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Abstract

Clinical notes contain valuable, context-rich
information, but their unstructured format in-
troduces several challenges, including unin-
tended biases (e.g., gender or racial bias), and
poor generalization across clinical settings (e.g.,
models trained on one EHR system may per-
form poorly on another due to format differ-
ences) and poor interpretability. To address
these issues, we present ClinStructor, a pipeline
that leverages large language models (LLMs)
to convert clinical free-text into structured, task-
specific question–answer pairs prior to predic-
tive modeling. Our method substantially en-
hances transparency and controllability and
only leads to a modest reduction in predictive
performance (a 2–3% drop in AUC), compared
to direct fine-tuning, on the ICU mortality pre-
diction task. ClinStructor lays a strong foun-
dation for building reliable, interpretable, and
generalizable machine learning models in clini-
cal environments.

1 Introduction

Recent advances in Artificial Intelligence (AI) have
driven significant progress across various domains,
including healthcare (Cascella et al., 2023; Yang
et al., 2024), finance (Yu et al., 2023; Li et al.,
2023; Zhao et al., 2024), law (Siino et al., 2025).
However, in high-stakes contexts such as clinical
decision-making, requirements extend beyond pre-
diction performance alone. It becomes critical not
only to develop reliable predictive models but also
to maintain fine-grained control over the attributes
influencing predictions. In such scenarios, inter-
pretability is not merely desirable—it is often es-
sential to comply with regulations (e.g., not using
protected features such as gender, occupation, etc.)
and to foster trust among clinicians, patients, and
stakeholders.

Clinical notes, a ubiquitous component of elec-
tronic health record (EHR) systems, constitute one

of the richest sources of clinical information. These
free-text notes can encapsulate nuanced details,
thus providing invaluable data for predictive mod-
eling. Nonetheless, clinical free-text is inherently
unstructured, presenting both significant opportu-
nities and substantial challenges. Notably, clinical
notes lack a standardized format, varying exten-
sively in style, structure, and terminology—not
only internationally and across languages but even
within individual hospitals between different de-
partments or clinicians (Cohen et al., 2019). This
variability complicates the development of reliable
and controllable predictive models.

Training predictive models directly on clinical
text in a black-box manner raises important con-
cerns. Firstly, there is often insufficient insight
into the exact information leveraged by the model
to predict an outcome. Clinical notes frequently
contain protected attributes, such as race or gender,
which – while potentially relevant in certain con-
texts – may inadvertently introduce biases if not
explicitly managed. Additionally, clinical text is
susceptible to label leakage, especially for tasks
such as mortality prediction, where phrases like
“the patient has passed away” or “in critical condi-
tion” can directly reveal outcomes. Consequently,
models might learn superficial shortcuts, inflating
performance metrics without capturing meaningful
clinical signals. Moreover, models optimized on
a test set from the same data distribution as train-
ing may fail to generalize effectively to external
datasets from differing institutions, regions, or pop-
ulations. Variations in documentation practices,
terminology, and structure can potentially degrade
performance in real-world, cross-site deployments.

Several approaches have been proposed to miti-
gate the challenges posed by unstructured clinical
text. These include: (1) bias mitigation methods,
which either remove sensitive attributes such as
race or gender from input data or transform in-
put to an intermediate representations that obscure
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Figure 1: Illustration of the ClinStructor Pipeline: The proposed pipeline comprises three main stages: (1)
Feature Identification, (2) Feature Extraction, and (3) fine-tuning.

sensitive information (Sun et al., 2019); (2) distri-
butional robustness techniques, explicitly designed
to improve resilience against shifts in data distribu-
tions across EHR databases or clinical institutes or
patient populations (Tan et al., 2022); and (3) post-
hoc explanation techniques, such as highlighting
textual spans most influential to predictions (Vig,
2019). While valuable, these methods frequently
fail to address the root cause of many challenges
– the fundamentally unstructured nature of clini-
cal text, making it inherently difficult to ascertain
which information the model has utilized.

To address the underlying issue of clinical text’s
inherent lack of structure, we introduce ClinStruc-
tor, illustrated in Figure 1. ClinStructor is a
novel pipeline designed to transform clinical notes
into structured representations (question-answer
pairs), prior to predictive modeling. Instead of
directly fine-tuning models on raw notes, we lever-
age LLMs to systematically extract meaningful,
task-relevant features, in our case, ICU mortality
prediction. Specifically, we prompt LLMs to iden-
tify a set of clinically relevant questions informed
by both clinical domain knowledge and by task-
specific data. Subsequently, the same LLMs extract
answers to these questions from the patient’s admis-
sion notes, resulting in structured question-answer
pairs. This effectively converts the unstructured
clinical text into structured data, significantly en-
hancing transparency and controllability. By stan-

dardizing the input format, our approach enables
thorough inspection of the extracted features, facil-
itating verification of their clinical relevance and
consistency. While subsequent fine-tuning of pre-
dictive models on these structured representations
slightly diminishes interpretability, it allows lever-
aging pretrained LLM knowledge for the down-
stream predictive task. Thus, our approach bridges
the expressive richness of unstructured text with
the interpretability, reliability, and generalizability
inherent in structured data representations.

We empirically evaluate ClinStructor against
direct fine-tuning on raw clinical notes. Our re-
sults indicate a modest performance trade-off, a
decrease of approximately 2 to 3% in AUC. The
observed performance reduction is anticipated due
to potential information loss inherent to structured
transformations. Nevertheless, this trade-off de-
livers substantial advantages. Explicitly defining
features used for prediction enables inspection
and verification of input signals, effectively mit-
igating label leakage concerns. Importantly, our
approach provides foundational building blocks
for constructing predictive models exhibiting en-
hanced interpretability, robustness, and generaliz-
ability—especially crucial when deployed across
diverse clinical environments characterized by sub-
stantial variability in documentation practices.

The remainder of this paper is structured as
follows. Section 2 discusses background and re-
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lated literature. Section 3 details our ClinStruc-
tor pipeline, describing each stage comprehen-
sively. Section 4 outlines our experimental setup
and presents comparative quantitative results. Fur-
ther analytical insights are provided in Section 5.
In Section 6, we highlight our method’s limitations
and propose mitigation strategies. Finally, Sec-
tion 7 summarizes key insights and concludes.

The primary contributions of our work include:

1. Introducing ClinStructor, a novel LLM-
based pipeline converting unstructured clin-
ical notes into structured, task-specific
question-answer pairs.

2. Empirically demonstrating that ClinStructor
retains the majority of clinically relevant in-
formation, achieving competitive predictive
performance in the ICU Mortality prediction
task.

3. Discussing crucial limitations of our struc-
tured approach, along with detailed sugges-
tions for addressing these issues in future re-
search.

2 Background and Related Works

2.1 Overview of Interpretability Techniques
Interpretability is a crucial and growing focus
within Machine Learning research (Molnar, 2020;
Du et al., 2019). Traditional models, such as lin-
ear regression, Support Vector Machines, deci-
sion trees, and AdaBoost, inherently provide in-
terpretability for tabular data (numerical and cat-
egorical). However, interpretability significantly
diminishes with more complex modalities, such as
textual or image data, which typically require more
sophisticated modeling approaches.

For text-based data, several post-hoc methods
have been proposed to explain model predictions.
Notable examples include SHapley Additive exPla-
nations (SHAP)(Lundberg and Lee, 2017), LIME
for Text(Ribeiro et al., 2016), Saliency Maps (Si-
monyan et al., 2014), attention visualization tech-
niques (Vig, 2019; Tenney et al., 2020), and Inte-
grated Gradients (Sundararajan et al., 2017). These
approaches primarily rely on highlighting influen-
tial segments of text to explain predictions. How-
ever, these explanations may not be faithful or reli-
able.

Alternatively, interpretability can also be
achieved through similarity or example-based meth-
ods. Techniques such as K-Nearest Neighbors

(K-NN) applied to text embeddings, Prototypical
Networks (Snell et al., 2017), Case-Based Reason-
ing (Wiratunga et al., 2024), counterfactual expla-
nations (Wachter et al., 2018), TracIn (Pruthi et al.,
2020; K and Søgaard, 2021), and Influence Func-
tions (Koh and Liang, 2020) provide interpretabil-
ity by relating predictions to influential or similar
training examples. These explanation methods are
often very unstable (K and Søgaard, 2021).

2.2 A Broad Overview of Applications of
LLMs in Healthcare

In recent years, there has been significant interest
in applying Large Language Models (LLMs) to
healthcare. Early studies (Thirunavukarasu et al.,
2023; Yang et al., 2023; Nazi and Peng, 2024;
Nassiri and Akhloufi, 2024) investigated the po-
tential of LLMs in clinical practice, highlighting
both opportunities and key challenges. Further
research (Denecke et al., 2024) has collected clin-
ician perspectives, providing insights into practi-
cal strengths and limitations when deploying these
models.

LLMs have demonstrated effectiveness across
various clinical tasks. For example, they have been
used to detect and anonymize Personally Identifi-
able Information (PII) within clinical notes (Liu
et al., 2024; K et al., 2023). They can also effec-
tively perform information extraction tasks from
unstructured text (Agrawal et al., 2022; Lopez
et al., 2025). Moreover, LLMs have been eval-
uated for diagnostic support (Panagoulias et al.,
2023, 2024), summarizing medical records (Madz-
ime and Nyirenda, 2024; Goodman et al., 2024),
clinical question answering (Wang et al., 2023; Li
et al., 2024b), medical coding (Soroush et al., 2024;
Li et al., 2024a), and predictive modeling of patient
outcomes (Lyu et al., 2023; Wu et al., 2023; van
Aken et al., 2021; Röhr et al., 2024). Beyond clini-
cal tasks, LLMs have also shown promise in med-
ical education and training (Safranek et al., 2023;
Abd-Alrazaq et al., 2023; Lucas et al., 2024).

2.3 Specialized LLMs in Healthcare and
Medical domain

To better address healthcare specific applications,
several domain-adapted LLMs have been proposed.
Notable examples include Med-BERT (Rasmy
et al., 2021), ClinicalBERT (Huang et al., 2019),
and BioBERT (Lee et al., 2020), all pretrained on
specialized clinical and biomedical datasets. More
recent models like Meditron (Chen et al., 2023;
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Bosselut et al., 2024), Med-PaLM (Singhal et al.,
2022), and BioMistral (Labrak et al., 2024) fur-
ther aim to improve performance on medical and
clinical benchmarks. In section 4, we use Meditron-
based models (Meditron Qwen2.5 7B and Meditron
LLaMA 3.1 8B) for our experiments, as these are
comparable to their general-purpose counterparts.

2.4 LLMs for Feature Importance
Recent works have experimented with applying
LLM-based approach for feature engineering, pri-
marily targeting tabular datasets (Tsymbalov and
Savchenko, 2024; Zhang et al., 2024). In addition,
other works have explored leveraging LLMs for
feature selection and importance estimation, partic-
ularly within zero-shot settings (Jeong et al., 2024;
Choi et al., 2022). Similar to these studies, our
approach utilizes LLMs not only to select but also
to generate meaningful features, assigning them
appropriate importance scores.

2.5 Text Bottleneck Model
Relatively few inherently interpretable methods ex-
ist for textual data. One notable example is the Text
Bottleneck Model (TBM) proposed by Ludan et al.
(2024). Inspired by Concept Bottleneck Models
(Koh et al., 2020), TBM employs large language
models (LLMs) to iteratively extract key textual
concepts (e.g., “service” or “food quality” in senti-
ment classification) and builds interpretable models
based on these concepts. TBM’s methodology is
iterative: in each round, the model is trained on the
full dataset, and high-loss examples are used to ex-
tract additional concepts. This process is repeated
multiple times, making it computationally expen-
sive. Due to this, TBM faces significant scalability
challenges. Its evaluation was limited to simple
tasks such as sentiment analysis, using only small
datasets (approximately 250 examples). In con-
trast, our proposed approach extracts all relevant
features in a single step, offering a scalable and
structured alternative to TBM. The scalability of
our proposed approach makes it suitable for more
complex, real-world tasks.

3 Our Proposed Method: ClinStructor

In Figure 1, we illustrate our proposed method,
ClinStructor, which converts unstructured clinical
notes into structured representations, thereby en-
hancing their interpretability and control over the
attributes used for downstream tasks. Our method
involves three key steps: (1) Feature Identification,

(2) Feature Extraction, and (3) Fine-tuning. Below,
we detail each step thoroughly.

3.1 Stage 1: Feature Identification

The first step, Feature Identification, establishes the
foundation for the structured representation of clin-
ical notes. Our goal is to discover a meaningful set
of features that can be extracted from free-text ad-
mission notes and utilized for predictive modeling;
specifically, we focus on ICU mortality prediction
in this study. This step leverages both the large
language model’s (LLM) inherent world knowl-
edge as well as the information in examples from
downstream predictive task.

We begin by randomly sampling 1,000 ICU ad-
mission notes, equally balanced between positive
(mortality) and negative (survival) outcomes. For
each note, we prompt an LLM to generate a set
of 20 potential candidate features. Each feature
consists of three attributes:

• Question: A natural language question whose
answer serves as the feature value. We instruct
the LLM to produce generalizable questions
(e.g., "What is the patient’s age?" rather than
"Is the patient’s age 60?").

• Feature Name: A concise, one-word descrip-
tor for the feature (e.g., age, medication, etc.).
This primarily aids in subsequent clustering
and de-duplication.

• Importance Score: A numeric value between
0 and 1, reflecting the LLM’s estimated im-
portance of the feature for the downstream
predictive task.

This process yields a total of 20,000 candidate
features (20 features per note × 1,000 notes). We
have to select the top K(= 50) features. However,
due to natural variation in language, many gener-
ated questions and feature names differ slightly de-
spite having similar semantics. For example, "What
is the patient’s current age?" vs. "What is the pa-
tient’s age?", or feature names like "current_age"
vs. "age". Consequently, simple strategies such as
frequency-based selection would incorrectly seg-
ment semantically equivalent features, thereby un-
derestimating their true frequency/importance.

To address this issue, we perform single-linkage
clustering (Vijaya et al., 2019) over the set of gen-
erated features. Each node in the clustering graph
represents one LLM-generated feature candidate
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Rank Question

Qwen 32b Instruct

1 what is the patient’s age?
2 what medications was the patient on at the time of admission?
3 what is the patient’s vital signs on admission?
4 what is the patient’s physical exam findings?
5 what are the patient’s significant past medical conditions?

LLaMA 70B Instruct

1 what is the patient’s medical history?
2 what is the patient’s blood pressure on admission?
3 what is the patient’s current level of cognitive function?
4 what are the patient’s current medications and dosages?
5 what is the patient’s age?

Table 1: Top 5 questions generated by Qwen 32B and LLaMA 70B Instruct models

(i.e., a question, a feature name, and an importance
score). We define an edge between two nodes if
they share either the exact same question or the
exact same feature name (after basic normalization
steps such as lower casing). Single-linkage cluster-
ing on this graph results in clusters of semantically
equivalent questions.

Next, we compute the cluster weight as the sum
of LLM-generated feature importance scores for
all nodes within a cluster. We then select the top K
clusters (K = 50) based on these aggregate cluster
weights to form our final set of features. Man-
ual inspection revealed no semantically duplicate
questions, indicating that the clustering process
effectively ensures question uniqueness. Within
each selected cluster, we identify a representative
question—specifically, the one with the highest cu-
mulative importance score, calculated as the sum
of feature importance scores across all exact oc-
currences of that question (not the feature names).
This process results in a curated list of 50 unique,
LLM-generated questions, ranked by their aggre-
gate importance scores. These questions define
the structured format used for subsequent feature
extraction. It is important to note that we utilize
downstream task data in two ways: (1) as input
to the LLM to generate candidate features, and
(2) during clustering, to select the top K features
based on importance. Meanwhile, the LLM’s inter-
nal knowledge contributes to generating relevant
questions, feature names, and corresponding impor-
tance scores. Table 1 presents the top 5 generated
questions from each of the Qwen2.5 32B Instruct

and LLaMA 3.3 70B Instruct models.

3.2 Stage 2: Feature Extraction

In this step, our objective is to extract the previ-
ously identified features from each patient’s ad-
mission note. Again, we leverage large language
models (LLMs) for this task. For each patient in
the dataset, we provide the LLM with the complete
admission note along with the set of 50 curated
questions obtained from the Feature Identification
step. The LLM is instructed to generate an answer
for each question based exclusively on the infor-
mation present in the given admission note. To
handle situations where the required information is
missing or the question is not applicable, the LLM
is explicitly instructed to respond with "N/A".

Consequently, at the end of this step, each pa-
tient record—across training, validation, and test
sets—is associated with a structured set of 50
question-answer pairs. Importantly, the same set of
questions (features) is consistently applied across
all examples in the dataset. This representation
offers a structured yet flexible format, as the an-
swers retain their original free-text semantic rich-
ness while capturing clinically meaningful infor-
mation in a standardized manner.

3.3 Stage 3: Fine-tuning

In the final stage, we fine-tune a smaller LLM to
predict the mortality outcome (alive or deceased).
The input to the model is a single concatenated se-
quence comprising all 50 question-answer pairs for
each patient. The model is trained using standard
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Feature Identification & Ex-
traction Model

Fine-tune model ClinStructor
finetuned

Full admis-
sion notes

LLaMA 3.3 70B Instruct

LLaMA-3.1-8B 0.854 0.882
Meditron3-8B 0.860 0.889
LLaMA-3.2-3B 0.852 0.879
LLaMA-3.2-1B 0.819 0.862

Best 0.860 0.889

Qwen 2.5 32b Instruct

Qwen 2.5 7B 0.869 0.882
Meditron3-Qwen2.5-7B 0.860 0.881
Qwen2.5-3B 0.851 0.878
Qwen2.5-0.5B 0.815 0.856

Best 0.869 0.882

Table 2: Direct Fine-Tuning vs. ClinStructor Fine-Tuning: As expected, direct fine-tuning performs slightly
better than ClinStructor. However, ClinStructor still achieves comparable performance, indicating that it captures
most, if not all, of the relevant information.

binary cross-entropy loss.

4 Experiments

4.1 Dataset

In our experiments, we use the MIMIC-III Clinical
Database (version 1.4) and follow the preprocess-
ing steps outlined by van Aken et al. (2021). Specif-
ically, van Aken et al. (2021) extracted discharge
summaries but retained only sections containing
information known at the time of admission. This
effectively reconstructs admission notes from the
original discharge summaries.

After preprocessing, we observe significant class
imbalance, with negative cases (patients who sur-
vived) considerably outnumbering positive cases
(patients who were deceased). While additional
negative examples can provide valuable signals dur-
ing training, they significantly increase computa-
tional cost. To achieve a practical balance between
computational efficiency and model performance,
we randomly subsample the negative examples so
that their number matches that of positive cases.
This results in a balanced dataset for training, vali-
dation, and testing

We employ AUC-ROC as our primary evaluation
metric, chosen for its robustness to class imbalance
and its common usage in clinical risk prediction
studies. After subsampling, the final dataset com-
prises 7,078 training examples, 1,038 validation
examples, and 2,050 test examples.

4.2 Direct fine-tuning vs. ClinStructor
fine-tuning

In this section, we compare two methods for train-
ing Large Language Models (LLMs) to predict ICU
mortality:

1. Direct fine-tuning: The model is directly
trained on raw, unstructured admission notes.

2. ClinStructor fine-tuning: The model is
trained on structured data, specifically a set of
50 question-answer pairs extracted using our
proposed method.

This comparison aims to determine whether
structuring clinical text via LLM-driven feature
extraction results in any loss of predictive infor-
mation, if so, how much it affects the downstream
prediction performance.

Both fine-tuning approaches use the same opti-
mization setup. We employ Low-Rank Adaptation
(LoRA) for parameter-efficient fine-tuning and op-
timize using binary cross-entropy loss. Models are
trained for 5 epochs, and their performance is eval-
uated every 100 steps using the validation set. For
each hyperparameter configuration, we select the
checkpoint with the lowest validation loss for final
evaluation on the test set. We perform a grid search
over two learning rates (1e-4 and 2e-4) and two
batch sizes (8 and 16), and report the test results
corresponding to the hyperparameter with the best
validation performance.

To assess the impact of model size and domain-
specific clinical knowledge, we experiment with
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various LLMs. These include general-purpose
models such as Qwen 2.5 (7B, 3B, 0.5B) and
LLaMA 3.1 (8B), LLaMA 3.2 (3B, 1B), as well as
clinical-specialized variants like Meditron3-Qwen
2.5 (7B) and Meditron3-LLaMA 3.1 (8B).

We use the LLaMA 70B Instruct and Qwen
2.5 32B Instruct models for the Feature Identifi-
cation (Stage 1) and Feature Extraction (Stage 2)
phases described previously. These larger models
are solely used for structuring the data and are not
involved in any downstream fine-tuning or predic-
tion tasks, ensuring fairness in our experimental
comparison.

4.3 Results

Table 2 shows that ClinStructor fine-tuning
achieves performance competitive with that of Di-
rect fine-tuning on raw admission notes. Specifi-
cally, the performance difference in AUC is less
than 3% for the best-performing LLaMA models
and less than 2% for the best-performing Qwen
models. Although there is a slight decrease in per-
formance, in ClinStructor, we are able to control
exactly what information is used for making the
prediction.

5 Analysis

5.1 Effective number of features

Although 50 question-answer pairs per admission
note may appear sufficiently large to capture most
relevant clinical information, not every question
is applicable to every patient. In practice, many
of the answers returned for a given patient are
"N/A"—indicating either that the question is not
relevant or that the necessary information is not
present in the admission note. As shown in Fig-
ure 2, for LLaMA 70B and Qwen 32b models,
nearly 40% and 50% of the answers, respectively,
are "N/A", thereby reducing the effective number
of useful question-answer pairs per patient.

5.2 Effect of number of Questions:

Intuitively, the more number of questions we select,
the more information we can retain and hence the
lesser the performance loss. However, using more
questions increases the difficulty of interpretabil-
ity and the computational cost. To understand the
tradeoff between performance and number of ques-
tions, we conduct experiment with various numbers
of questions. Instead of selecting top 50 questions,
we choose top k questions for K = 10, 20, 30, 40

and 50. We fine-tune Qwen 2.5 7B model and
LLaMA 3.1 8B models, for each, we chose the best
performing hyperparameter from Table 2 and used
the same for all different values of K.

From Table 3, we can see that while there is
an overall trend (although noisy) of increase in
performance with number of questions, even with
fewer questions, like 10 for LLaMA and 20 for
Qwen, the performance remains close to that of
using all the 50 questions.

6 Discussion

Performance. While ClinStructor provides
greater control over which features are used for
prediction, this often comes at the cost of reduced
performance. One straightforward way to mitigate
this trade-off is to use more powerful language
models, such as GPT-4.5 or Gemini Pro, during
the feature identification and extraction steps. Due
to licensing restrictions with the MIMIC dataset,
we do not use OpenAI models in our current
experiments. However, future work can explore
the use of Gemini models through Vertex AI,
which complies with MIMIC’s data usage policies.
Additionally, further improvements may be
achieved by tuning more hyperparameters or signif-
icantly increasing the number of questions used in
the pipeline (e.g., scaling to hundreds of questions).

Interpretability. ClinStructor marks an important
first step toward building interpretable clinical
models. In its current form, it enables us to answer
the question: Which features were used to make
a prediction? However, it does not yet provide
insights into how each feature influences the
prediction outcome. While techniques like saliency
maps or attention-based visualizations offer partial
explanations, they are often unreliable or lack
fidelity to the model’s actual decision-making
process. A more principled extension—drawing
inspiration from Neural Additive Models
(NAMs) (Agarwal et al., 2021)—could improve
interpretability. NAMs are a class of models
that combine the interpretability of generalized
additive models with the flexibility of neural
networks by learning a separate sub-network
for each input feature. Specifically, instead of
regular fine-tuning in Stage 3 of ClinStructor, we
could design a NAM-like architecture where each
question (feature) is processed independently to
produce a logit, and the final prediction is obtained
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Figure 2: Effective Number of Questions: The plot shows the distribution of the effective number of questions—i.e.,
the number of questions with non-"N/A" answers, for both Qwen-32B and LLaMA-70B models. Note that
approximately 40% of the answers from LLaMA-70B and 50% from Qwen-32B are "N/A".

Model Top 10 Top 20 Top 30 Top 40 Top 50

Qwen2.5 7B 0.741 0.849 0.850 0.848 0.869
LLaMA 3.1 8B 0.849 0.847 0.853 0.856 0.854

Table 3: Number of Features vs. Performance: AUC-ROC of Qwen2.5-7B and LLaMA 3.1-8B ClinStructor fine-
tuned models using only the top-K features. For feature extraction, we use Qwen-32B Instruct and LLaMA3.3-70B
Instruct models for Qwen2.5 7B and LLaMA 3.1 8B, respectively.

through a linear combination of these logits. This
approach would allow us to directly quantify the
contribution of each feature to the final prediction.
Another possible direction is to guide the LLM
to generate questions with strictly numerical or
categorical answers, enabling the use of simpler,
inherently interpretable models on top of these
features. However, this approach may require a
significantly larger number of questions, which
would increase computational costs and potentially
reduce performance, as it limits the model’s ability
to leverage pre-trained knowledge (which the
current fine-tuned models can leverage).

7 Conclusion

In this work, we introduce ClinStructor, an LLM-
based pipeline that converts unstructured clinical
notes into structured representations, which are
then used to train a predictive model. This approach
enhances interpretability and provides control over
which features contribute to a prediction—both of
which are critical in clinical decision-making.

We evaluate ClinStructor on the MIMIC ICU
mortality prediction task using admission notes.
Our proposed method results in only a modest drop

in AUC (2–3%) while offering greater control over
the features used in prediction. Further analysis
reveals that, on average, only 50–60% of the gen-
erated questions are relevant for a given patient’s
notes. Interestingly, using just the top 10 most in-
formative questions yields performance close to
that of using all 50.

ClinStructor also addresses common challenges
in clinical machine learning. By manually review-
ing and selecting the final set of questions, we can
reduce the risk of unintended biases. The consistent
input format—50 standardized questions and an-
swers—improves generalizability across different
EHR systems and further enhances interpretability.
Overall, this work demonstrates the promise of us-
ing large language models not only as predictive
tools but also as enablers of transparent, robust, and
controllable clinical machine learning systems.

8 Limitations

Our proposed approach results in a slight decrease
in performance. While the outputs are interpretable
to some extent, full transparency is lacking—we
can identify which features are used in making
a prediction, but not how they influence the out-
come. The approach relies on large language mod-
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els (LLMs) to transform data, which introduces
concerns about potential hallucinations. Moreover,
leveraging more powerful LLMs may require send-
ing data to external services, raising additional chal-
lenges related to privacy and control. Fine-tuning
these models locally also demands substantial com-
putational resources.

Ethical considerations

This work involves healthcare-related tasks, a do-
main that requires careful handling due to its
sensitive nature. To the best of our knowledge,
all experiments were conducted using the latest
PII-deidentified data from the MIMIC database.
We strictly followed the guidelines provided by
MIMIC and ensured that no OpenAI models were
used. All large language models (LLMs) were
hosted locally to minimize the risk of data leakage
and to maintain data privacy.

The MIMIC dataset is approved for research use,
and all the LLMs employed in this study are also
permitted for research purposes.
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A 50 Questions from Qwen 32b model

1. what is the patient's age?
2. what medications was the

patient on at the time of
admission?

3. what is the patient's current
vital signs?

4. what is the patient's
physical exam status?

5. what are the patient's
significant past medical
conditions?

6. what is the patient's history
of previous surgeries?

7. what is the patient's history
of recent infections?

8. what is the patient's family
history?

9. what is the patient's history
of allergies?

10. what is the patient's
history of recent lab results?

11. what is the patient's
history of social habits?

12. what is the patient's
history of renal disease?

13. what is the patient's
primary diagnosis?

14. what is the patient's
history of recent changes in
respiratory status?

15. what is the patient's recent
imaging results?

16. what is the patient's
current mental status?

17. what is the patient's
history of cardiovascular
events?

18. what is the patient 's recent
nutritional status?

19. what is the patient's
history of hospitalizations?

20. what is the patient's
current cardiovascular status?

21. what is the patient's
current neurological status?

22. what is the patient's
history of chronic conditions?

23. what is the patient's
history of respiratory
conditions?

24. what is the patient's
current pain level?

25. what is the patient's
history of recent changes in
liver function?

26. what is the patient's
history of neurological
disorders?

27. what is the patient's
current oxygen saturation?

28. what is the patient's
history of trauma?

29. what is the patient's
current level of
consciousness?

30. what is the patient's blood
pressure?

31. what is the patient's
history of mental health
conditions?

32. what is the patient's heart
rate?

33. what is the patient's
history of metabolic diseases?

34. what is the patient's
history of chronic diseases?

35. what is the patient's chief
complaint?

36. what is the patient's
respiratory rate?

37. what is the patient's
history of gastrointestinal
issues?

38. what is the patient's
history of recent changes in
fluid balance?

39. what is the patient's
alcohol consumption?

40. what is the patient's
current mobility status?

41. what is the patient's
history of smoking?

42. what is the patient's
history of cancer?

43. what is the patient 's recent
functional status?

44. what is the patient's
current treatment plan?

45. what is the patient's
history of hypertension?

46. what is the patient's
history of infectious
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diseases?
47. what is the patient's

history of substance use?
48. what is the patient's recent

activity level?
49. what is the patient's

history of recent treatments?
50. what is the patient's

history of previous hospital
admissions?

B Question Generation Prompts

system_prompt

You are an expert feature
engineer with specialization
in clinical and medical
domains. You are helping to
design features for a
mortality prediction model.

--------------------
Instruction:

Your task is to define useful
features for predicting
in -hospital mortality from
ICU admission notes.

Do the following:

1. Write 20 generalizable and
clinically meaningful
questions that could be
answered from admission
notes. Answer to these
questions should be good
predictors of mortality.

2. Assign a short feature name
(keyword) to each question.

3. Rate each feature’s
importance from 0 (not
useful) to 1 (highly
predictive).

Guidelines:

1. Avoid yes/no questions. Use
open -form questions (e.g.,
prefer "What is the patient’s
age?" over "Is the patient

older than 65?").

Provide your answer in the given
JSON output format.

Example of one question_info
"question ": "What is the
patient’s age?",

"keyword ": "patient_age",
"importance ": 0.8

Patient Admission Notes:
{patient_notes}

--------------------
Constraint Output Schema

json_schema = {
"name": "questions_generation",
"description ": "20 questions
that serves as a feature for
mortality prediction .",

"schema ": {
"type": "object",
"properties ": {

"question_info ": {
"type": "array",
"items": {

"type": "object",
"properties ": {

"question ": {
"type ":" string",
"description ": "A

clinical question that can be
answered from the note"

},
"keyword ": {

"type": "string",
"description ": "A

concise name for the feature"
},
"importance ": {

"type": "number",
"description ":

"Feature importance score
from 0 (low) to 1 (high)"

}
},
"required ":

[" question", "keyword",
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"importance "]
}

}
},
"required ": [" question_info "]

}
}

C Answer Generation Prompts

system_prompt_answergen:

You are an expert in the
clinical and medical domain,
with expertise in analyzing
and answering any questions
based on clinical notes.

-----------------------

json_schema_answergen = {
"name": "answer_50",
"description ": "Answer to

the given 50 questions .",
"schema ": {

"type":
"object",

"properties ": {
"Q1": {

"type": "string" },
"Q2": {

"type": "string" },
"Q3": {

"type": "string" },
.......
.......
"Q49": {

"type": "string" },
"Q50": {

"type": "string" }
},
"required ": [

"Q1", "Q2",
"Q3", .......... "Q49", "Q50"

]
}

}

D More details on Clustering

When generating the 50 questions, the LLM out-
puts not only the question text but also a corre-
sponding feature name and importance score. For
example:

{'question ': 'What is the patient
's age?',

'keyword ': 'patient_age ',
'importance ': 0.8}

We observed that while the phrasing of the
questions may vary, the feature names are of-
ten quite consistent. For instance, all of the fol-
lowing questions map to the same feature name
past_medical_conditions and therefore belong
to the same cluster:

• what are the patient’s past medical conditions?

• what are the patient’s significant past medical
conditions?

• what are the patient’s past medical conditions?

• what are the patient’s significant past medical
conditions?

• what are the significant past medical condi-
tions?

We further improve clustering by working in the
reverse direction as well. For example, for the ques-
tion what is the patient’s laboratory test results?
the LLM sometimes produced different feature
names such as ab_results, lab_test_results,
and lab_tests. In such cases, we group all of
these feature names and their associated questions
into the same cluster. This clustering procedure can
be formalized as finding the connected components
of a graph, where nodes are feature names and
questions, and edges connect each feature name
to its corresponding questions. Implementation is
straightforward using NetworkX, as shown below:

import networkx as nx

def build_keyword_question_clusters(
keyword2question, question2keyword):

G = nx.Graph()

# Add edges from both dictionaries
for kw, questions in
keyword2question.items():

for q in questions:
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G.add_edge(kw, q)

for q, keywords in question2keyword.
items():

for kw in keywords:
G.add_edge(q, kw)

# Extract connected components
components = list(nx.
connected_components(G))

# Optional: extract just keyword
clusters
keyword_clusters = [

[node for node in comp if node
in keyword2question]

for comp in components
]

return keyword_clusters, components

Finally, for each connected component, we select
the most frequent question to represent the cluster.
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