No Universal Prompt: Unifying Reasoning through Adaptive Prompting for
Temporal Table Reasoning

Abhishek Rajgaria'*, Kushagra Dixit!*", Mayank Vyas?, Harshavardhan Kalalbandi®'
Dan Roth*, Vivek Gupta?*
"University of Utah, >Arizona State University, * University of California Riverside,
“University of Pennsylvania
abhishek.rajgaria@utah.edu, kushagra.dixit@utah.edu, mvyas7@asu.edu. hkala@@2@ucr.edu

danroth@seas.upenn.edu, vgupt140@asu.edu

Abstract

Temporal Table Reasoning poses a significant
challenge for Large Language Models (LLMs),
requiring effective reasoning to extract rele-
vant insights. Despite existence of multiple
prompting methods, their impact on table rea-
soning remains largely unexplored. Further-
more, model performance varies drastically
across different table and context structures,
making it difficult to determine an optimal
approach. This work investigates multiple
prompting technique on diverse table types to
determine that performance depends on factors
such as entity type, table structure, requirement
of additional context and question complexity,
with "NO" single method consistently outper-
forming others. To address this, we introduce
SEAR, an adaptive prompting framework in-
spired by human reasoning that dynamically
adjusts to context and integrates structured rea-
soning. SEAR_Unified, its cost-efficient vari-
ant. We also demonstrate that optional table
refactoring (preprocessing) enhances both ap-
proaches when tables lack structural consis-
tency. Our results demonstrate that SEAR
prompts achieve superior performance across
all table types compared to baseline prompting
techniques.

1 Introduction

Temporal table reasoning presents a unique chal-
lenge, requiring Large Language Models (LLMs)
to interpret tabular data while capturing embed-
ded temporal relationships. Unlike static tables
that provide a fixed snapshot of information, tem-
poral tables evolve over time, incorporating event
sequences, timestamps, and dynamic updates. Rea-
soning over such structures is essential for tasks
like financial forecasting, historical trend analysis,
medical diagnosis, and event-based decision mak-
“These authors contributed equally.

"Work done during internship at UPenn.
*primary mentor corresponding author.

Table 0 Table Pretext - ... operating leases

was $ 100690000 , $ 92710000,

Benefit Plan 2017 2016 Yot
Pension Plan $3.856 $3,979 ;(",gﬁa?ﬁf‘;ggﬁ?j" (P
Health Plan 11426 11530 AT
2007 56499000
bl 2008 46899000
2020 Thereafter 2009 39904000
Property mortgages $703,018 $1,656,623 2010 33329000
MRA facilities — — _ ~
Sr. unsecured notes 250000 100000 Question: what was the percentage change
Ground leases 31436 703254 in total rental expense under operating

leases from july 2, 2005 to july 1, 2006?
Dataset: FinQA
Req: Evidence from Text and PoT

[Question: What is the sum of Ground leases |
of 2020, Health Plan of 2016, and Property
mortgages and other loans of Thereafter ?
Dataset: MultiHiertt

Req: Evidence from multiple table and F-COT /

Table Title - Aaron Taylor-Johnson
Table Subtitle - Film

Kit Year Title Role
Year Manufacturer Shirt Sponsor 2015 Avengers Pietro Maimoff
National Nocturnal
1977-1978 - Express 2016 Animals Ray Marcus
1982-1985 Umbro - 2017 The Wall Issac
1985-1986 Umbro Whitbread 2018 Outlaw King James Douglas
A Million Little
2008- Errea Mira Showers 2018 Pieces

“
) [Question: What films did Aaron Taylor-
Johnson appear in in 2017 and 2018?
Dataset: FeTaQA

| |Req: Evidence and Decomposition

J \

Question: what time period had no shirt
sponsor?

Dataset: WikiTabQA

\Req: Evidence and Direct Answer

Figure 1: Examples of Different Table and Contextual
structure, taken from different datasets with efficient
reasoning method based on specific question.

ing (Gupta et al., 2023; Xiong et al., 2024). How-
ever, existing LLMs often struggle to model these
intricate temporal dependencies, underscoring the
need for more effective reasoning frameworks.

Recent work has demonstrated that LLMs can
improve table reasoning performance through ad-
vanced prompting strategies (Zhang et al., 2025).
Nevertheless, studies such as Wang and Zhao
(2024) highlight persistent challenges in tempo-
ral reasoning, with models often failing to track
evolving data or infer event sequences reliably.
Moreover, most existing approaches rely on single-
step prompting methods such as direct prompting
or chain-of-thought reasoning (Wei et al., 2022)
which frequently fail to generalize across diverse
table structures and time-sensitive queries.

Although several prompting techniques have

been proposed to improve LLM reasoning, their
effectiveness for temporal table reasoning remains

2800

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 2800-2821
December 20-24, 2025 ©2025 Association for Computational Linguistics

underexplored. In this study, we evaluate five
single-step prompting methods as baselines Chain-
of-Thought (CoT), Evidence Extraction, Decompo-
sition, Faithful CoT (Radhakrishnan et al., 2023),
and Program of Thought (PoT) (Chen et al., 2023).
Each baseline aims to enhance logical and numer-
ical reasoning, yet their impact on temporal table
reasoning performance has not been systematically
analyzed. Furthermore, we evaluate an extensive
set of baselines covering structural, temporal, and
agentic reasoning approaches.

This study addresses this gap by analyzing the
performance of multiple established baselines and
a novel adaptive reasoning strategy on a Temporal
Tabular Question Answering (TTQA) task. We aim
to answer the following research questions: (RQ)1)
Given a table and a question, which reasoning strat-
egy should be employed?, (RQ)2) Is there a Single
reasoning method that can perform well across all
types of tabular structure?, and (R(Q)3) Is there a
unified representation that can encapsulate all dif-
ferent tabular structures in most effective manner
for the TTQA task?

To address these research questions, we con-
ducted experiments on eight distinct tabular struc-
tures using multiple state-of-the-art LLMs for the
TTQA task. To overcome the limitations of exist-
ing baselines we propose SEAR (Select-Elaborate-
Answer & Reasoning) framework, a novel adaptive
prompting strategy. Our motivation can be likened
to a carpenter building a chair. They have many
tools, such as a hammer, saw and drill. Each is
capable of performing part of the task, but none
of them can build the whole chair. It is the skill-
ful selection and combination of these tools that
brings the chair to life. Similarly, SEAR equips
models with multiple reasoning tools, and then it is
on the model’s capability to choose them for solv-
ing the task at hand. From Table 11, we observe
that models actually use multiple tools to answer
these questions.

SEAR operates in three distinct phases. In the
Initial Select phase, it identifies high-level crucial
steps, in the subsequent Elaborate phase it refines
these steps by adding detailed instructions, ensur-
ing comprehensive road map. Finally, the Answer
& Reasoning phase leverages the structured plan
to deliver accurate answers, supported by clean,
logical explanations and where necessary, includes
integration of Python code for computational tasks.

Furthermore, we combined these three phases
to create a single step reasoning strategy, which

we call SEAR_Unified. Our results show that
SEAR_Unified outperforms all single step baseline
reasoning strategies by significant margins, and
even standard 3-step SEAR and existing multi-step
reasoning strategies such as Self Discover (Zhou
et al., 2024). This demonstrates the supremacy and
efficacy of our proposed reasoning strategy. Addi-
tionally, our study also includes detailed analysis
of refactoring process, wherein we transform di-
verse tabular structure into a unified representation
("Refactor"), Our main contributions are:

* Benchmarking Prompting Methods: We eval-
uate five single-step prompting methods and
show that their effectiveness varies based on
table structure, entity type, sparsity and ques-
tion complexity.

* Adaptive Reasoning Framework: We intro-
duce SEAR, a multi-step adaptive prompting
approach that generalizes well across diverse
table structures, also we integrate them into a
single unified adaptive prompt SEAR_Unified,
outperforming individual methods.

» Table Structure Refactoring: We propose
refactoring as an enhancement, demonstrating
its effectiveness in improving model reason-
ing by optimized table representation.

» Comprehensive Evaluation: We conduct a
systematic analysis across various table types,
highlighting the impact of different reasoning
strategies and structure modifications.

Our dataset, along with all necessary code
scripts, is available at https://coral-lab-asu.
github.io/SEAR

2 Why is Temporal Table Reasoning
Challenging?

Temporal table QA requires models to reason
over structured data while accounting for time-
dependent relationships. This challenge arises from
three key factors: the diverse structures of tables,
the domain-specific reasoning requirements, and
the complexity of the questions asked.

Structural Variability. Tables range from sim-
ple grids to hierarchical or semi-structured layouts
with merged cells and implicit links (e.g., HiTab’s
multi-level indexes, HybridQA'’s tables mixed with
text). They also come in diverse file formats (CSV,
HTML, Markdown), so parsing must be flexible.
SEAR first flattens and standardises these varied

2801

https://coral-lab-asu.github.io/SEAR
https://coral-lab-asu.github.io/SEAR

structures, making them easier for downstream rea-
soning.

Domain-Specific Complexity. Reasoning strate-
gies must adapt to the table’s domain. Wikipedia-
based datasets like WikiTableQuestions demand
general factual reasoning and entity linking. Finan-
cial datasets like FinQA or TAT-QA emphasize nu-
merical reasoning, requiring multi-step arithmetic
and temporal trend analysis. SEAR dynamically
adapts to these needs by identifying relevant enti-
ties and values, then applying suitable prompting
strategies such as F-CoT or PoT. In numerically
intensive domains, PoT facilitates executable code
generation for precise computation.

Question Complexity. Temporal QA questions
range from direct lookups (e.g., “What year did
the team win?”’) to complex reasoning (e.g., “What
was the profit two quarters after policy X?”). These
often require temporal anchoring, arithmetic, and
sequential logic. SEAR addresses this by decom-
posing questions and tailoring its strategy based on
both table and query characteristics.

Limitations of Prior Work. Despite recent in-
terest, most prior work underrepresents the struc-
tural and domain diversity seen in real-world tables.
Datasets like TempTabQA (Gupta et al., 2023) fo-
cus narrowly on specific formats, limiting general-
izability. Annotation inconsistencies (Deng et al.,
2024) further complicate benchmarking. Sym-
bolic approaches (e.g., DATER (Ye et al., 2023),
BINDER (Cheng et al., 2023)) offer logical preci-
sion on well-structured tables but falter on hybrid or
semi-structured formats. Conversely, text-focused
models (e.g., C.L.E.A.R. (Deng et al., 2024)) pro-
vide strong language understanding but lack robust
symbolic reasoning. These limitations highlight
the need for hybrid systems like SEAR, which dy-
namically integrate symbolic and neural strategies
based on task demands.

3 Adaptive Reasoning Framework

Humans naturally begin by understanding the ob-
jective and analyzing table structures, including
cell relationships, headers, and implicit dependen-
cies, while incorporating additional context if avail-
able. In temporal tables, this involves identify-
ing both implicit and explicit time-based patterns.
Once the problem and context are clear, relevant
information is retrieved directly or by decompos-
ing the task into subproblems based on complexity.
Finally, logical and numerical reasoning is applied

systematically to arrive at a well-founded conclu-
sion.

Motivated by this intuitive approach, we propose
the SEAR (Select-Elaborate-Answer & Reasoning)
a framework designed to dynamically adapt reason-
ing strategies based on the structure and complex-
ity of the given table. SEAR builds upon existing
prompting methods by introducing a structured,
multi-step reasoning process that mirrors human
problem solving. It follows a structured three step
process to improve temporal table reasoning, ensur-
ing systematic problem solving while leveraging
In-context learning for adaptability.

Stepl: Select Crucial Steps : Identify key rea-
soning steps without answering directly, creating
an efficient problem solving path. Figure 3 shows
the actual prompt.

* Problem Understanding: Define the ques-
tion’s objective and analyze table structure.

» Reasoning Process: Select single or multiple
strategies from Extract relevant evidence, de-
compose complex queries, apply logical steps,
and generate Python code if needed (when the
question involves numerical or arithmetic rea-
soning. This is guided by the prompt as seen
in Figure 3)

* Optimization tips: Simplify steps, retrieve di-
rect answers when possible, and use code for
numerical operations.

Step 2: Elaborate Crucial Steps : Refine and
comprehend selected steps for clarity and effective-
ness. Figure 4 shows the actual prompt.

* Add contextual details, specify exact table el-
ements, and refine decomposition.

* Ensure a structured and logically coherent
flow toward the final answer.

Step 3: Answer & Reasoning Execute
the structured steps to derive an accurate, well-
supported answers. Figure 5 shows the actual
prompt.

* Follow elaborated steps precisely, referencing
extracted evidence.

* Justify answers with logical explanations,
when possible directly answer from evidence
and integrate Python code for calculations
when needed.

2802

Dataset Structure Domain Reasoning Question Types Answer Types
Flat Hierarichal Hybrid | Wikipedia Finance. | Numerical Textual | Lookup Multi-step Temporal | Long-form SQL
FeTaQA v X X v X X 4 4 4 X v X
FinQA v X X X v v v X v v X X
HiTab’ X v X v v v X v v v X X
HybridQA X X v v X v v v v X X X
MultiHierTT X 4 X X v 4 4 X v v X X
Squall v X X v X v X v v X X v
TAT-QA v X v X v v 4 v v v X X
WikiTableQuestions | v X X v X v X v X X X X

Table 1: Comparison of Temporal Table QA datasets by structure, domain, reasoning, and question types. "HiTab
spans Wikipedia and financial domains. Binary indicators simplify complex question types (e.g., SQL, long-form).

By progressively refining reasoning, SEAR en-
sures adaptability and robustness across diverse
table formats and complexities.

Standard SEAR follows a three-step reason-
ing process that, while interpretable, intro-
duces additional overhead may impact efficiency.
SEAR_Unified simplifies this pipeline by integrat-
ing all three steps into a single-pass formulation.
Interestingly, this unified approach not only reduces
latency and token cost but also achieves higher ac-
curacy, indicating that explicit phase separation
may not be necessary for models with strong in-
ternal reasoning capacity. SEAR_Unified dynami-
cally selects and refines reasoning steps based on
the query and table structure, retrieving key in-
formation, decomposing complex queries when
needed, and selectively using Python for numerical
operations. SEAR_Unified validates intermediate
steps and performs error checks to ensure accuracy
while reducing redundant complexity. Figures 6
and 7 illustrate the prompt and reasoning path.

We additionally introduce table and context
refactoring as a preprocessing step independent of
prompting strategy: it converts heterogeneous table
formats into a more uniform representation (e.g.,
Markdown tabular, clarifies headers, aligns units)
so that whichever prompting strategy is used, the
model has cleaner input. Refactoring is optional
but is recommended when the raw table structure
is highly variable or noisy; if tables are already
well-aligned and simple, one may skip refactor-
ing to save compute/time. Table 2 summarizes the
refactoring changes for each dataset and Figure 10
showcase the prompt used.

4 Experimental Setup

Datasets. We selected eight diverse tabular as
shown in table 3 datasets spanning structured, semi-
structured, hierarchical, and hybrid tables to ensure
a comprehensive evaluation. These datasets present
challenges such as entity relations, numerical rea-

soning, and textual integration, making them well-
suited for assessing table reasoning in LLMs as
shown in Table 1. For detailed overview of the
dataset refer appendix D.

Categories fetaqa finqa hitab hybridqa multi squall tatqa wiki
Table Structure 1580 961 616 1528 1587 774 22401503
Title Clarity 1582 962 386 1528 1587 774 22441504
Column/Row Header 1268 919 353 1229 1587 774 21581283
Data Formatting 1329 957 269 1476 1585 774 21241399
Bolding & Emphasis 1207 934 206 1460 1524 347 2200 478
Other 328 273 82 468 539 197 696 309

Table 2: Dataset evaluation for refactoring categories.

Dataset Filtering: Adapting TempTabQA’s
(Gupta et al., 2023) keyword filter (§3.2), we se-
lected temporal cues (e.g., before, year, latest)
along with domain-specific terms (e.g., fiscal, quar-
terly) and applied them across all datasets. This
approach reliably captures most of the explicit tem-
poral questions, though purely implicit cases may
be missed. Incorporating human judgment could
improve coverage but at the cost of scalability.

Dataset Brief description #Qs

FeTaQA Wikipedia tables; long-form answers from discon- 1,582
tinuous facts

FinQA Financial reports; multi-step numerical reasoning 962

HiTab Hierarchical tables; fine-grained numeric questions 897

HybridQA Wiki tables + linked text; hybrid reasoning 1,528

MultiHierTT Finance; multiple hierarchical tables + long text 1,587

Squall WikiTableQ + SQL alignments; structured query 774
tasks

TAT-QA Finance; tables + text with arithmetic / counting 2,244

WikiTableQ = Wikipedia trivia; factual + numeric Q over large 1,504
tables

Table 3: Number of retained temporal Questions.

Models: We used 3 LLM models: GPT40-mini,
Gemini 1.5 Flash, and LLaMA 3.1 70B.

Prompts & Frameworks: Effective prompting
improves task comprehension and response quality
by providing structured instructions. We evaluated
13 prompting strategies spanning direct, structured,
temporal, and agentic approaches, as summarized
in Table 4.

2803

Baseline Brief description Category
Chain-of-Thought (COT) (Wei et al., 2022) Step-by-step natural-language rationale Direct
Evidence Extraction(EE) Extracts supporting cells first, then answers Direct
Decomposed Prompting(Decomp)(Khot et al., 2023) Splits complex queries into simpler sub-prompts Direct
Faithful COT (F-COT) (Lyu et al., 2023) Adds consistency checks to Chain-of-Thought Direct
Program-of-Thought (POT)(Chen et al., 2023) Generates executable code (e.g., Python) for reasoning Direct
Self-Discover (Zhou et al., 2024) Model autonomously picks reasoning modules Structured
Self-Ask (Press et al., 2023) Iteratively asks and answers sub-questions Structured
Plan & Solve (Wang et al., 2023a) Separates plan generation from execution Structured
C.L.E.AR. (Deng et al., 2025) Injects temporal cues for semi-structured tables Temporal
Narration of Thought (NoT) (Zhang et al., 2024) Requires chronological narration to keep temporal order Tempooal
Self-Consistency Prompting (SCP) (Wang et al., 2023b) Samples multiple COTs and votes Agentic
Tree of Thought (ToT) (Yao et al., 2023) Searches a tree of reasoning states with pruning Agentic
Graph of Thought (GoT) (Besta et al., 2023) Generalises ToT to graph search Agentic

Table 4: Prompting baselines grouped by category.

To ensure a balanced evaluation, we included
both textual and symbolic reasoning prompts. CoT,
Evidence Extraction, and Decomposed Prompting
guide models through step-by-step interpretation.
SCP augments multiple chains of thought and se-
lects the majority vote. PoT and F-CoT generate
structured logic for consistent reasoning. The tem-
poral baselines NoT and C.L.E.A.R. inject explicit
chronological cues to help the model track event
ordering. The structured baselines Self-Discover,
Self-Ask, and Plan & Solve introduce autonomous
decomposition and planning to improve reasoning
quality. The agentic methods ToT and GoT explore
tree- or graph-structured reasoning paths to identify
high-value solutions. All methods were evaluated
in a few-shot setting except Self-Discover.

Evaluation: Evaluating diverse datasets is chal-
lenging due to varying answer types, from nu-
merical values to long-form text. A rigid metric
may miss semantic correctness, so we propose the
Hybrid Correctness Score (HCS), which balances
lexical and semantic accuracy by combining Re-
laxed Exact Match Score (REMS, F1-based) and
Contextual Answer Evaluation (CAE, LLM-based).
A response is considered correct if its REMS score
exceeds 80 or if CAE deems it correct. By in-
tegrating both lexical and contextual evaluation,
HCS offers a more robust measure of answer cor-
rectness. all reported scores represent HCS for
consistency. Detailed REMS and CAE results are
provided in Tables 16 17, 18 in Appendix B.

5 Result and Analysis

In this section, we analyze results using Tables (6,
7, 8) which showcase HCS scores.

Is there a single existing reasoning strategy
which works best on all table types? Perfor-
mance varies depending on table structure, domain,

and question complexity. As observed in Gemini
1.5 Flash results (Table 6), COT performs best on
HybridQA, Evidence Extraction excels in HiTab,
TATQA, FeTaQA and Squall, while Decomposition
is most effective for WikiTabQA and FinQA. POT
shows the highest performance in MultiHierTT,
whereas F-COT does not emerge as the best base-
line in any dataset. A similar trend is evident across
GPT and LLaMA models as shown in Table 5.
Thus, no single prompting method universally out-
performs others, as effectiveness is higly dependent
on the dataset’s structure and complexity.

Gemini 1.5 Flash ~ GPT4omini Llama 3.1 70B
COoT HybridQA MultiHierTT HiTab
TATQA HybridQA

FeTaQA
EE HiTab WikiTabQA FeTaQA
TATQA HiTab Squall

FeTaQA HybridQA

Decomp Squall

WikiTabQA FinQA WikiTabQA
FinQA MultiHierTT
TATQA
POT MultiHierTT Squall FinQA
F-COT - - -

Table 5: Dataset for which Baseline reasoning strategy
performed best for each model

Does the Adaptive Reasoning Framework Help?
Table 5 confirms that COT, Evidence Extraction,
and Decomposition dominate in most datasets, with
POT and F-COT experience improvement in per-
formance for financial and Squall datasets. SEAR
dynamically selects its reasoning path, primarily
leveraging Evidence Extraction, Decomposition,
and Logical Steps (COT) while integrating Python
Program for numerical reasoning. by design, it opti-
mally combines dominant reasoning strategies with
computation support. SEAR outperforms base-
line in 4 dataset for Gemini, in 4 different dataset
for GPT, and in 4 different datasets for LLaMA.
While SEAR consistently improves performance

2804

over baseline across multiple models, it does not
generalize equally across all datasets.

Does unification of SEAR help? SEAR_Unified
optimizes reasoning by merging and refining steps
into a single adaptive prompt, reducing overhead
while enhancing flexibility. As seen in Table 6, 7,
8, SEAR_Unified outperforms baselines across all
datasets for Gemini, while for GPT and LLaMA, it
surpasses baselines in 6 datasets, demonstrating its
superiority. This highlights SEAR_Unified’s abil-
ity to generalize effectively across diverse datasets
and models.

We compared our methods with recent struc-
tured and modular reasoning approaches, including
Self-Discover, Self-Ask, and Plan & Solve. Our ap-
proach consistently outperforms these baselines,
with particularly strong gains on Multi-HierTT,
HiTabs, Squall, and HybridQA. Among them,
Self-Discover performs the closest, underscor-
ing the value of modular and adaptive reason-
ing. We also benchmarked against temporal (NoT,
C.L.E.A.R.) and agentic (ToT, GoT, SCP) strate-
gies. Although NoT, C.L.E.A.R., and GoT perform
well on FetaQA, TAT-QA, and HiTabs, they fail to
deliver consistent improvements on more complex
benchmarks.

To evaluate the robustness of our approach we
also present aggregated analysis in Table 9 which
shows mean Accuracy and mean Regret variance
taken across dataset for each method and model.
SEAR_U demonstrates consistent performance,
achieving highest mean accuracy with notably low-
est mean regret variance.

wiki multi hitab finqa tatqa fetaqa squall hybridqa

COoT 73.60 58.79 79.04 60.08 87.30 71.30 69.90 80.76
F-COT 66.89 60.68 52.06 62.16 78.79 56.13 61.11 17.93
Decomp 78.52 61.00 75.47 62.58 91.67 67.07 67.57 74.67
EE 76.33 60.43 80.82 55.93 9220 77.62 72.32 80.10
PoT 74.40 61.12 70.68 60.52 79.68 50.88 63.57 38.48
NoT 75.19 46.12 81.60 51.03 86.54 87.89 69.12 79.84
ToT 81.98 58.72 77.81 51.24 91.04 79.26 75.32 82.52
GoT 74.86 56.08 84.05 50.83 90.95 84.57 66.14 81.02
SCP 81.71 60.42 80.93 52.70 91.22 84.32 72.35 84.29

CLEAR 82.71 55.57 79.71 53.95 93.27 84.00 78.81 84.48
Self Ask 78.52 45.43 79.15 64.66 81.42 80.15 70.67 63.48
Plan & Solve 81.72 39.51 67.56 66.32 90.60 81.83 77.00 62.63
Self Discover 80.32 59.42 78.93 65.49 91.35 81.16 74.81 80.43
SEAR 81.45 60.18 79.71 65.90 90.02 82.87 80.23 81.15
SEAR_U 82.18 61.75 82.61 68.71 92.78 79.84 81.52 82.00
SEAR+R 82.71 58.54 81.05 65.49 89.39 84.20 78.04
SEAR_U+R 83.38 56.58 82.83 67.36 91.53 85.52 7791 67.08

Table 6: HCS scores (in %) using Gemini 1.5 Flash,
R stands for "Refactoring” and U stands for "Uni-
fied".Bold represents the best performer and the un-
derlined represents the second best performer.

Is table refactoring lossless? While LLM-based
refactoring may introduce a risk of hallucination,

wiki multi hitab finqa tatqa fetaga squall hybridqa

COoT 78.92 57.97 71.59 64.14 9291 84.13 67.57 78.21
F-COT 71.61 55.32 71.35 64.97 91.04 77.81 56.46 34.62
Decomp 79.79 57.03 76.14 65.18 92.65 78.45 62.40 77.68
EE 80.12 56.77 79.38 56.03 92.81 83.88 66.67 79.58
POT 79.59 57.91 76.25 56.13 90.15 72.00 72.35 61.98
NoT 65.82 44.54 80.82 50.41 88.01 85.46 52.58 76.83
ToT 81.91 56.89 79.04 55.40 96.60 82.30 66.67 80.49
GoT 71.54 52.04 74.58 51.35 90.90 81.68 53.61 75.58
SCP 79.05 57.59 79.71 55.19 92.29 84.19 66.53 80.01
CLEAR 82.84 58.09 78.26 55.92 85.22 84.00 68.08 82.26

Self Ask 78.66 54.38 79.60 66.11 90.76 83.03 72.09 63.48
Plan & Solve 82.65 56.77 78.26 64.97 90.34 83.92 77.26 62.63
Self Discover 82.71 56.46 79.60 65.70 91.67 84.51 70.28
SEAR 80.19 57.40 77.37 67.26 92.42 83.38 69.64 75.33
SEAR_U 79.92 61.00 78.93 71.10 92.91 84.89 76.74 78.27
SEAR+R 8291 56.65 78.82 66.94 91.84 84.77 79.33 68.72
SEAR_U + R 84.18 59.29 80.27 69.75 91.44 84.39 79.20 70.48

Table 7: HCS scores (in %) using GPT 40 mini, R stands
for "Refactoring" and U stands for "Unified".Bold rep-
resents the best performer and the underlined represents
the second best performer.

we empirically evaluate this using the AutoQA met-
ric (Jain et al., 2024), which measures answer ac-
curacy on both original and refactored tables. As
shown in Table 10, the loss in fidelity is minimal.
The slight drop in accuracy is primarily due to pur-
poseful modifications, such as the addition of nu-
merical units, adjustments to headers, and revised
table titles. Although these changes alter the struc-
ture, they improve semantic clarity and enhance
the tables’ utility for downstream reasoning tasks.

wiki multi hitab finqa tatqa fetaga squall hybridga

COoT 81.05 57.59 82.95 66.22 91.00 86.03 75.45 81.66
F-COT 66.22 39.82 64.55 51.77 45.12 52.78 61.11 33.31
Decomp 82.85 59.29 81.84 65.28 93.18 84.51 73.51 80.53
EE 81.91 58.92 82.84 61.75 92.54 86.62 80.10 81.07
POT 76.53 58.98 67.56 66.42 91.40 50.44 68.22 37.76
NoT 55.57 39.76 49.83 42.23 48.57 61.18 44.85 65.32
ToT 84.57 45.35 74.99 57.58 82.67 83.50 78.29 83.18
GoT 71.27 52.61 68.45 40.24 72.73 88.49 59.19 74.80
SCP 82.96 57.80 79.38 52.52 85.22 85.46 74.96 79.75
CLEAR 86.23 54.93 76.39 56.23 92.15 86.97 79.84 79.71

Self Ask 81.98 56.84 82.06 67.46 91.69 8598 76.10 72.32
Plan & Solve 82.65 55.95 80.39 66.57 92.51 83.96 76.23 70.55
Self Discover 85.77 57.91 83.95 66.11 92.87 86.09 79.33 83.25
SEAR 82.65 59.61 83.05 66.63 92.34 85.52 81.40 79.78
SEAR_U 82.05 62.19 82.39 70.17 93.27 87.04 82.04 80.27
SEAR +R 82.65 57.09 82.39 67.26 91.67 86.85 76.87 67.74
SEAR_U +R 85.11 58.16 83.05 69.67 92.89 87.23 8249 72.16

Table 8: HCS scores (in %) using Llama 3.1 70B,
R stands for "Refactoring" and U stands for "Uni-
fied".Bold represents the best performer and the un-
derlined represents the second best performer.

Error Analysis Summary. We conduct a
fine-grained error analysis across six datasets as
shown in Figure 2 and find that evidence extrac-
tion is the most common failure mode, accounting
for the majority of errors in five out of six cases.
These errors arise from shallow string matching,
ambiguous headers, and missed qualifiers (e.g.,

2805

Gemini 1.5 Flash GPT-40 mini Llama 3.1 70B

Method Accuracy Regret Accuracy Regret Accuracy Regret
CoT 72.60 8.03 75.18 491 77.74 3.51
F-CoT 56.97 23.66 65.40 1470 51.84 29.42
Decomp 72.32 8.31 73.66 6.43 77.62 3.63
EE 74.47 6.16 74.41 5.69 78.22 3.04
PoT 62.42 18.21 70.80 9.30 64.66 16.59
NoT 72.17 8.46 68.06 12.04 5091 30.34
ToT 74.74 5.89 74.91 5.18 73.77 7.49
GoT 73.56 7.07 68.91 11.18 65.97 15.28
SCP 75.99 4.64 74.32 5.77 74.76 6.50
CLEAR 76.56 4.07 74.33 5.76 76.56 4.70
Self-Ask 70.44 1020 73.50 6.59 76.80 4.45
Plan & Solve 70.90 9.73 74.60 5.50 76.10 5.15
Self-Discover ~ 76.49 4.14 76.42 3.67 79.41 1.84
SEAR 77.69 2.94 75.37 4.72 78.87 2.38
SEAR_U 78.92 1.71 71.97 2.12 79.93 1.33
SEAR+R 75.66 497 76.25 3.85 76.56 4.69
SEAR_U+R 76.52 4.11 77.38 2.72 78.84 2.41

Table 9: Mean Average and Mean Regret variance
across datasets for all 3 models (in %)

Dataset
Accuracy 99.41 95.36 98.06 88.04 86.66 99.40 96.43

fetaga finqa hitab multi squall tatqa wiki hybridqa

84.59

Table 10: AutoQA Accuracy after refactoring Tables.

years, units, footnotes), leading models to anchor
to plausible but incorrect cells, often before any
reasoning or computation can take place. Reason-
ing errors are more prominent in datasets requiring
temporal alignment or multi-hop inference, such as
TAT-QA, while code-generation failures dominate
in WikiTQ due to parsing issues and faulty aggre-
gation over semi-structured tables. Overall, this
suggests that early-stage grounding remains the
key bottleneck across tasks, with dataset-specific
challenges emerging in reasoning and execution
stages. Please refer to Appendix C for a detailed
breakdown of error types by dataset.

6 Discussion

The Adaptive Framework consistently generalizes
across multiple datasets by dynamically selecting
appropriate reasoning paths. Table 11 summarizes
the reasoning paths chosen by GPT-40-mini, show-
ing that Evidence Extraction is always included.
This step helps the model focus on relevant infor-
mation, aligning with human intuition (Section 3).
For lookup-based questions, Evidence Extraction
alone suffices, while more complex tasks require a
combination of reasoning methods.

Datasets with long-form answers, such as Fe-
TaQA, textual strategies works best. As shown in
Table 8, for LLaMA 3.1 70B, FeTaQA achieves
higher accuracy with CoT (84.13%) and Decom-
posed Prompting (78.45%). This trend is further
supported by Table 11, where Evidence Extraction

Error Type Distribution by Dataset (Percentage)

HybridQA

WIkiTQ

HIiTABs

Dataset

FETAQA

Multi

0 20 40 60 80 100
Percentage of Errors

B Evidence Extraction (%) EEE Reasoning (%) mmm Python Code (%)

Figure 2: Distribution of error types (evidence extrac-
tion, reasoning, and Python code execution) across six
benchmark datasets. Evidence extraction emerged as
the dominant failure mode in five of the six cases.

+ Decomposed Prompting is the most frequently
chosen. Table 12 reinforces this, showing that 87%
of FeTaQA'’s reasoning paths rely on textual meth-
ods, highlighting their effectiveness for free-form
responses.

FinQA, which is heavy on numerical computa-
tion, favors symbolic methods. As seen in Table
8, PoT achieves the best performance, with F-CoT
also performing well. Table 11 further confirms
this, with Evidence Extraction + F-CoT as the most
common reasoning path. Similarly, Table 12 shows
that 88.25% of FinQA'’s reasoning paths involve
PoT and F-CoT, emphasizing the strength of sym-
bolic reasoning for computation-heavy datasets.

This pattern extends across datasets, with cho-
sen reasoning paths aligning with their respective
strengths. Table 14 and 15 in Appendix B provide
reasoning path analysis for LLaMA 3.1 70B and
Gemini-1.5-flash, respectively. By dynamically
selecting the most effective reasoning approach
based on question type and tabular context, the
Adaptive Framework consistently delivers strong
performance across diverse table structures and rea-
soning tasks.

Impact of Table Refactoring. Refactoring tab-
ular data enhances LLM accuracy by improving
clarity, structure, and accessibility. Table 2 cate-
gorizes key refactoring techniques that aid model
interpretation. In ‘Table Structure’, standardizing
tables to Markdown format significantly improves
performance. For instance, the Squall dataset, orig-
inally in JSON, benefits from this transformation.
As shown in Table 7, GPT-40-mini with SEAR +
Refactoring (79.33%) outperforms SEAR (69.64%)
by 9.69%, and SEAR_U + Refactoring (79.20%)
exceeds SEAR_U (76.74%) by 2.46%. Similarly,

2806

LLaMA 3.1 70B achieves its highest accuracy
(82.49%) with SEAR_U + Refactoring. In ‘Title
Clarity’, refining ambiguous or missing table titles
improves context.

Figure 10 illustrates how adding a player’s name
in the title enhances model comprehension. ‘Col-
umn/Row Headers’ are refined to eliminate ambi-
guity and better align entities. ‘Data Formatting’
reduces redundant details, such as excessive dec-
imal places, which can increase hallucinations as
context size grows (Liu et al., 2023). Limiting dec-
imals helps models focus and improves accuracy.
‘Bolding and Emphasis’ highlights key details, di-
recting the model’s attention to relevant content.
‘Other’ refinements, such as adding units, removing
whitespace, and reformatting text, further enhance
readability. The prompt for table refactoring is
shown in Figure 9.

Refactoring yields the most consistent improve-
ments for clean or moderately structured datasets
such as WikiTableQA, HiTab, FinQA, FeTaQA,
and Squall, where formatting and clarity directly
enhance interpretability. In contrast, highly com-
plex or hybrid datasets (e.g., HybridQA, Multi-
HierTT) showed negative effects, indicating that
refactoring is best treated as an optional, data-
dependent step rather than a universal enhance-
ment.

Finally, refactoring introduces a computational
cost, adding one LLM call per table. While
lightweight, this step should be applied judiciously
based on data complexity and expected gains.

Reasoning Path Datasets

fetaqa finqa hitab hybridqa multi squall tatqa wiki

EE 175 46 476 1332 194 13 929 703
EE,Decomp 1365 65 191 28 127 160 249 293
EE,F-COT 23 703 111 5 335 581 547 246
EE,POT 9 138 107 143 909 14 482 186
COT,EE 1 1 4 12 5 -5 32
COT,EE,Decomp $ 1 3 2 - 1 1 13
COT,EE,F-COT 1 7 1 -5 5 12 17
COT,EE,POT 1 4 6 12 - 19 14
Total 1582 962 897 1528 1587 774 2244 1504

Table 11: Reasoning Path distribution for GPT-4o0-mini.

Dataset COoT EE Decomp POT F-COT

% # % # %o # % # %o
fetaqa 10 0.63 | 1582 100 | 1373 86.79 9 057 24 152
finqa 10 1.03| 962 100 66 6.86|139 1445|710 738
hitab 12 1.34| 897 100 | 194 21.63 | 111 1238|112 12.49
hybridqa | 20 1.31 | 1528 100 30 196|149 9.75 5 033
multi 22 1391587 100 | 127 8.01|921 58.03 | 132 8.32
squall 6 0.78| 774 100| 161 20.8| 14 181|586 75.71
tatqa 37 1.65(2244 100 | 250 11.14|501 22.33|559 24.91
wiki 76 5.05|1504 100 | 306 20.35|200 13.3|263 17.49

Table 12: Distribution of reasoning methods across all the
datasets for GPT-40-mini.

SEAR in the Context of Agentic Frameworks.
Agentic frameworks have gained attention for their
ability to handle complex reasoning tasks through
modular, interacting components such as planning,
memory retrieval, and tool use. Although SEAR is
not agentic by design, its structured reasoning pro-
cess aligns with the modular philosophy of agentic
systems. Each SEAR module could be instantiated
as an individual agent within such a framework.
However, the goal of this work is to explore how far
prompting alone without external tools or orches-
tration can be used to address temporal table QA.
This design choice prioritizes simplicity and self-
containment. Importantly, the central challenge
SEAR addresses is selecting and sequencing the
appropriate reasoning strategies for a given ques-
tion and table structure remains critical even within
agentic systems.

While agentic architectures offer a more general
execution framework, they still depend on effective
strategy selection. In this sense, SEAR provides a
complementary perspective, offering insights into
reasoning decomposition that could inform or en-
hance agent-based designs.

7 Related Work

Tabular Reasoning. LL.Ms have been widely ap-
plied to tabular reasoning tasks such as question an-
swering, semantic parsing, and table-to-text gener-
ation (Chen et al., 2020a; Gupta et al., 2020; Zhang
et al., 2020; Zhang and Balog, 2020). Early ap-
proaches like TAPAS (Herzig et al., 2020), TaABERT
(Yin et al., 2020), and TABBIE (lida et al., 2021)
improve table comprehension by integrating tab-
ular and textual embeddings, allowing models to
better process structured information. Other meth-
ods, such as Table2Vec (Zhang et al., 2019) and
TabGCN (Pramanick and Bhattacharya, 2021), ex-
plore alternative tabular representations, enhancing
LLMs’ ability to infer relationships between table
elements. However, these methods primarily focus
on structured tables and do not explicitly address
temporal reasoning, which introduces additional
complexity when reasoning over tabular data.
Symbolic Reasoning for Tables. Recent work
has explored symbolic reasoning for structured ta-
bles with predefined schemas, improving logical
inference and data consistency (Cheng et al., 2023;
Ye et al., 2023; Wang et al., 2024). These methods
rely on well-defined structures to extract and pro-
cess information effectively. However, they strug-

2807

gle with semi-structured and hierarchical tables,
where relationships between data points are im-
plicit rather than explicitly defined.

Other Reasoning Frameworks. C.L.E.A.R
(Deng et al., 2024) demonstrated strong tempo-
ral reasoning on domain-specific semi-structured
tables by integrating domain knowledge into re-
sponses. Similarly, Meta-Reasoning Prompting
(MRP)(Gao et al., 2024) selects the optimal reason-
ing strategy through a two-step process but does not
combine reasoning techniques for complex tasks.
In contrast, our approach integrates both textual
and symbolic reasoning to enhance performance
across diverse table types while dynamically select-
ing the best reasoning path. Moreover, our SEAR-
Unified prompt streamlines this into a single-step
process, ensuring efficiency and consistency across
different table structures.

Comparative Analysis. To situate SEAR and
SEAR_Unified within the broader landscape of
prompting methods, we provide a systematic com-
parison in Table 13. Single-inference methods
such as CoT and PoT offer simplicity, but lack
structured reasoning phases for complex table QA.
Tree-based methods (ToT, GoT) explore multiple
paths, but incur high computational costs. Multi-
step approaches like Self-Ask enable iterative re-
finement, while Self-Discover selects reasoning
strategies, yet neither provides explicit structure
for temporal and numerical reasoning. In contrast,
SEAR uniquely combines modularity, selective
code generation, and explicit three-phase reason-
ing, allowing systematic optimization of individual
components. SEAR_Unified maintains this reason-
ing structure implicitly in a single inference step,
achieving both efficiency and effectiveness.

Method Inference Steps Modular Code Generation
CoT Single step No No

EE Single step No No
Decomp Single-step No No
F-CoT Single-step No Yes

PoT Single-step No Yes

NoT Single-step No No

ToT Single-step No No

GoT Single-step No No

SCP Single-step No No
CLEAR Single-step No No
Self-Ask Multi-step No No

Plan & Solve Single-step No No
Self-Discover Multi-step Yes No
SEAR Multi-step Yes Yes (Selective)

SEAR_U Single-step Yes Yes (Selective)

Table 13: Related work matrix comparing SEAR and
SEAR_Unified with major prompting paradigms.

8 Conclusion and Future Work

This paper introduces SEAR, an adaptive reason-
ing strategy for LLMs to tackle TTQA tasks, along
with its consolidated version, SEAR_Unified. Ad-
ditionally, we take a step toward a unified table
representation by incorporating table refactoring as
an enhancement. Our study provides a comprehen-
sive analysis of various reasoning strategies across
eight diverse datasets, benchmarking SEAR and
SEAR_Unified against multiple baselines.

Results demonstrate that SEAR, SEAR_Unified
and with Table Refactoring significantly outper-
forms popular LLM reasoning methods, with
SEAR_Unified surpassing SEAR itself, showcas-
ing its ability to optimize and streamline reasoning
with minimal overhead. This highlights capability
of modern LLMs to dynamically adjust reasoning
within a single prompt, reducing the need for ex-
plicit multi-step processes. Our findings reinforce
the importance of adaptive reasoning and struc-
tured table representation, paving the way for fur-
ther advancements in LLM-based temporal table
reasoning.

While SEAR-based approaches have signifi-
cantly improved Temporal Table QA, several ar-
eas remain open for further exploration. In this
work, we have explored Markdown as a unified tab-
ular representation, exploring alternative formats
such as JSON, CSV, or HTML may further im-
prove adaptability across diverse table structures.
Currently, our experiments relied on in-context
learning, which can limit scalability and efficiency.
Future work should explore lightweight adaptive
reasoning techniques with self-refinement loops,
building on the flexibility demonstrated by SEAR.
Lastly, valuating SEAR-based methods on addi-
tional domains, such as medical or scientific evolu-
tion datasets, would help validate the robustness of
adaptive reasoning strategies for LLMs.

Limitations

While our study has yielded interesting observa-
tions, it’s crucial to acknowledge its limitations.
A closer look at the HCS scores in Table 6, 7, 8,
reveals that while improvements are observed for
datasets with single table contexts, datasets con-
taining multiple tables, such as MultiHierTT and
Hybrid tables, show a decline in performance with
SEAR-based approaches. This highlights a key lim-
itation of our Table Refactoring method, suggesting
that restructuring strategies may need further refine-

2808

ment to handle multi-table contexts effectively. Ad-
ditionally, scalability remains a concern, as our ap-
proach relies on In-Context Learning (ICL), which
may not scale effectively for large table datasets.
The reliance on ICL-based reasoning can lead to
performance bottlenecks.

Ethics Statement

We confirm that our work adheres to the highest
ethical standards in research and publication. We
will publicly release our code and filtered datasets
to enable the research community to validate and
build upon our findings. We are committed to the
responsible and fair use of computational linguis-
tics methodologies. The claims in our paper ac-
curately reflect the experimental results. While
using black-box large language models introduces
some stochasticity, we mitigate this by maintaining
a fixed temperature. We utilize an Al assistive tools
for writing while ensuring absence of bias. We pro-
vide comprehensive details on annotations, dataset
splits, models used, and prompting methods tried,
ensuring the reproducibility of our work.

Acknowledgement

This research has been supported in part by the
ONR Contract N00014-23-1-2364, and conducted
as a collaborative effort between Arizona State Uni-
versity and the University of Pennsylvania. We
gratefully acknowledge the Complex Data Anal-
ysis and Reasoning Lab at School of Augmented
Intelligence, Arizona State University for providing
computational resources and institutional support.
We also thank the anonymous reviewers for their
thoughtful feedback and constructive suggestions.
We extend special appreciation to our lab cat, Coco,
whose presence helped both our team and our pro-
fessor maintain just the right balance of focus and
levity during deadlines.

References

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz
Lehmann, Michal Podstawski, Hubert Niewiadom-
ski, Piotr Nyczyk, and Torsten Hoefler. 2023. Graph
of thoughts: Solving elaborate problems with large
language models. Preprint, arXiv:2308.09687.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from rea-
soning for numerical reasoning tasks. Preprint,
arXiv:2211.12588.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2020a. Tabfact: A large-scale
dataset for table-based fact verification. Preprint,
arXiv:1909.02164.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong,
Hong Wang, and William Yang Wang. 2020b. Hy-
bridQA: A dataset of multi-hop question answering
over tabular and textual data. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1026-1036, Online. Association for Computa-
tional Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697-3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiagi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094-1110, Dublin,
Ireland. Association for Computational Linguistics.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding lan-
guage models in symbolic languages. Preprint,
arXiv:2210.02875.

Irwin Deng, Kushagra Dixit, Vivek Gupta, and Dan
Roth. 2024. Enhancing temporal understand-
ing in llms for semi-structured tables. Preprint,
arXiv:2407.16030.

Irwin Deng, Kushagra Dixit, Dan Roth, and Vivek
Gupta. 2025. Enhancing temporal understanding
in LLMs for semi-structured tables. In Findings
of the Association for Computational Linguistics:
NAACL 2025, pages 49364955, Albuquerque, New
Mexico. Association for Computational Linguistics.

Peizhong Gao, Ao Xie, Shaoguang Mao, Wenshan
Wu, Yan Xia, Haipeng Mi, and Furu Wei. 2024.
Meta reasoning for large language models. Preprint,
arXiv:2406.11698.

Vivek Gupta, Pranshu Kandoi, Mahek Vora, Shuo
Zhang, Yujie He, Ridho Reinanda, and Vivek Sriku-
mar. 2023. TempTabQA: Temporal question answer-
ing for semi-structured tables. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 2431-2453, Singapore.
Association for Computational Linguistics.

2809

https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2020.findings-emnlp.91
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2407.16030
https://arxiv.org/abs/2407.16030
https://doi.org/10.18653/v1/2025.findings-naacl.278
https://doi.org/10.18653/v1/2025.findings-naacl.278
https://arxiv.org/abs/2406.11698
https://doi.org/10.18653/v1/2023.emnlp-main.149
https://doi.org/10.18653/v1/2023.emnlp-main.149

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309-2324, Online. Association
for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. Tapas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Hiroshi lida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. Preprint, arXiv:2105.02584.

Parag Jain, Andreea Marzoca, and Francesco Piccinno.
2024. STRUCTSUM generation for faster text com-
prehension. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 7876-7896,
Bangkok, Thailand. Association for Computational
Linguistics.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modu-
lar approach for solving complex tasks. Preprint,
arXiv:2210.02406.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Preprint, arXiv:2307.03172.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 305-329,
Nusa Dua, Bali. Association for Computational Lin-
guistics.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryscinski,
Nick Schoelkopf, Riley Kong, Xiangru Tang, Murori
Mutuma, Ben Rosand, Isabel Trindade, Renusree
Bandaru, Jacob Cunningham, Caiming Xiong, and
Dragomir Radev. 2021. Fetaqa: Free-form table ques-
tion answering. Preprint, arXiv:2104.00369.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
Preprint, arXiv:1508.00305.

Aniket Pramanick and Indrajit Bhattacharya. 2021.
Joint learning of representations for web-tables, en-
tities and types using graph convolutional network.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1197-1206, Online.
Association for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687-5711, Singa-
pore. Association for Computational Linguistics.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,
Carol Chen, Carson Denison, Danny Hernandez,
Esin Durmus, Evan Hubinger, Jackson Kernion,
Kamilé Lukosiuté, Newton Cheng, Nicholas Joseph,
Nicholas Schiefer, Oliver Rausch, Sam McCandlish,
Sheer El Showk, Tamera Lanham, Tim Maxwell,
Venkatesa Chandrasekaran, Zac Hatfield-Dodds,
Jared Kaplan, Jan Brauner, Samuel R. Bowman, and
Ethan Perez. 2023. Question decomposition im-
proves the faithfulness of model-generated reasoning.
Preprint, arXiv:2307.11768.

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal
Daumé III, and Lillian Lee. 2020. On the poten-
tial of lexico-logical alignments for semantic pars-
ing to SQL queries. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1849-1864, Online. Association for Computational
Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqgiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634, Toronto,
Canada. Association for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
International Conference on Learning Representa-
tions.

Yuqing Wang and Yun Zhao. 2024. TRAM: Bench-
marking temporal reasoning for large language mod-
els. In Findings of the Association for Computational
Linguistics: ACL 2024, pages 6389-6415, Bangkok,
Thailand. Association for Computational Linguistics.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
Preprint, arXiv:2401.04398.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS °22,
Red Hook, NY, USA. Curran Associates Inc.

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara-
marz Fekri. 2024. Large language models can learn

2810

https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2105.02584
https://arxiv.org/abs/2105.02584
https://doi.org/10.18653/v1/2024.acl-long.426
https://doi.org/10.18653/v1/2024.acl-long.426
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://doi.org/10.18653/v1/2023.ijcnlp-main.20
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/2104.00369
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/1508.00305
https://doi.org/10.18653/v1/2021.eacl-main.102
https://doi.org/10.18653/v1/2021.eacl-main.102
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://arxiv.org/abs/2307.11768
https://arxiv.org/abs/2307.11768
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2020.findings-emnlp.167
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2024.findings-acl.382
https://doi.org/10.18653/v1/2024.findings-acl.382
https://doi.org/10.18653/v1/2024.findings-acl.382
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2401.04398
https://doi.org/10.18653/v1/2024.acl-long.563

temporal reasoning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10452—
10470, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decompose evidence
and questions for table-based reasoning. Preprint,
arXiv:2301.13808.

Pengcheng Yin, Graham Neubig, Wen tau Yih, and
Sebastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. Preprint,
arXiv:2005.08314.

Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Ta-
ble2vec: Neural word and entity embeddings for ta-
ble population and retrieval. In Proceedings of the
42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR °19. ACM.

Shuo Zhang and Krisztian Balog. 2020. Web table
extraction, retrieval, and augmentation: A survey.
ACM Trans. Intell. Syst. Technol., 11(2):13:1-13:35.

Shuo Zhang, Zhuyun Dai, Krisztian Balog, and Jamie
Callan. 2020. Summarizing and exploring tabular
data in conversational search. In Proceedings of the
43rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR 20, pages 1537-1540, New York, NY, USA.
Association for Computing Machinery.

Xinliang Frederick Zhang, Nicholas Beauchamp, and
Lu Wang. 2024. Narrative-of-thought: Improving
temporal reasoning of large language models via re-
counted narratives. In Findings of the Association for
Computational Linguistics: EMNLP 2024, Miami,
Florida. Association for Computational Linguistics.

Xuanliang Zhang, Dingzirui Wang, Longxu Dou,
Qingfu Zhu, and Wanxiang Che. 2025. A survey
of table reasoning with large language models. Front.
Comput. Sci., 19(9).

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. Multihiertt: Numerical reasoning over multi
hierarchical tabular and textual data. Preprint,
arXiv:2206.01347.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-
Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. 2024.
Self-discover: Large language models self-compose
reasoning structures. Preprint, arXiv:2402.03620.

Fengbin Zhu, Wengiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. 2021. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content
in finance. Preprint, arXiv:2105.07624.

A Prompt Examples

This section contains the Prompts example for stan-
dart 3-step SEAR (Figure 3, 4, 5), SEAR Unified
(Figure 6 7), Evaluation Prompt (Figure 8) and
Refactoring Prompt and Response (Figure 9, 10).

B REMS and CAE Results

This section contains the additional result for
Reasoning Path Distribution for Llama and Gemini
(Table 14, 15) and also contains complete result
for CAE and REMS score for all GPT, Gemini and
Llama (Table 16, 17, 18).

1. Relaxed Exact Match Score(REMS): This
metric uses an F1-score to measure token overlap
between the predicted and gold answer, allowing
partial matches for better precision-recall balance.
Unlike strict exact match, REMS is more flexible
with lexical variations. For numerical answers, it
permits a £5% tolerance after decimal instead of
token matching. For example, if the correct answer
is 10.64, a prediction of 10.62 is accepted, while
11.64 is not.

Despite its flexibility, REMS does not always
reflect true semantic accuracy. High scores indicate
strong token alignment, but valid paraphrases can
be unfairly penalized. For instance, the correct
answer “Barack Obama was the 44th President of
the United States” would receive a high score for
“Obama was the 44th U.S. President” due to token
overlap, but “Obama, a politician, led the U.S.”
may score lower despite being factually correct.
This limitation makes careful interpretation

2. Contextual Answer Evaluation(CAE): CAE
is an LLLM-based scoring method that assesses re-
sponses based on meaning rather than exact token
overlap. Using a carefully crafted prompt, it de-
termines whether a response correctly conveys the
intended information. Unlike traditional lexical
matching, CAE accounts for paraphrasing and re-
wording, ensuring a more nuanced assessment of
correctness, particularly for complex or free-form
answers. The full CAE prompt used for evaluation
is provided in Figure 8

2811

https://doi.org/10.18653/v1/2024.acl-long.563
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2301.13808
https://arxiv.org/abs/2005.08314
https://arxiv.org/abs/2005.08314
https://doi.org/10.1145/3331184.3331333
https://doi.org/10.1145/3331184.3331333
https://doi.org/10.1145/3331184.3331333
https://doi.org/10.1145/3372117
https://doi.org/10.1145/3372117
https://doi.org/10.1145/3397271.3401205
https://doi.org/10.1145/3397271.3401205
https://doi.org/10.1007/s11704-024-40330-z
https://doi.org/10.1007/s11704-024-40330-z
https://arxiv.org/abs/2206.01347
https://arxiv.org/abs/2206.01347
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2402.03620
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624
https://arxiv.org/abs/2105.07624

Reasoning Path |fetaqa | finqa | hitab | hybridqa | multi | squall | tatqa | wiki
EE 221 39 561 1072 356 9| 1040| 987
EE,Decomp 553 21 19 8 33 28 59| 81
EE,F-COT 571| 853| 123 35| 262 709| 391| 236
EE,POT 234| 45| 194 405| 919 25| 753| 187
COT,EE - - - 6 5 - 1 7
COT,EE,Decomp 3 - - 2 10 1 - 2
COT,EE,F-COT - 3 - - - 2 - 4
POT - 1 - - 2 - - -
Total 1582 962| 897 1528 | 1587| 774 2244|1504

Table 14: Reasoning Path distribution across all datasets for Llama 3.1 70B.

Reasoning Path |fetaqa | finqa | hitab | hybridqa | multi | squall | tatqa | wiki
EE 982] 106| 675 14921 155 112 1160 | 875
EE,DecompE 197 16 6 2 87 17 9| 186
EE,F-COT 175| 796 29 -1 333] 516 49| 173
EE,POT 191 42| 186 33| 1010 119] 1025| 268
COT,EE 25 - - 1 - 1 1 2
COT,EE,Decomp 3 - - - - 1 - -
COT,EE,F-COT 2 1 - - - 6 - -
COT,EE,POT 7 - 1 - - 1 - -
Decomp - 1 - - - - - -
POT - - - - 2 1 - -
Total 1582 962| 897 1528 | 1587| 774 2244|1504

Table 15: Reasoning Path distribution across all datasets for Gemini-1.5-Flash.

wiki multi hitab finqa tatqa fetaga squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COoT 7731 76.66 57.49 49.72 75.26 74.58 5894 57.07 81.68 87.48 28.38 84.13 66.27 65.25 74.07 76.51
F-COT 67.85 67.82 49.39 51.35 41.44 69.79 60.78 61.12 67.36 86.76 40.46 77.69 52.97 53.36 29.78 32.79
Decomp 77.69 76.60 56.12 49.02 73.19 73.36 60.40 58.21 86.13 87.25 28.71 7845 61.07 59.30 74.71 74.87
EE 78.57 77.86 56.32 48.27 76.16 76.92 50.94 46.88 90.22 88.06 28.42 83.82 65.55 64.60 75.85 76.96
POT 76.28 75.93 53.41 53.12 41.92 73.47 51.88 52.49 66.88 86.10 29.71 72.00 65.90 69.12 58.66 60.27
NoT 63.07 63.56 39.04 38.44 69.96 76.25 44.22 46.05 72.78 82.58 29.23 85.46 51.11 50.52 72.17 75.65
ToT 79.79 78.92 53.00 52.43 68.39 7692 51.96 49.90 81.13 83.01 30.15 82.17 64.98 63.44 76.96 78.01
GoT 69.33 67.09 48.80 45.05 6591 71.68 47.41 46.36 83.30 86.14 28.95 81.67 52.67 48.58 71.79 72.05
SCP 77.10 76.73 56.44 52.11 74.58 77.15 51.90 50.00 84.71 86.63 28.51 84.13 64.71 64.47 75.49 78.73
CLEAR 80.23 79.72 52.67 57.40 68.62 75.81 85.23 91.13 29.28 83.94 65.85 66.28 77.98 79.84
Self ASK 75.76 75.99 48.96 51.66 67.79 77.48 57.65 63.61 80.57 87.01 29.46 83.03 65.40 69.12 66.86 68.39

Self Discover 79.91 79.54 51.85 53.62 67.29 77.92 58.24 62.78 78.72 88.45 29.38 84.51 68.50 67.05 77.16 79.90
Plan and Solve 79.52 79.25 52.52 53.68 69.92 76.14 57.83 61.85 80.39 86.72 28.85 83.71 74.09 74.80 66.13 66.55
SEAR 78.32 76.60 54.70 50.98 67.36 74.58 62.52 60.91 81.94 85.83 29.53 83.38 67.56 60.72 72.07 73.63
SEAR_U 77.50 77.53 56.39 56.84 71.78 76.70 62.87 67.57 88.31 89.75 31.06 84.89 72.26 73.77 74.96 75.85
SEAR +R 80.51 79.39 54.04 51.10 68.40 75.92 61.88 60.08 81.63 85.87 29.71 84.39 76.85 74.03 65.89 66.03
SEAR_U+R 81.14 81.25 55.54 55.51 72.13 77.59 62.43 66.53 86.56 88.23 30.47 84.70 76.21 76.87 66.96 67.74

Table 16: REMS & CAE score (in %) for all reasoning strategies across all datasets using GPT-40 mini. R stands
for “Refactoring,” U for “Unified.”

wiki multi hitab finqa tatqa fetaga squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COT 71.86 71.28 57.29 39.26 73.97 74.25 58.00 39.29 80.81 85.34 28.25 71.24 69.44 69.66 77.29 76.57
F-COT 64.76 57.51 58.36 47.83 35.68 49.34 60.60 3420 64.86 74.88 37.05 55.69 60.40 60.73 17.86 15.97
Decomp 76.26 75.00 58.90 41.84 71.70 72.44 60.72 3222 84.23 85.12 29.91 67.07 66.01 6598 72.94 69.31
EE 74.24 72.81 59.02 42.41 74.61 76.43 54.54 30.46 86.14 86.27 28.63 77.62 71.89 72.03 74.12 68.72
POT 72.65 66.69 60.00 47.01 41.37 67.54 54.90 58.10 66.74 75.61 26.73 50.88 62.66 62.99 38.18 33.84
NoT 70.40 73.07 40.59 41.46 72.08 75.59 58.32 6424 69.41 76.69 30.73 87.99 65.03 67.05 7543 77.68
ToT 79.79 78.92 54.65 54.88 70.33 75.70 41.68 47.40 76.84 86.68 29.48 79.20 71.90 73.00 79.42 80.17
GoT 72.82 70.88 51.20 50.03 68.41 82.16 48.34 46.57 79.15 85.34 29.57 84.45 62.08 63.05 77.14 78.53
SCP 79.40 78.92 57.72 56.27 75.90 78.37 46.53 46.26 81.38 86.72 27.85 84.32 68.82 70.80 79.26 82.00
CLEAR 79.82 79.79 56.08 0.06 70.38 76.92 49.47 48.13 79.94 90.42 28.63 83.94 75.32 77.26 79.59 81.81
Self ASK 76.25 75.79 40.23 42.59 69.07 75.80 57.32 62.68 66.92 78.65 28.61 83.21 67.83 68.60 59.47 61.25

Self Discover 77.80 77.26 54.34 55.82 70.63 76.58 58.62 62.68 74.31 88.10 27.49 81.09 69.78 72.86 76.24 77.55
Plan and Solve 79.09 78.59 34.20 37.05 59.51 64.65 58.31 64.24 75.49 87.61 26.69 80.82 74.15 74.28 58.91 59.81
SEAR 79.08 78.19 57.15 54.69 74.93 76.81 59.90 61.02 75.07 83.87 28.75 82.87 76.14 68.60 77.61 78.08
SEAR_U 79.32 80.32 59.27 57.34 78.53 79.38 63.16 65.59 82.70 86.68 31.57 79.77 77.29 79.59 77.11 79.84
SEAR +R 80.27 78.46 5532 52.30 75.08 77.37 59.88 60.50 73.57 84.54 28.97 84.20 76.13 72.09 62.43 62.24
SEAR_U+R 80.78 81.32 53.09 53.62 78.94 79.60 61.98 63.83 82.20 85.65 32.89 85.52 75.16 7597 62.96 64.86

Table 17: REMS & CAE score (in %) for all reasoning strategies across all datasets using Geminil.5 Flash. R
stands for “Refactoring,” U for “Unified.”

2812

SEAR: Step 1

You are a adaptive reasoner tasked with constructing the most efficient pathway for solving tabular questions. Your goal is to
select or create minimal, high-level steps to guide reasoning, avoiding direct answers. NOTE - Do not answer, only select crucial
steps.

Guidelines:

Problem Understanding:

Identify Objective: Define the question's goal.

Comprehend Problem: Understand the scope and nature of the problem.

Reasoning Process:

Evidence Extraction: Extract relevant rows, columns, and text.

Decomposition: Break down complex questions into sub-questions if necessary.

Step-by-Step Reasoning: Apply logical steps to solve sub-questions or the main problem.

Python Code Generation: Opt to generate code (single or multiple scripts) if calculations are required.

Optimization Tips:

Direct Answer Path: Use evidence extraction to find the answer directly, when possible.
Simplify: Break down complex questions into simpler components.

Code Integration: Include Python code generation for essential calculations.

Few examples are given below with their respective crucial steps selected from the meta-reasoning process. Each example
contains its own table, text, and question. Interpret the problem and select only the most essential steps for reaching to answer.

Table:

Model | 2005 |2006 |2007 |2008 |2009 [2010 |2011 |2012 |2013 |
Skoda Octavia | 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |
Skoda Fabia | 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
Skoda Superb | 22091 | 20989 | 20530 | 25645 | 44548 | 98873 | 116700 | 106847 | 94400 |

Skoda Roomster | | 14422 | 66661 | 57467 | 47152 | 32332 | 36000 | 39249 | 33300 |
SkodaYeti | | | | |11018 |52604 | 70300 | 90952 | 82400 |

SkodaRapid | | | | | | 1700 |9292 | 103800 |

SkodaCitigo | | | | | | |509 |36687 |45200 |

Question: How many Skoda cars were sold in 20107

Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.
Python Code Generation: Generate single Python code to sum the extracted values.

Figure 3: Sear Step 1 Prompt Example

wiki multi hitab finqa tatqa fetaga squall hybridqa

REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE REMS CAE

COT 79.20 78.86 56.91 48.71 80.77 81.38 60.91 60.81 83.69 86.10 28.07 86.03 73.21 73.39 79.10 79.78
F-COT 63.02 62.43 3721 37.30 37.35 61.76 48.14 48.44 59.67 61.72 25.34 52.72 56.53 58.01 30.30 31.28
Decomp 80.71 80.78 58.39 52.24 78.71 80.72 60.50 59.77 86.62 86.41 29.36 84.51 71.00 71.58 79.98 77.75
EE 80.30 79.79 57.70 48.27 81.42 80.05 57.03 53.53 89.09 87.70 28.63 86.62 78.12 77.78 78.33 78.73
POT 74.74 73.34 56.47 55.14 37.05 65.44 62.44 61.75 65.02 87.17 20.25 50.44 63.43 64.73 35.63 35.60
NoT 51.86 52.39 30.77 34.85 43.25 46.82 33.88 39.50 41.53 46.75 20.86 61.19 44.86 47.03 68.12 69.50
ToT 82.28 81.72 40.89 46.06 78.48 80.71 55.79 49.06 86.05 90.01 29.13 83.44 74.88 75.97 78.24 80.96
GoT 69.34 68.02 50.49 48.08 65.25 66.33 36.59 40.24 72.59 77.58 30.22 88.50 59.04 61.88 70.42 73.23
SCP 82.57 85.10 55.19 59.48 80.15 84.05 52.65 51.98 84.19 90.06 28.68 85.40 77.03 77.39 77.15 79.71
CLEAR 83.49 82.91 83.50 85.95 83.50 85.95 36.50 42.20 90.06 92.15 29.36 86.92 77.39 79.84 75.58 77.55
SEAR 80.69 78.79 57.76 50.79 75.45 78.60 61.40 60.40 84.67 88.41 29.47 85.52 78.74 72.22 76.43 77.29

SEAR_U 78.91 79.26 60.02 58.03 75.12 79.38 63.30 66.01 89.20 86.36 34.15 87.04 78.74 80.62 77.11 78.24
SEAR +R 80.17 78.46 54.97 48.02 75.77 78.37 62.00 61.43 81.71 86.99 29.53 86.85 73.95 70.67 67.35 70.75
SEAR_U +R 82.53 82.05 56.15 52.68 76.19 77.70 61.66 66.03 86.58 86.47 34.83 87.17 79.01 80.68 67.11 67.80

Table 18: REMS & CAE score (in %) for all reasoning strategies across all datasets using Llama3.170B. R stands
for “Refactoring,” U for “Unified.”

C Detailed Error Analysis tion can contribute. However, we also observe

notable secondary errors particularly in reasoning

We conducF a df:talled error analysw across SiX (o o TAT-QA)and code (e.g., WikiTQ) which vary
datasets to identify the primary failure modes in b .
y dataset structure and modality.

pipeline-based table QA. As shown in plot 2 evi-
dence extraction errors dominate in most datasets,
often occurring before reasoning or code execu-

2813

effectively lead to the correct answer.

Table:

Model
Skoda Octavia
Skoda Fabia

Skoda Superb
Skoda Roomster |
SkodaYeti | | | |
SkodaRapid | | | | | |
Skoda Citigo | | | | | | | 509

Question: How many Skoda cars were sold in 2010?
Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.

Detailed Steps:

SEAR: Step 2

Your task is to comprehend the crucial steps for a given table and question, making each step more detailed and ensuring they

Few Examples are given below with detailed steps by elaborating from the crucial steps. Interpret the examples and understand
the task to comprehend the crucial steps according to the specific table, text and question to reach the answer efficiently.

[2005 |2006 |2007 |2008 [2009 |2010 |2011 |2012 |2013 |
| 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |

| 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
| 22091 | 20989 | 20530 | 25645 | 44548 | 98873 | 116700 | 106847 | 94400 |

| 14422 | 66661 | 57467 | 47152 | 32332 | 36000 | 39249 | 33300 |

| 11018 | 52604 | 70300 | 90952 | 82400 |

[1700 |9292 | 103800 |

| 36687 | 45200 |

Python Code Generation: Generate single Python code to sum the extracted values.

Identify Objective: Determine that the goal is to find the total number of Skoda cars sold in 2010.
Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table.
Python Code Generation: Generate Python code to sum the extracted values for the year 2010.

Figure 4: Sear Step 2 Prompt Example

Dataset-specific Observations

HybridQA. Most errors result from incorrect
row/column selection, driven by surface-level
matches to look-alike strings (e.g., “season,” “di-
vision”) and missed disambiguators (e.g., years or
suffixes like “(q)”). These tokens frequently appear
in adjacent cells or parentheses, making shallow
matches more likely. A small number of reason-
ing errors stem from failure to disambiguate linked
entities across tables. Code issues are rare due to
minimal programmatic computation.

HiTABs. Models often fail due to header ambi-
guity and dense, repetitive tabular layouts. Errors
stem from misidentified rows/columns and unac-
counted qualifiers like ranges or footnotes. Since
the task is primarily table lookup, downstream rea-
soning errors are minimal, and code is not a signifi-
cant factor.

MultiHiertt (Multi). High error rate in evidence
selection is attributed to multi-hop grounding and
similar-looking headers across tables. Subtle dis-
tinctions in qualifiers or column semantics are fre-
quently overlooked. The remaining errors are due
to misinterpretation of multi-hop logic, where the
model fails to chain intermediate inferences.

TAT-QA. While evidence errors are common,
reasoning mistakes form a large minority (36%),
often caused by temporal mismatches (e.g., Q1 vs.
FY) or incorrect unit normalization (e.g., billions
vs. millions). Models struggle to align period-based
values or compute correct numerical operations
even with correct evidence.

FETAQA. Evidence-level failures persist due to
repeated phrases across seasons, clubs, and divi-
sions. Parenthetical markers (e.g., “(q)”) in head-
ers lead to grounding mismatches. Some errors
stem from reasoning failures, particularly aggre-
gation mismatches or improper scoping across
semi-structured tables. A few errors involve minor
code missteps, such as summing incorrect subsets.

WikiTQ. Unlike others, code generation errors
dominate (44%). The model often produces in-
correct filters or aggregation logic due to brittle
parsing of semi-structured HTML-derived tables.
Even when correct evidence is identified, the final
output is wrong due to mis-joins, faulty parsing of
footnotes, or wrong aggregation. Evidence errors
(40%) and reasoning mistakes (16%) persist but
are less frequent.

The analysis reveals that evidence selection re-

2814

mains the primary bottleneck across most datasets.
However, reasoning errors are increasingly rele-
vant in multi-hop or temporal computation tasks
(TAT-QA), and code execution errors emerge as a
major challenge in semi-structured, programmatic
tasks like WikiTQ. Addressing early-stage ground-
ing and late-stage execution together is critical for
end-to-end accuracy.

D DataSet Overview

1. FeTaQA(Nan et al., 2021) : A Wikipedia-
based table QA dataset that requires generat-
ing long-form answers by integrating multiple
discontinuous facts and reasoning across struc-
tured tables. Temporal Questions: 1,582

2. FinQA(Chen et al., 2021) : A financial QA
dataset from reports, requiring expert-verified
multi-step numerical reasoning and gold rea-
soning programs for explainability. Temporal
Questions: 962

3. HiTab(Cheng et al., 2022) : A cross-domain
QA and NLG dataset featuring hierarchical
tables, analyst-authored questions, and fine-
grained annotations for complex numerical
reasoning. Temporal Questions: 8§97

4. HybridQA(Chen et al., 2020b) : A QA
dataset requiring reasoning over Wikipedia
tables and linked free-form text, demanding
both tabular and textual data for accurate an-
swers. Temporal Questions: 1,528

5. MultiHierTT(Zhao et al., 2022) : A finan-
cial QA benchmark requiring reasoning over
multiple hierarchical tables and long unstruc-
tured text, with detailed multi-step numerical
reasoning annotations. Temporal Questions:
1,587

6. Squall(Shi et al., 2020) : An extension of
WikiTableQuestions with manually created
SQL equivalents and fine-grained alignments,
supporting structured query reasoning in tabu-
lar environments. Temporal Questions: 774

7. TAT-QA(Zhu et al., 2021) : A financial QA
dataset requiring reasoning over both tabu-
lar and textual data, involving operations like
arithmetic, counting, and sorting for quantita-

tive and qualitative analysis. Temporal Ques-
tions: 2,244

8. WikiTableQ(Pasupat and Liang, 2015) : A
Wikipedia-based QA dataset with trivia-style

2815

questions requiring factual and numerical rea-
soning over tables with at least 8 rows and 5
columns. Temporal Questions: 1,504

SEAR: Step 3

You are responsible for delivering precise answers by strictly following the provided detailed steps. Each answer must be carefully
reasoned, supported by clear explanations, and based on thorough analysis of the given table, text, and question.

Few examples are given below. Interpret the examples and understand the task to answer the tabular question according to the
specific table, text, question by following the detailed steps to answer efficiently.

Table:

Model | 2005 |2006 |2007 |2008 |2009 |2010 |2011 |2012 |2013
Skoda Octavia | 233322 | 270274 | 309951 | 344857 | 317335 | 349746 | 387200 | 409360 | 359600 |
Skoda Fabia | 236698 | 243982 | 232890 | 246561 | 264173 | 229045 | 266800 | 255025 | 202000 |
Skoda Superb | 22091 | 20989 | 20530 | 25645 | 44548 | 98873 | 116700 | 106847 | 94400 |

Skoda Roomster | | 14422 | 66661 | 57467 | 47152 | 32332 | 36000 | 39249 | 33300 |
SkodaYeti | | | | |11018 | 52604 | 70300 | 90952 | 82400 |

SkodaRapid | | | | | | [1700 |9292 |103800 |

SkodaCiigo | | | | | | 1509 |36687 |45200 |

Question: How many Skoda cars were sold in 2010?
Crucial Steps:

Identify Objective: Define the goal.
Evidence Extraction:Extract relevant rows, columns, and text.
Python Code Generation: Generate single Python code to sum the extracted values.

Detailed Steps:

Identify Objective: Determine that the goal is to find the total number of Skoda cars sold in 2010.
Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table.
Python Code Generation: Generate Python code to sum the extracted values for the year 2010.

Answer and Reasoning:
Identify Objective: The goal is to find the total number of Skoda cars sold in 2010.

Evidence Extraction: Extract the relevant data (the 2010 column) for all models listed in the table:
Skoda Octavia: 349746

Skoda Fabia: 229045

Skoda Superb: 98873

Skoda Roomster: 32332

Skoda Yeti: 52604

Skoda Rapid: N/A (No data for 2010)

Skoda Citigo: N/A (No data for 2010)

Python Code Generation: We can now sum the extracted values for the year 2010 using Python code
“* python ™

Data for 2010

skoda_sales_2010 = [349746, 229045, 98873, 32332, 52604]

Calculate the total sales for 2010

total_sales_2010 = sum(skoda_sales_2010)

print(f’Final Answer: {{total_sales_2010}}")

#Done

Answer and Reasoning: Summing these values gives the total number of Skoda cars sold in 2010.
Final Answer: 762600

Figure 5: Sear Step 3 Prompt Example

2816

SEAR_UNIFIED PROMPT

Instruction
You are a adaptive-reasoner with the capabilities to select or merge steps to create the most appropriate reasoning pathway based on the tabular question provided by the user. You can even develop
new reasoning steps by combining the new steps or learning from illustrations to create new pathways depending on the provided problem.

Steps for Adaptive Reasoning:
Each section has multiple approaches, you do not have to use all the approaches. Understand their use-cases and then pick minimal relevant steps to create your own optimal approach to answer the
question.

Problem Understanding:
- Determine the objective: Identify the goal or desired outcome of the reasoning process.
- Understand the problem: Comprehend the nature and scope of the problem.

Reasoning Process:

- Step-by-step reasoning: Approach the problem logically, ensuring clarity at each step or stage.

- Extract relevant information: Gather all necessary data and details pertinent to the problem, by extracting relevant rows, columns and textual information.
- Decomposition of problem into sub-problems: Break down the main question into smaller and more manageable sub questions.

- Individually answer each sub-problem with reasoning: Apply logical steps to solve each sub question separately.

- Write a single Python program for solving the problem: Create a detailed unified Python script with comments describing the steps and stages.

- Individually write a Python program for each sub-problem: Develop separate Python scripts for each sub-problem, ensuring modularity and clarity.

Conclusion:

- Summarize findings: Combine the results from each step or sub question to give the final answer as Final Answer: {{Answer}}.

- Combine Python code: If necessary, integrate the individual Python scripts into a cohesive program at the end. Print the final answer as Final Answer: {{Answer}}, end your code with a comment
“#Done”.

Error Detection:

- Review each step or sub-problem: Ensure each step or sub-problem has been addressed thoroughly and correctly.

- Ensure logical flow: Verify that the reasoning process flows logically from one step to the next.

- Check Python program for syntax and errors: Confirm that the final Python program is syntactically correct and free of errors.

Helpful Tips for Creating Appropriate and Optimal Approach:

- Understand what is asked in the question, mention all the steps required to answer the question and why each step is necessary.

- If the question can be broken into smaller and more manageable sub questions, always decompose the question into relevant sub questions.
- If there are **calculations involved you must use python code** for performing calculations and reaching the final answer.

- If the question is directly answerable by direct look up from the tabular data or from the extracted evidence then provide a direct answer.

Table:
Context:

Race Results Overview
This table showcases the results of various athletes who participated in different heats, including their times and nationalities.

Rank | Heat | Name | Nationality | Time | Notes |
P | | |

()
| Salem Al-Yami

|

| | | |

EE | SaudiArabia [10.55 [Q |
|2 |1 |[Hiroyasu Tsuchie | Japan |11064 |Q |

3	1	Khaled YousefAl-Obaidli	Qatar 11068	Q	
4	1	Chintake De Zoysa	Sri Lanka 11078	q	
5	1	Suminda Mendis	Sri Lanka	10.82	q,PB
6	1	[Vissanu Sophanich	Thailand 110.87		

|1 |2 | Gennadiy Chernovol | Kazakhstan 11059 |[Q |
|2 |2 |YutaKanno | Japan |11064 |Q |

|3 |2 |Shen Yunbao | China [1072 |Q |

|4 |2 |TsaiMeng-Lin | Chinese Taipei | 10.74 |q |
|5 |2 |TanKok Lim | Malaysia 110.83 |q |

6	2	Ahmad Hudeib Al-Mamari	Oman 110.97	
1	3	Jamal Al-Saffar	Saudi Arabia [1057	Q
2	3	Reanchai Srihawong	Thailand 11072 [Q	
3	3	Shin Jung-Ki	South Korea 110.79	[2]

|4 |3 |Chen Tien-Wen | Chinese Taipei | 10.74 |q |
|5 |3 |ToWailok | Hong Kong 110.92 | |

|6 |3 |PohSeng Song | Singapore |11.10 | SB |
|1 |4 |Chen Haijian | China 11065 |Q |

|2 |4 |Saad FarajAl-Shahwani | Qatar 11067 |Q |
|3 |4 |Azmilbrahim | Malaysia [10.78 |[Q |

|4 |4 |Chiang Wai Hung | Malaysia 110.89 | |

|5 |4 |Nguyen Thanh Hai | Vietnam 111.16 |PB |
|6 |4 |Piphop Rasme PrumKeo | Cambodia |11.70 |PB |

Question : which country finished earlier, thailand or japan?

Optimal Approach:

Figure 6: SEAR_UNIFIED Prompt Example

2817

RESPONSE (REASONING PATH: COT, EE, DECOMPOSITION)

To answer the question "Which country finished earlier, Thailand or Japan?" using the
provided table, we will apply optimal meta-reasoning to create an appropriate approach
to develop the final answer.

Problem Understanding (Step-by-Step):

1. Determine the objective: Identify the country that finished earlier between Thailand and
Japan.

2. Understand the problem: We need to compare the finish times of athletes from
Thailand and Japan. Since the table contains data on athletes from various countries,
including Thailand and Japan, we can extract the relevant information and compare the
times.

Reasoning Process:

3. Extract Relevant Information:

We need to find the finish times of athletes from Thailand and Japan. From the table, we
can see that there are multiple athletes from each country. We will extract the times for
each athlete and then compare them.

Here are the relevant rows and columns extracted from the table:

Evidence -

From Heat 1: —

| Rank | Name | Nationality | Time | Notes | /’ N
e :] 4 N\
|6 | Vissanu Sophanich | Thailand 110.87 | | (EE)
|2 | Hiroyasu Tsuchie | Japan 11064 |Q | \\ /’
From Heat 2: ~

| Rank | Name | Nationality | Time | Notes |

| | | | | |

I I 1 I U 1

|2 | Yuta Kanno | Japan 1064 |Q |

From Heat 3:

| Rank | Name | Nationality | Time | Notes |

I | | I I |

| | | | | |

|2 | Reanchai Srihawong | Thailand [10.72 |[Q |

4. Decompose the problem into sub-problems:
- Compare the times of athletes from Thailand and Japan in each heat.
- Determine which country had the fastest time overall. —

/ N
5. Individually answer each sub-problem with reasoning: / \
- In Heat 1, Hiroyasu Tsuchie from Japan finished with a time of 10.64, while Vissanu “/ D ECOM P \\
Sophanich from Thailand finished with a time of 10.87. Japan finished earlier in this heat. \ /)
- In Heat 2, Yuta Kanno from Japan finished with a time of 10.64, which is the same as \\\ //
Hiroyasu Tsuchie in Heat 1. ~_
- In Heat 3, Reanchai Srihawong from Thailand finished with a time of 10.72, which is
slower than the times of the Japanese athletes in Heats 1 and 2.

6. Conclusion:
Based on the extracted information and comparison of times, Japan finished earlier than
Thailand.

Final Answer: Japan.

Figure 7: The figure illustrates the response path followed by SEAR_Unified Prompting. The reference prompt is provided in
Figure 6

2818

Input:

You are an expert LLM evaluator tasked with assessing the accuracy of model responses against gold standard
answers. Your role is to determine if the core content and intent of the model’s response align with the gold answer,
considering various answer formats and implicit information.

Key Guidelines

« Understand the question’s essence, including specific operations or units mentioned.
« Compare model responses to gold answers, focusing on key information.
o Allow a small margin of error (+0.1%) for numerical answers.
« Recognize correct answers in different formats, such as percentages and decimals.
o Consider implicit information and context in responses.
o For list-type answers:
o Evaluate based on content rather than order.
o If more than two elements are missing (context-dependent), evaluate as incorrect.
« Assess mathematical answers based on value range unless a specific value is required.
o Check for appropriate units in mathematical answers.

Final Judgment
Provide a "Yes" or "No" judgment without explanation unless explicitly requested

Figure 8: Prompt for Contexual Answer Evaluation(CAV)

2819

Input:

Instruction

You are given the following Question and Context. The Context includes a table that may be incomplete, ambiguous,
or poorly structured. Your task is to produce a cleaned version of the table that improves its clarity and structure so
that it can be correctly used to answer the Question.

Guidelines

1. Do not add, remove, or alter any data. Only restructure and clarify what is already present.
2. You may improve the table title if it is missing or ambiguous:
o If a title is missing, infer an appropriate one based on the question and table content.
o If the existing title is unclear or misleading, revise it for clarity while keeping its original meaning.
3. You may improve the table headers if needed:
1. Rename ambiguous column/row headers for clarity.
2. Ensure column and row labels accurately describe their content.
4. You may fix structural inconsistencies:
1. Align misaligned data properly under the correct headers.
2. Ensure row and column structures are uniform.
3. Remove redundant headers or merge split headers where necessary.
5. The data should be kept in the same order whenever possible. However, if minor reordering of rows or
columns helps fix structural issues, you may do so only if it does not change or omit any data.

Output Format

« Provide only the cleaned table as your output in a structured format appropriate for the data in
Markdown format.
« Do not add any explanations, reasoning, or commentary.

Question: {question}
Context: {context}
Now produce just the cleaned table

Figure 9: Prompt for Refactoring Tables.

2820

Table Refactoring Example

Question: How many passing yards did J.J. Raterink get in 2012?

~

Title : afl statistics Lack of Context About Table
| year | team |passing| | | 11 |rushing| | |
| lemp |att|pct |yds |td|int|rtg [att |yds|td]| Bad Column Headers
2010	chicago	65	10263.7	767	14]2	112.66]8	9	2	
2011	chicago	64 [105	61.0(888	16	2	11827	4	8	2
2011	kansas city	311	500	62.2 3,723 65	17	103.28	48	138]5	
2012	iowa	413	61866.8	4,870 93	10	121.49]37	110	8	
2013	iowa	346	575	60.2	4,015	78	18 [102.19]32	10	8
2014	los angeles	211	383	55.1]2,335	38 19	77.53	6	5	1

N

| 2014 |iowa | 101 |163|62.0(1,320|22|1 |118.65|37 [111]9 |

| 2015 | las vegas | 178 |325]|54.8|1,986|35|9 |88.57 |32 |19 |6

| career | 11,689 |2,771|61.0| 19,904 | 361 | 78 | 103.65 | 204 | 410 |41 |

Title: Player Statistics for J.J. Raterink Improved Title for better Context \
| Year | Team | Passing Completions | Passing Attempts | Completion Percentage | Passing Yards | Touchdowns | Interceptions | Rating | Rushing

Attempts | Rushing Yards | Rushing Touchdowns |
| | | | | |
I I I

I U U I U U
| 2010 | Chicago | 65 1102 163.7% | 767 114 |2 |112.66 | 8 |9 |2 |

Improved Column Headers
U U U

|2011 | Chicago |64 | 105 161.0% | 888 116 |2 | 118.27 | 4 |8 |2 |

| 2011 | Kansas City | 311 | 500 1 62.2% |3723 |65 |17 1103.28 | 48 1138 |5 |
|2012 [lowa | 413 1618 | 66.8% 14870 |93 |10 |121.49 | 37 1110 |8 [
12013 [lowa |346 | 575 1 60.2% 14015 |78 |18 1102.19 | 32 |10 |8 |
|2014 | Los Angeles | 211 1383 |55.1% 1233 [38 |19 17753 |6 |5 1 I
12014 [lowa | 101 1163 1 62.0% 11320 |22 |1 | 118.65 | 37 1111 19 |
|2015 |Las Vegas |178 1325 | 54.8% 11,986 |35 |9 | 88.57 |32 119 |6 I

| **Career™| | 1,689 12,771 161.0% 119,004 [361 |78 1 103.65 | 204 1410 | 41 /|

Figure 10: Refactored Table Example

2821

