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Abstract

While state-of-the-art large language models
find high rates of success on text classification
tasks such as sentiment analysis, they still ex-
hibit vulnerabilities to adversarial examples:
meticulously crafted perturbations of input data
that guide models into making false predictions.
These adversarial attacks are of particular con-
cern when the systems in question are user-
facing. While many attacks are able to reduce
the accuracy of Transformer-based classifiers
by a substantial margin, they often require a
large amount of computational time and a large
number of queries made to the attacked model,
which makes the attacks susceptible to detec-
tion. In this work, we resolve the limitations
of high query counts and necessary computa-
tional time by proposing a query-efficient word-
level attack that is fast during deployment and
does not compromise the attack success rate of
state-of-the-art methods. Our attack constructs
a dictionary of adversarial word substitutions
based on prior data and leverages these sub-
stitutions to flip the sentiment classification of
the text. Our attack method achieves an av-
erage of 27.49 queries—over 30% fewer than
the closest competitor—while maintaining a
99.70% attack success rate. We also develop
an effective defense strategy inspired by our
attack approach.

1 Introduction

While large language models of recent years have
made substantial progress towards accurate and
fluent text generation and classification, they still
exhibit vulnerabilities to adversarial examples:
meticulously crafted perturbations of input data
that guide models into making false predictions
(Szegedy et al., 2014). This type of adversarial
attack is particularly concerning for systems which
may have impacts on real users, such as sentiment
analysis systems that classify user engagement on
social media (Wankhade et al., 2022). Work to-

wards adversarial attack and defense methods en-
ables both (1) investigation into vulnerabilities of
existing models, and (2) explanation of model per-
formance (Goodfellow and Jonathon Shlens, 2015;
Gil et al., 2019).

While many attacks are able to reduce the ac-
curacy of Transformer-based classifiers by a sub-
stantial margin (Gao et al., 2018; Gil et al., 2019;
Ebrahimi et al., 2018; Liu et al., 2022), they are
limited by the amount of computational time re-
quired and the number of queries made to the target
(attacked) model (Zhan et al., 2024). These draw-
backs make them susceptible to being detected by
the model’s owner, as single accounts making many
queries often raise red flags (Maghsoudimehrabani
et al., 2022). To overcome this issue, recent work
has suggested query-efficient methods (Hossam
et al., 2021; Berger et al., 2021; Lv et al., 2023;
Wang et al., 2022; He et al., 2021), which reduce
the number of queries made to the model—but still
require substantial computational time during the
deployment of the attack.

In this work, we resolve both limitations, that
of high query counts and the computational time
required, by proposing a query-efficient word-level
attack. Our attack is both faster during the deploy-
ment (fewer queries and shorter attack time) than
the state-of-the-art and does not compromise the
attack success rate of state-of-the-art methods.

At its core, our proposed attack creates a word
substitution dictionary which is gathered by first
targeting the most frequent words in a prior dataset,
and then scoring them based on their frequency,
how much they change the model’s prediction,
LIME score (Ribeiro et al., 2016) and the amount
they change the meaning. The scored substitutions
are then leveraged for the target model, where ap-
plying the highest-scoring substitutions induces
misclassification. Inspired by this property of word-
level adversarial attacks, we also propose a de-
fense method, which assumes that each sentence
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has been attacked and systematically reverts the
highest-scoring substitutions.

As a result, our attack method achieves an aver-
age of 27.49 queries—30.05% fewer than the cur-
rent state of the art (Di et al., 2020)—while main-
taining a 99.70% attack success rate. Our defense
method surpasses all known existing defenses in
mitigating three out of four baseline attacks (Wang
et al., 2021; Zhu et al., 2020; Yoo et al., 2022;
Mozes et al., 2021) achieving the highest reduction
in attack success rate and F1 score while main-
taining the highest clean accuracy (accuracy when
there is no attacked text in the testing sample). Our
contributions include:

1. A novel word-level deployment-time attack
against sentiment analysis systems which
achieves state-of-the-art query reduction and
near state-of-the-art attack success rate.

2. A novel defense method, which utilizes a dic-
tionary of possibly harmful substitutions and
reverts them, achieving state-of-the-art perfor-
mance for reducing attack success rate and F1
score for popular sentiment analysis systems.

3. An open-source, ready-to-be-deployed attack
benchmark suite of retrieved word substitu-
tions for the research community.1

2 Related Work

Adversarial examples that deceive Transformer-
based classifiers can be generated at the character-,
word-, or sentence-level, or mixed across multiple
levels. Our attack is primarily a word-level attack
that also shares similarities to character-level at-
tacks in computing word similarity and determin-
ing the ideal perturbations.

Word-level attacks are the most common, as they
are able to generate more fluent and realistic sam-
ples compared to character-level attacks. Word-
level attacks impose linguistic constraints to the
search space and use linguistic thesauruses (such
as WordNet (Miller, 1995) and HowNet (Dong
and Dong, 2003)) to develop a larger vocabulary
of synonyms. Early word-level text adversarial
attacks employed various techniques, including
computational graph unfolding to identify words
that cause misclassification (Papernot et al., 2016),
dropping or substituting key words based on part-
of-speech tags (Samanta and Mehta, 2017), re-
placing words with GloVe-based nearest neighbors

1https://github.com/yigit-efe-enhos/Minimizin
g-Queries-Maximizing-Impact-Adaptive-Score-Based
-Attack-and-Defense-for-Sentiment-Analysis

(Alzantot et al., 2018), and using swarm optimiza-
tion for sememe substitution (Zang et al., 2020).

More recently, Di et al. (2020) and Ren et al.
(2019) introduce TextFooler and PWWS, respec-
tively, which greedily select words to perturb per
query. TextFooler ranks word importance by mea-
suring their impact on model confidence, while
PWWS combines word saliency with classifica-
tion probability to identify the most vulnerable
words. While these models implement iterative syn-
onym swaps that achieve high attack success rates,
they often generate an excessive number of queries,
making them detectable by systems like Stateful
Query Analysis (Maghsoudimehrabani et al., 2022)
and OpenAI (OpenAI, 2024), which flag and dis-
rupt such attacks. To address the detectability of
these attacks, E2A (Hossam et al., 2021) learns
word saliency scores from a separate training cor-
pus in a related domain, rather than a corpus in-
tended for attacking. However, their method fo-
cuses only on identifying words to substitute, with-
out ranking the effectiveness of the replacements.

In contrast, our approach goes one step further
by scoring substitutions to determine the most im-
pactful replacements. For example, when replac-
ing good, our attack evaluate multiple alternatives,
such as wonderful and fabulous, and determine
that good → wonderful is the stronger attack. In
deployment, E2A would apply both substitutions—
without them being ordered in a way that priori-
tizes making the most impactful substitution first—
potentially wasting queries on less effective pertur-
bations. By ranking substitutions beforehand, our
method ensures a more efficient attack strategy.

Adversarial defense methods typically fall into
two categories: adversarial training and statistical
approaches. Early works on adversarial training
propose including adversarial samples in the batch
(Di et al., 2020; Yoo and Qi, 2021). FreeLB (Zhu
et al., 2020), which improves embedding space in-
variance by applying adversarial perturbations to
word embeddings and minimizing the adversarial
risk within a constrained region around input sam-
ples, where perturbations are optimized to max-
imize the loss while minimizing the adversarial
vulnerability. Taking an information theoretic per-
spective, InfoBERT (Wang et al., 2021) leverages
an Information Bottleneck regularizer and an An-
chored Feature regularizer simultaneously.

Statistical approaches focus on replacing low-
frequency words with more common alternatives,
assuming that adversarial sentences exhibit higher
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perplexity than their original counterparts, includ-
ing FGWS (Mozes et al., 2021). RDE (Yoo et al.,
2022) analyzes the contributions of individual
words to sentiment by evaluating sentiment den-
sity via gradient-based word importance.

Our simple yet effective defense strategy oper-
ates by identifying and reverting substitutions that
have been empirically shown to flip sentiment la-
bels, using a precomputed score-based substitution
dictionary to recover the original inputs. Therefore,
our proposed defense does not fit into either of
these categories, as it does not do any adversarial
training or consider sentence-level statistical proba-
bilities. Instead, we introduce a new consideration:
harmful substitutions, explicitly identifying and re-
versing adversarially impactful word changes to
restore the model’s intended predictions.

3 Attack Methodology

We consider the task where a Transformer-based
text-classifier F : X → Y , predicts a label
Y ∈ Y given an input text X ∈ X where X =
{X1, X2, . . . , XN} is the input space consisting of
a corpus ofN sentences and Y = {Y1, Y2, . . . YM}
is the output label space for M labels. The at-
tacker’s goal is to identify a sentence Xadv for a
given sentence X such that Xadv conform to the
following constraints:

F (Xadv) ̸= F (X) (1)

H(Xadv) = H(X) (2)

Sim(Xadv, X) ≥ ϵ (3)

where H : X → Y represents the predicted la-
bel for sentence X by a human, Sim : X × X →
[−1, 1] is a semantic similarity function and ϵ is
the minimum similarity threshold between the orig-
inal sentence and valid adversarial examples. The
attacker does not know the defending model, but
has query level access to it (and explicitly specifies
the API of queries), where the query-level attack
constitutes the threat model.

As such, the attack generates adversarial sam-
ples such that the predicted label does not match
the original label of the text, but where humans
would still predict the original label and seman-
tic similarity is preserved. In addition to leading
the target model to misclassification, a good attack
aims to minimize the number of words perturbed
and the number of queries, while maximizing se-
mantic similarity and fluency.

In this work, we focus on identifying adversarial
examples specifically for binary sentiment analy-
sis, the task of classifying positive and negative
sentiments. We thus have Y = {1, 0} as our la-
bel space where positive and negative samples are
represented by 1 and 0, respectively.

3.1 Data Preparation Phase
Our proposed attack and defense require a prepara-
tion phase in which we collect data on substitutions
that frequently cause model misclassification. In
order to identify these substitutions, we attack sen-
tences from the English-language IMDb dataset2.
During the substitution gather process, we use an
improved version of TextFooler (Di et al., 2020),
which changes the saliency calculation L2 norm to
be a signed summation instead of absolute value.

We begin by identifying the top 200 words in the
target IMDb dataset that are neither stopwords nor
named entities. We maintain the syntactic struc-
ture of the sentence, ensuring that substitutions are
the same parts-of-speech and that punctuation is
unaffected.

For each word, we select 100 reviews containing
it and generate approximately 100,000 adversar-
ial samples per sentence, recording every substitu-
tion used to create an adversarial example. Specif-
ically, we select a word from the most frequent
(non-stopword and non-entity) terms in the vocab-
ulary, using the full IMDb movie reviews dataset,
and then choose 100 reviews that include this word.
Using our adapted TextFooler attack, for each of
these 100 reviews, we first perform the substitution
of the current word. If necessary, we then perform
another substitution, and so on, until the label is
successfully flipped. For each of these 100 reviews,
we run attack attempts until we reach 100 success-
ful attacks. The model tries synonym substitutions
of the selected word and, if needed, other words to
flip the review’s label and reach the total 100,000
attacks. We record (a) the substitutions used and
(b) the direction of the label change, and then use
these records for the target model.

We repeat this process twice, in order to simu-
late real-world attack and defense conditions. First,
we collect substitutions from the target model (the
model we know we are attacking). Second, we
create a transfer condition, where we collect sub-
stitutions from a similar model to the model we’re
attacking and then transfer those substitutions over

2https://www.kaggle.com/datasets/lakshmi25npa
thi/imdb-dataset-of-50k-movie-reviews
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to the target model. In Section 4.1, we analyze the
performance of the final attack based on both of
these methods used to gather substitutions.

The substitution-gathering stage is a one-time
preprocessing step that scores candidate replace-
ments for each token. While this scoring pass may
appear costly, it is notably parallelizable: every
(token, candidate) pair can be evaluated indepen-
dently and distributed across CPU/GPU nodes with
near-linear speedup. For reference, generating a
full dictionary for IMDb (≈ 25k word types × ≈10
candidates ≈ 250k scored pairs) requires under one
hour on a single NVIDIA A100 and under ten min-
utes when shared across 8 A100 GPUs. Because
this work is performed once per dataset (not per
attack instance), the amortized cost per adversarial
sample is negligible. At runtime, both attack and
defense reduce to O(k) table lookups and string
replacements (with k the number of substituted
tokens, typically < 5), so online overhead is com-
parable to a single forward pass of the classifier.

3.2 Attack Approach

The algorithm for our proposed attack for data gath-
ering (shown in Appendix A) consists of two main
steps: word saliency calculation and substitution.

After the data-gathering process is complete,
our attack evaluates the gathered substitutions to
construct our final attack by assigning scores that
quantify their adversarial effectiveness. To sys-
tematically rank substitutions, we introduce a com-
bined scoring function that incorporates four key
components, defined mathematically in equations
(5), (9), (10), and (11). The first component,
change in model confidence, measures the ex-
tent to which a substitution decreases the model’s
confidence in the true label. Given a sentence
X = {w1, w2, . . . , wn}, the model’s confidence
in the true label y is computed as

p(y|X) =
1

1 + e−zy
(4)

where zy is the classification logit of y. After apply-
ing a substitution wi → w′

i, the attack calculates
the new confidence p(y|Xadv) for the adversarial
sentence Xadv. The change in model confidence is
then given by

Cw→w′ = p(y|X)− p(y|Xadv). (5)

A larger Cw→w′ value indicates a stronger adver-
sarial effect.

The second component, the LIME score (Ribeiro
et al., 2016), evaluates the local importance of a
substitution by training an interpretable surrogate
model that approximates the classifier’s decision
boundary. Given that LIME is not intended for
word substitutions, we adapt the LIME score to bet-
ter suit adversarial attacks by incorporating adver-
sarial and non-adversarial substitutions (for more
data).

Our attack generates adversarial samples X(k)
adv

by substituting words in the original sentence and
compute a weighted perturbation distance,

D(X,X
(k)
adv) = δcos(X,X

(k)
adv)δham(X,X

(k)
adv) (6)

where δcos is the cosine distance and δham is the nor-
malized Hamming distance. Using these distances,
our attack computes local importance weights as

πX(X
(k)
adv) = exp

(
−D(X,X

(k)
adv)

σ2

)
(7)

and fit a linear model to predict classifier outputs
based on substituted words. Our adapted LIME
formulation is given by:

β∗,γ∗ = argmin
β,γ

m∑

k=1

p∑

j=1

lj∑

i=1

∆π
(k)
j,i

×
(
f(X

(k)
adv)−

(
βj · worig

j + γj,i · wsub
j,i

))2

+Ω(g)
(8)

where βj and γj,i represent the contributions of
original words and substitutions respectively, while
Ω(g) is a regularization term preventing overfitting.
The final LIME score is computed as:

Lw→w′ = |γw,w′ | · −sign(βw · γw,w′) (9)

where γw,w′ captures the contribution of substitu-
tion w → w′ and βw represents the influence of the
original word.

The third component, substitution frequency, en-
sures generalizability by prioritizing frequent ad-
versarial substitutions. We define the frequency of
a substitution as

Fw→w′ =
Nw→w′

Nw
(10)

where Nw→w′ is the number of times w → w′

has successfully flipped a label and Nw is the total
number of times w has been substituted.
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The final component, change in similarity, en-
sures that adversarial substitutions preserve seman-
tic similarity while misleading the model. Using
BERT-based sentence embeddings, we compute
the similarity shift caused by a substitution as

Sw→w′ = cos(eX , eXadv)− cos(eX , eX−w′
adv

) (11)

where eX and eXadv are embeddings of the original
and adversarial sentences, and e

X−w′
adv

is the embed-

ding of the adversarial sentence with w′ reverted.
Substitutions with higher semantic distortion re-
ceive lower scores. Our adaptive reward function is
tuned via ablation studies (details in Appendix B).

After computing individual scores, we construct
a combined score function to prioritize the most
effective substitutions:

Scorew→w′ = Cw→w′ + Lw→w′+

Fw→w′ − Sw→w′ ± ϵ
(12)

where ϵ is an adaptive penalty or reward based on
past attack success. Given that some substitutions
change predictions from negative to positive, while
others do the reverse, we obtain two separate sub-
stitution dictionaries: one for use when the original
sentence is positive and another when it is nega-
tive. Using these scores, the attack proceeds in four
phases:

1. First, the attack predicts the label of the origi-
nal text to determine which dictionary to use.

2. Then, the text is segmented into sentences or
smaller chunks, prioritizing segments contain-
ing high-score words.

3. Next, the highest-scoring substitutions are ap-
plied iteratively until the target model misclas-
sifies the sentence.

4. Finally, redundant perturbations are removed
to ensure minimal modification while main-
taining adversarial effectiveness. Specifically,
the attack reverts each substitution and checks
if the model is still flipped or not.

The attack continues until the label changes or until
we’ve tried 30 substitutions, at which point the
highest-scoring combination is applied, as it has
the best chance at a successful flip.

In analyzing our substitutions, we observe a
lack of overlap between substitutions that lead the
model to misclassify a positive sentence as negative
and those that misclassify a negative sentence as
positive. Specifically, the inverse of a high-scoring

substitution that flips the label from 0 to 1 does
not have a high score when applied in reverse (i.e.,
from 1 to 0). We measure this phenomenon us-
ing the Jaccard index, which calculates the overlap
between two sets of substitutions. The observed
overlap values are presented in Table 1, demon-
strating the distinct nature of substitutions affecting
different label transitions.

1→ 0 0→ 1

(1→ 0)′ 6.35% 5.37%
(0→ 1)′ 5.37% 4.16%

Table 1: Overlap of Scored Substitutions and Inverses. The
values represent Jaccard index percentages.

This discrepancy arises due to the frequency and
contextual significance of certain words. For in-
stance, a substitution such as brilliant → brainy
is effective in flipping a positive label to negative,
but the reverse substitution brainy → brilliant does
not necessarily have the same effect when applied
to a negative-labeled sentence. The rarity of cer-
tain words in the dataset exacerbates this mismatch,
leading to distinct substitution patterns for positive
and negative samples. This observation of non-
overlapping substitutions ultimately inspires our
defense approach, described in Section 3.4.

3.3 Attack Evaluation
We compare our attack against eight baseline black-
box models, discussed in Section 2: Textbugger (Li
et al., 2019), BAE (Garg and Ramakrishnan, 2020),
BertAttack (Li et al., 2020), Textfooler (Di et al.,
2020), SememePSO (Zang et al., 2020), Adv-OLM
(Malik et al., 2021), PWWS (Ren et al., 2019),
and E2A (Hossam et al., 2021). For our baselines,
we follow the original paper’s configurations and
the target model. Textbugger is set to allow up to
50 candidate synonyms per word, while BAE has
the same 50-synonym limit. BertAttack permits a
maximum perturbation of 40% and up to 48 can-
didate synonyms. Textfooler enforces a minimum
cosine similarity of 0.5 for word embeddings. Se-
memePSO (Zang et al., 2020) is configured with a
maximum of 20 iterations and a population of 60.

To evaluate these attacks comprehensively, we
adopt six automatic metrics that assess effective-
ness, subtlety, and efficiency. First, Attack Success
Rate (ASR) measures the proportion of adversarial
inputs that successfully change the model’s pre-
dicted label. This is the most direct measure of at-
tack effectiveness (Ebrahimi et al., 2018; Di et al.,
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2020). Second, Percentage of Perturbed Words
(P%) captures the average fraction of words mod-
ified per input, where lower values indicate more
efficient or “stealthy” attack (Li et al., 2020; Zang
et al., 2020). Third, we use Cosine Similarity to
assess the semantic similarity between the embed-
dings of the original and adversarial sentences, us-
ing sentence-level BERT embeddings. Fourth, we
assess the change in language model Perplexity
between the original and adversarial samples, re-
flecting the linguistic fluency degradation of adver-
sarial texts (Garg and Ramakrishnan, 2020; Zang
et al., 2020). Fifth, we count the Average Num-
ber of Queries required per successful adversarial
example, where lower values indicate better query
efficiency, particularly important in black-box set-
tings (Alzantot et al., 2018; Morris et al., 2020).
Finally, we use Average Attack Time per Sample
to enable comparison of runtime feasibility across
methods (Zang et al., 2020; Li et al., 2020).

Following Alzantot et al. (2018), we evaluate
each model on a set of 1,000 examples randomly
selected from the test set.

For our target model, we use a 12-layer BERT
model, fine-tuned with 1000 reviews over 3 epochs
using a learning rate of 2e-5.

3.4 Defense Approach
Our defense mechanism leverages the non-
overlapping substitution property described in Sec-
tion 3.2 to construct a robust counter-strategy (see
Table 1). The defense operates by reversing adver-
sarial substitutions when the words in the substitu-
tion dictionary are contained in the sentence.

If multiple potential reversions exist, the defense
generates multiple versions of the sentence (priori-
tizing higher-scoring substitutions) and evaluates
their predicted labels, determining the final predic-
tion through a majority vote across these reverted
sentences and the original text. In cases where
conflicting reversions result in a tie, the label op-
posite to the original prediction is assigned, as the
presence of multiple reversion paths increases the
likelihood of an adversarial modification.

In addition, to counteract character-level per-
turbations, our defense employs a spell-checking
mechanism before executing the reversion process,
ensuring robustness against subtle manipulations.

3.5 Defense Evaluation
We compare our defense strategy against defense
methods, including methods that utilize adversar-

ial training and statistical approaches presented in
Section 2.

First, we investigate the performance of the tar-
get model with the defense strategies implemented.
Then, we utilize adversarial samples generated
when evaluating the attacks by Textfooler, PWWS,
BertAttack, and Textbugger to measure the reduc-
tion in attack accuracy and F1 score of the target
model with the defense active.

To assess robustness, we evaluate the target mod-
els under adversarial attack using four core metrics:
(1) Clean Accuracy, (2) F1 score, (3) Attack Suc-
cess Rate Reduction, and (4) After Attack Accu-
racy. Clean Accuracy (CA) refers to the standard
classification accuracy of the model on the clean
(unperturbed) test set. It serves as a baseline to
ensure that the defense does not degrade overall
model performance (Jia and Liang, 2017; Liang
et al., 2018). Given the mild class imbalance in
SST-2, we report the F1 score to provide a balanced
view of the model’s precision and recall under ad-
versarial conditions. Attack Success Rate Reduc-
tion (ASRR) is the reduction in attack success rate
after applying a defense (Morris et al., 2020). Fi-
nally, After Attack Accuracy (AUA) represents the
model’s accuracy on adversarially perturbed data
after an attack. It is often used to assess how re-
silient a defense makes the model to adversarial
samples. While useful, this metric can be sensitive
to the attack strategy and evaluation set design, as
noted in Li et al. (2020).

4 Results & Analysis

We present the results of our attack and defense
systems (Sections 4.1 and 4.2) via automatic met-
rics plus a human evaluation of the fluency of the
attacked text (Section 4.3). Additionally, in Ap-
pendix C, we discuss how our attack and defense
strategies port to non-BERT-based models.

4.1 Attack Results

The results of the automatic evaluation of our black-
box attacks can be found in Table 2. Our attack and
defense are naturally paired (applying and reverting
the same list of word substitutions), so we inten-
tionally ignore evaluating defense methods against
our proposed attack as our proposed defense out-
performs all, achieving a 99.4 F1 score. Given that
the other four attacks (InfoBERT, FreeLB, RDE,
FGWS) all operate on different vocabularies from
which to pull synonyms, we select them to evaluate
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Method Attack Success Rate P% Sim ∆ Perplexity Qavg Tavg

Textbugger 91.85% 7.43% 0.96 41.87 734.83 64.90
BAE 55.31% 3.01% 0.97 19.83 804.56 84.99
BertAttack 99.58% 4.23% 0.98 15.40 787.34 84.32
Textfooler 99.01% 14.06% 0.95 26.27 106.73 22.06
PWWS 97.39% 7.35% 0.97 20.57 1438.79 104.61
SememePSO 100.00% 8.13% 0.97 19.09 104623.62 481.95
Adv-OLM 94.22% 3.67% 0.96 30.46 2583.73 16.76
E2A 99.36% 4.07% 0.95 25.89 39.26 10.56
Our Attack (Base-scores) 98.51% 5.43% 0.96 21.37 29.11 8.92
Our Attack (1000 prior attacks) 99.62% 5.35% 0.94 21.17 27.70 8.80
Our Attack (2000 prior attacks) 99.70% 5.35% 0.94 21.19 27.49 8.73
Our Attack (Transfer/Base-scores) 97.73% 5.03% 0.96 19.90 31.22 9.13
Our Attack (Transfer/1000 prior attacks) 98.97% 4.99% 0.94 19.49 30.26 9.09
Our Attack (Transfer/2000 prior attacks) 99.29% 4.98% 0.93 19.42 30.01 9.06

Table 2: Performance of transfer and target model attack methods on BERT for the IMDb dataset. P% is the
percentage of perturbed words, Sim is the cosine similarity between original and adversarial samples, Qavg denotes
the average number of queries, and Tavg is the average attack time per sample. In order to show how our attack
improves over time, we get 1,000 and 2,000 prior attack scores for our model, by attacking the respective number of
randomly chosen examples from the test set before evaluation. The best performance in each category is bolded.

the generality of our attack.

Most strikingly, we observe that our base pro-
posed method achieves the lowest queries made
to the model and the lowest average attack time,
with 29.11 queries and 8.92 seconds on average,
surpassing E2A (Hossam et al., 2021), the most
query-efficient method in the literature. Further-
more, fewer queries are required as our scores adapt
(with more prior attacks), achieving averages of
27.70 queries and 8.81 seconds and 27.49 queries
and 8.73 seconds, respectively, at 1000 and 2000
prior attacks. The same increase in performance is
also apparent in the transfer condition. In both the
transfer and non-transfer/target model approaches,
our method achieves a success rate on par with the
top methods, with a lower level of perturbation and
change in perplexity.

Exploring the adaptive nature further, we ob-
serve that scores with prior attack experience tend
to produce better adversarial samples by every met-
ric except semantic similarity. This is because
the reward is independent of how the substitution
changes the semantics and solely focuses on how
successful the substitution is at flipping the label.
Thus, the reward being independent of the seman-
tics sometimes causes substitutions that scored rel-
atively low due to the initial penalty of “Change
in Similarity” score but still higher than 0 climb to
be the best substitution if no other substitution is
capable of changing the label consistently, i.e., in
this scenario some substitutions with a high ability
to change the label but still noticeably change the
meaning end up still being prioritized. Therefore,
though the meaning is changed, these substitutions

enable strong performance by all other metrics.

4.2 Defense Results

The results of our defense approach (Table 3) sug-
gest that our proposed defense performs the best
among the baseline models in all cases (except the
PWWS attack) on F1 score, ASRR and CA.

The lack of overlap between identified harmful
substitutions and their inverses account for the high
CA as the defense is not likely to generate adver-
sarial samples by accident. With regard to F1 and
ASRR, our defense outperforms all other defenses
for three of the four attacks, and especially the
TextFooler attack. This result is to be expected
as our defense utilizes the same dictionary as the
TextFooler attack when generating our dataset of
harmful substitutions.

As mentioned in Section 4.1, our own defense
naturally reverts all substitutions from the attack’s
substitution dictionary, achieving an F1 score of
99.4.

Finally, we assess the effectiveness of our de-
fense in reverting adversarial substitutions in order
to assess input recovery (obtaining the original ver-
sion of the attacked sentence). To do so, we intro-
duce two novel metrics: Perturbations Caught (PC)
and Perturbations Reverted to Original (PRO).

PC measures the proportion of adversarial sub-
stitutions that our defense successfully identifies
and reverts to any valid word. Let Nreverted be the
number of adversarial substitutions reverted, and
Ntotal the total number of substitutions introduced
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Model CA PWWS BertAttack TextFooler TextBugger
(WordNet) (Contextual) (Counter Fitted) (Sub-W GloVe)

F1 ASRR(↓) F1 ASRR(↓) F1 ASRR(↓) F1 ASRR(↓)
InfoBERT 87.3% 71.7 61.9 63.1 58.1 81.0 76.2 88.3 81.7
FreeLB 89.9% 77.3 68.4 72.4 61.5 88.4 80.5 92.4 85.3
RDE 88.0% 88.8 77.8 92.1 89.1 93.5 89.8 95.0 86.5
FGWS 90.2% 82.3 75.4 91.3 88.4 90.6 85.8 92.0 87.5
Our defense 91.9% 88.4 74.0 92.4 89.1 97.4 90.5 95.4 90.0

Table 3: Performance of defense methods on BERT for the IMDb dataset. Under each attack name (columns), we
list the dictionary the attack uses to assess viable synonyms. Best statistics for each category are bolded.

by the attacker:

PC =
Nreverted

Ntotal
× 100 (13)

PRO quantifies how often the defense restores
perturbed words to their exact original form. Let
Noriginal denote the number of substitutions exactly
reverted to the original token:

PRO =
Noriginal

Nreverted
× 100 (14)

PC measures the proportion of adversarial substi-
tutions that our defense successfully identifies and
replaces with any valid word. A higher PC suggests
that the defense can often identify perturbations,
though it does not necessarily guarantee a perfect
restoration to the original input. Meanwhile, PRO
quantifies how often the defense restores perturbed
words to their exact original form, reflecting its pre-
cision in reconstructing the input. We compare our
approach with the FGWS defense method, the only
prior defense capable of input recovery, despite the
concept not being mentioned in the paper.

Our method exhibits a lower amount of pertur-
bations caught (PC of 22.1%) compared to FGWS
(68.9%). While our PC is lower than FGWS (which
is not preferable), when our defense does revert a
word that is perturbed, it is much more likely to re-
cover the exact original word, achieving a PRO of
78.7%, far surpassing FGWS’s 42.0%. Empirically,
we observe that while our defense makes unneces-
sary reversions via lower PC, it excels at correctly
undoing adversarial modifications to their original
versions—something FGWS struggles to do. This
positions our method as a meaningful step forward
in input recovery for sentiment analysis, demon-
strating the potential of adversarial defenses not
just to infer sentiment correctly but to reconstruct
the original sentence.

4.3 Human Evaluation for the Attack
In order to evaluate the performance of our attack
and ensure that the perturbed text maintains the

original sentiment (i.e., the substitution only tricks
the model, and would not trick a human) and that
the semantics of the text is maintained after the
attack, we conduct a human evaluation study with
five annotators. The annotators are native English
speakers who teach English. The survey consists of
two parts: a human binary classification of attacked
texts, and a human semantic similarity evaluation
of the attacked text and the original text.

In the first part, participants are presented with
100 randomly chosen adversarially perturbed sen-
tences from our dataset, and asked to classify them
as either positive or negative. Notably, annotators
overwhelmingly align their sentiment labels with
the original, with the number of sentences labeled
according to the original sentiment ranging from a
low of 91 to a high of 98 across the five annotators,
and an average of 95.6 sentences classified as the
original label.

To quantify agreement among annotators, we
compute Cohen’s kappa and obtain a value of
0.92, indicating extremely high agreement (Cohen,
1960). This high agreement reflects the annotators’
strong tendency to classify adversarially perturbed
sentences with their original sentiment. In total, 22
sentences are classified with their adversarial label
(out of 500 annotations), which can be attributed to
the fact that each participant misclassified different
sentences uniquely.

The second part of the survey focuses on evalu-
ating the similarity between the original and adver-
sarially perturbed sentences. We ask annotators to
rate the similarity of each adversarial sentence to
its original counterpart on a 5-point scale, with 1
indicating “completely different” and 5 indicating
“nearly identical.” Overall, the average similarity
score across all annotators is 3.6. Per annotator,
similarity scores ranged from a low of 2.7 to a high
of 4.0. In addition, annotators provided qualitative
feedback, frequently describing the adversarial sen-
tences as “clunky,” “unnatural,” or “grammatically
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awkward.”

5 Conclusion

In this paper, we propose an adversarial attack
method for sentiment analysis systems, which is
based on the notion of identifying harmful sub-
stitutions. Our two-stage attack begins with a
data-gathering process where all substitutions pre-
viously involved in successful adversarial samples
are recorded and then scored via four scoring func-
tions. This approach achieves the lowest query
count and fastest execution in the literature while
maintaining an on-par attack success rate.

An observation that adversarial attacks tend to
use a consistent set of word substitutions then in-
spires our defense model, which then reverses these
possibly harmful substitutions. This defense out-
performs all other novel approaches in terms of
F1, ASRR, and CA against three of the four base-
line attacks and shows substantial progress in input
recovery. In addition, our defense offers a novel
outlook on ways to prevent text adversaries beyond
statistical and adversarial training approaches.

Limitations

One key challenge is that the most effective sub-
stitutions vary across models: BERT, WordCNN,
and WordRNN each have different highest-scoring
substitutions for the same word. This variation re-
duces the effectiveness of transfer-based defenses,
as substitutions gathered from one model may not
be optimal for another (see Appendix C).

In addition, our method requires an early data
preparation phase, where substitutions are gath-
ered and scored, which demands both time and
computational resources. This preprocessing step,
while improving attack efficiency during deploy-
ment, introduces overhead that may not be ideal
for real-time adversarial scenarios.

We develop and evaluate both our attack and de-
fense on English data, so it is unclear how these ap-
proaches might perform on other languages. Mul-
tilingual and non-English systems introduce mor-
phology and tokenization variability (e.g., rich in-
flection, compound splitting) that reduce the trans-
ferability of English-centric substitutions and may
cause the defense to miss (or incorrectly revert) ad-
versarial changes, especially in code-mixed posts.

Finally, while our defense and attack show com-
parable strength to state-of-the-art methods, even
being superior in some aspects, they lack gener-

ality. Future work can pursue ideas presented
in this paper and apply them to the broad text
classification task, in particular non-binary clas-
sification tasks. Although we focus on binary
sentiment analysis of movie reviews, the attack/
defense paradigm we introduce–computing a dic-
tionary of high-impact substitutions and then ap-
plying/reverting them at deployment–naturally ex-
tends to other text classification tasks that admit
token-level explanations (e.g., hate-speech detec-
tion, topic labeling, or aspect-based sentiment). In
such cases, the same scoring pipeline can be reused
by swapping the task-specific classifier and recal-
ibrating similarity and fluency constraints to the
target domain. That said, two caveats limit external
validity. First, distribution shift in surface form is
severe on social media platforms; code-switching,
slang, emojis, hashtags, elongated words, and cre-
ative orthography can degrade both our substitution
scores and our defense’s reversion accuracy. At-
tackers could exploit this by computing platform-
specific substitution dictionaries in advance, and
then executing queries that evade rate limits and
stateful detectors.

Ethical Considerations

Any attack method, including ours, is susceptible
to abuse. In this case, our method could be ex-
ploited for sentiment analysis systems on social
media platforms or other user-facing systems. We
mitigate this risk by introducing a highly effective
defense system as well, but that does not negate the
possibility of the attack’s abuse.
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Algorithm 1 Generation of Adversarial Samples
1: Input: Sentence example X = {w1, w2, . . . , wm} from

a review, target model F , maximum number of
adversarial words per sentence n, vocabulary of stop
words from NLTK VocabStopWords

2: Output: Set of adversarial words
Xadv = {Xadv1 , Xadv2 , . . . , Xadvk} for k ≤ n

3: Initialize sets Xadv, SubWords, and dictionary S

4: while |Xadv| < n do
5: while |SubWords| < m do
6: X ← X.replace(word in SubWords, [MASK])
7: for each word wi in sentence X do
8: if wi /∈ VocabStopWords ∪ SubWords then
9: Calculate saliency Si

10: S[wi]← Si

11: end if
12: end for
13: wmins ← argminwi S[wi]
14: SubWords ← wmins
15: Generate a set of substitutions SUB
16: for each substitution s ∈ SUB do
17: Xadv ← X.replace(wmins , s)
18: if F (Xadv) ̸= F (X) then
19: Xadv ← Xadv ∪ {Xadv}
20: if |Xadv| ≥ n then
21: return Xadv
22: end if
23: end if
24: end for
25: end while
26: end while
27: return Xadv

We do not conduct further experiments with ψ,
as fixing it allows us to isolate the influence of ϵ.
However, we note that the ideal choice of ϵ may
depend on the value of ψ, as both affect the score
convergence speed of the adaptive system. A full
grid search over both parameters is left to future
work.

C Remarks on Non-BERT Models

To evaluate the transfer capabilities of both the
attack and defense, we run the same experiments
on a WordCNN and WordRNN fine-tuned with
1,000 movie reviews from the IMDb dataset over
10 epochs, using substitution words gathered from
our original BERT model. The results of the attack
are displayed in Table 4. We observe that our attack
performs similarly on both models, achieving a
99.07% ASR for the WordRNN and a 98.47% ASR
for the WordCNN while maintaining a low number
of queries, with 29.08 and 28.68 average queries,
respectively.

Based on these two metrics, compared to BERT,
the attack performs slightly worse on WordCNN
and WordRNN when substitutions are gathered

Figure 1: Impact of ϵ on ASR over 2000 adversarial
samples.

from the original target model. However, it per-
forms better in terms of query efficiency when sub-
stitutions are gathered from a transfer model. This
improvement in query efficiency does not neces-
sarily indicate a stronger attack on WordCNN and
WordRNN, as these models are inherently easier
to fool, with adversarial attacks generally achiev-
ing higher ASR and lower Qavg on these models
(Ebrahimi et al., 2018).

While applying the substitutions gathered from
BERT is successful as an attack strategy, it is in-
effective when deployed as a defense for Word-
CNN and WordRNN (Table 5). Empirically, we
attribute this to the fact that words assigned the
highest scores when gathered from BERT do not
necessarily retain the same high scores when gath-
ered from WordCNN or WordRNN. Consequently,
our defense strategy, which prioritizes reverting the
highest-scoring adversarial substitutions, replaces
words with alternatives that do not have the greatest
impact in flipping the label, thereby reducing its
effectiveness.

We demonstrate this in two ways: first, by gath-
ering substitution data directly from WordCNN and
WordRNN and using them for defense, and second,
by computing word saliency (i.e., the impact of
individual words on the predicted label) for 100
sentences across each of the three models. In Ta-
ble 5, we observe that when words are gathered
from a specifically tailored model (whether Word-
CNN or WordRNN), the defense performs simi-
larly to our original results. This confirms that the
defense strategy—ranging from scoring functions
to deployment—is fundamentally sound and that
the observed shortcomings arose from an improper
data-gathering process.

These results indicate that prior knowledge of
the structure of the model being attacked gives a
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Model WordCNN WordRNN
Evaluation Metric ASR Qavg P% Sim ASR Qavg P% Sim
Transfer (from BERT) 96.77% 35.26 5.20% 0.96 96.40% 33.64 5.89% 0.95
Transfer w/ 1000 prior attacks 98.02% 30.65 5.12% 0.92 98.92% 29.95 5.82% 0.95
Transfer w/ 2000 prior attacks 98.47% 28.68 5.01% 0.92 99.07% 29.08 5.11% 0.93

Table 4: Attack performance on WordCNN and WordRNN architectures with data gathered from a BERT model.

Source of Adversarial Words Defended Model Clean Accuracy (CA) PWWS F1 TextFooler F1 TextBugger F1

BERT WordCNN 62.34% 70.01 73.66 79.99
BERT WordRNN 65.01% 73.94 78.57 75.40
WordCNN WordCNN 90.46% 86.12 95.51 93.09
WordCNN WordRNN 77.16% 83.79 85.49 88.40
WordRNN WordCNN 72.47% 75.00 78.63 89.12
WordRNN WordRNN 90.96% 88.28 97.51 92.59

Table 5: Performance of our defense method when trained on adversarial word substitutions gathered from different
attacking models. The Source of Adversarial Words column indicates which model is attacked to generate
adversarial substitutions used during training. The Defended Model column shows which model is being evaluated
under defense. We report Clean Accuracy (CA) and F1 scores against three attack methods (PWWS, TextFooler,
and TextBugger).

substantial advantage to the attacker.

D Remarks on Naturalness

One possible intuition is that an attack in the field
succeeds primarily because the substituted sen-
tences become “unnatural,” and therefore the model
fails on text it would never encounter in a real-
istic setting. To examine this claim, we analyze
500 adversarial sentences and compute (1) bigram-
based perplexity as a proxy for surface fluency
(where higher perplexity indicates less natural text),
(2) semantic similarity to the original sentence, and
(3) the model’s confidence in the true label. Fig-
ure 2 plots these three variables jointly.

As the plot shows, the classifier does not simply
fail when the text becomes less natural: a large clus-
ter of high-perplexity sentences (highly unlikely
under a bigram language model) are still classified
correctly, while several low-perplexity, human-like
sentences succeed in flipping the prediction. This
confirms that the attack is not merely exploiting a
“fluency weakness.”

This also means that defenses which rely only on
fluency filtering (e.g., perplexity thresholds, gram-
mar detectors) would block only a subset of at-
tacks. Effective defenses must model task-specific
semantics rather than assume that “unnatural →
adversarial” holds in general.

Overall we note that naturalness degradation is
a side effect, not the cause, of model failure. The
model can correctly classify many unnatural sen-
tences, so robustness cannot be reduced to surface

Figure 2: Scatter plot of 500 adversarial samples show-
ing bigram-based perplexity (x), semantic similarity (y),
and model confidence in the true label (z). Points in red
represent successful adversarial attacks (label flipped),
while blue points represent unsuccessful attacks (label
preserved). Many high-perplexity (i.e., syntactically
degraded) sentences remain correctly classified, while
several fluent sentences still flip the label, indicating that
lack of naturalness is neither necessary nor sufficient for
attack success.

fluency alone.
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