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Abstract

Multimodal emotion recognition (MER) plays
a crucial role in human-centric Al applica-
tions, yet existing models struggle in low-
resource scenarios due to their heavy re-
liance on large amounts of high-quality la-
beled data. To address this challenge, we pro-
pose Adaptive Collaborative Labeling for Low-
Resource MER (ACL-MER), a novel frame-
work that leverages off-the-shelf multimodal
large language models (MLLMs) to effec-
tively exploit abundant unlabeled data. Specifi-
cally, ACL-MER incorporates a diverse teacher
model zoo, wherein each MLLM specializes in
a specific modality and is prompted to generate
chain-of-thought predictions accompanied by
scalar confidence scores. Rather than directly
adopting these pseudo-labels, ACL-MER in-
troduces an adaptive refinement strategy that
selectively distills knowledge based on teacher
confidence, iteratively guiding the lightweight
student model toward robust learning under lim-
ited supervision. Extensive experiments on two
benchmarks demonstrate that ACL-MER con-
sistently outperforms strong baselines, espe-
cially in extremely low-resource settings.

1 Introduction

Multimodal emotion recognition (MER) is a key
technology that enables machines to comprehend
and respond to human emotions, with broad appli-
cations in human-computer interaction, emotional
support, and intelligent education(Zhao et al., 2021;
Lai et al., 2023; Yang et al., 2024). Despite its po-
tential, the development of high-performing MER
systems remains heavily dependent on large-scale,
high-quality labeled datasets (Zhang et al., 2022;
Shi and Huang, 2023; Zheng et al., 2023). How-
ever, the creation of such datasets is both labor-
intensive and time-consuming, particularly due to
the complexity and individual variability of emo-
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Figure 1: Performance of the model on the
MER2023(Lian et al., 2023) and CHERMA(Sun et al.,
2023) dataset across varying sizes of labeled training
data. Both Accuracy and F1-score exhibit a substan-
tial drop when only a few hundred labeled samples are
available, indicating the limitations of pseudo-labeling
in low-resource scenarios.

tional expressions (Kang and Shaver, 2004; Lian
et al., 2025).

To reduce reliance on labeled data, pseudo-
labeling(Lee et al., 2013) has become a widely
adopted semi-supervised learning strategy. It starts
with a small labeled seed set and trains an ini-
tial model to assign pseudo-labels to unlabeled
samples, thereby effectively expanding the train-
ing set in a self-supervised manner (Cascante-
Bonilla et al., 2021; Kage et al., 2024). However,
when the initial labeled data is limited, the pseudo-
labels tend to be noisy and unreliable, leading to
error propagation and degraded performance in
subsequent training iterations(Arazo et al., 2020).
To illustrate this limitation, we conducted exper-
iments using the same feature extraction meth-
ods and MER model as MERBench (Lian et al.,
2024b) with varying amounts of labeled data on the
MER2023 (Lian et al., 2023) and CHERMA (Sun
et al., 2023) datasets. Details can be found in the
Appendix B. As shown in Figure 1, performance
sharply declined when the model was trained with
only 100 to 200 labeled samples. This highlights
a core limitation of conventional pseudo-labeling:
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Type Models

T=5 T=4
Proportion Accuracy Proportion Accuracy

Audio LLM  Qwen2-Audio-7B (Chu et al., 2024)
Vision LLM  Qwen2-VL-7B (Wang et al., 2024a)

11.3% 0.7872 98.5% 0.5124
24.3% 0.7734 85.2% 0.3653

Table 1: Proportion—Accuracy trade-off of modality-specialized MLLMs on MER2023 (test set). For a confidence
threshold 7, Proportion is the percentage of samples with confifence ¢ > 7, and Accuracy is the classification

accuracy on this subset using ground-truth labels.

it struggles to produce reliable supervision when
labeled data is extremely scarce.

The emergence of multimodal large language
models (MLLMs) (Wu et al., 2023; Yin et al., 2023;
Caffagni et al., 2024) offers new opportunities for
enhancing pseudo-label generation. These models
demonstrate strong perceptual and reasoning capa-
bilities across modalities, and can generate emotion
predictions in a zero-shot or few-shot manner(Hurst
et al., 2024; Wang et al., 2024a; Comanici et al.,
2025). In particular, recent advances have produced
a variety of modality-specialized MLLMs (e.g.,
for audio, vision, and text), each exhibiting high
competence within its domain. To explore this po-
tential, we evaluate modality-specific MLLMs on
the MER2023, prompting each model to generate
emotion predictions along with scalar confidence
scores. As shown in Table 1, high-confidence out-
puts (confidence = 5) achieve Accuracy above 0.77,
outperforming small models trained on 500 labeled
samples. However, these predictions only cover a
limited portion of the data (e.g., 11.3% for audio,
24.3% for vision), and Accuracy degrades sharply
when lower-confidence outputs are included. These
observations suggest that while MLLMs can offer
valuable supervision, their coverage is limited and
their reliability is confidence-dependent.

Motivated by these findings, we introduce ACL-
MER, a novel framework for Adaptive Collabora-
tive Labeling tailored to low-resource MER scenar-
i0s. ACL-MER orchestrates a teacher model zoo
composed of multiple modality-specific MLLMs.
Each teacher is prompted using chain-of-thought
(CoT) instructions (Wei et al., 2022), producing
emotion predictions alongside scalar confidence
scores. Rather than directly adopting the MLLM
outputs as hard pseudo-labels, ACL-MER employs
an adaptive collaboration strategy: it utilizes the
confidence scores to selectively refine the prob-
ability predictions of the smaller student model.
Specifically, based on the confidence scores, the
outputs of the MLLMs collaboratively inform the
refinement process, adjusting the student model’s

probability estimates. This adaptive refinement,
informed by the collaborative insights of multiple
MLLMs, distills knowledge from the teacher mod-
els into the smaller model, ultimately generating
more robust pseudo-labels for training. Our main
contributions can be summarized as follows:

* We propose ACL-MER, an adaptive collab-
orative labeling framework that integrates
multiple modality-specific MLLMs with a
lightweight student model to enhance pseudo-
label quality for low-resource MER.

* We introduce a novel adaptive collaborative
mechanism that refines the student model’s
predictions by selectively incorporating in-
sights from multiple MLLMs, leading to more
accurate and robust pseudo-label generation.

 Sufficient experiments on MER2023 and
CHERMA demonstrate that ACL-MER
achieves superior performance, outperform-
ing strong baselines in both single-teacher and
conventional pseudo-labeling settings.

2 Related Work

Low-Resource Multimodal Emotion Recogni-
tion The challenge of limited labeled data in
MER has driven research into various strategies.
Cross-modal distillation (Albanie et al., 2018)
transfers knowledge from a well-resourced modal-
ity to a less-resourced one. However, this approach
necessitates labeled data in at least one modality.
Liang et al. (Liang et al., 2020) leverage unlabeled
data through cross-modal distribution matching,
assuming consistent emotional states across modal-
ities within utterances. Similarly, Chen et al. (Chen
etal., 2023) apply a class-balanced pseudo-label ap-
proach in MER, selecting high-confidence pseudo-
labels based on inter-modal classifier consistency.
While these existing methods effectively exploit un-
labeled data, they still depend on a certain amount
of labeled data for initial training or supervision. In
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movements, environmental context, and other cues in the video to analyze information related
to personal emotions...

Response: Description: The speaker had a smile on her face, showing her teeth while speaking,
indicating a cheerful mood...

Confidence: 5

Prompt: As an expert in the field of emotion, please focus on facial expressions, body
Emotion: happy

Figure 2: Framework of ACL-MER. (Left)The iterative process of ACL-MER consists of three stages. (Right)
The ACL module details how a Teacher Model Zoo produces confidence-scored predictions, which then refine the
student model’s probability distribution to generate high-quality pseudo-labels.

contrast, our proposed method demonstrates effec-
tiveness even in extremely low-resource scenarios,
with only several hundred labeled samples.

Multimodal Emotion Recognition with Large
Language Models Leveraging the capabilities
of MLLMs (Wu et al., 2023; Yin et al., 2023) is
a promising direction for improving MER. For in-
stance, Wang et al. (Wang et al., 2024b) prompt
MLLMs to incorporate world knowledge for im-
proved multimodal sentiment analysis. Wu et al.
(Wu et al., 2024) utilize MLLMs to transform raw
audio and visual data into textual emotional descrip-
tions, thereby amplifying their emotional features.
Furthermore, Lian et al. (Lian et al., 2024a) lever-
age MLLMs to generate diverse clues that aid in
manual emotion label annotation. Other research,
such as Cheng et al. (Cheng et al., 2024b) and Zhao
et al. (Zhao et al., 2025), focuses on fine-tuning
or reinforcement learning with MLLMs for MER
tasks. In contrast, our work investigates prompting
off-the-shelf MLLMs for direct emotion prediction
and employs a confidence-based collaboration with
a MER model to generate more reliable pseudo-
labels.

3 Methodology

This section details our proposed ACL-MER. This
method aims to address the performance limita-
tions of traditional pseudo-labeling methods when
labeled data is scarce.

3.1 Problem Definition

Given a small labeled dataset D; = {(z4, yi) }24,
and a large unlabeled dataset D, = {x;},, our
goal is to train a robust MER model. Each sam-
ple z; comprises multimodal information from
acoustic (z), visual (z}), and textual (acﬁ) modali-
ties. The emotion label y; is drawn from a prede-
fined label space y; € {1,2,...,C}. We assume
|Dy| > | Dy, characterizing a low-resource setting.

3.2 Overview of ACL-MER

As illustrated in Figure 2, ACL-MER iteratively
enhances a student model through an adaptive col-
laboration framework with MLLMs. Each itera-
tion includes: (1) training a small model on the
current labeled data, (2) refining the model’s prob-
ability distribution using MLLM confidence scores
to generate pseudo-labels, and (3) retraining with
high-confidence pseudo-labels. This iterative pro-
cess, with model re-initialization, continues until a
stopping criterion is met, mitigating concept drift
(Cascante-Bonilla et al., 2021).

3.3 Initial Student Model Training

We begin the training process by training a stu-
dent model on the limited labeled dataset D; =
{(acz,yz)}Z - The student model encompasses
three key components: feature extraction, multi-
modal fusion, and model optimization.

Feature Extraction. For each input z;, we ex-
tract visual (F?), acoustic (F}), and textual (F})
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features using modality-specific pre-trained en-
coders:

F™ = Encoder,,(z) € R*™, m € {v,a,t}
(1

where d,, dg, and d; are the corresponding fea-
ture dimensions.

Multimodal Fusion. The extracted features are
then fused using a multimodal fusion module:

F; = MultimodalFusion(F?, 2, FY) € R (2)
§j; = Softmax(MLP(F})) € RY (3)

We explore various fusion models in our experi-
ments.

Training Objective. The student model is
trained by minimizing the cross-entropy loss:

1 N C
L=—3r 2D viclog(iic) )

i=1 c=1
where g;. is the predicted probability and ;. is
the ground-truth label. This provides a basis for
generating pseudo-labels in the subsequent stages.

3.4 Adaptive Collaborative Labeling

The module of Adaptive Collaborative Labeling
(ACL) is the core component of our approach, de-
signed to generate high-quality pseudo-labels by
leveraging the diverse knowledge and reasoning ca-
pabilities of multiple MLLMs. This module oper-
ates iteratively, refining the student model’s predic-
tions through collaborative knowledge distillation.

Teacher Model Zoo. The ACL module em-
ploys a teacher model zoo 7 = {11, 15, ..., Ty},
where each T, represents a different MLLM.
These models can vary in architecture, training
data, and modalities they emphasize.

Prompt-Based Inference with MLLMs. For
each teacher model T,,, a suitable prompt F;
is manually designed. By employing chain-of-
thought prompting, we aim to elicit step-by-step
reasoning from the model, enabling it to produce
output labels accompanied by their associated con-
fidence scores. The output of each teacher model
T, can be represented as:

where y;,, is the predicted emotion label and
cim 18 a self-estimated confidence score ranging

from 1 to 5. Since the output of each teacher model
depends solely on the input sample, such inference
is performed only once, thereby ensuring the effi-
ciency of our method.

Probability Refinement. Given student model
probabilities Ps(y;|Z;), we refine it based on the
teacher’s confidence. We introduce a confidence
threshold ¢; and a probability adjustment value
pe. If i > c¢¢, we adjust the probability of the
predicted label y;,,. The refinement process can be
formulated as:

Py(9il#:) =
Ps(?)z|jz) + Dt lfy = Yim and ¢;, > ¢
s . (0)
Py(9i)Z:), otherwise
where P/(y;|;) is the refined probability distribu-
tion.
The p; is dynamically adjusted across iterations
(t). This adjustment aims to gradually reduce the in-
fluence of the teacher models as the student learns

and becomes more proficient.Specifically, p; is de-
fined as:

pr = max(Pinit — Y - t, Pmin) @)

where pinit, v, and pp;, are initial adjustment, de-
cay rate, and lower bound, respectively.

Pseudo-Label Selection. After refinement, we
select high-confidence predictions as pseudo-labels.
A sample z; is selected if:

where 0 is a selection threshold. To mitigate class
imbalance, we select up to top_k samples per class
y with highest P!(7;|Z;) values. The selected sam-
ples form the set L.

Dataset Update. The labeled dataset D; and
unlabeled dataset D,, are updated using the selected
pseudo-labeled data £. Specifically, £ is moved
from D, to Dy, represented as:

DIl =DluL ©)

DIt =Dl \ L (10)

This iterative process allows the student model
to learn from increasingly larger and more reliable
sets of labeled data, thereby improving its perfor-
mance over time.
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MER2023 CHERMA

Emotion Train&Val Test Unlabeled Emotion Train&Val Test Unlabeled
neutral 259 166 - neutral 211 1216
angry 244 183 - angry 208 1128
happy 204 169 - sad 181 1002
worried 137 45 - happy 123 715
sad 113 257 - disgust 112 633
surprise 43 14 - surprise 98 552
- - - - fear 67 420

Total 1000 834 73148 1000 5666 15918

Table 2: Statistics of data samples for MER2023 and CHERMA dataset.

4 Experiments

4.1 Experimental Setup

Datasets We conducted experiments using two
widely-used Chinese multimodal emotion recog-
nition datasets: MER2023 (Lian et al., 2023) and
CHERMA(Sun et al., 2023). Dataset statistics are
detailed in Table 2. Low-resource scenarios were
simulated by sampling 100, 200, 500, and 1000
instances from the original Train sets, maintaining
class distributions. For CHERMA, unused training
data was treated as unlabeled.

Evaluation Metrics We use the weighted av-
erage Fl-score and Accuracy as evaluation met-
rics(Powers, 2020). The weighted average F1-
score better reflects the model’s performance on
imbalanced datasets, while Accuracy measures the
model’s overall classification accuracy.

Implementation Details Audio, text, and vi-
sual features were extracted using HUBERT-large
(Hsu et al., 2021), RoBERTa-large (Liu et al.,
2019), and CLIP-large (Radford et al., 2021) mod-
els, respectively. Qwen2-Audio-7B-Instruct (Chu
et al., 2024), Qwen2-VL-7B-Instruct (Wang et al.,
2024a), and Qwen2.5-7B-Instruct (Team, 2024)
were used as teacher models. The hyperparame-
ters were set as follows: ppmin = 0.2, pinie = 0.6,
v = 0.1, 8 = 0.995, and top_k = 200. All ex-
periments were conducted on a Tesla V100 GPU.
Further details can be found in the Appendix D.

Baselines To thoroughly evaluate ACL-MER, we
conduct experiments using several established base
models, including a standard attention mechanism
(Vaswani, 2017), MMIM (Han et al., 2021), and
LMF (Liu et al., 2018). More detailed descriptions
of these works can be found in the Appendix C.

Furthermore, we compare our method against
various pseudo-labeling strategies,with all hyperpa-
rameters matching those of ACL-MER:

* No Pseudo-Labeling(No PL): This baseline
trains the model exclusively on the available
labeled data, without incorporating any unla-
beled samples.

* Teacher-only Pseudo-Labeling(T-PL): This
approach directly uses predictions from
MLLMs as pseudo-labels for unlabeled data.

* Student-only Pseudo-Labeling(S-PL): This
baseline employs a student model to gener-
ate pseudo-labels for unlabeled data, specifi-
cally using the class-balanced pseudo-labeling
method (Chen et al., 2023).

4.2 Main Results

Table 3 presents the performance of our pro-
posed ACL-MER compared to various baselines
under different levels of labeled data on both the
MER?2023 and CHERMA datasets.

Overall Performance of ACL-MER Our pro-
posed ACL-MER consistently achieves superior
performance across all experimental settings, out-
performing the baselines in both F1-score and Ac-
curacy. This highlights the effectiveness of our
adaptive collaborative labeling framework, partic-
ularly in low-resource scenarios. For instance, on
the MER2023 dataset with only 100 labeled sam-
ples(line 4), ACL-MER with the Attention base
model achieves an F1-score of 0.6753 and an Accu-
racy of 0.6775, significantly surpassing other meth-
ods. Similar trends are observed for other base
models and on CHERMA dataset, demonstrating
the robustness and generalizability of ACL-MER.

Comparison with Pseudo-Labeling Strategies
Limitations of No PL: As anticipated, training ex-
clusively on limited labeled data (No PL) resulted
in the lowest performance, highlighting the critical
need for semi-supervised learning in low-resource
MER.
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No. _Base Niabelea=100

Niabelea=200

Niabelea=500 Niabelea=1000

Model Method
Fl-score Acc Fl-score Acc Fl-score Acc Fl-score Acc
Dataset: MER2023
1 No PL 0.4042 0.4317 0.5948 0.5731 0.7510 0.7494 0.8213 0.8261
2 Attention T-PL 0.6626 0.6738 0.7107 0.7206 0.7659 0.7734 0.8094 0.8189
3 S-PL 0.5320 0.5432 0.6868 0.6679 0.7692 0.7698 0.8368 0.8393
4 ACL-MER 0.6753 0.6775 0.7672 0.7674 0.8255 0.8273 0.8416 0.8489
5 No PL 0.3994 04185 05114 0.4964 0.7529 0.7494 0.8085 0.8129
6 MMIM T-PL 0.5578 0.5679 0.6690 0.6734 0.7558 0.7674 0.7921 0.8022
7 S-PL 0.3389 0.4029 0.6160 0.5851 0.7739 0.7734 0.8032 0.8070
8 ACL-MER 0.5713 0.6007 0.6805 0.6847 0.8183 0.8237 0.8339 0.8417
9 No PL 0.3344 0.3729 0.5425 0.5312 0.7825 0.7830 0.8215 0.8213
10 LMF T-PL 0.4914 0.5022 0.5122 0.5266 0.7691 0.7758 0.8040 0.8118
11 S-PL 0.4468 04796 0.5541 0.5528 0.7823 0.7926 0.8171 0.8249
12 ACL-MER 04867 0.5120 0.5556 0.5612 0.8018 0.8141 0.8255 0.8321
Dataset: CHERMA
13 No PL 0.3764 0.3890 0.4743 0.4852 0.5905 0.5951 0.6345 0.6364
14 Attention T-PL 0.5243  0.5451 0.5311 0.5605 0.5686 0.5957 0.6225 0.6315
15 S-PL 0.4194 04278 0.4927 0.5102 0.6070 0.6092 0.6431 0.6430
16 ACL-MER 0.5315 0.5549 0.5815 0.6045 0.6328 0.6382 0.6508 0.6585
17 No PL 0.3744  0.4199 04643 04703 05411 0.5443 0.6059 0.6080
18 MMIM T-PL 0.5107 0.5383 0.5184 0.5464 0.5601 0.5851 0.5958 0.6158
19 S-PL 0.3954 0.4132 04501 0.4571 0.5659 0.5731 0.6093 0.6096
20 ACL-MER 0.5120 0.5424 0.5342 0.5579 0.6050 0.6179 0.6352 0.6408
21 No PL 0.2744 0.3648 0.4174 0.4412 05360 0.5413 0.5956 0.5974
22 LMF T-PL 0.4034 0.4420 0.5236 0.5454 0.5491 0.5777 0.5968 0.6092
23 S-PL 04111 04218 0.4828 0.4748 0.5359 0.5392 0.6050 0.6017
24 ACL-MER 04118 0.4753 0.5431 0.5508 0.5852 0.5928 0.6226 0.6242

Table 3: Comparison of different baselines on the MER2023 and CHERMA datasets with varying labeled data sizes.
Base Model refers to the architecture of the student model used to perform the MER task. Method refers to the
different Pseudo-Labeling Strategies employed. No PL:No Pseudo-Labeling. T-PL:Teacher-only Pseudo-Labeling.

S-PL:Student-only Pseudo-Labeling. Acc: Accuracy.
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Figure 3: Impact of labeled data size on method perfor-
mance on the CHERMA dataset.

Limitations of T-PL: As shown in Table 3, T-PL
offers a clear advantage over both No PL and S-
PL in extremely low-resource settings (e.g., lines 2
vs. 1, 3 when Njgpe1eq=100 or 200). This indicates
that even the direct, confidence-based outputs from
MLLMs can provide a valuable initial supervisory
signal when labeled data is extremely scarce. How-
ever, T-PL’s performance advantage diminishes sig-

nificantly with more labeled data, aligning with our
premise that directly using MLLM outputs as hard
pseudo-labels has inherent limitations. In contrast,
ACL-MER’s adaptive refinement strategy more ef-
fectively leverages MLLM knowledge by refining
the student model’s output probabilities.

Limitations of S-PL: S-PL generally performs
better than No PL, demonstrating the value of con-
ventional pseudo-labeling. However, it often strug-
gles in the most extreme low-resource settings
(Nigbelea=100), where the initial student model
is weak, leading to error propagation. For in-
stance(line 7 vs 8), S-PL with MMIM on MER2023
(Niabelea=100) yields a significantly lower F1-
score (0.3389) compared to ACL-MER (0.5713).
ACL-MER’s strength lies in its ability to refine the
student’s predictions with high-confidence MLLM
outputs, thereby generating more reliable pseudo-
labels from the outset.

Impact of Labeled Data Size Figure 3 visu-
ally illustrates the performance of ACL-MER com-
pared to other baselines across varying labeled data
sizes. Notably, the performance gap between ACL-
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Figure 4: Performance evolution over iterations on the CHERMA dataset with Njgpeieq=500.

MER and other baselines is most pronounced in
extremely low-resource settings (Njgpereq=100 or
200). This indicates that ACL-MER’s adaptive re-
finement strategy, which leverages MLLM knowl-
edge and iteratively guides the student model, is
particularly effective when high-quality labeled
data is scarce, mitigating the challenges of noisy
pseudo-labels in such environments.

Performance across Different Base Models
ACL-MER consistently boosted the performance
of all tested base models (Attention, MMIM, and
LMF). This highlights our framework’s adaptabil-
ity and compatibility with various multimodal fu-
sion architectures. While the absolute perfor-
mance differed among base models, ACL-MER
consistently delivered significant improvements
over baselines, proving its general utility.

4.3 Ablation Studies

To comprehensively understand the contribution of
each key component within ACL-MER, we con-
ducted several ablation studies.

4.3.1 Impact of Iterative Refinement

To illustrate the effectiveness of our iterative adap-
tive refinement strategy, we analyze the perfor-
mance of ACL-MER and S-PL over successive
training iterations on the CHERMA dataset with
Nigbelea=500. As depicted in Figure 4, the F1-score
and Accuracy of both methods are plotted against
the number of iterations.

Figure 4 reveals several key insights. Firstly,
ACL-MER consistently exhibits a more stable and
monotonic increase in performance (both F1-score
and Accuracy) across iterations compared to S-PL.
While S-PL shows initial gains, its performance
curve often fluctuates more, particularly in early
iterations. This suggests that S-PL’s pseudo-labels

are less reliable and more prone to error propaga-
tion, a common challenge when relying solely on a
small student model for self-supervision.

Secondly, ACL-MER achieves significantly
higher final performance after a few iterations. For
instance, with the Attention base model, ACL-
MER reaches a considerably higher F1-score and
Accuracy by the 5th iteration compared to S-PL.
This demonstrates that our adaptive refinement
strategy, by selectively distilling knowledge from
high-confidence MLLM predictions and collabora-
tively guiding the student model, generates more
robust and accurate pseudo-labels throughout the
iterative training process. This leads to a more ef-
fective and stable learning process for the student
model, enabling it to converge to superior perfor-
mance by effectively leveraging the powerful, yet
confidence-dependent, insights from MLLMs with-
out succumbing to the noise prevalent in unrefined
pseudo-labeling.

4.3.2 Contribution of Teacher Model Zoo

To evaluate the benefits of orchestrating a diverse
teacher model zoo, we conducted an ablation study.
This study compared the full ACL-MER frame-
work (which leverages audio, visual, and textual
MLLMs) against variants that utilize only a single
modality-specific MLLM as a teacher. For com-
prehensive comparison, we also included a variant
that uses Qwen2.5-Omni-3B(Jin Xu, 2025) as a
single omni-modal MLLM. Further details are pro-
vided in the Appendix E. This experiment aims
to demonstrate whether the collective intelligence
from specialized MLLMs provides a superior su-
pervisory signal compared to relying on a singular
source. The results on the CHERMA dataset across
varying labeled data sizes are presented in Table 4.

The results generally indicate that ACL-MER
(Full), which incorporates a diverse teacher model
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Base Niabelea=100

Niabelea=200 Niabelea=500  Niapelea=1000

No. Model Method
Fl-score Acc Fl-score Acc Fl-score Acc Fl-score Acc
1 ACL-MER (Full) 0.5315 0.5549 0.5815 0.6045 0.6328 0.6382 0.6508 0.6585
2 Audio-only T. 0.4435 04912 0.5791 0.5974 0.5910 0.6029 0.6429 0.6460
3 Attention Vision-only T. 0.4994 0.5519 0.5673 0.5830 0.6231 0.6336 0.6535 0.6543
4 Text-only T. 0.4794 05327 0.5568 0.5770 0.6221 0.6361 0.6527 0.6543
5 Omni-modal T. 0.4894 0.5208 0.5709 0.5717 0.6216 0.6267 0.6504 0.6539
6 ACL-MER (Full) 0.5120 0.5424 0.5342 0.5579 0.6050 0.6179 0.6352 0.6408
7 Audio-only T. 0.3817 0.4448 0.4535 04797 0.5488 0.5577 0.6109 0.6105
8 MMIM  Vision-only T. 0.4408 0.4991 0.5063 0.5323 0.5869 0.5918 0.6262 0.6292
9 Text-only T. 0.4509 0.5049 0.5192 0.5425 0.5862 0.5981 0.6262 0.6292
10 Omni-modal T. 0.4522 0.4951 0.5232 0.5397 0.5992 0.6048 0.6233 0.6267
11 ACL-MER (Full) 04118 0.4753 0.5431 0.5508 0.5852 0.5928 0.6226 0.6242
12 Audio-only T. 0.3245 0.4331 04098 0.4783 0.5588 0.5683 0.5979 0.6029
13 LMF Vision-only T. 0.4022 0.4764 04737 0.5150 0.5799 0.5858 0.6222 0.6262
14 Text-only T. 0.3916 0.4356 0.4519 0.5180 0.5740 0.5817 0.6103 0.6107
15 Omni-modal T. 0.3317 0.4223 04529 0.5009 0.5850 0.5916 0.6148 0.6209

Table 4: Performance contribution of the teacher model zoo on CHERMA dataset. T. indicates Teacher.

700, largely achieves superior performance in most
situations. This underscores the crucial role of
collaborative knowledge distillation from multiple,
specialized MLLMs.

Superiority of Multi-modal Teacher Ensem-
ble: ACL-MER (Full) consistently outperforms
all single-teacher variants (Audio-only T., Vision-
only T., Text-only T., and Omni-modal T.). For
instance, with Nj,pe1eq=100 and the Attention base
model(line 1-5), ACL-MER (Full) achieves an F1-
score of 0.5315, significantly higher than 0.4435
(Audio-only T.), 0.4994 (Vision-only T.), 0.4794
(Text-only T.), and 0.4894 (Omni-modal T.). Sim-
ilar improvements are observed across all data
sizes and base models. This suggests that different
modality-specific MLLMs capture complementary
aspects of emotional expression, and their com-
bined insights lead to more robust and accurate
pseudo-labels.

Limitations of Single-Modality Teachers:
While individual modality-specific teachers can of-
fer valuable supervision (often outperforming "No
PL" and sometimes "S-PL" from Table 3), their
performance is limited by their singular focus. For
example, relying solely on audio-only or text-only
teachers, especially in extremely low-resource set-
tings, can lead to sub-optimal performance, as these
teachers might miss crucial cues present in other
modalities.

Limitations of Omni-modal Teacher: The
"Omni-modal T." variant, which uses a single
MLLM designed for general multimodal under-
standing, also underperforms the full ACL-MER.
While omni-modal MLLMs can process audio, vi-
sual, and textual inputs simultaneously, this often
comes with a high computational cost. To man-

age this, we had to opt for smaller model sizes
for processing data, which can inherently degrade
performance. Furthermore, a single omni-modal
model might not possess the specialized expertise
to fully capture the nuanced information critical
for emotion recognition as effectively as dedicated
modality-specific models. Therefore, the aggrega-
tion of high-confidence predictions from distinct,
expert MLLMs proves more effective than a single,
generalist MLLM in our framework.

In conclusion, this ablation study strongly con-
firms that the adaptive collaborative labeling strat-
egy, by leveraging a diverse teacher model zoo
of modality-specific MLLMs, is fundamental to
ACL-MER’s superior performance. The collective
intelligence derived from these varied sources pro-
vides a richer and more reliable supervisory signal,
which is particularly vital for robust learning in
challenging low-resource MER scenarios.

5 Conclusion

We introduce ACL-MER, a novel framework ad-
dressing the challenge of low-resource MER. By
leveraging the strengths of MLLMs within a
teacher-student paradigm and introducing an adap-
tive collaborative refinement mechanism, ACL-
MER effectively generates robust pseudo-labels,
even with extremely limited labeled data. Our re-
sults on MER2023 and CHERMA demonstrate the
significant advantage of this approach. This work
opens exciting avenues for future research, particu-
larly in exploring more sophisticated collaboration
strategies between MLLMs and investigating the
potential of this framework for other low-resource
multimodal tasks.
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6 Limitations

Firstly, although MLLMs offer powerful percep-
tual and reasoning capabilities, the reliability and
discriminative power of their confidence scores
are crucial for effective knowledge distillation. If
teacher MLLMs are either consistently overconfi-
dent in their incorrect predictions or exhibit insuf-
ficient variance in their confidence scores to ade-
quately differentiate between high- and low-quality
outputs, our adaptive refinement strategy could be
less effective. Recent work has actively focused
on teaching models to express their degree of con-
fidence in their responses, thereby enhancing the
reliability and mitigating hallucinations in LLMs
and MLLMs(Cheng et al., 2024a; Mahaut et al.,
2024; Huang et al., 2025). Future work will investi-
gate advanced MLLM robust confidence estimation
methods to enhance the teacher’s reliability and fur-
ther refine the pseudo-labeling process.

Secondly, while the MLLM inference is per-
formed only once during the initial iteration, the
inherent computational cost of operating large
MLLMs remains a factor. While we opted for
smaller MLLM variants where necessary, de-
ploying and inferring with multiple large mod-
els, demands substantial computational resources.
This could pose a practical challenge for re-
searchers or practitioners with limited access to
high-performance computing infrastructure.

Ethical Considerations The datasets utilized in
this study are exclusively for academic research in
multimodal emotion recognition. Our work does
not introduce direct adverse societal impacts be-
yond the inherent considerations of the broader
field.
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A Prompt

A.1 Prompt for Audio LLMs

As an expert in the field of emotion, please focus on
the audio information within the video to analyze
clues related to personal emotions. Based on your
analysis, please provide the following:

Detailed Description: Please analyze the speaker’s
emotional state in detail, step by step. First, describe
the observable sound characteristics in the audio
(e.g., pitch, volume, speech rate, pauses); then infer
the emotional states or psychological dynamics that
these characteristics might indicate; finally, combine
the above analysis to provide a comprehensive
emotional description. Please ensure logical clarity
and coherence in the analysis process.

Predicted Emotional State: Select the most likely
emotion from the following emotional states:
['neutral’, *happy’, ’angry’, ’sad’, ’disgust’, ’fear’,
’surprise’].

Prediction Confidence: Based on your analysis,
estimate the confidence level of the prediction, using
a score from 0 to 5, where 0 indicates no confidence
and 5 indicates complete confidence.

Please strictly adhere to the following output format:
T 7json

{

"description": "[Please provide your analysis here]",
"emotion": "[Select an emotion from the candidate
set]",

"confidence": [0-5]

}
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A.2 Prompt for Vision LLMs

As an expert in the field of emotion, please focus on
information from the video such as facial expressions,
body language, and environmental cues to analyze
clues related to personal emotions. Based on your
analysis, please provide the following:

Detailed Description: Please focus on facial
expressions, body movements, environmental
information, and other visual cues in the video,
analyzing clues related to personal emotions
step-by-step. First, describe the observable visual
features in the video; then infer the emotional states
or psychological dynamics that these features might
indicate; finally, combine the above analysis to

provide a comprehensive emotional description.

Please ensure logical clarity and coherence in the
analysis process.

Predicted Emotional State: Select the most likely
emotion from the following emotional states:
[’neutral’, "happy’, ’angry’, ’sad’, ’disgust’, ’fear’,
’surprise’].

Prediction Confidence: Based on your analysis,
estimate the confidence level of the prediction, using
a score from O to 5, where 0 indicates no confidence
and 5 indicates complete confidence.

Please strictly adhere to the following output format:
T Tjson

{

"description": "[Please provide your analysis here]",
"emotion": "[Select an emotion from the candidate
set]",

"confidence": [0-5]

}

A.3 Prompt for LLMs

As an expert in the field of emotion, please analyze
clues related to an individual’s emotional state based
on the provided information.

The video description is as follows:<video
caption>

The audio description is as follows: <audio
caption>

The speaker’s lines are as follows: <subtitle>

Please note that the descriptions of the video
and audio may be inaccurate, or there may be no
descriptions provided for them. Based on your
analysis, please provide the following content:

Detailed Description: Please analyze the speaker’s
emotional state in detail, step by step. First, analyze
the content of the speaker’s dialogue; then infer
the emotional states or psychological dynamics
that these features might indicate; finally, combine
the above analysis to provide a comprehensive
emotional description. Please ensure logical clarity
and coherence in the analysis process.

Predicted Emotional State: Select the most likely

emotion from the following emotional states:
['neutral’, *happy’, ’angry’, ’sad’, ’disgust’, *fear’,
’surprise’].

Prediction Confidence: Based on your analysis,
estimate the confidence level of the prediction, using

a score from O to 5, where 0 indicates no confidence
and 5 indicates complete confidence.

Please strictly adhere to the following output format:
T Tjson

{ ”n n

"description": "[Please provide your analysis here]",

n,on

"emotion": "[Select an emotion from the candidate
set]",

"confidence": [0-5]

}

Here, <subtitle>refers to the spoken words of
the speaker, <video caption> is the description
generated by prompting Visual LLMs, and <audio
caption> is the description generated by prompt-
ing Audio LLMs.

B Preliminary Experiments

To motivate our proposed ACL-MER framework
and highlight the challenges it aims to address, we
conducted two sets of preliminary experiments.

Preliminary Experiments in Figure 1 We first
investigated the performance of a conventional
MER model under varying amounts of labeled
training data. The experimental setup for these
preliminary tests was identical to that described for
the main experiments in Section 4.1. Specifically,
for the base model, we utilized the attention-based
model to perform the MER task. As depicted in
Figure 1, both Accuracy and F1-score exhibit a
substantial drop when only a few hundred labeled
samples are available, indicating the limitations of
pseudo-labeling in low-resource scenarios. This
highlights a core limitation of conventional pseudo-
labeling: it struggles to produce reliable supervi-
sion when labeled data is extremely scarce.

Preliminary Experiments in Table 1 Next, we
explored the capabilities of modality-specialized
MLLMs in zero-shot emotion recognition. The
experimental setup for these preliminary tests was
consistent with the MLLMs used as teachers in our
main experiments (detailed in Section 4.1). The
evaluation was performed on the MER2023 test
dataset. We prompted each MLLM to generate
emotion predictions along with scalar confidence
scores. Subsequently, we analyzed the Accuracy
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of these MLLM predictions across different confi-
dence levels. As shown in Table 1, high-confidence
outputs (e.g., confidence = 5) achieved accuracies
above 0.77, outperforming small models trained
on 500 labeled samples. However, these predic-
tions only covered a limited portion of the data
(e.g., 11.3% for audio, 24.3% for vision), and Ac-
curacy degraded sharply when lower-confidence
outputs were included. These observations sug-
gest that while MLLMs can offer valuable supervi-
sion, their coverage is limited and their reliability
is confidence-dependent.

Significance of Preliminary Findings Through
these two preliminary experiments, we observed
the distinct advantages and inherent limitations of
both traditional smaller MER models and state-of-
the-art multimodal large language models in low-
resource settings. Specifically, small models strug-
gle with scarce labeled data, while MLLMs provide
high-quality but limited coverage and confidence-
dependent predictions. These observations pro-
vided the critical motivation and foundational in-
sights for the development of our proposed ACL-
MER framework, which aims to synergistically
combine the strengths of both paradigms to over-
come their individual shortcomings.

C Base Models

This section details the base models employed in
experiments.

e Attention (Vaswani, 2017): The Attention
model combines information from different
modalities by first processing each separately
with an MLP encoder. These processed fea-
tures are then joined together, and an attention
mechanism learns to weigh their importance.

¢ MultiModal InfoMax (MMIM) (Han et al.,
2021): MMIM enhances multimodal senti-
ment analysis by hierarchically maximizing
mutual information. This maximization oc-
curs both between unimodal inputs and be-
tween the multimodal fusion results and the
original unimodal inputs.

¢ Low-rank Multimodal Fusion(LMF) (Liu
et al., 2018): LMF is an efficient multimodal
fusion method that leverages low-rank ten-
sor decomposition to integrate heterogeneous
modalities while significantly reducing com-
putational complexity.

D Implementation Details
D.1 Environment

We used Python 3.8 with PyTorch 1.13.

D.2

All experiments are conducted using a Tesla V100
GPU.

Hardware Configurations

D.3

Model training was performed using the Adam
optimizer(Kingma and Ba, 2014) with a learning
rate of 1 x 10~% and a batch size of 32. A weight
decay (L2 regularization) of 1 x 10~* was applied
to the optimizer. Training proceeded for 50 epochs
in each semi-supervised learning iteration.

The ACL-MER framework operates over a max-
imum of 5 semi-supervised iterations. Within
each iteration, the probability adjustment value
Pinit = 0.6 and decays linearly by a rate of v = 0.1
per iteration, with a lower bound of p,,,;;, = 0.2.

For pseudo-label selection, a selection threshold
0 was used to identify high-confidence samples.
For Njgpeieq=100, 0 was set to 0.8; otherwise, 6 =
0.995. To mitigate class imbalance in the pseudo-
labeled dataset, up to top_k = 200 samples were
selected per class, based on their highest refined
probabilities.

For the inference phase of the teacher MLLMs,
the following hyperparameters were set: tempera-
ture was 0.6 and top_p was 0.95. To enhance the
reliability of MLLM predictions, we employed a
self-consistency method(Wang et al., 2022): each
teacher model performed inference three times for
every sample. The average confidence score was
computed only when all three predicted emotion
labels were consistent. A confidence threshold of
¢y = 4 was applied, meaning only predictions with
a confidence score greater than 4 were considered
reliable enough to be incorporated into the ACL-
MER refinement process.

To ensure the robustness and reliability of our
results, we employed a 5-fold cross-validation strat-
egy. This involved partitioning the training dataset
into five equally sized folds. In each of the five
cross-validation runs, one fold was held out as
the validation set, and the remaining four folds
were used for training. This process was repeated
five times, with each fold serving as the valida-
tion set exactly once. When presenting our results,
we provide mean performance across the 5 cross-
validation folds.

Hyperparameter Details
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All datasets and pre-trained models utilized in
this study were accessed and used in accordance
with their specified research-only licenses and in-
tended academic purposes.

D.4 Data and Code Availability

The code for our ACL-MER framework, includ-
ing training scripts and model configurations, will
be made publicly available on GitHub upon accep-
tance. All released code will be licensed under
the MIT License. The datasets used in this study,
MER?2023 and CHERMA, are publicly available
under their respective licenses, and our usage ad-
heres to their terms.

E Details for Omni-model Teacher in
Ablation Studies

E.1 Model Selection

Table 5 presents the minimum GPU memory re-
quirements for Qwen-Omni models. Given our
computational resource constraints and the ex-
tended durations of videos within our dataset, we
selected Qwen2.5-Omni-3B as our Omni-model
Teacher, rather than the larger 7B version.

Model Precision 15(s) Video 30(s) Video
Qwen-Omni-3B  FP32 89.10 GB Not Recommend
Qwen-Omni-3B  BF16 18.38 GB 22.43 GB
Qwen-Omni-7B ~ FP32 93.56 GB Not Recommend
Qwen-Omni-7B  BF16 31.11 GB 41.85 GB

Table 5: Minimum GPU memory requirements for
Qwen-Omni models(Jin Xu, 2025).

E.2 Inference Parameters

The inference parameters were set as follows: tem-
perature = 0.6, top_p = 0.95.

E.3 Prompt

As an expert in the field of emotion, please focus on
the visuals and audio within the video, as well as
the speaker’s dialogue, to analyze clues related to
personal emotions. Based on your analysis, please
provide the following:

Detailed Description: Please analyze the speaker’s
emotional state in detail, step by step. First, describe
the observable sound characteristics in the video
(e.g., pitch, volume, speech rate, pauses) and
visual characteristics (e.g., facial expressions, body
movements, environmental information); then infer
the emotional states or psychological dynamics that
these characteristics might indicate; finally, combine
the above analysis to provide a comprehensive
emotional description. Please ensure logical clarity

and coherence in the analysis process.

Predicted Emotional State: Select the most likely
emotion from the following emotional states:
['neutral’, *happy’, ’angry’, ’sad’, ’disgust’, ’fear’,
’surprise’].

Prediction Confidence: Based on your analysis,
estimate the confidence level of the prediction, using

a score from O to 5, where 0 indicates no confidence
and 5 indicates complete confidence.

Please strictly adhere to the following output format:

T Tjson

{

"description": "[Please provide your analysis here]",
"emotion": "[Select an emotion from the candidate
set]",

"confidence": [0-5]
}

F Additional Main Experimental Results
on the MELD dataset

We have conducted additional experiments on the
widely used English conversational emotion recog-
nition dataset, MELD(Poria et al., 2019). The ex-
perimental setup remains identical to that used for
the other datasets.

As shown in Table 6, our proposed ACL-
MER method consistently outperforms all base-
lines across various labeled data sizes on MELD.
This result further demonstrates the robustness and
generalization capability of ACL-MER beyond the
Chinese datasets (MER2023 and CHERMA).

G Additional Baseline Results

Table 3 primarily compares different pseudo-
labeling methods; that is, methods based on the
self-training paradigm. Here, we supplement those
results by also including the co-training paradigm,
following the work of (Kesgin and Amasyali,
2022).

Co-training works by training two view-specific
classifiers; each classifier then confidently labels
unlabeled samples for the other, and they re-train
alternately to expand the labeled set. In our imple-
mentation, we created two different feature views:
one model was trained on a single modality, and the
second was trained on the remaining two modal-
ities. The final performance was evaluated using
model fusion by averaging the output probabilities
of the two models.

As the results in Table 7 show, our proposed
ACL-MER method consistently outperforms the
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No. 1\]}(2)1(5121 Method Niabelea=100 Niabelea=200 Niabelea=500 Niabelea=1000
Fl-score Acc Fl-score Acc Fl-score Acc Fl-score Acc
1 No PL 0.4398 0.4500 0.4646 0.4879 0.5034 0.5301 0.5131 0.5431
2 Attention T-PL 0.3728 0.3453 0.3853 0.3756 0.4636 0.4626 0.5125 0.5228
3 S-PL 0.4511 04588 0.4797 0.5094 0.5101 0.5339 0.5230 0.5554
4 ACL-MER 04733 0.4872 0.4822 0.5117 0.5246 0.5489 0.5400 0.5738

Table 6: Comparison of different baselines on the MELD datasets with varying labeled data sizes.

No. Method Ntrain=100 Ntrain=200 Ntrain=500 Ntrain=1000
Fl-score Acc Fl-score Acc Fl-score Acc Fl-score Acc
1 self-training 0.4194 0.4278 0.4927 0.5102 0.6070 0.6092 0.6431 0.6430
2 vita 05197 04599 0.5369 04675 0.6161 0.5858 0.6494 0.6400
3 co-training altv 05299 04799 05727 04788 0.6052 0.5750 0.6407 0.6324
4 tjav 05155 04377 0.5522 04816 0.5818 0.5508 0.6303 0.6250
5 ACL-MER 0.5315 0.5549 0.5815 0.6045 0.6328 0.6382 0.6508 0.6585

Table 7: Comparison of different baselines on the CHERMA datasets with varying labeled data sizes. Attention

[P LT L)

model is used as student model. In the co-training methods, “a”, “v”, and “t” denote audio, visual, and text
modalities, respectively. For example, “a | tv”’ means one model uses audio as its view, while the other uses a

combination of text and visual modalities.

self-training and co-training baselines across all
experimental settings. We believe this is due to the
inherent information loss in co-training, as each
model only utilizes a subset of the available modal-
ities. This is particularly evident when the text
modality is used as a single-view input, which leads
to weaker performance and limits the overall effec-
tiveness of the approach.

H Impact of Different Prompt Designs

In our original ACL-MER approach, we adopted
self-consistency and CoT reasoning to enhance
the quality of emotion generation by MLLMs. To
demonstrate their effectiveness, we have now in-
cluded experiments evaluating the performance
without self-consistency and without CoT.

The results of this ablation study are presented in
Table 8. The findings clearly indicate that both the
Self-Consistency mechanism and CoT are crucial
for achieving the best performance across all train-
ing data sizes, consistently showing the highest
F1-scores and Accuracy when both are employed
in the full ACL-MER method.

I Hyperparameter Sensitivity Analysis

To assess the robustness and stability of our pro-
posed ACL-MER framework, we conduct a com-
prehensive hyperparameter sensitivity analysis. We
systematically vary one hyperparameter at a time
while keeping all others at their empirically deter-
mined default values (pin = 0.2, pinie = 0.6,
v = 0.1, 8 = 0.995, and top_k = 200), con-

sistent with our main experiments. All analy-
ses are performed on the CHERMA dataset with
Nigpelea = 200 using the Attention base model,
where the low-resource setting makes the impact
of these parameters most pronounced. The results
are presented in Figure 5 .

Impact of Pseudo-Label Selection Threshold (6)
The pseudo-label selection threshold, 6, is a critical
hyperparameter that mediates the trade-off between
the quality (high confidence) and quantity (cover-
age) of pseudo-labels used to enhance the training
data. Figure 5(a) illustrates the effect. The analysis
of ACL-MER’s performance across the extended
0 range, from 0.8 to 1.2, reveals two distinct be-
haviors. In the conventional high-confidence range
(0 € [0.8,0.995]), ACL-MER demonstrates a re-
markable stability in performance, with both F1
scores and Accuracy remaining robustly high. For
instance, the F1 score only minimally fluctuates
between 0.5867 (f = 0.8) and 0.5815 (6 = 0.995).
Crucially, the optimal performance is pinpointed at
0 = 0.995 (Accuracy: 0.6045), confirming that
maintaining a sufficiently high quality standard
for pseudo-labels yields the best results without
unduly sacrificing data coverage. However, the
performance undergoes a significant degradation
as 6 is pushed into the extreme confidence range
(@ > 0.995). When 6 exceeds 1.0, the threshold
becomes so restrictive that only pseudo-labels with
extremely high confidence—primarily those con-
tributed by the more conservative MLLMs—are ac-
cepted. This ultra-high confidence criterion leads to
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No. Methods Ntrain=100 Ntrain=200 Ntrain=500 Ntrain=1000
Fl-score Acc Fl-score Acc Fl-score Acc Fl-score Acc
1 ACL-MER 0.5315 0.5549 0.5815 0.6045 0.6328 0.6382 0.6508 0.6585
2 without self-consistency  0.4933  0.5358 0.5694 0.5941 0.6093 0.6340 0.6417 0.6548
3 without CoT 0.5307 0.5528 0.5850 0.5815 0.6312 0.6333 0.6496 0.6500

Table 8: Ablation study results on different prompt designs on CHERMA dataset. Attention model is used as student

model.
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Figure 5: Hyperparameter sensitivity analysis of ACL-
MER on the CHERMA dataset with Njgpeieqa = 200.
(a) Select Threshold 6, (b) Select Number top_k, (c)
Initial Probability p;n;¢, (d) Minimum Probability p,,in,
(e) Decay Rate ~, and (f) Number of Iterations.

a pronounced scarcity of reliable samples, thereby
sharply diminishing the contribution of the student
model and the overall effectiveness of the collabo-
rative learning process. The F1 score drops notably

from 0.5815 (8 = 0.995) to 0.5425 (§ = 1.0) and
continues to fall to 0.5258 (# = 1.2). This de-
cline is attributed to the excessively high 6 values
causing the iterative self-training procedure to stall
prematurely due to an insufficient introduction of
new, high-quality pseudo-labels, ultimately impair-
ing the final model performance. Therefore, while
ACL-MER is robust within a wide high-confidence
band, setting the threshold too high detrimentally
starves the model of necessary training signals.

Impact of Pseudo-Label Selection Number
(top_k) As shown in Figure 5(b), the number
of pseudo-labels selected per class (top_k) signifi-
cantly influences performance. Performance gradu-
ally improves as top_k increases from 50, reaching
its peak at approximately top_k = 200, then show-
ing a slight decrease. Selecting too few samples
(e.g., top_k = 50) limits the amount of new in-
formation available for the student model, while
selecting too many (e.g., top_k = 400) may in-
troduce more noisy pseudo-labels, particularly in
imbalanced datasets, despite the class-balanced se-
lection strategy. The optimal range indicates that a
moderate number of high-confidence samples per
class is most beneficial.

Impact of Initial Probability Adjustment (p;,,;;)
Figure 5(c) demonstrates the sensitivity to the ini-
tial probability adjustment value, p;p;;. Perfor-
mance shows a clear peak when p;,;; is around
0.6 to 0.65. A lower p;n;: (e.g., 0.4) might mean
that the MLLM’s strong guidance is not sufficiently
leveraged, failing to effectively refine the student’s
initial predictions. Conversely, a higher p;,; (e.g.,
0.8) could overly prioritize the MLLM’s predic-
tions, potentially overriding the student’s nascent
learning or introducing noise if MLLM confidence
is not perfectly correlated with accuracy across all
samples. This highlights the importance of care-
fully tuning p;n;: to balance MLLM guidance with
student self-learning.
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Impact of Minimum Probability (p,,;,) Fig-
ure 5(d) reveals that ACL-MER is notably robust
to changes in the minimum probability adjustment,
DPmin- Across the tested range from 0.1 to 0.6, both
F1-score and Accuracy remain remarkably stable.
This observed robustness can be attributed to Py,
primarily influencing the probability adjustments
in the later iterations of the training process. In
the initial phases, the probability adjustment p; is
largely determined by p;,;; and the decay rate ~.
Once p; decays to the floor set by pj,in, the impact
of the teacher models becomes less pronounced.
Since significant learning and pseudo-label gen-
eration occur in earlier iterations with higher ad-
justment values, varying this lower bound in the
later stages has a minimal effect on the overall final
performance within this tested range.

Impact of Decay Rate (y) We investigated the
influence of the decay rate . As depicted in Figure
(e), the model’s performance, as measured by both
F1-score and Accuracy, demonstrates a relatively
stable trend across the tested range of  values.
While there are minor fluctuations, both metrics
generally maintain strong performance. A notable
peak in both Accuracy and F1-score is observed at
a moderate decay rate of v = 0.1. Performance re-
mains robust around this point, suggesting that the
framework is not overly sensitive to precise tuning
of this hyperparameter. Based on these empirical
observations, we selected v = 0.1 for our main
experiments to achieve optimal balance.

Impact of Number of Iterations As depicted
in Figure 5(f), the performance of ACL-MER im-
proves significantly in the initial iterations, with
a sharp increase in both Fl-score and Accuracy
from iteration 1 to 3. The gains continue, albeit at
a slower pace, stabilizing and reaching a plateau
around 5 to 6 iterations. Beyond this point, further
iterations yield marginal improvements or even a
slight decline, indicating that the model has con-
verged or is beginning to suffer from potential
error propagation. This analysis confirms the ef-
fectiveness of the iterative refinement process and
helps determine an appropriate stopping criterion,
demonstrating that significant gains are achieved
within a reasonable number of iterations.

In conclusion, our hyperparameter sensitivity
analysis demonstrates that ACL-MER is relatively
robust to several key parameters like 6, p,;, and ~,
while showing moderate sensitivity to p;p;:, top_k,
and number of iterations. Identifying these optimal

ranges is crucial for maximizing performance in
low-resource MER. The iterative nature of ACL-
MER also proves highly effective, yielding sub-
stantial improvements within a limited number of
cycles.
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