→small drop
in ICL recall and reduced repetition; last layers→severe
ICL failure but degrades repetitive generation.

Shutova, 2025). Another line of work has begun
exploring neuron-level interventions, discovering
specific repetition neurons whose deactivation re-
duces redundant generation (Wang et al., 2024; Hi-
raoka and Inui, 2025). Nevertheless, prior research
has primarily addressed repetition and ICL sepa-
rately, lacking systematic analysis on how these
neuron-level interventions affect ICL performance,
particularly their interaction with induction heads.

Recent work by Yan et al. (2024) explored repeti-
tive patterns’ dual role (e.g., helping and hindering)
in ICL but remained limited to sequence-level anal-
yses. Similarly, Xu et al. (2022) proposed strategies
to mitigate repetitive loops during text generation
without examining the impact on underlying ICL
mechanisms. Thus, the interaction between repeti-
tion neurons and induction heads, and the potential
for neuron-level control over ICL performance, re-
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mains largely unexplored.
To address these gaps, we present the first com-

prehensive layer-wise analysis examining how rep-
etition neurons influence both repetitive generation
and ICL performance(§4, Figure 1). Our main con-
tributions are: (1) We demonstrate that the impact
of neuron ablation varies significantly with layer
depth, supporting our hypothesis that neurons of-
fer more granular control than attention heads, (2)
Repetition neurons in output-side layers serve as
critical executors of pattern-based predictions, ex-
hibiting effects on ICL performance comparable
to induction heads; (§5), and (3) Joint ablation of
both components leads to a near-complete break-
down of pattern recognition (§6). Crucially, we
propose a novel three-segment ablation strategy
that selectively deactivates repetition neurons in
middle layers, reducing repetition while preserv-
ing ICL performance (§7). This approach offers a
practical solution to mitigate the trade-off observed
in prior work, providing finer control over LLM
behavior compared to head-level interventions.

2 Related Work

Prior mechanistic analyses of LLM behavior have
pursued two complementary strands: attention-
head studies that illuminate pattern matching, and
neuron-level investigations that target repetitive
generation.

2.1 Induction heads for pattern matching

To pinpoint the specific attention heads that drive
in-context pattern matching, we adopt a purely task-
agnostic, prefix-matching probe. Initially, Elhage
et al. (2021) introduced the concept of induction
heads, which refers to attention heads that have
the ability to capture previous context by prefix-
matching and copying mechanisms. Later on, Ols-
son et al. (2022) showed that these heads emerge
abruptly during an induction-bump phase early in
training and that ablating them wipes out most
in-context learning. Following this work, Bansal
et al. (2023) found that when pruning heads in
ascending order of their copying scores, the total
copying capacity falls off almost linearly from the
first heads removed. It suggests that copying ability
is distributed across nearly all heads. Therefore,
we argue that a high prefix-matching score alone
robustly flags “induction heads,” while the com-
plementary copying measure does not distinguish
them as cleanly. This feature is identical to the

Crosbie and Shutova (2025) experiment.

2.2 Decoding interventions and neuron-level
controls

Repetition in generation has predominantly been
addressed via decoding strategies such as nucleus
sampling (Holtzman et al., 2020) and top-k sam-
pling (Fan et al., 2018). These methods focus solely
on model output and neglect the internal mecha-
nisms responsible for repetitive outputs. Recently,
neuron-level studies have identified specific repeti-
tion neurons responsible for redundancy in gener-
ation (Wang et al., 2024; Hiraoka and Inui, 2025).
Yet, these studies did not examine interactions with
other internal mechanisms like induction heads,
crucial for pattern-based ICL.

Yan et al. (2024) and Xu et al. (2022) separately
explored repetition’s relationship with ICL and gen-
eration loops, respectively, but neither addressed
neuron-head interactions nor conducted system-
atic, layer-wise neuron analyses. Our work bridges
these research threads, conducting the first joint
mechanistic exploration into how repetition neu-
rons and induction heads collectively shape the
trade-off between repetitive generation and ICL.
We extend beyond existing literature by systemati-
cally investigating layer-wise neuron functionality,
thereby providing practical strategies for targeted
interventions that balance repetition control and
robust ICL performance.

3 Experimental Setting

In this paper, we investigate the impact of the rep-
etition neurons and induction heads on the ICL
performance by ablating them.

3.1 Models
We evaluate mainly on Llama-3.1-8B (Grattafiori
et al., 2024) because prior studies have reported
similar inner workings regarding the repetition
problem across various LLMs. The specification of
the Llama-3.1-8B model, with 32 layers, 458,752
neurons, and 1,024 heads in total, can be consid-
ered as a typical architecture for a model with this
parameter scale. For the comparison among the
models, Appendix D, E and F shows the extended
results on Qwen2.5-7B (Qwen et al., 2025) and
LlaMA-2-13B (Touvron et al., 2023).

3.2 Datasets
To investigate the impact of ablating repetition neu-
rons and induction heads on the ICL performance,

2855



Task Pattern Non-Pattern

Repetition X H X H Z E W F
Recursion V D D D N O W T
Centre-embedding X B V B X L Q I F P
WordSeq 1 grape shark onion cello
WordSeq 2 pumpkin scooter peach pilot

Table 1: Each letter-sequence dataset features examples
following the respective patterns labeled “Pattern” and
random sequences labeled “Non-Pattern.” For word-
sequence tasks, examples include pairs of semantically
categorised words (Crosbie and Shutova, 2025).

we use five well-controlled synthetic datasets, fol-
lowing the prior work (Gao et al., 2021; Crosbie
and Shutova, 2025). As shown in Table 1, all tasks
are binary classification for “Pattern” and “Non-
Pattern” inputs. For example, the task named “Rep-
etition” is a binary classification of whether the
four-letter input text has repetitive patterns (e.g., an
input “XHXH” has a repetitive pattern)2.

For each of the Repetition, Recursion, and
Centre-embedding tasks, we construct a dataset of
1,000 sequences, evenly divided into 500 Pattern
and 500 Non-Pattern examples. Each WordSeq
task comprises 500 word-pair examples, evenly
split into Pattern and Non-Pattern classes.

For WordSeq 1, the Pattern set consists of 250
⟨fruit, animal⟩ pairs, while the Non-Pattern set con-
tains 250 examples randomly drawn from 1000
pairs of the four relations ⟨vegetable, vehicle⟩,
⟨vegetable, instrument⟩, ⟨body-part, vehicle⟩ and
⟨body-part, instrument⟩. This design ensures that
Non-Pattern inputs are semantically and struc-
turally distinct, introducing noise that contrasts
sharply with the homogeneous Pattern class. In
WordSeq 2, we sample 500 pairs, but swap the
target relation: the Pattern input is ⟨vegetable,
vehicle⟩, the Non-Pattern is from ⟨fruit, animal⟩,
⟨fruit, profession⟩, ⟨furniture, profession⟩ and
⟨furniture, animal⟩.

3.3 Repetition Neurons Identification
We identify the repetition neurons to be ab-
lated in our experiments with the activation-based
method (Hiraoka and Inui, 2025). This method
finds repetition neurons by focusing on the differ-
ence between the model’s activation when generat-
ing normal text and repetitive text.

Once the repetition onset s is marked on a text,
2Crosbie and Shutova (2025) explains all the tasks in detail.

We re-create the dataset by ourselves to use a larger number
of samples.

Figure 2: Distribution of top 31 (3%) induction heads
and top 1000 (0.2%) repetition neurons across layer.

we extract each feed-forward (FFN) neuron’s ac-
tivation over a window of r = 30 tokens before
([s − r, s − 1]) and after ([s, s + r − 1]) the on-
set. Averaging these activations across all texts in a
group yields “normal” and “repetition” means, an
and ān, respectively, for each neuron n. We then
compute

∆n = ān − an

and rank neurons by descending ∆n to obtain the
top-K neurons as repetition neurons. A higher
difference value ∆n suggests the neuron triggers
the model to produce an error. For this identifica-
tion process, we prepared 1000 texts 3 that include
repetitive phrases from each LLM’s generation.

3.4 Induction Heads Identification

The induction heads are identified based on the
prefix-matching score (Elhage et al., 2021), which
is calculated from the attention weight to tokens
that are exactly the same as the one to be generated
in the next time step.

Concretely, we randomly sample sequences of
50 tokens4 and repeat each sequence four times.
Then we fed them to the model to calculate the
prefix-matching score. For every head, we compute
the average attention weight that each token places
on its immediately preceding occurrence in earlier
repeats. By repeating this over five independent
draws and averaging, we obtain a stable prefix-
matching score per head and select those with the
highest scores as our induction heads.

3See details in Appendix C
4To exclude the effect of high-frequency tokens, we ig-

nored the 4% most and least frequent tokens in the vocabulary
when sampling tokens, following the prior work (Crosbie and
Shutova, 2025).
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Figure 2 shows the distribution of the repetition
neurons and induction heads per layer. Note that
the repetition neurons and the induction heads are
identified independently from the ICL dataset cre-
ated in §3.2.

3.5 Evaluations

Our primary purpose of the experiments is to inves-
tigate the effect of repetition neurons and induction
heads on the performance of ICL tasks. To quantify
their contributions, we compare the recall of the
model on binary classification tasks before (orig-
inal) and after ablating these neurons and heads.
In Sections §5 and §6, we define ∆Recall as the
difference between the model’s recall after inter-
vention and its original recall.

For the fine-grained analysis of the impact of
ablation on the ICL tasks, we separately report the
recall on Pattern and Non-Pattern subsets, rather
than the metric that combines them, such as the
F1 score. Prior works suggest that the repetition-
related components play several roles, such as cap-
turing the repetitive input and stimulating repetitive
outputs (Olsson et al., 2022; Yan et al., 2024; Hi-
raoka and Inui, 2025). Considering their ability to
capture repetitive inputs, we would see a different
trend in the performance change between the Pat-
tern and Non-Pattern subsets when ablating these
components. Specifically, we hypothesize that they
will disproportionately support correct labeling of
Pattern examples, where the few-shot context it-
self repeats the target sequence, while having little
impact on Non-Pattern inputs. We evaluated these
subsets separately to identify the effect of neurons
and heads on repetitive and non-repetitive samples.

For all experiments, we used 10-shot examples
for the ICL tasks if not otherwise mentioned. We
consider the token output immediately after the
input query as the answer of the model5, and cal-
culate the recall based on this answer. Each ex-
periment is run three times independently, and we
report the average result across these runs.

4 Layer-wise Repetition Neuron Ablation

Building on our identification of repetition neurons
(§3.3), we first ablate them layer-segment–wise
to quantify their causal role in Pattern and Non-
Pattern ICL performance.

5We used unrelated labels “Foo” and “Bar” instead of
“Pattern” and “Non-pattern,” following Crosbie and Shutova
(2025).

4.1 Neuron Segmentation

To understand how repetition neurons drive few-
shot ICL, we first locate these neurons within the
model and quantify the contributions of different
repetition neuron groups. The distribution across
layers of repetition neurons in the model, as in
Figure 26, is unbalanced.

While it is consistent with previous studies on a
higher number of task-specific repetition neurons
in early layers, we are motivated by their position
due to the high concentration of repetition neurons
in late layers. This pattern aligns with prior work
showing that task-specific neurons usually appear
in late transformer layers (Wang et al., 2022; Hi-
raoka and Inui, 2025). Because early-layer neurons
project directly into the output logits, their concen-
tration implies a stronger influence on model pre-
dictions. This observation motivates our targeted-
ablation experiments, which quantify the causal
contribution of repetition neurons in each layer seg-
ment to few-shot ICL.

To assess the causal contribution of repetition
neurons to few-shot ICL, we partition the L-layer
Transformer model into three depth-based seg-
ments and intervene on the neurons in each seg-
ment separately. We compute the normalized depth
of layer i as ui = i/L. Layers whose ui falls in
the ranges 0.0 < ui < 0.2, 0.4 < ui < 0.6, or
0.8 < ui < 1.0 are labeled as early, middle, and
late layers, respectively. For example, in a 32-layer
model, layer 16 has u16 = 16/32 = 0.5 and is
assigned to the middle segment.

By comparing ICL performance before and after
interventions within each segment, we quantify
the causal impact of repetition neurons across the
model’s depth. This segmentation ensures that our
results generalize across the model and capture the
distinct contributions of neurons from each part of
the network.

4.2 ICL Performance with Neuron Ablation

Figure 3 reports the effect of ablating repetition neu-
rons by layer segment in the 10-shot setting7. For
ablating repetition neurons, we straightforwardly
modify their activation value to 0. Removing the
top-K repetition neurons in the earlier and middle
layers produces only a modest reduction in Pattern-

6More results with various numbers of neurons are shown
in Figure 7.

7We report the result of ablating up to 250 neurons because
we can obtain the highest impact with 250. Figure 8 shows
the performance change with ablating more neurons.
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Figure 3: Model performance after ablating repetition neurons (solid lines) versus randomly selected neurons
(dashed line) by layer-wise with the 10-shot ICL setting. The performance is separately reported for the Pattern
(top) and Non-Pattern (bottom). Data points with 0 on the X-axis show the performance without ablation.

query recall, whereas deactivating those in the late
segment layers drives a drop of up to 60%. This
result runs counter to the “two-peak” hypothesis of
Hiraoka and Inui (2025), which posits that interme-
diate layers primarily detect repetition while final
layers merely replicate it. Instead, our findings sug-
gest that late-segment neurons play the dominant
role in consolidating the repeated structures that
underlie few-shot ICL. Mid-segment neurons do
appear to contribute to repetition, but their function
can be largely compensated for by downstream lay-
ers during ICL tasks. We hypothesize that, in the
context of demonstrations already rich in repeated
patterns, early detectors are less critical, and that
the final layers are where pattern recognition is ulti-
mately consolidated. In §7, we further explore how
mid-layer neurons uniquely influence the genera-
tion of repetitive phrases, roles that cannot be fully
rescued by later layers alone.

Moreover, ablating repetition neurons also af-
fects performance on Non-Pattern inputs. By re-
moving these neurons, the model becomes less
biased toward detecting repetition and thus better
distinguishes genuinely non-repetitive examples,
improving its ability to identify the correct class
when no pattern is present. These observations
suggest that repetition neurons contribute to captur-
ing repetitive input even though these neurons are
detected independently from the ICL tasks. Fur-
thermore, we can conclude that neurons in different
depths of layers have different impacts on the ICL
performance.

5 Attention Head Ablation

In this section, we investigate the impact of ab-
lating induction heads on the same dataset. After
identifying them (§3.4) via prefix-matching scores,
we ablate their attention weights by setting them to
zero during inference. As in §4, we do not segment
induction heads due to their limited total number,
and the definition of an induction head is layer-
agnostic (Figure 2).

Unlike prior work such as Crosbie and
Shutova (2025), which aggregates performance
across Pattern and Non-Pattern inputs, our class-
disaggregated evaluation isolates the causal effect
of induction heads on pattern recognition. This de-
sign, motivated by their role as detectors of repet-
itive structure, is essential for tracing how their
removal impairs ICL and enables downstream anal-
ysis of repetition neuron activation.

5.1 ICL performance with Head Ablation

The experimental results in Figure 4 show a similar
trend in the performance difference to that observed
in the neuron ablation. For the Pattern inputs, ablat-
ing only one induction head has a minimal impact
on model performance. However, removing three
or more heads causes a catastrophic collapse: re-
call falls by 75.4%–76.7%. The two WordSeq tasks
exhibit a similarly severe decline, with recall reduc-
tions of 53.1%–63.2%. These results confirm that
a small subset of induction heads accounts for the
majority of pattern-recognition capability: ablating
more than three of these heads effectively disables
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Figure 4: Llama-3.1-8B performance on the Pattern (top) and Non-pattern (bottom) subsets after ablating induction
heads with the top highest prefix-matching scores on two classes in the 10-shot setting. Data points with 0 on the
X-axis show the performance without ablation.

the model’s ability to detect the target patterns.
For the Non-Pattern inputs, there is no clear

trend. On the surface-level tasks (i.e., Repetition,
Recursion, and Center-embedding), ablating three
induction heads positively affects the performance
similarly to the trend shown in the neuron abla-
tion (Figure 3). However, as the number of heads
increases, this effect gradually weakens. After ob-
serving the model’s output with intervention, we
found broken outputs (e.g. invalid unicode se-
quences). This suggests removing induction heads
easily breaks the Llama-3.1-8B 8, supporting our
hypothesis that controlling the model with ablat-
ing attention head is difficult. In contrast, on two
WordSeq tasks, we observe trends that align with
the results in Figure 3. This implies that the model
can recover the lack of some induction heads when
solving semantic-level repetition tasks.

5.2 Cascade of Head to Neuron

Combining results from Figures 3 and 4, we ob-
serve that both induction heads and final-segment
repetition neurons are critical for Pattern recog-
nition. To investigate the hypothesized cascade,
where induction heads activate repetition neurons,
we directly measured the post-activation values of
repetition neurons when ablating induction heads.

Our findings also reveal a notable divergence
in how different model families utilize induction

8This trend depends on the model architecture. For exam-
ple, Qwen2.5-7B yields smoother results on the same experi-
ment (Figure 20), while Llama-2-13B shows a similar trend
(Figure 22) to Llama-3.1-8B.

heads. In Table 2 of Llama-3.1-8B, ablating in-
duction heads primarily impairs structural pat-
tern recognition (e.g., 10-17% drop in Repeti-
tion, Recursion), while high abstract and semantic
tasks (Centre-Embedding and WordSeq 1/2) ex-
hibit greater robustness, suggesting the presence of
alternative, non-induction pathways for semantic
pattern encoding. In contrast, Qwen2.5-7B exhibits
uniform sensitivity: the same ablation degrades
performance and neuron activation across all tasks,
including semantic ones (Appendix E, Tables 6-
8). This indicates that Qwen relies on induction
heads not merely for surface-level repetition, but as
a general-purpose mechanism for pattern abstrac-
tion at all levels. We hypothesize that architectural
or training differences, such as Qwen’s tokenizer
or pretraining corpus, strengthen the coupling be-
tween prefix-matching and higher-level relational
reasoning. In contrast to Llama, which appears to
leverage alternative pathways for semantic tasks,
Qwen relies more uniformly on induction heads for
both structural and semantic pattern recognition.
Thus, the functional scope of induction heads is not
universal: it expands with model design, and in-
terventions must be architecture-aware to preserve
ICL.

Regarding the role of repetition neurons, we as-
sume that they operate at different levels of gran-
ularity. Middle-layer repetition neurons appear
to be tightly coupled with local and surface-level
token replication. They are sensitive to exact to-
ken positions and local patterns. In contrast, in-
duction heads, which operate via prefix match-
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Segment Repetition Recursion Centre-Embedding WSQ1 WSQ2

rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr

[0.0, 0.2] ind -0.120 0.029 -0.177 0.029 0.000 0.000 0.000 0.000 0.000 0.000
ran -0.001 0.027 -0.036 0.024 0.085 0.011 0.005 0.033 -0.002 0.033

[0.4, 0.6] ind -0.105 0.022 -0.177 0.029 0.023 0.014 0.013 0.011 0.014 0.012
ran -0.053 0.020 -0.036 0.024 0.059 0.028 0.020 0.025 0.030 0.028

[0.8, 1.0] ind -0.140 0.119 -0.138 0.117 -0.023 0.058 -0.026 0.056 -0.029 0.056
ran -0.035 0.034 -0.031 0.023 -0.015 0.044 -0.013 0.052 -0.009 0.044

Table 2: Activation change rate by segment and task (Llama-3.1-8B). Values are ∆ = (meanablated −
meannormal)/meannormal at the last prompt token (FFN gate post-activation). ind: ablate top 3% induction heads;
ran: ablate 3% random heads. rep_nr: top-K repetition neurons; ran_nr: K random neurons from the same
segment (K=250).

ing, can encode relational patterns (e.g., 〈fruit, an-
imal〉) that support abstract pattern recognition in
ICL, even in semantic tasks. Therefore, ablating
middle-layer repetition neurons can mitigate repet-
itive generation without significantly harming ICL,
as these neurons primarily influence the output sur-
face rather than the underlying pattern recognition.

While ablation confirms that late-segment repeti-
tion neurons are critical for ICL, their role extends
beyond mere token replication. They exhibit high
activation during pattern processing (average acti-
vation 1.23-1.49) 9 compared to near-zero or nega-
tive values in random neurons, indicating active in-
volvement in ICL. We propose that they act as pat-
tern executors: final-stage components that trans-
late abstract pattern signals, whether structural or
semantic, into output decisions. Their position near
the output layer enables a strong influence on logits,
explaining the up to 60% recall drop when ablated.
This executor role is upstream-dependent: their ac-
tivation drops significantly under induction-head
ablation in structural tasks, supporting a detector-
to-executor cascade. However, in semantic tasks,
especially in Llama, their resilience suggests alter-
native pathways can sustain their activity. Thus,
their function is not as independent agents, but as
amplifiers of distributed pattern representations.

6 Joint Ablation

Experimental Results in §4 and §5 indicate that
both repetition neurons and induction heads play
a central role in the model’s ability to capture pat-
tern signals. Motivated by this, we perform a joint
ablation of the top 3% induction heads (by prefix-
matching score) and the top 250 repetition neurons
(from the final 0.8–1.0 segment) to evaluate their
combined effect.

9Appendix E, Table 6 for Llama-3.1-8B

Figure 5 shows the impact of joint ablation of
repetition neurons and induction heads. Taking a
pair including random ablation into account, the
figure displays a total of four combinations. We ob-
serve a clear trend that ablating repetition neurons
and induction heads damages the pattern subset sig-
nificantly: three out of five tasks exhibit over 90%
recall degradation, reaching up to 96% in certain
settings 10. In contrast, when we randomly select
both neurons and heads, the performance on the
pattern subset is almost zero. This observation un-
derscores the critical role of both repetition neurons
and induction heads in pattern detection.

The results also show that ablating induction
heads generally causes a slightly larger or com-
parable drop in Pattern performance compared to
ablating repetition neurons alone. This suggests
that induction heads serve as primary detectors,
while late-segment repetition neurons act as essen-
tial executors-both are indispensable, but operate at
different stages of the cascade.” This demonstrates
that the induction heads have the dominant role in
handling repetitive inputs. However, considering
that the joint ablation caused the most damage, we
conclude that the roles of the repetition neurons
and induction heads are complementary. As shown
in Figures 3 and 4, ablating repetition neurons
alone in the 10-shot setting incurs a 40–68% re-
call loss, and ablating induction heads alone causes
a 50–77% loss. The fact that joint ablation pushes
this degradation beyond 90% suggests a sequential,
cascade mechanism, particularly in structural tasks,
in which induction heads detect underlying pattern
structure and subsequently activate late-segment
repetition neurons to consolidate and execute the
correct prediction. Disabling both components sev-

10Similar findings are confirmed on two additional models
(see Appendix F).
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Figure 5: ∆Recall for Pattern (blue) and Non-Pattern
(orange) inputs on five tasks under four joint-ablation
regimes: (a) repetition neurons(top 250 from final seg-
ment [0.8–1.0]) × induction heads (top 3% by prefix-
matching score), (b) repetition neurons × random heads,
(c) random neurons × induction heads, and (d) random
neurons × random heads with 10-shot. The negative
value means the performance drop after ablation.

ers this cascade, resulting in a near-total collapse
of the model’s pattern-recognition capability. The
experimental results in Figure 5 on the Non-pattern
subset also show a clear trend: the performance
increases when ablating repetition neurons or in-
duction heads, while it decreases when ablating
both random components. This result implies that
removing critical components reduces the model’s
bias to detect the pattern structure, while preserving
the capability of accepting non-pattern structure.

7 Text Generation

To investigate repetitive generation, distinct from
prior sections that explored the roles and impacts of
repetition neurons and induction heads in ICL tasks,
we followed the approach of the prior work (Hi-
raoka and Inui, 2025). We prepared 100 greedily
generated texts that originally include repetitive
phrases. Then we ablated the repetition neurons or
induction heads at the onset of repetitive phrases
during the generation process.

Figure 6: Effect of ablating repetition neurons and at-
tention heads on generated repetition text.

Figure 6 reveals that while ablating induction
heads reduces repetition, random head ablation
also has a noticeable effect. This indicates that
repetitive outputs are influenced by a broader set of
heads, making precise identification of repetition-
specific heads challenging for fine-grained control.
In addition, ablating the top 3 % of induction heads
causes a sharp drop in repetitive output, but remov-
ing larger fractions leads to a rebound in repetition.
This pattern implies that only a small subset of
heads is truly responsible, consistent with prior
work on induction-head specificity. We observe
a similar effect for repetition neurons in the final
segment as ablating that group cuts repetition by
up to 40 %. Regarding the repetitive output as
a problematic behaviour of LLMs, these results
straightforwardly suggest that ablating the induc-
tion heads or repetition neurons at the last segment
mitigates this problem. However, as we discussed
in the above sections, ablating these components
catastrophically degrades the ICL performance. We
argue it is counterproductive to damage the crucial
ability of LLMs in order to reduce the repetitions.

To resolve this trade-off, we suggest fine control
of the repetition ability of LLMs using segment-
wise neuron ablation. Specifically, ablating repe-
tition neurons in the middle segment reduced the
repetitive output while it did not significantly dam-
age the ICL performance, as shown in Figure 4.
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BLEU ROUGE-L Distinct-2 BERTScore (F1)

Segment Shot (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

[0.4, 0.6] 0 -0.804 0.185 0.047 -0.186 0.080 0.300 -0.004 -0.003 -0.005 -0.003 -0.001 0.000
[0.4, 0.6] 5 -0.622 -0.164 -0.199 -0.552 0.008 0.182 -0.005 -0.003 -0.003 -0.001 0.000 0.000
[0.8, 1.0] 0 -12.048 -6.747 -5.810 -12.859 -8.905 -4.561 -0.010 -0.060 -0.070 -0.049 -0.036 -0.017
[0.8, 1.0] 5 -4.033 -3.552 -8.249 -2.409 -3.915 -7.532 -0.013 -0.042 -0.065 -0.004 -0.006 -0.013

Table 3: Change in LlaMA-3.1-8B performance (after–before) when ablating 250 repetition neurons in different
segment layers on WMT19 (1050 samples: cs-en (1), de-en (2), zh–en (3)). Distinct-2 measures the ratio of unique
bigrams to total bigrams in the generated translation, indicating the output’s lexical diversity.

8 Downstream Tasks

We confirm our suggestion on ablating middle-
layer repetition neurons to avoid unnecessary repe-
titions while preserving ICL performance by evalu-
ating on two downstream tasks: sentiment analysis
with binary classification and machine translation.
For the sentiment analysis, we used 1,000 samples
of SST2 (Socher et al., 2013). The machine trans-
lation task used WMT19 (Bojar et al., 2019) with
1,050 samples, including cs-en, de-en, and zh-en.

Regarding SST2, we observe only small fluctua-
tions in the F1-score of Llama-3.1-8B of repetition
neurons of [0.4, 0.6] 11, around a 0.04 point drop
when ablating repetition neurons in the last seg-
ment layers, which is remarkable even compared
with ablating random neurons. Similarly, as Table 3
represents results of WMT19, middle-segment ab-
lation reduces degenerate repetition with ≤1 point
BLEU/ROUGE drop, whereas late-segment abla-
tion collapses performance entirely. Additionally,
BERTScore-F1 (Zhang et al., 2020), repetition neu-
rons from the last segment decrease in 17/18 exper-
iments, while the one from the middle segment de-
creases in just 3/18, and even increases slightly 12.

9 Conclusion

We have presented a comprehensive analysis
of how repetition neurons and induction heads
causally underpin few-shot in-context learning.
Our layer-wise ablation experiments reveal a “two-
peak” structure in repetition neurons - intermediate-
layer detectors and final-layer replicators - where
only the latter are critical for Pattern recognition,
while ablating middle-segment neurons substan-
tially reduces repetitive outputs and with minimal
impact on ICL recall. In parallel, we demonstrate

11We find the similar trends in both Qwen-2.5-7B and
LlaMA-2-13B, see details in Appendix G, Table 10.

12See detail results from Tables 10 to 12, Appendix G

that a tiny subset of induction heads serves as pri-
mary pattern detectors: ablating just 1 % causes
modest performance drops, but 3 % ablation col-
lapses pattern recognition entirely. Finally, joint
ablation confirms a sequential cascade in which in-
duction heads activate repetition neurons to enforce
repeated outputs.

Crucially, the role of induction heads is not uni-
versal. While they are indispensable for structural
patterns in Llama, their influence on late-segment
repetition neurons weakens in semantic tasks - sug-
gesting Llama employs alternative pathways for
abstract pattern encoding. In contrast, Qwen-2.5-
7B exhibits a tighter, more uniform coupling: ab-
lating induction heads impairs ICL across all task
types, indicating they serve as a general-purpose
mechanism for both surface and semantic pattern
recognition. This architectural divergence reveals
that induction heads are not merely “copying cir-
cuits”, but can function as domain-general pattern
encoders, depending on model design.

Our findings not only elucidate the internal
mechanisms of pattern learning in LLMs but also
suggest a practical intervention: selectively ablat-
ing middle-segment repetition neurons offers a way
to mitigate unwanted repetition while preserving
in-context learning performance.

Broader Applicability While our main stud-
ies focus on the repetition problem, our three-step
pipeline-(1) behavioral pattern detection, (2) neu-
ron/head ranking, and (3) targeted ablation- can
generalize well beyond repetition. For example,
one could define a memorization metric (e.g., ver-
batim recovery of training snippets), rank “memo-
rization neurons” via activation-difference or gradi-
ent saliency, and then causally probe them through
segment-level ablations. This approach would sys-
tematically reveal and even steer the neural sub-
strates of memorization, hallucination, or other
emergent behaviors of group-specific skill neurons.
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Limitations

Our study focuses specifically on understanding
the causal role of repetition neurons and induc-
tion heads in LLMs within controlled, synthetic
binary-classification tasks designed to explicitly
test repetitive pattern recognition in ICL. However,
this setup entails several limitations:

• Intervention simplicity: Our method of
zeroing out activations of selected neurons
and heads, while consistent with prior work,
may oversimplify their nuanced functions; ex-
ploring graded activation scaling or neuron-
specific fine-tuning could yield more precise
control.

• Functional attribution: Characterizing repe-
tition neurons as “detectors” or “replicators”
rests solely on performance changes follow-
ing ablation; complementary interpretability
analyses, such as activation tracing or causal
mediation, would further validate these func-
tional attributions.

• Ambiguous functional role of late-layer
neurons: While our ablation and activa-
tion analyses confirm that late-segment repeti-
tion neurons are indispensable for ICL, their
precise computational role remains unclear.
Their high activation and catastrophic impact
upon removal suggest that they act as the fi-
nal executors of pattern-based decisions, but
whether they actively encode pattern seman-
tics or merely amplify upstream signals re-
mains unresolved. Future work could com-
bine causal mediation, activation path tracing,
or controlled probing to disentangle their role
as pattern encoders versus output enforcers.
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A Hardware

All experiments were conducted on NVIDIA A40
GPU (48 GB VRAM). The data-generation process
described in Appendix C requires roughly 15–20
hours, depending on model size. Ablation experi-
ments take about 5 minutes per setting. We used
three random seeds (41, 42, and 43) to assess vari-
ability.

B In-context Learning dataset

Sample for the ICL dataset of each task as in the Ta-
ble 4. For each shot setting, we ensure the uniform
distribution of classes in the demonstration.

C Repetition Neurons Identification

To generate repetitive text following the method-
ology outlined by Hiraoka and Inui (2025), we
begin by sampling the first 10 tokens using the
generate() function with temperature = 1.0.
The remainder of the sequence is generated using
greedy decoding, with a maximum length of 200
tokens. A sample is classified as repetitive if it con-
tains a 10-gram token sequence that repeats three
times at regular intervals within a span of 100 to-
kens. We also applied filters to remove any texts
where fewer than 50 tokens appeared before the
second occurrence of the repeated pattern or fewer
than 50 tokens followed the last repetition. The
distribution of repetition neurons is as in Figure 7.

D Layer-wise Repetition Neuron Ablation

We report recall on two classes after intervening in
three models with 5-shot and 10-shot settings from
Figure 8 to Figure 13.

E Ablation Induction Heads

Table 5 shows the change in the recall when ablat-
ing the top 1% and 3% induction heads of Llama-
3.1-8B. While there is a decreasing trend in Pat-
tern class for both cases, Non-Pattern exhibits nu-
ances. We argue the case of Non-Pattern depends
on model types as in Qwen model, we observe re-
verse trend to Llama. For Pattern, induction heads
have a causal relationship as ablating them reduces
model performance.

We also show the average activation value of
repetition neurons and random neurons in the same
segments when ablating induction heads or random
heads from Table 6 to Table 8. One consistent

trend is that the value of repetition neurons is al-
ways higher than that of random neurons under the
same conditions, which indicates their stronger ac-
tivation for ICL tasks. The gap between the two
groups of neurons increases with the depth of the
layers. For example, while the average activation of
random neurons in Qwen-2.5-7B is around -0.05,
the repetition neurons are recorded with a value
range from 3.8 to 4.3, which are significant gaps.

F Joint Ablation

Results for the other models are illustrated in Fig-
ures 23–25. Across all settings, ablating both rep-
etition neurons and induction heads consistently
reduces the model’s performance most severely on
the Pattern class. This confirms the sequential cas-
cade described in the main sections.

G Text Generation Analysis

Figures 26 and 27 show the results of ablations
on induction heads and repetition neurons in our
repetitive-generation experiments.

Downstream Tasks As in Table 9, we use Posi-
tive and Negative as label for the SST2. In 0-shot
setting, we add the instruction for label as Posi-
tive or Negative for SST2 and to English for the
WMT19. We also provide detail results on SST2
and WMT19 from Tables 10 to 12.
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Table 4: Few-shot prompts and queries for each binary classification task

Task Shots Query Prompt GT

Repetition 5 "U Z U Z" Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. Y
K Y K: Foo I Y P X: Bar X K X K: Foo N L N L: Foo R S R S: Foo U Z U
Z:

Foo

10 "U Z U Z" Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. N
Y N Y: Foo N M Y C: Bar X Y X Y: Foo J Z X W: Bar X Q B V: Bar Z H
Z H: Foo F J F J: Foo E Q E Q: Foo X K X K: Foo W U F Z: Bar U Z U Z:

Foo

Recursion 5 "Q T S H" Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. Z
W W W: Foo W J J J: Foo N T T T: Foo X H B I: Bar I M H W: Bar Q T S
H:

Bar

10 "Q T S H" Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. Y
Y Q F: Bar N P P P: Foo J Q K H: Bar N Q Q Q: Foo M Q Q Q: Foo K O
O O: Foo I Y Y Y: Foo G A R S: Bar T O T Q: Bar A S S S: Foo Q T S H:

Bar

Centre-Embed. 5 "V A S A
V"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. M
L Q L M: Foo K O N O K: Foo W O E O W: Foo Z U J U Z: Foo B C Z X
C: Bar V A S A V:

Foo

10 "V A S A
V"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly. X
C K C X: Foo I N A N I: Foo K H M H K: Foo S X G F W: Bar E U D Z W:
Bar K H Z L N: Bar D G Z K I: Bar A M L M A: Foo V O S Z T: Bar P T
E A O: Bar V A S A V:

Foo

WordSeq1 5 "mango
lion"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.
papaya cat: Foo knee helicopter: Bar carrot drum: Bar kiwi shark: Foo apple
rabbit: Foo mango lion:

Foo

10 "mango
lion"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.
nectarine horse: Foo knee car: Bar broccoli skateboard: Bar ankle helicopter:
Bar papaya fox: Foo fig horse: Foo leg boat: Bar toe accordion: Bar cherry
fox: Foo lettuce skateboard: Bar mango lion:

Foo

WordSeq2 5 "cucumber
plane"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.
lemon dog: Bar beet bicycle: Foo strawberry doctor: Bar bookcase whale:
Bar pea helicopter: Foo cucumber plane:

Foo

10 "cucumber
plane"

Below is a list of various sequences. Your task is to classify each sequence. Use
the examples provided to understand how to classify each sequence correctly.
onion yacht: Foo pea scooter: Foo pea skateboard: Foo celery skateboard:
Foo radish minivan: Foo grape giraffe: Bar potato helicopter: Foo couch
teacher: Bar tomato boat: Foo bed whale: Bar cucumber plane:

Foo

Task Mode Pattern Non-Pattern

5-shot 10-shot 5-shot 10-shot

1 % 3 % 1 % 3 % 1 % 3 % 1 % 3 %

Repetition ind –0.021 –0.643 –0.025 –0.767 –0.171 0.367 –0.444 0.145
ran –0.039 0.055 –0.011 –0.025 0.009 –0.075 –0.041 –0.049

Recursion ind –0.055 –0.721 0.001 –0.771 –0.111 0.371 –0.465 0.187
ran –0.072 0.032 –0.002 –0.029 0.007 –0.072 –0.044 –0.060

Centre-Embedding ind 0.019 –0.577 0.052 –0.754 –0.115 0.429 –0.381 0.379
ran –0.045 0.061 0.009 –0.002 0.025 –0.098 –0.017 –0.021

WordSeq 1 ind 0.015 –0.417 –0.008 –0.531 –0.139 0.189 –0.188 0.032
ran –0.017 0.089 –0.004 –0.025 0.025 –0.059 –0.004 –0.017

WordSeq 2 ind –0.004 –0.453 –0.012 –0.632 –0.115 0.265 –0.229 0.183
ran –0.025 0.073 –0.021 –0.051 0.028 –0.065 –0.017 0.009

Table 5: LlaMA-3.1-8B ∆Recall at 1 % and 3 % head ablation relative to baseline, for 5-shot vs 10-shot.
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Segment Cond. Repetition Recursion Centre-Embedding WSQ1 WSQ2

rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr

[0, 0.2]
normal 0.0689 -0.0585 0.0723 -0.0583 0.0530 -0.0556 0.0427 -0.0607 0.0408 -0.0610
induction 0.0606 -0.0568 0.0595 -0.0566 0.0530 -0.0556 0.0427 -0.0607 0.0408 -0.0610
random 0.0688 -0.0569 0.0697 -0.0569 0.0575 -0.0550 0.0429 -0.0587 0.0407 -0.0590

[0.4, 0.6]
normal 0.2604 -0.1175 0.2636 -0.1166 0.2200 -0.1136 0.2148 -0.1163 0.2128 -0.1163
induction 0.2330 -0.1149 0.2413 -0.1142 0.2250 -0.1120 0.2176 -0.1150 0.2158 -0.1149
random 0.2465 -0.1151 0.2515 -0.1137 0.2330 -0.1104 0.2192 -0.1134 0.2192 -0.1131

[0.8, 1.0]
normal 1.4750 -0.1311 1.4879 -0.1322 1.2582 -0.1153 1.2463 -0.1087 1.2329 -0.1099
induction 1.2685 -0.11545 1.2825 -0.1167 1.2287 -0.1086 1.2139 -0.1026 1.1972 -0.1037
random 1.4239 -0.1267 1.4425 -0.1292 1.2390 -0.1102 1.2304 -0.1030 1.2217 -0.1051

Table 6: Mean activation at the last prompt token by segment (LLama-3.1-8B, K=250). “normal”: no ablation;
“induction”: ablate top 3% induction heads; “random”: ablate 3% random heads. “rep_nr”: top-K repetition neurons
in the segment; “ran_nr”: K random neurons from the same segment.

Segment Cond. Repetition Recursion Centre-Embedding WQS1 WSQ2

rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr

[0, 0.2]
normal -0.0060 -0.0288 -0.0288 -0.0293 -0.0104 -0.0288 -0.0252 -0.0219 -0.0248 -0.0209
induction -0.0065 -0.0288 -0.0288 -0.0293 -0.0109 -0.0288 -0.0257 -0.0217 -0.0254 -0.0207
random -0.0058 -0.0283 -0.0283 -0.0286 -0.0101 -0.0281 -0.0254 -0.0220 -0.0250 -0.0212

[0.4, 0.6]
normal 0.2707 -0.1049 0.1649 -0.1066 0.2274 -0.1021 0.2364 -0.1195 0.2394 -0.1186
induction 0.2354 -0.1023 0.1023 -0.1047 0.1891 -0.1002 0.1940 -0.1187 0.1985 -0.1179
random 0.2544 -0.1030 0.1030 -0.1059 0.2132 -0.1010 0.2217 -0.1168 0.2247 -0.1162

[0.8, 1.0]
normal 4.3277 -0.0515 3.9553 -0.0515 4.2318 -0.0552 4.3482 -0.0541 4.3472 -0.0545
induction 3.9102 -0.0437 3.8471 -0.0467 3.8461 -0.0457 3.9265 -0.0538 3.9449 -0.0405
random 4.2337 -0.0471 4.0471 -0.0493 4.1315 -0.0526 4.2417 -0.0477 4.2411 -0.0499

Table 7: Qwen-2.5-7B: mean activation at the last prompt token by segment, K=250. “normal”: no ablation;
“induction”: ablate top 3% induction heads; “random”: ablate 3% random heads. “rep_nr”: top-K repetition neurons
in the segment; “ran_nr”: K random neurons from the same segment.

Segment Cond. Repetition Recursion Centre-Embedding WSQ1 WSQ2

rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr rep_nr ran_nr

[0, 0.2]
normal 0.1531 -0.0443 0.1609 -0.0437 0.1464 -0.0439 0.1275 -0.0525 0.1288 -0.0520
induction 0.1295 -0.0442 0.1350 -0.0436 0.1231 -0.0439 0.1084 -0.0522 0.1089 -0.0517
random 0.1507 -0.0438 0.1577 -0.0432 0.1436 -0.0434 0.1213 -0.0516 0.1288 -0.0513

[0.4, 0.6]
normal 0.3769 -0.0867 0.3828 -0.0868 0.3617 -0.0862 0.3998 -0.0859 0.3825 -0.0863
induction 0.3733 -0.0815 0.3780 -0.0816 0.3676 -0.0827 0.4026 -0.0865 0.3891 -0.0859
random 0.4397 -0.0842 0.4533 -0.0834 0.4220 -0.0840 0.4464 -0.0842 0.4275 -0.0839

[0.8, 1.0]
normal 0.5938 -0.0764 0.5916 -0.0769 0.5691 -0.0794 0.6775 -0.0736 0.6655 -0.0732
induction 0.4940 -0.0649 0.4923 -0.0654 0.4823 -0.0668 0.5476 -0.0683 0.5385 -0.0662
random 0.5784 -0.0717 0.5860 -0.0723 0.5559 -0.0746 0.6319 -0.0689 0.6204 -0.0683

Table 8: Llama-2-13B: mean activation at the last prompt token by segment/condition, K=250. “normal”:
no ablation; “induction”: ablate top 3% induction heads; “random”: ablate 3% random heads. “rep_nr”: top-K
repetition neurons in the segment; “ran_nr”: K random neurons from the same segment.
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Table 9: Few-shot prompts and queries for SST2 and WMT19 tasks

Task Shots Query Prompt GT

SST2 0 "that loves its
characters and
communicates
something rather
beautiful about
human nature"

Classify the review according to its senti-
ment (Positive or Negative). Review: <
query > Sentiment:

Positive

5 "uneven film" Classify the review according to its senti-
ment (Positive or Negative). Review: <
demo_1 > Sentiment: < label_1 >
...(5 − shot) Review: < query > Sen-
timent:

Negative

WMT19 0 "Wiederaufnahme der
Sitzungsperiode"

Below is a list of various sequences. Your
task is to translate from source language to
English as target language . Source: <
query > Target:

Resumption of the session

5 "Vielen Dank, Herr
Barón Crespo."

Below is a list of various sequences. Your
task is to translate from source language to
English as target language . Source: <
demo_1 > Target: < label_1 > ...(5 −
shot) Source: < query > Target:

Thank you, Mr Barón Crespo.

Model Shot Full model Segment [0.0,0.2] Segment [0.4,0.6] Segment [0.8,1.0]

LLaMA-3.1-8B 0 0.891 0.888 0.890 0.894
LLaMA-3.1-8B 5 0.889 0.891 0.896 0.857
Qwen-2.5-7B 0 0.948 0.942 0.952 0.933
Qwen-2.5-7B 5 0.935 0.933 0.937 0.932
LLaMA-2-13B 0 0.810 0.819 0.831 0.839
LLaMA-2-13B 5 0.942 0.940 0.938 0.937

Table 10: F1-score of ablation of 250 repetition neurons in SST-2 (1,000 samples, 500 per class). Ablating repetition
neurons from middle layers usually maintains performance, while those from last layers are less stable.

BLEU ROUGE-L Distinct-2 BERTScore (F1)
Model Shot (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

LLaMA-3.1-8B 0 -0.804 0.185 0.047 -0.186 0.080 0.300 -0.004 -0.003 -0.005 -0.003 -0.001 0.000
LLaMA-3.1-8B 5 -0.622 -0.164 -0.199 -0.552 0.008 0.182 -0.005 -0.003 -0.003 -0.001 0.000 0.000
Qwen-2.5-7B 0 0.976 0.356 0.620 5.601 0.260 0.744 0.040 0.037 0.021 0.004 -0.002 0.001
Qwen-2.5-7B 5 -0.465 0.412 0.405 -0.369 0.192 0.220 -0.001 -0.008 0.001 -0.001 0.000 -0.001
LLaMA-2-13B 0 0.969 -0.495 1.726 1.034 -0.274 2.924 0.001 0.003 -0.006 0.005 0.000 0.012
LLaMA-2-13B 5 0.031 -0.186 -0.451 -0.442 -0.194 -0.585 0.000 0.002 0.006 0.000 0.000 0.000

Table 11: Change in model performance (after–before) when ablating 250 repetition neurons in middle-layers
[0.4,0.6] on WMT19 (1050 samples: cs-en (1), de-en (2), zh–en (3)).

BLEU ROUGE-L Distinct-2 BERTScore (F1)
Model Shot (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

LLaMA-3.1-8B 0 -12.048 -6.747 -5.810 -12.859 -8.905 -4.561 -0.010 -0.060 -0.070 -0.049 -0.036 -0.017
LLaMA-3.1-8B 5 -4.033 -3.552 -8.249 -2.409 -3.915 -7.532 -0.013 -0.042 -0.065 -0.004 -0.006 -0.013
Qwen-2.5-7B 0 0.660 2.899 2.055 3.030 5.196 3.076 -0.001 0.105 0.083 0.005 0.013 0.007
Qwen-2.5-7B 5 -0.500 -0.591 0.368 -0.044 -0.569 -0.139 0.029 0.018 0.028 -0.002 -0.001 0.002
LLaMA-2-13B 0 0.772 -0.027 0.886 3.593 -0.174 0.762 0.000 -0.007 -0.060 0.003 -0.003 0.013
LLaMA-2-13B 5 0.269 0.257 -0.821 -0.356 -0.072 -0.891 -0.007 -0.011 -0.007 -0.001 0.000 -0.001

Table 12: Change in model performance (after–before) when ablating 250 repetition neurons in last-segment layers
[0.8,1.0] on WMT19 (1,050 samples: cs–en (1), de–en (2), zh–en (3)).
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(a) LLaMA-3.1-8B

(b) Qwen-2.5-7B

(c) LLaMA-2-13B

Figure 7: Layer-wise distribution of repetition neurons
across three models. For each top-K threshold (250,
500, 1000, 1250) ranked by ∆n, we count how many
repetition neurons fall into each relative layer position
(0 = first layer; 1 = last layer). The y-axis shows the
number of repetition neurons per layer.
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Figure 8: LlaMA-3.1-8B performance after ablating layer-wise neurons on two classes in 10-shot setting

Figure 9: Qwen2.5-7B performance after ablating layer-wise neurons on two classes in 10-shot setting

Figure 10: LlaMA-2-13B performance after ablating layer-wise neurons on two classes in 10-shot setting
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Figure 11: LlaMA-3.1-8B performance after ablating layer-wise neurons on two classes in 5-shot setting

Figure 12: Qwen2.5-7B performance after ablating layer-wise neurons on two classes in 5-shot setting

Figure 13: LlaMA-2-13B performance after ablating layer-wise neurons on two classes in 5-shot setting

2871



Figure 14: Llama-3.1-8B performance after ablating induction heads with top highest prefix scores in 5-shot setting

Figure 15: LlaMA-3.1-8B performance after ablating induction heads with top highest prefix scores in 10-shot
setting

Figure 16: LlaMA-3.1-8B performance after ablating induction heads with the top highest prefix scores on two
classes in the 5-shot setting.
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Figure 17: Qwen2.5-7B performance after ablating induction heads with top highest prefix scores in 10-shot setting

Figure 18: Qwen2.5-7B performance after ablating induction heads with top highest prefix scores in 5-shot setting

Figure 19: Qwen2.5-7B performance after ablating induction heads with top highest prefix scores on two classes in
5-shot setting
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Figure 20: Qwen2.5-7B performance after ablating induction heads with top highest prefix scores on two classes in
10-shot setting

Figure 21: LlaMA-2-13B performance after ablating induction heads with top highest prefix scores in 10-shot
setting

Figure 22: LlaMA-2-13B performance after ablating induction heads with top highest prefix scores on two classes
in 10-shot setting
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Figure 23: Change in LlaMA-3.1-8B recall (∆Recall)
for Pattern (blue) and Non-Pattern (orange) inputs on
five tasks—rep, rec, ceb, wsq1, wsq2—under four joint-
ablation regimes: (a) repetition neurons(top 250 from
final segment [0.8–1.0]) × induction heads (top 3% by
prefix-matching score), (b) repetition neurons × random
heads, (c) random neurons × induction heads, and (d)
random neurons × random heads with 5-shot

Figure 24: Change in Qwen2.5-7B recall (∆Recall)
for Pattern (blue) and Non-Pattern (orange) inputs on
five tasks—rep, rec, ceb, wsq1, wsq2—under four joint-
ablation regimes: (a) repetition neurons(top 250 from
final segment [0.8–1.0]) × induction heads (top 3% by
prefix-matching score), (b) repetition neurons × random
heads, (c) random neurons × induction heads, and (d)
random neurons × random heads with 10-shot
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Figure 25: Change in LlaMA-2-13B recall (∆Recall)
for Pattern (blue) and Non-Pattern (orange) inputs on
five tasks—rep, rec, ceb, wsq1, wsq2—under four joint-
ablation regimes: (a) repetition neurons(top 250 from
final segment [0.8–1.0]) × induction heads (top 3% by
prefix-matching score), (b) repetition neurons × random
heads, (c) random neurons × induction heads, and (d)
random neurons × random heads with 10-shot

Figure 26: Effect of ablating repetition neurons and
attention heads on generated repetition text in Qwen-
2.5-7B

Figure 27: Effect of ablating repetition neurons and
attention heads on generated repetition text in LlaMA-
2-13B
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