
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2742–2785

December 20-24, 2025 ©2025 Association for Computational Linguistics

On Memorization of Large Language Models in Logical Reasoning

Chulin Xie1,2, Yangsibo Huang1,3, Chiyuan Zhang1,
Da Yu1, Xinyun Chen1, Bill Yuchen Lin4, Bo Li2, Badih Ghazi1, Ravi Kumar1

1Google, 2University of Illinois Urbana-Champaign,
3Princeton University, 4University of Washington

Abstract

Large language models (LLMs) achieve good
performance on challenging reasoning bench-
marks, yet could also make basic reasoning
mistakes. This contrasting behavior is puz-
zling when it comes to understanding the
mechanisms behind LLMs’ reasoning capa-
bilities. One hypothesis is that the increas-
ingly high and nearly saturated performance
on common reasoning benchmarks could be
due to the memorization of similar problems.
In this paper, we systematically investigate
this hypothesis with a quantitative measure-
ment of memorization in reasoning tasks, us-
ing two dynamically generated logical reason-
ing benchmarks based on Knights and Knaves
(K&K) puzzles and Zebra puzzles (Dynam-
icZebra). We find that LLMs could interpo-
late and memorize the training puzzles (achiev-
ing near-perfect accuracy) after fine-tuning, yet
they struggle with slight variations of these
puzzles. On the other hand, we show that
while fine-tuning leads to heavy memoriza-
tion, it also consistently improves generaliza-
tion performance. Through in-depth analyses
with perturbation tests, cross difficulty-level
transferability, probing model internals, and
fine-tuning with wrong answers, we establish
that LLMs develop reasoning skills on logical
puzzles alongside memorization. Finally, our
analysis based on a per-sample memorization
score sheds light on how LLMs switch between
reasoning and memorization when solving log-
ical puzzles. Our code and data are available at
https://memkklogic.github.io/.

1 Introduction

Modern Large Language Models (LLMs) show im-
pressive reasoning capabilities that allow them to
solve a wide range of challenging problems includ-
ing commonsense reasoning and mathematical rea-
soning. In the meantime, LLMs also make mistakes
on some of the most basic problems, such as com-
paring which number is bigger—13.11 or 13.8 (Lin,

2024), and counting the number of sisters that Al-
ice’s brother has (Nezhurina et al., 2024). This
contrast is puzzling when it comes to understand-
ing how exactly LLMs solve reasoning tasks. This
question is important both scientifically and practi-
cally: understanding how LLMs reason could shed
light on their learning and generalization behaviors.
It is also crucial for real-world applications where
robust reasoning is required due to safety and trust-
worthiness concerns (Wang et al., 2023a; Wallace
et al., 2024; Lee et al., 2024).

One hypothesis is that LLMs could be relying on
memorization when solving those reasoning tasks,
especially when measured by popular benchmarks
that could be accidentally leaked into various mas-
sive internet-crawled pre-training datasets. Previ-
ous work (Tirumala et al., 2022; Carlini et al., 2023)
show that LLMs could indeed memorize the train-
ing data, which may lead to potential privacy (Car-
lini et al., 2021) or copyright (Karamolegkou et al.,
2023; Wei et al., 2024) concerns. Additional evi-
dences of potential memorization come from exten-
sive studies on data contamination in LLMs (Bal-
loccu et al., 2024; Xu et al., 2024). To mitigate
the issue of benchmark saturation potentially due
to memorization, some papers focus on designing
dynamic benchmarks (Srivastava et al., 2024; Jain
et al., 2024) or alternative evaluation protocols (Xu
et al., 2024; Srivastava et al., 2024).

In this paper, we take a direct approach to quan-
tify the memorization behaviors of LLMs in rea-
soning tasks within a controlled setting. Specifi-
cally, we seek to understand: (i) whether LLMs
rely on memorization to solve reasoning tasks, and
(ii) whether memorization is only detrimental to
learning to reason. Both questions are inspired
by human behavior. For instance, when a student
works hard on the preparation material for an exam,
the preparation could help them get familiarized
with the problems, and their ability to solve new
problems could usually improve with enough ex-

2742

https://memkklogic.github.io/

c

A very special island is inhabited only
by knights and knaves. Knights always
tell the truth, and knaves always lie.
You meet 2 inhabitants: Oliver, and
Jacob.

Oliver is a knight and
Jacob is a knave

Oliver

Jacob

Oliver is a knight if and
only if Jacob is a knight

So who is a knight and who is a knave?

Problem 1

...

LLM

Problem m

...

Problem 1

...
Local

Perturbation
LLM

Perturbed Pk

Perturbed P1

Size = {#Total} Size = {#Correct} Size = {#Correct} Size = {#Consistently
Correct}

Acc = {#Correct} / {#Total} CR = {#Consistently Correct} / {#Correct}LiMem = Acc · (1 - CR)

…

…

…

Original
problem is
solved by
memorization

Local Inconsistency based Memorization Score

Original
problem is
solved by
reasoning

c

A very special island is inhabited only
by knights and knaves. Knights always
tell the truth, and knaves always lie.
You meet 2 inhabitants: Oliver, and
Jacob.

Oliver is a knight and
Jacob is a knave

Oliver

Jacob

Oliver is a knave if and
only if Jacob is a knight

So who is a knight and who is a knave?

Perturbed Problem 1

Figure 1: Illustration of the definition of Local Inconsistency based Memorization Score, LiMem. High level of memorization
occurs when the model shows high accuracy in solving some problems but fails to consistently solve those problems under local
perturbations that require similar underlying reasoning principles.

ercises. However, without genuinely understand-
ing the principles, they might fail when the same
problem is slightly changed despite doing well on
prepared problems. Our metric of memorization
LiMem (Fig. 1) is based on this intuition: an LLM
shows a high level of memorization when it solves
reasoning problems with high accuracy but strug-
gles to consistently solve those problems under
local perturbations requiring similar mathematical
principles (i.e., low consistency). We note that a
similar perturbation idea (but mostly at language-
level) has been used in previous work, especially
in detecting contamination (Golchin and Surdeanu,
2023; Xu et al., 2024). However, given our focus
on understanding memorization in logical reason-
ing tasks, we further consider problem-level per-
turbation that slightly changes the mathematical
structure of a puzzle, in addition to language-level
perturbations. To facilitate our study, we propose
two new logical reasoning benchmarks that support
automatic problem-level perturbation. With these
tools, we evaluate the reasoning power of 17 LLMs.
We then fine-tune Llama3-8B and GPT4o-mini
to quantify memorization in reasoning tasks, and
reveal interesting interplay: while LLMs indeed
tend to memorize many training logical puzzles,
they also develop reasoning capabilities during
fine-tuning (even directly on question-answer pairs
without reasoning steps), and the reasoning perfor-
mance improves when memorizing more training
puzzles. We summarize key contributions:

• To quantify memorization in reasoning tasks, we
define a memorization score based on the notions
of performance inconsistency under local pertur-
bation, inspired by human behavior (§ 2.1).

• To facilitate the measurement, we propose a
new logical reasoning benchmark based on the

Knights and Knaves (K&K, Smullyan, 1978;
Johnson-Laird and Byrne, 1990) puzzles, that
can generate new puzzles at different difficulty
levels, locally perturb existing puzzles, and auto-
matically synthesize detailed reasoning steps to
solve a given puzzle (§ 2.2).

• We show that K&K puzzles are challenging, and
only the most advanced LLMs could solve them
well. Moreover, our analysis suggests those mod-
els exhibit some level of memorization (§ 3).

• By fine-tuning on K&K samples, we confirm that
modern LLMs are capable of memorizing a large
collection of puzzles, and reach high memoriza-
tion score when interpolating (i.e., fitting, Belkin
et al., 2018) the training set. We observe that
the models’ generalization accuracies continue
to improve as memorization grows (§ 4).

• We design various in-depth analyses
(§ 4.1∼§ 4.2) to verify that LLMs devel-
oped improved reasoning capabilities (i.e.,
generalization) after fine-tuning even with only
question-answer pairs, via local perturbation
tests, cross difficulty-level transferability,
fine-tuning with wrong answers, and model
internal probing.

• We show that fine-tuning with detailed reason-
ing steps can further boost the generalization on
K&K puzzles, even when fine-tuned with wrong
reasoning steps (§ 5).

• To analyze the interplay between memorization
and reasoning, we measure per-sample memo-
rization and study how LLMs switch between
memorization and reasoning (§ 6).

• To verify the generalizability of our findings,
we propose DynamicZebra, another dynamically
generated benchmark based on a different family
of logical puzzles (§ 2.3), and present similar

2743

empirical results to K&K in § 7.

2 Measuring Memorization in Reasoning

2.1 Memorization Metrics for Reasoning
Memorization of LLMs has been studied in vari-
ous contexts such as privacy (Carlini et al., 2023),
copyright (Carlini et al., 2021), and solving knowl-
edge intensive tasks (Hartmann et al., 2023). In this
paper, we are specifically interested in measuring
the level of memorization when solving reasoning
tasks, by borrowing intuition from human behav-
ior. For example, when preparing for an exam, a
student may not be able to fully digest the underly-
ing principles due to various reasons or constraints.
But when (luckily) facing the same problem the
student had prepared for, they would still be able
to solve it. A key characteristic of this type of
memorization is: (A) high accuracy on observed
problems and (B) low accuracy when the problem
is slightly changed. Based on this intuition, for a
dataset D of reasoning puzzles, we combine the
following two quantities to measure memorization:
1. For (A), we measure the accuracy of a target

model f on D, denoted as Acc(f ;D). We
are especially interested in measuring on the
set of observed puzzles, i.e., the training set,
Acc(f ;Tr). We say f interpolates (Belkin
et al., 2018; Belkin, 2021) the training puzzles
if Acc(f ;Tr) ≈ 100%.

2. For (B), we measure a consistency ratio
CR(f ;D) between the number of consistently
solved puzzles after some local perturbations,
and the number of originally solved puzzles. We
are interested in local perturbations that make
minimal changes to the puzzle and maintain the
same underlying principle for solving it, and a
similar difficulty level (to be specified in § 2.2).

We combine the two factors to define a Lo-
cal Inconsistency-based Memorization Score
LiMem(f ;D) ∈ [0, 1]:

LiMem(f ;D) = Acc(f ;D) · (1− CR(f ;D)) (1)

=
#Correct− #Consistently_Correct

#Total
.

When there is no ambiguity, we call it the memo-
rization score. A larger score provides stronger evi-
dence of memorization (i.e., a larger proportion of
memorized examples in the given dataset). Specif-
ically, a high LiMem(f ;Tr) matches the charac-
teristic behavior of human memorizing observed
puzzles, and in this case we say f memorized the

training puzzles. Note that the Acc(f ;D) factor
is necessary, as there can be three types of behav-
iors: (i) solving by memorization, (ii) solving by
reasoning, (iii) not solving (e.g., random guess-
ing). A high LiMem(f ;D) indicates (i), but a low
LiMem(f ;D) would only indicate (ii) if we sepa-
rately check that Acc(f ;D) is high.

To effectively measure the memorization score
LiMem(f ;D), we need a principled way to (1) lo-
cally perturb the puzzle while maintaining its diffi-
culty level; (2) compute the new correct answer af-
ter perturbation. Towards this goal, we design and
implement a functional logical reasoning dataset
based on the Knights and Knaves puzzles.

2.2 Knights and Knaves Benchmark
Knights and Knaves (K&K) is a type of logical
puzzle, where the goal is to infer each character
i’s truthfulness Bi (Boolean value) by judging the
logical consistency of the statements Si they made.
Fig. 2 shows an example.

The principle underlying K&K is the Boolean
satisfiability problem (SAT) (Boolean satisfiability
problem). SAT was the first problem proven to
be NP-complete and many well-known problems
can be translated into SAT, such as hardware and
software verification and theorem proving (SAT
solver, 2024). Hence, the performance of a model
on SAT (i.e., K&K puzzles) can be important in-
dicative of its reasoning capabilities. Specifically,
consider a K&K puzzle involving N people, and
a possible Boolean value assignments to {Bi}Ni=1,
where Bi indicates whether the ith person is telling
the truth, i.e., their statement Si is true. There-
fore, a valid solution to a K&K puzzle is an as-
signment such that the following formula is true:
(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN).

Based on the K&K puzzle, we design a dynamic
benchmark that supports generating new puzzles
and local perturbations. Our benchmark has 2 mod-
ules (See Fig. 2 for an overview):

The Abstract Module contains 4 components
that generate and manipulate K&K puzzles in an
abstract form: The Generator that produce ran-
dom puzzles; the Solver that find valid solutions
algorithmically; the Reasoner that generate human-
like reasoning steps (chain-of-thoughts, CoT); and
the Perturber that maps a given puzzle to a local
perturbation. Each puzzle involves N people, each
making a statement forming a logical tree with max
width/depth of W /D, using the logical operations
and, or, not, implication, and equivalence. The Per-

2744

('and', ('telling-truth', 0), ('lying', 1))
('⇔', ('telling-truth', 0), ('telling-truth', 1))

Logical statements

True False
Solution

A very special island is inhabited only by
knights and knaves. Knights always tell the
truth, and knaves always lie. You meet 2
inhabitants: Oliver and Jacob.

Oliver is a knight and Jacob is a
knave

Oliver is a knight if and only if
Jacob is a knight

So who is a knight and who is a knave?

Synthetic CoTQuestion

person names,
role names…

denotes possible local perturbation

(1) Michael is a knight
(2) Zoey is a knight
(3) Ethan is a knight

Answer

'<=>', ('telling-truth', 2), ('telling-truth', 0),
'or', ('telling-truth', 1), ('telling-truth', 2)
'<=>', ('lying', 0), ('lying', 1)

Logical statements

[True, True, True]
Solution

TBD: with N-ppl, width, depth,

Tree A very special island is inhabited only
by knights and knaves. Knights

always tell the truth, and knaves
always lie. You meet 3 inhabitants:

Michael, Zoey, and Ethan.

Ethan is a knight if and only if
Michael is a knight

Michael

Ethan

Zoey

Zoey is a knight or Ethan is a
knight

Michael is a knave if and only
if Zoey is a knave

So who is a knight and who is a knave?

Let's think step by step, by
considering whether each
person is lying and if that
leads to contradiction.
Assume Michael is a
knight. No contradiction is
found in their claim that
Ethan is a knight if and
only if Michael is a knight.
Assume Ethan is a
knight.…
…..
This leads to a feasible
solution.

Synthetic CoTQuestion

character
names,
role names…

denotes local perturbation

TBD

Reason steps

Language
conversion

Oliver

Jacob

(1) Oliver is a knight (2) Jacob is a knave

Answer

Abstract Module
E.g., problem specification: N=2, W=2, D=2

claims

and ⇔

Person # 0
Person # 1

telling-
truth

lying telling-
truth

telling-
truth

Let's think step by step, by
considering whether each
person is lying and if that
leads to contradiction.
Assume Oliver is a knight.
No contradiction is found in
his claim that Oliver is a
knight and Jacob is a knave.
Jacob cannot be a knight,
because this would
contradict the claim of

…..

This leads to a feasible
solution.

Tree

claims

Branching node

Leaf node

Natural Language Module

Abstract Reasoning Steps

True False
Solution

A very special island is inhabited only
by knights and knaves. Knights always
tell the truth, and knaves always lie. You
meet 2 inhabitants: Oliver and Jacob.

Oliver is a knight and
Jacob is a knave

Oliver is a knight if and only if
Jacob is a knight

So who is a knight and who is a knave?

Synthetic CoTQuestion

person
names,
role
names…

 denotes
possible
local
perturbation

Oliver

Jacob

(1) Oliver is a knight (2) Jacob is a knave

Answer

Abstract Module
E.g., problem specification: N=2, W=2, D=2

claims

and ⇔

Person # 0
Person # 1

telling-truth lying telling-truth telling-truth

Let's think step by step, by
considering whether each
person is lying and if that
leads to contradiction.
Assume Oliver is a knight.
No contradiction is found in
his claim that Oliver is a
knight and Jacob is a knave.
Jacob cannot be a knight,
because this would
contradict the claim of

…..

This leads to a feasible
solution.

Abstract Puzzle

claims
Branching node

Leaf node

Natural Language Module

claims

[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
 ('proposal', {'assignment': True, 'outcome': 'conflict',
 'conflict_statement': (0, True), 'person': 1}),
 ('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
 ('success', {'assignments': (True, False)})]

Figure 2: K&K data generation framework employs abstract module and natural
language module to generate question-answer pair and synthetic CoTs for each
K&K puzzle, based on the problem specification: number of persons (N), tree
width (W), and depth (D). Perturbers in these modules can alter the math
structure and language description, respectively, and recompute the QA pair.

2 3 4 5 6 7 8
ppl

Gemma-2-9b
Llama-3-8B

Phi-3-mini-instruct
Phi-3-medium-instruct
NuminaMath-7B-CoT

Deepseek-Math-7b-instruct
Llama-3.1-8B-Instruct

Qwen2.5-Math-7B-Instruct
Qwen2-Math-7B-Instruct

DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Llama-8B

GPT-4o-mini
GPT-4o

Claude-3.5-sonnet
Gemini-1.5-Flash-002

Gemini-1.5-Pro-002

0.30 0.16 0.09 0.06 0.05 0.02 0.05

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

0.41 0.22 0.07 0.06 0.02 0.03 0.01

0.49 0.36 0.20 0.10 0.05 0.02 0.01

0.54 0.36 0.25 0.14 0.04 0.03 0.04

0.46 0.29 0.15 0.15 0.08 0.08 0.01

0.53 0.22 0.21 0.09 0.01 0.00 0.00

0.63 0.42 0.34 0.17 0.09 0.10 0.01

0.68 0.57 0.49 0.32 0.23 0.21 0.11

0.70 0.63 0.51 0.31 0.22 0.10 0.06

0.66 0.48 0.28 0.14 0.04 0.02 0.02

0.79 0.61 0.42 0.22 0.07 0.00 0.00

Acc(f ;Tst)

0.0

0.2

0.4

0.6

Figure 3: Test acc of off-the-shelf LLMs un-
der 0-shot direct prompting drops with in-
creasing puzzle complexity. For reference,
OpenAI o1 with test-time compute achieves
an acc of 0.86 (0.67) on 8-ppl (18-ppl) task.

turber is the most important part that is not usually
supported in previous benchmarks. It generates
mathematical perturbation by replacing a statement
or a leaf node in a statement with a newly sampled
one, and ensures the perturbation has a different
solution. This support is crucial for making our
memorization measurements.

The Natural Language Module converts the
puzzles and the generated CoTs into natural lan-
guage. It uses random names and templates to
diversify the generated puzzles, and also supports
language level perturbation to a given puzzle.

See § B for more details. We gener-
ate and release a core dataset of 1000/100/50
train/test/validation puzzles for each 2 ≤ N ≤ 8
people1. By default we use a maximum tree width
of W = 2 and depth D = 2. For each puzzle,
we also generate six perturbed variants (2 problem
level and 4 language level): {perturbed statement,
perturbed leaf node, random role-pair name, un-
common person name, reordered statement, flipped
role}.

K&K is challenging for off-the-shelf models.
We use 0-shot direct prompting with task-specific
instructions for open-ended question-answering
(details in § D.2).2 Accuracy is determined by
keyword matching and requires correctly identify-
ing all characters in the conclusion. We evaluate 17
leading models known for strong reasoning perfor-
mance. Fig. 3 shows that K&K puzzles are highly

1For 2-ppl we only include 200 training puzzles due to the
limited problem space. Note the problem space is huge as
N increases: e.g., for 8-ppl (D,W = 2, 2), there are ~1024

unique problems, and ~30% of them has a unique solution
based on empirical estimation from 100k random generations.

2Even under direct prompting, capable LLMs can generate
CoT. Our evaluation mainly considers the 0-shot setting to
avoid biases from in-context examples (Zhao et al., 2021), but
we provide results for CoT prompting, 1-shot prompting &
self-consistency prompting in § E.

challenging—even for the simplest 2-ppl puzzles,
the best models (except o1 model) achieve at most
70% accuracy, which drops to just 11% for 8-ppl
puzzles. In § E.1, we show that various prompting
techniques like CoT/1-shot/self-consistency (Wang
et al., 2023b) cannot fundamentally improve per-
formance on challenging K&K tasks.

2.3 DynamicZebra

To demonstrate the generalizability of our dy-
namic data generation principles to other reasoning
tasks, we introduce DynamicZebra, a novel dataset
of fully controlled and perturbed Zebra puzzles
(i.e., Einstein puzzle (Zebra Puzzle))3. Dynam-
icZebra comprises: 5k training puzzles across 5
difficulty levels (4×4–5×5), each with two per-
turbed versions; Perturbations involve swapping
values within specific attributes and updating the
clues to maintain the original solution grid; Test
puzzles spanning 12 difficulty levels (3×3–6×6,
each with 100 puzzles). For more details, see § C.

3 Quantify Memorization in Reasoning

Here, we study a model’s memorization behavior
when fine-tuned on K&K puzzles.

Fine-tuning setup. We fine-tune the models for
each N -people task separately, with ntrain = 1, 000
for 3 ≤ N ≤ 8, and ntrain = 200 for 2-people task
due to limited number of combinations. We take
Llama3-8B and GPT4o-mini and run supervised
fine-tuning (SFT) on a set of K&K training puzzles
disjoint from the test set. We consider two fine-
tuning paradigms: (1) Fine-tuning on detailed CoT
steps (CoT FT): during SFT, the model observes
the concatenation of the question, synthetic CoT

3While Lin et al. (2025) also present a Zebra puzzle dataset
with 1k samples, their generation algorithm is unavailable and
they do not offer perturbed puzzles.

2745

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8
A

cc
(f

;T
st

)
GPT4o-mini Direct FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

Llama3-8B Direct FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

Acc(f ;Tr)

0.00

0.25

0.50

0.75

A
cc

(f
;T

st
)

GPT4o-mini CoT FT

3-ppl FT

5-ppl FT

8-ppl FT

0.00 0.25 0.50 0.75 1.00

Acc(f ;Tr)

0.0

0.1

0.2

Llama3-8B CoT FT

3-ppl FT

5-ppl FT

8-ppl FT

Figure 4: Train & test accuracy increases over
the epochs. FTed LLMs can achieve interpo-
lation (≈ 100% train accuracy) for easy tasks,
e.g., 3/5-ppl puzzles. Llama3-8B struggles with
CoT FT on K&K tasks, likely due to limited
model capacity.

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1-
C

R
(i

nc
on

si
st

y) 3-ppl CoT FT GPT4o-mini

Split
train

test

Perturbation
statement

leaf

name

reorder

pair

flip

Perturbation
statement

leaf

name

reorder

pair

flip

0.00 0.25 0.50 0.75 1.00

5-ppl CoT FT GPT4o-mini

0.00 0.25 0.50 0.75 1.00

8-ppl CoT FT GPT4o-mini

0.0

0.2

0.4

0.6
L

iM
em

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1-
C

R
(i

nc
on

si
st

y) 3-ppl Direct FT GPT4o-mini

0.00 0.25 0.50 0.75 1.00

5-ppl Direct FT GPT4o-mini

0.00 0.25 0.50 0.75 1.00

8-ppl Direct FT GPT4o-mini

0.0

0.2

0.4

0.6

L
iM

em

0.00 0.25 0.50 0.75 1.00
Acc

0.0

0.5

1.0

1-
C

R
(i

nc
on

si
st

y) 3-ppl Direct FT Llama3-8B

0.00 0.25 0.50 0.75 1.00
Acc

5-ppl Direct FT Llama3-8B

0.00 0.25 0.50 0.75 1.00
Acc

8-ppl Direct FT Llama3-8B

0.0

0.2

0.4

0.6

L
iM

em

Figure 5: Fine-tuned LLMs generally exhibit both higher clean accuracy (x-
axis) & inconsistency ratio under perturbations (y-axis) on the train set than
test set, resulting in a higher memorization score (color spectrum). LLMs
show stronger memorization under math-level perturbations (statement/leaf)
than language level. We separately report memorization score in Fig. 21 and
consistency ratio in Fig. 22, and results under combined math & language-
level perturbations in Fig. 23.

steps, and the answer for each puzzle; the loss is
computed on the CoT steps and the answer part.
(2) Fine-tuning on the answers (Direct FT) where
the model observes the question-answer pair for
each puzzle, and the loss is only computed on the
answer part. Examples of CoT FT/Direct FT train-
ing instances are provided in § D.2.2. We fine-tune
Llama3-8B for 50 epochs4 and GPT4o-mini for
5 epochs via the OpenAI fine-tune API (details
in § D.2). During the evaluation, we follow the
same prompting paradigm as FT paradigm, i.e.,
direct/CoT prompting for direct/CoT-FTed model,
which is shown effective in § E.3.

LLMs interpolate K&K training puzzles. In
Fig. 4, we present the training accuracy of models
trained on each task on the x-axis (each dot repre-
sents a training epoch). We find that models exhibit
high training accuracy in tasks such as 3/5-people
puzzles. The higher capacity model GPT4o-mini
nearly achieves interpolation (Acc(f ;Tr) ≈ 100%)
using both Direct FT and CoT FT.

Interpolating LLMs have large memorization
scores on training examples. From Fig. 5, (1) we
observe high LiMem(f ;Tr) memorization score on
training samples (e.g., ∼ 50% on 8-people task)
under various perturbations. It shows significant
gaps between accuracy on the original sample and
the consistent accuracy under perturbation, sug-
gesting a heavy reliance on memorization. (2)
LiMem(f ;Tr) is higher for more difficult tasks
(e.g., 5/8-people), which could mirror human be-
havior, where memorization is often used to tackle
challenging tasks that people do not fully under-

4We fine-tune Llama3-8B for max 100 epochs in Fig. 24
and find that it typically converges at 50 epochs.

stand. (3) The more capable LLM GPT4o-mini
generally show lower memorization scores.

Ablation on local perturbations. Comparing
different perturbations in Fig. 5, we find that (1)
LLMs exhibit a higher memorization score when
evaluated with math-level perturbations (e.g., state-
ment/leaf) compared to language-level, which in-
dicates that LLMs can compose the language un-
derstanding capability to solve the same puzzle in
alternative phrasing. (2) LLMs get nearly zero ac-
curacy on role-flipped samples (e.g., when a knight,
typically viewed as truthful, is defined as always ly-
ing), and memorization score LiMem(f ;Tr) under
role-flipping for Llama3-8B is ∼ 80% as shown
in Fig. 7. This could be due to an internal bias or
commonsense understanding that knights are in-
herently good characters (e.g., truthful), and thus
LLMs disregard the altered puzzle statement.

4 Learn to Reason by Fine-tuning With
Answers Only

§ 3 shows that fine-tuned models exhibit memo-
rization when solving K&K reasoning tasks. Does
it mean that those models do not have reasoning
capabilities at all? Here we show that LLMs can
do both, and the reasoning capability consistently
improves as the memorization level increases when
the models are fine-tuned on K&K puzzles.

We focus on analyzing Direct FT in this section
and discuss CoT FT in § 5. For humans, solving
K&K tasks without understanding the underlying
logic is difficult. However, after observing the step-
by-step reasoning steps, people can understand the
procedure and solve the puzzles more easily. Sim-
ilarly, compared to CoT FT, learning from only

2746

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

#
pp

l
fo

r
tr

ai
ni

ng
-0.10 0.24 0.35 0.27 0.33 0.32 0.30

0.21 0.24 0.46 0.29 0.30 0.31 0.21

0.21 0.25 0.34 0.25 0.22 0.22 0.23

0.26 0.37 0.30 0.19 0.12 0.10 0.13

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

(a) GPT4o-mini CoT FT

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.29 0.22 0.31 0.31 0.18 0.25

0.25 0.35 0.37 0.40 0.37 0.24 0.26

0.20 0.39 0.37 0.27 0.31 0.18 0.28

0.32 0.35 0.34 0.29 0.29 0.05 0.15

0.28 0.05 0.07 0.06 0.07 -0.05 0.07

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

(b) GPT4o-mini Direct FT

2 3 4 5 6 7 8
ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.32 0.29 0.25 0.17 0.10 0.10

-0.03 0.34 0.30 0.27 0.16 0.11 0.10

0.19 0.33 0.32 0.24 0.20 0.11 0.12

0.16 0.37 0.31 0.25 0.13 0.13 0.11

0.24 0.39 0.29 0.23 0.09 0.10 0.08

-0.01 0.27 0.20 0.26 0.14 0.11 0.08

-0.10 0.12 0.03 0.07 0.02 0.03 0.04

epoch: 5

2 3 4 5 6 7 8
ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.37 0.30 0.24 0.20 0.11 0.13

0.20 0.41 0.40 0.29 0.17 0.14 0.12

0.34 0.41 0.43 0.34 0.21 0.15 0.09

0.25 0.45 0.42 0.28 0.20 0.11 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.41 0.38 0.41 0.26 0.17 0.11 0.13

0.11 0.08 0.06 0.06 0.02 0.01 0.02

epoch: 50

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) Llama3-8B Direct FT

Figure 6: Test accuracy improvement on N -people problems for LLMs fine-tuned on M -people problems, compared to the
unfine-tuned model, under 0-shot direct prompting. Most grid values are above 0, indicating transferability and enhanced
reasoning abilities across unseen tasks. Results for more epochs are in § E.3.

0.0 0.5

Acc(f ;Tr)

0.50

0.75

1.00

1-
C

R
(i

nc
on

si
st

en
cy

) statement pert.

0.0 0.5

Acc(f ;Tr)

0.6

0.8

1.0
leaf pert.

0.0 0.5

Acc(f ;Tr)

0.5

1.0
pair pert.

0.0 0.5

Acc(f ;Tr)

0.5

1.0
name pert.

0.0 0.5

Acc(f ;Tr)

0.5

1.0
reorder pert.

0.0 0.4 0.8

Acc(f ;Tr)

0.90

0.95

1.00
flip role

0.0

0.2

0.4

0.6

L
iM

em

3-ppl Direct FT 5-ppl Direct FT 8-ppl Direct FT

Figure 7: Inconsistency ratio (y-axis) on correctly solved training puzzles of fine-tuned Llama3-8B decreases over epochs
(x-axis), even as the proportion of memorized training puzzles increases, as indicated by the larger LiMem(f ;Tr) values (color).

answers (Direct FT) without detailed reasoning
steps is intuitively more challenging for LLMs, as
the models need to come up with the reasoning
procedures on their own. Therefore, the models
might be more likely to rely on memorization in
this case. Surprisingly, from Fig. 5, we did not
observe Direct FTed GPT4o-mini models exhibit-
ing consistently higher memorization score than
CoT FTed ones. It turns out that models can learn
to reason K&K puzzles well directly from observ-
ing only question-answer pairs, as we will show in
§ 4.1. To better understand what the model learns
through Direct FT, we conduct a probing analysis
on model internals in § E.4 and an ablation study
with incorrect answers fine-tuning in § E.4.

4.1 Reasoning Capabilities via Direct FT

Fine-tuned model generalizes across different
difficulty levels. We evaluate LLMs’ transferabil-
ity by fine-tuning on M -people puzzles and testing
on N -people puzzles. When M ̸= N , the test-
ing is out-of-distribution compared to training and
solving it requires reasoning. The N×M test accu-
racy improvement grid (compared to the un-FTed
model) in Fig. 6 shows: (1) Training on any M -
people puzzle generally improves test accuracy on
any N -people puzzles, suggesting that the model
learns general task-solving rules after FT (to reason
and solve both easier and harder unseen puzzles).
(2) More training epochs (e.g., 50 vs. 5) improve
generalization, especially for Llama3-8B. (3) Ac-
curacy gains are larger for N ≤ 6 puzzles, though

improvements on harder tasks remain possible.
Inconsistency ratio decreases despite in-

creased memorization. As shown in Fig. 7, the
inconsistency ratio (y-axis) of fine-tuned LLMs
on correctly solved training puzzles decreases
over epochs, even as the memorization score
LiMem(f ;Tr) increases, indicating a higher pro-
portion of memorized training puzzles (Eq. (1)).
This reduction in inconsistency suggests a potential
improvement in the model’s generalization ability,
aligning with its enhanced transferability observed
in Fig. 6. The memorization score LiMem(f ;Tr)
under role-flipping is significantly higher than other
perturbation, possibly due to an internal bias that
knights are truthful. See Fig. 20 for results on
GPT4o-mini.

Fine-tuning with 10k 8-people puzzles. Given
the significant performance improvement from
fine-tuning, a natural question arises: can brute-
force fine-tuning on a very large number of puz-
zles eventually solve the K&K puzzles, by observ-
ing/memorizing a variety of combinations of per-
sons’ claims and their corresponding answers? We
Direct FT GPT4o-mini on 1k/10k of the most chal-
lenging 8-people puzzles for 5 epochs. Fig. 9 shows
that (1) 10k-FT significantly outperforms 1k-FT
across all tasks, reaching ∼ 90% test accuracy on
moderately difficult 4/5-people puzzles. (2) CoT
FT is generally more effective than Direct FT with
10k samples, likely due to the guidance provided
by reasoning steps. We defer more discussion on
Fig. 9 and results for Llama3-8B to § E.3.1.

2747

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Transformer Block Index

2

3

4

5

6

7

8

#
pp

l
in

th
e

K
&

K
ev

al
ua

ti
on

0.57 0.59 0.61 0.65 0.68 0.75 0.77 0.78 0.85 0.87 0.9 0.91 0.94 0.97 0.97 0.97 0.96 0.95 0.94 0.92 0.91 0.92 0.9 0.89 0.9 0.9 0.91 0.92 0.94 0.95 0.91 0.89

0.58 0.59 0.61 0.66 0.71 0.74 0.76 0.78 0.84 0.87 0.91 0.92 0.95 0.97 0.97 0.96 0.95 0.94 0.93 0.91 0.91 0.9 0.89 0.88 0.89 0.9 0.91 0.92 0.93 0.93 0.88 0.88

0.6 0.6 0.62 0.64 0.66 0.71 0.74 0.76 0.82 0.84 0.89 0.9 0.95 0.97 0.96 0.95 0.94 0.93 0.91 0.89 0.89 0.89 0.88 0.87 0.87 0.88 0.88 0.9 0.9 0.91 0.85 0.85

0.6 0.61 0.64 0.67 0.7 0.74 0.76 0.78 0.83 0.85 0.9 0.92 0.95 0.97 0.96 0.96 0.94 0.93 0.92 0.89 0.89 0.88 0.87 0.86 0.87 0.89 0.89 0.89 0.89 0.9 0.82 0.81

0.61 0.61 0.63 0.65 0.67 0.71 0.74 0.77 0.81 0.84 0.89 0.9 0.93 0.95 0.95 0.95 0.93 0.92 0.9 0.89 0.87 0.88 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.79 0.8

0.6 0.61 0.62 0.66 0.69 0.72 0.75 0.77 0.81 0.83 0.86 0.88 0.92 0.95 0.95 0.94 0.92 0.91 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.87 0.87 0.86 0.88 0.86 0.8 0.76

0.65 0.65 0.66 0.68 0.7 0.72 0.74 0.77 0.8 0.83 0.87 0.89 0.93 0.95 0.95 0.95 0.93 0.91 0.9 0.88 0.88 0.87 0.86 0.85 0.86 0.87 0.89 0.86 0.87 0.85 0.81 0.78

0.80

0.85

0.90

0.95

1.00

Figure 8: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different layers of the
Llama3-8B transformer model. Results for un-FTed models are shown in Fig. 38 in § E.

2 3 4 5 6 7 8
0.0

0.5

1.0

A
cc

(f
;T

st
)

no FT

Direct prompting

CoT prompting

2 3 4 5 6 7 8
0.0

0.5

1.0

A
cc

(f
;T

st
)

1000 samples 8-ppl FT

Direct FT

CoT FT

2 3 4 5 6 7 8
ppl for testing

0.0

0.5

1.0

A
cc

(f
;T

st
)

10000 samples 8-ppl FT

Figure 9: Transferability of 1k/10k 8-ppl FTed GPT4o-mini.

Additionally, we consider an extreme scenario of
learning with incorrect answers. § E.4 shows that
when training data includes ≤ 50% incorrect an-
swers, Direct FT still enhances K&K performance.

4.2 Probing Direct FTed Models

To investigate whether Direct FTed models develop
internal understanding of the skills necessary to
solve K&K puzzles when learning only from the an-
swers, we use probing techniques (Adi et al., 2017;
Conneau et al., 2018; Hewitt and Liang, 2019; Ye
et al., 2024) to analyze their internal representa-
tions. Specifically, we study whether a Direct FTed
model’s intermediate outputs provide evidence that
it can distinguish between correct and incorrect
statements for a given K&K puzzle, which is es-
sential for solving the puzzle via reasoning. For a
given model, we extract intermediate outputs from
all transformer blocks for 200 correct and 200 incor-
rect statements, then check whether these outputs
form distinct clusters by measuring the training ac-
curacy of a logistic regression model fit on them
(see § D.2.3 for details). For each N -people K&K
puzzle, we report the per-layer probing accuracy
averaged across seven Direct FTed models, each
FTed on an M ∈ {2, . . . , 8}-people task. Fig. 8
shows (1) a clear trend of higher probing accuracy

in deeper layers, peaking at around the 14th/15th
layer. The near-perfect peak accuracy suggests that
the model’s internal representations have a clear
distinction between true/false statements about a
given puzzle. (2) The probing accuracy is much
higher than the un-FTed model (Fig. 38 in § E), sug-
gesting that such representations are learned from
the question-answer pairs during Direct FT. (3)
Puzzles with more people seem to demand more
internal computation, as evidenced by the point
where probing accuracy surpasses 85% shifting to
later transformer blocks.

5 Learn to Reason by CoT Fine-tuning

Here we measure models’ reasoning capabilities
after fine-tuning with detailed reasoning steps.

Model learns to reason on CoT when model
capacity is large enough. As shown in Fig. 4, (1)
training with reasoning steps as guidance improves
test accuracy (y-axis) on unseen puzzles. (2) How-
ever, Llama3-8B struggles with CoT FT, likely due
to its limited capacity to effectively learn CoT skills
with ≤1K training samples. (3) Similar to Direct
FT results in § 4, in CoT FT, memorization of train-
ing data is higher than test data (Fig. 5), yet incon-
sistency ratio decreases despite that overall memo-
rization score increases over training (Fig. 20), and
the fine-tuned models show positive transferability
to easier/harder tasks (Fig. 6). (4) Though LLMs
can generalize surprisingly well under Direct FT,
CoT FT could lead to much higher test accuracy,
especially with a larger training set (Fig. 9).

Fine-tuning with wrong CoTs. To understand
the role of the CoT component in improving model
generalization during CoT FT, we fine-tune GPT4o-
mini with two types of incorrect CoT data: (a) ran-
domly shuffled CoT steps, disrupting the logic of
the reasoning steps; and (b) CoTs with a single in-
correct step, simulating genuine mistakes that peo-
ple would sometimes make. The results in Fig. 10
show that (1) fine-tuning with a 100% corrupted
CoT dataset can still enhance test accuracy over
the epochs, suggesting that the model learns to rea-

2748

0 2 4 6 8 10
Epoch

0.00

0.25

0.50

0.75

1.00

T
ra

in
A

cc

5-ppl FT GPT4o-mini

0 2 4 6 8 10
Epoch

T
es

t
A

cc

Clean CoT

Shuffle CoT

Replace one CoT step

Figure 10: Fine-tuning GPT4o-mini with wrong CoTs.

son (potentially from the correct answers) despite
CoT errors. (2) Altering one CoT step slows con-
vergence and reduces test accuracy compared to
clean CoT. (3) Shuffling CoT steps further harms
both convergence and generalization. These also
suggest that using correct logical chains in CoT can
help LLMs to more effectively learn to reason.

6 Distinguish Memorizing vs. Reasoning

The findings above show that models’ reasoning
capabilities continue to improve as they memorize
more training examples. In other words, the mod-
els use both memorization and reasoning to solve
the puzzles. But how do they decide which exam-
ples to memorize or reason about? We can explore
this by extending our memorization score to a per-
example metric. Specifically, consider measuring
Eq. (1) on a 1-point dataset D = {x}. We skip
the examples where Acc(f ; {x}) = 0 as the con-
sistency ratio CR({x}) is NaN in this case. Here,
LiMem(f ; {x}) ∈ 0, 1 acts as a binary indicator: 0
means x remains solvable after local perturbation,
while 1 means it does not. Our goal is to determine
if a clear rule separates these two types of puzzles.

We investigate the signatures of memorization
for each model, based on data or model features.
§ E.6 show that data features (e.g., TF-IDF, Bag-
of-Words, Word Length) can be informative and
model features (e.g., embeddings) from the FTed
model are consistently more informative than the
un-FTed one—suggesting that the model’s decision
regarding memorization vs. reasoning on specific
samples likely also stems from the FT process.

7 Results on DynamicZebra

To complement our findings on K&K, we validate
the results on DynamicZebra, which is based on a
completely different type of logical problem. The
results in § E.7 show that while models rely on
memorization to solve many training zebra puzzles
and struggle to re-reason under small perturbations
(Fig. 11), they also exhibit generalization to unseen
test samples (Fig. 44).

Figure 11: DynamicZebra training accuracy and memorization
score on perturbed training set for Direct-FTed Qwen2.5-7B.

8 Related Work

Memorization in LLMs. Previous work on LLM
memorization primarily focused on near-verbatim
training text regurgitation from the perspective of
privacy or copyright concerns (Carlini et al., 2021;
Lee et al., 2022; Carlini et al., 2023; Lukas et al.,
2023; Biderman et al., 2024; Prashanth et al., 2024).
In contrast, we focus on quantifying the memoriza-
tion behavior of LLMs when solving reasoning
tasks, using a metric computed with the help of
local perturbation of reasoning puzzles.

Benchmark Contamination and Logical Rea-
soning Evaluation. LLMs show performance
drops on altered versions of popular reasoning
benchmarks (Oren et al., 2024; Xu et al., 2024;
Yang et al., 2023; Yao et al., 2024), indicating
potential contamination. Synthetic benchmarks
offer dynamic, scalable evaluation of logical rea-
soning (Giadikiaroglou et al., 2024; Parmar et al.,
2024; Kazemi et al., 2024; Mondorf and Plank,
2024). Our work introduces comprehensive dy-
namic K&K and DynamicZebra puzzle sets with
automatic generation of perturbations, solutions,
and reasoning steps. Moreover, we define and mea-
sure memorization, and reveal its intricate relation
to reasoning. We refer the readers to § A for a
more comprehensive discussion of related work.

9 Conclusion

We propose a memorization metric LiMem based
on the inconsistency when solving a locally per-
turbed logical reasoning puzzle, and quantitatively
characterize the amount of memorization and rea-
soning with the proposed feature-rich dynamic log-
ical reasoning benchmark.

2749

Limitations

Our results reveal intricate phenomena of the in-
terplay between reasoning and memorization, but
challenging questions remain open: (i) While a
model’s reasoning capabilities improve during fine-
tuning as it memorizes more training puzzles, it is
unclear exactly how those capabilities develop, es-
pecially when fine-tuned on only question-answer
pairs without detailed reasoning steps. (ii) Since
some model-based indicators can approximately
predict when the model is solving a specific puz-
zle by memorization vs by reasoning, can we fur-
ther design intervention mechanisms to bias the
model towards reasoning during inference or train-
ing time? Exploring the open questions in further
research would deepen our understanding of this
space.

Acknowledgments

We thank Yuntian Deng, Mingyang Deng, Ziqi
Wang, Tiancheng Yu, Mike Mozer, Rishabh Agar-
wal, Danqi Chen, Matthew Jagielski, Nikunj Saun-
shi, Wei Xiong and Minghao Chen for their valu-
able feedback and discussions. YH acknowledges
the support of the Wallace Memorial Fellowship
and the compute resources at Princeton Language
and Intelligence. BL acknowledges the support of
NSF No. 2046726, NSF AI Institute ACTION No.
IIS-2229876 and the Alfred P. Sloan Fellowship.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017. Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks.
In ICLR.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango,
and Ondřej Dušek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. arXiv:2402.03927.

Mikhail Belkin. 2021. Fit without fear: remarkable
mathematical phenomena of deep learning through
the prism of interpolation. Acta Numerica.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. 2018.
Overfitting or perfect fitting? Risk bounds for clas-
sification and regression rules that interpolate. In
NeurIPS.

Stella Biderman, Usvsn Prashanth, Lintang Sutawika,
Hailey Schoelkopf, Quentin Anthony, Shivanshu
Purohit, and Edward Raff. 2024. Emergent and
predictable memorization in large language models.
NeurIPS, 36.

Boolean satisfiability problem. Boolean satisfiability
problem — Wikipedia, the free encyclopedia. [On-
line; accessed 20-Nov-2024].

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In ICLR.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, and 1 others. 2021. Extracting training
data from large language models. In USENIX Secu-
rity.

Xinyun Chen, Ryan Andrew Chi, Xuezhi Wang, and
Denny Zhou. 2024. Premise order matters in reason-
ing with large language models. In ICML.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, and 1
others. 2024. Scaling instruction-finetuned language
models. JMLR.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
IJCAI.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In ACL.

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to inter-
nalize cot step by step. arXiv:2405.14838.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. arXiv:2311.01460.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaïd Harchaoui, and Yejin Choi. 2024.
Faith and fate: Limits of transformers on compo-
sitionality. NeurIPS.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, and 1 others.
2020. The pile: An 800gb dataset of diverse text for
language modeling. arXiv:2101.00027.

Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos
Filandrianos, and Giorgos Stamou. 2024. Puzzle
solving using reasoning of large language models: A
survey. In IJCAI.

Shahriar Golchin and Mihai Surdeanu. 2023. Data
contamination quiz: A tool to detect and es-
timate contamination in large language models.
arXiv:2311.06233.

2750

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Vipul Gupta, David Pantoja, Candace Ross, Ad-
ina Williams, and Megan Ung. 2024. Chang-
ing answer order can decrease MMLU accuracy.
arXiv:2406.19470.

Valentin Hartmann, Anshuman Suri, Vincent Bind-
schaedler, David Evans, Shruti Tople, and Robert
West. 2023. SoK: memorization in general-purpose
large language models. arXiv:2310.18362.

Luxi He, Yangsibo Huang, Weijia Shi, Tinghao Xie,
Haotian Liu, Yue Wang, Luke Zettlemoyer, Chiyuan
Zhang, Danqi Chen, and Peter Henderson. 2024. Fan-
tastic copyrighted beasts and how (not) to generate
them. arXiv:2406.14526.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In EMNLP.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2023.
Large language models are reasoning teachers. In
ACL.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. In ACL.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fan-
jia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. 2024.
LiveCodeBench: Holistic and contamination free
evaluation of large language models for code.
arXiv:2403.07974.

Bowen Jiang, Yangxinyu Xie, Zhuoqun Hao, Xiaomeng
Wang, Tanwi Mallick, Weijie J Su, Camillo J Tay-
lor, and Dan Roth. 2024. A peek into token bias:
Large language models are not yet genuine reasoners.
EMNLP.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? natural lan-
guage attack on text classification and entailment.
AAAI.

Philip N Johnson-Laird and Ruth MJ Byrne. 1990.
Meta-logical problems: Knights, knaves, and rips.
Cognition.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Søgaard. 2023. Copyright violations and large
language models. In EMNLP.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-
machandran. 2024. BoardgameQA: A dataset for
natural language reasoning with contradictory infor-
mation. In NeurIPS.

Seungone Kim, Se June Joo, Doyoung Kim, Joel Jang,
Seonghyeon Ye, Jamin Shin, and Minjoon Seo. 2023.
The cot collection: Improving zero-shot and few-shot
learning of language models via chain-of-thought
fine-tuning. In EMNLP.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Watten-
berg, Jonathan K Kummerfeld, and Rada Mihalcea.
2024. A mechanistic understanding of alignment
algorithms: A case study on DPO and toxicity. In
ICML.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In ACL.

Bill Yuchen Lin. 2024. Math Olympiad becomes easier
for AI; Common sense is still hard.

Bill Yuchen Lin, Ronan Le Bras, and Yejin Choi. 2024.
ZebraLogic: benchmarking the logical reasoning abil-
ity of language models.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. 2025. Zebralogic: On the scaling lim-
its of llms for logical reasoning. arXiv:2502.01100.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric
Michaud, Max Tegmark, and Mike Williams. 2022a.
Towards understanding grokking: An effective theory
of representation learning. NeurIPS.

Ziming Liu, Eric J Michaud, and Max Tegmark. 2022b.
Omnigrok: Grokking beyond algorithmic data. In
ICLR.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople,
Lukas Wutschitz, and Santiago Zanella-Béguelin.
2023. Analyzing leakage of personally identifiable
information in language models. In S & P.

R Thomas McCoy, Shunyu Yao, Dan Friedman,
Mathew D Hardy, and Thomas L Griffiths. 2024.
Embers of autoregression show how large language
models are shaped by the problem they are trained to
solve. PNAS, 121(41):e2322420121.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv:2410.05229.

Philipp Mondorf and Barbara Plank. 2024. Liar, liar,
logical mire: A benchmark for suppositional reason-
ing in large language models. arXiv:2406.12546.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher D Manning. 2023. Grokking of hierar-
chical structure in vanilla transformers. In ACL.

Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi
Cherti, and Jenia Jitsev. 2024. Alice in wonder-
land: Simple tasks showing complete reasoning
breakdown in state-of-the-art large language mod-
els. arXiv:2406.02061.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In ACL, pages 4885–4901.

2751

https://x.com/billyuchenlin/status/1812948314360541302
https://x.com/billyuchenlin/status/1812948314360541302
https://hf.co/spaces/allenai/ZebraLogic
https://hf.co/spaces/allenai/ZebraLogic

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal
Ladhak, and Tatsunori B Hashimoto. 2024. Proving
test set contamination in black box language models.
ICLR.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning. In EMNLP.

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi
Nakamura, Man Luo, Santosh Mashetty, Arindam
Mitra, and Chitta Baral. 2024. LogicBench: towards
systematic evaluation of logical reasoning ability of
large language models. In ACL.

Alethea Power, Yuri Burda, Harri Edwards, Igor
Babuschkin, and Vedant Misra. 2022. Grokking:
Generalization beyond overfitting on small algorith-
mic datasets. arXiv:2201.02177.

Akshara Prabhakar, Thomas L Griffiths, and R Thomas
McCoy. 2024. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memo-
rization, and noisy reasoning. arXiv:2407.01687.

USVSN Sai Prashanth, Alvin Deng, Kyle O’Brien,
Jyothir SV, Mohammad Aflah Khan, Jaydeep Borkar,
Christopher A Choquette-Choo, Jacob Ray Fuehne,
Stella Biderman, Tracy Ke, and 1 others. 2024. Re-
cite, reconstruct, recollect: Memorization in LMs as
a multifaceted phenomenon. arXiv:2406.17746.

Haritz Puerto, Tilek Chubakov, Xiaodan Zhu, Har-
ish Tayyar Madabushi, and Iryna Gurevych. 2024.
Fine-tuning with divergent chains of thought boosts
reasoning through self-correction in language models.
arXiv:2407.03181.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. In
Findings of EMNLP 2022, pages 840–854.

Manley Roberts, Himanshu Thakur, Christine Herlihy,
Colin White, and Samuel Dooley. 2023. To the cut-
off... and beyond? A longitudinal perspective on
LLM data contamination. In ICLR.

Joshua Robinson and David Wingate. 2023. Leveraging
large language models for multiple choice question
answering. In ICLR.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In ICLR.

SAT solver. 2024. Sat solver — Wikipedia, the free
encyclopedia. [Online; accessed 20-Nov-2024].

Raymond Smullyan. 1978. What is the Name of this
Book? Prentice-Hall.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay
Sukumar, Alan Philipose, Stevin Prince, Sooraj
Thomas, and 1 others. 2024. Functional benchmarks
for robust evaluation of reasoning performance, and
the reasoning gap. arXiv:2402.19450.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. NeurIPS.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng,
Johannes Heidecke, and Alex Beutel. 2024. The
instruction hierarchy: Training LLMs to prioritize
privileged instructions. arXiv:2404.13208.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. 2024a.
Grokking of implicit reasoning in transformers: A
mechanistic journey to the edge of generalization. In
NeurIPS.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, and 1 others.
2023a. DecodingTrust: a comprehensive assessment
of trustworthiness in GPT models. In NeurIPS.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-
lah, and Bo Li. 2021. Adversarial GLUE: A multi-
task benchmark for robustness evaluation of language
models. In NeurIPS Datasets and Benchmarks.

Haochun Wang, Sendong Zhao, Zewen Qiang, Bing
Qin, and Ting Liu. 2024b. Beyond the answers: Re-
viewing the rationality of multiple choice question
answering for the evaluation of large language mod-
els. arXiv:2402.01349.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
ICLR.

Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A Smith,
Chiyuan Zhang, Luke Zettlemoyer, Kai Li, and Peter
Henderson. 2024. Evaluating copyright takedown
methods for language models. In NeurIPS Datasets
and Benchmark.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In EMNLP.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2024. Reasoning or reciting?
exploring the capabilities and limitations of language
models through counterfactual tasks. In MAACL,
pages 1819–1862.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu.
2024. Benchmarking benchmark leakage in large
language models. arXiv:2404.18824.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E
Gonzalez, and Ion Stoica. 2023. Rethinking bench-
mark and contamination for language models with
rephrased samples. arXiv:2311.04850.

2752

https://en.wikipedia.org/wiki/SAT_solver
https://en.wikipedia.org/wiki/SAT_solver

Feng Yao, Yufan Zhuang, Zihao Sun, Sunan
Xu, Animesh Kumar, and Jingbo Shang. 2024.
Data contamination can cross language barriers.
arXiv:2406.13236.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process.
arXiv:2407.20311.

Zebra Puzzle. Zebra puzzle — Wikipedia, the free
encyclopedia. [Online; accessed 18-May-2025].

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. NeurIPS, 35:15476–15488.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, and 1 others. 2024. A careful
examination of large language model performance
on grade school arithmetic. arXiv:2405.00332.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
ICML.

Wenjie Zhou, Qiang Wang, Mingzhou Xu, Ming Chen,
and Xiangyu Duan. 2024. Revisiting the self-
consistency challenges in multi-choice question for-
mats for large language model evaluation. In LREC-
COLING.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang
Gong, Diyi Yang, and Xing Xie. 2024. Dyval: Graph-
informed dynamic evaluation of large language mod-
els. In ICLR.

Yongshuo Zong, Tingyang Yu, Bingchen Zhao, Ruchika
Chavhan, and Timothy Hospedales. 2024. Fool your
(vision and) language model with embarrassingly
simple permutations. ICML.

2753

https://en.wikipedia.org/wiki/Zebra_Puzzle
https://en.wikipedia.org/wiki/Zebra_Puzzle

APPENDIX

A Extended Related Work 14

B Details on K&K Benchmark 17
B.1 The Abstract Representation . 17
B.2 The Abstract Puzzle Module: Generator . 17
B.3 The Abstract Puzzle Module: Solver and Reasoner . 17
B.4 The Abstract Puzzle Module: Perturber . 18
B.5 The Natural Language Module: NL-Generator . 19
B.6 The Natural Language Module: NL-Reasoner . 19
B.7 The Natural Language Module: NL-Perturber . 20
B.8 Dataset Generation . 21

C Details on DynamicZebra 22

D Experimental Setups 23
D.1 Models . 23
D.2 Experimental Details . 23

D.2.1 Evaluation . 23
D.2.2 Fine-tuning . 25
D.2.3 Probing . 26
D.2.4 Distinguishing Memorization from Reasoning 26
D.2.5 Computation Resources . 27

E Additional Experimental Results 27
E.1 Benchmark Performance of Off-the-shelf Models . 27
E.2 Memorization Measurement . 28
E.3 Evaluation on Reasoning Capability . 30

E.3.1 Llama3-8B . 30
E.3.2 GPT4o-mini . 33

E.4 Direct FT with Wrong Answers . 35
E.5 Probing . 39
E.6 Distinguishing Memorization from Reasoning . 40
E.7 DynamicZebra . 41

2754

A Extended Related Work

Memorization in LLMs. Prior work has explored training data memorization in LLMs, primarily
in the contexts of privacy and copyright concerns (Carlini et al., 2021; Lukas et al., 2023; He et al.,
2024), focusing on how LLMs may reproduce text near-verbatim to their training data (Lee et al., 2022;
Carlini et al., 2023; Biderman et al., 2024). Prashanth et al. (2024) further introduces a taxonomy for
memorization, categorizing it into Recitation, Reconstruction, and Recollection. They investigate the
memorization behaviors of the Pythia model (Biderman et al., 2024) on the Pile dataset (Gao et al.,
2020). In contrast, we examine memorization in the reasoning context, and focus on analyzing whether
LLMs can accurately solve problems encountered during training but struggle to solve slightly perturbed
variants. This allows us to better investigate the extent to which LLMs truly understand and generalize
the underlying principles of the reasoning problems they have been trained on, as opposed to merely
memorizing the text.

Recent research discusses signs of LLMs memorization in reasoning tasks by evaluating them on
counterfactual reasoning tasks. These counterfactual tasks demand similar abstract reasoning skills as
the original tasks but are less common in the training data. For instance, tasks such as reversing a
sequence of words (McCoy et al., 2024) show better performance on high-probability sequences than on
low-probability sequences; shifting each letter by n places in the alphabet (Rot-n) (Prabhakar et al., 2024;
McCoy et al., 2024) demonstrates higher performance when n = 13 than for other values, likely because
“Rot-13” is commonly used in online forums. (Wu et al., 2024) presents 11 counterfactual tasks (e.g.,
1-indexing in Python, base-9 arithmetic) that show significant performance declines. (Jiang et al., 2024)
changes some tokens in the reasoning task descriptions which leads to significant performance drops,
suggesting that models might depend on recognizing superficial patterns with strong token bias. Moreover,
(Razeghi et al., 2022) finds a strong correlation between the accuracy for a number on numerical reasoning
tasks and its frequency in pretraining for GPT-J/GPT-Neo. In our study, we formally define a memorization
score to quantify performance variance under task perturbations, covering both counterfactual alterations
(e.g., switching the roles of knights and knaves) and standard perturbations on language level and problem
structure level.

Detecting benchmark contamination. Recent work has shown that LLMs’ performance drastically
declines when faced with altered versions of popular reasoning benchmarks, suggesting potential contami-
nation/memorization of these benchmarks. The benchmark variants include diverse forms such as altered
multiple-choice questions formats (Wang et al., 2024b; Zong et al., 2024; Gupta et al., 2024; Zhou et al.,
2024; Robinson and Wingate, 2023), rephrased or translated problems (Xu et al., 2024; Yang et al., 2023;
Yao et al., 2024), shuffled example orderings (Oren et al., 2024), human-curated problems of comparable
difficulty (Zhang et al., 2024), functional variants generating random instantiations (Srivastava et al., 2024;
Mirzadeh et al., 2024), and problems beyond specific date cutoffs (Roberts et al., 2023; Jain et al., 2024).
Previous work either focus on surface level language perturbations or require extensive expert-level anno-
tations for math level variations. In contrast, our benchmark support automatic problem-level perturbation,
solution and reasoning procedure generation, and easily scale to different difficult levels and dataset sizes
without extra human efforts.

Logical reasoning benchmarks. To evaluate logical reasoning capabilities in LLMs, synthetic bench-
marks have been developed to enable scalable generation of samples with varying configurations and
difficulty levels (Clark et al., 2020; Giadikiaroglou et al., 2024; Parmar et al., 2024). For instance,
DyVal (Zhu et al., 2024) uses directed acyclic graphs to dynamically generate samples on reasoning
tasks including deductive, Boolean, and abductive reasoning. (Chen et al., 2024) focus on propositional
logical problems involving definite clauses, and synthetically generate variations with different premise
orders, such as forward, backward, and shuffled. (Dziri et al., 2024) explore the limitations of LLMs
in tasks requiring compositional reasoning, including multiplication, logic grid puzzles, and dynamic
programming problems. ZebraLogic (Lin et al., 2024) is an extended benchmark that systematically tests
logical reasoning capabilities. BoardgameQA (Kazemi et al., 2024) presents a question-answering dataset
characterized by contradictory facts and rules in the questions. PRONTOQA (Saparov and He, 2023) is
a synthetic question-answering dataset where each example is generated from a synthetic world model

2755

represented in first-order logic. This dataset enables parsing the generated chain of thought into symbolic
proofs, facilitating formal analysis. TruthQuest (Mondorf and Plank, 2024) is the most similar task to
our work, which provides evaluation samples based on K&K-type of puzzles involving 3-6 person. Our
work provides more comprehensive dynamic set of K&K puzzles that support automatic generation of
perturbations, solutions and detailed reasoning steps. Moreover, based on this benchmark, we define
and measure memorization in reasoning tasks, revealing intricate interplay between memorization and
reasoning in LLMs.

Improving reasoning via fine-tuning. Prior work has explored fine-tuning LLMs on synthetic
reasoning data to enhance their performance on reasoning. DyVal (Zhu et al., 2024) shows that fine-
tuning Llama2-13B-chat on their synthetic reasoning benchmark improves its performance on other
popular reasoning benchmarks. BoardgameQA (Kazemi et al., 2024) find that fine-tuning BERT-large
and T5-XXL on their training dataset with synthetic proofs outperforms few-shot CoT prompting using
PaLM. (Ye et al., 2024) pretrain GPT2 from scratch on synthetic math problems, synthetic CoT steps
and solutions and show that model can solve problems from the same distribution and generalize to
out-of-distribution (OOD) problems. However, (Dziri et al., 2024) show that while GPT-3 fine-tuned on
their compositional reasoning tasks with/without reasoning steps can solve in-distribution (ID) problems,
it fails to generalize to OOD tasks with increased problem sizes. Besides using synthetic CoTs, there are
work using model-generated CoTs to enhance the models’ reasoning capabilities (Chung et al., 2024).
STaR (Zelikman et al., 2022) uses model self-generated CoTs on correctly solved samples to iteratively
fine-tune itself as a self-taught reasoner. A number of work (Puerto et al., 2024; Kim et al., 2023; Ho et al.,
2023; Hsieh et al., 2023) leverage CoTs generated from teacher models to train smaller student models.
Additionally, some recent efforts have focused on leveraging intermediate reasoning steps in CoT more
implicitly. For instance, Deng et al. (2023) distill intermediate reasoning tokens into the network layers
by representing reasoning steps as vectors and using them as targets; Deng et al. (2024) distill CoT by
gradually removing the intermediate steps and fine-tuning the model to internalize these steps, predicting
the answers based on partial CoT. Both studies show that full CoT fine-tuning may not be necessary for
the model to achieve strong reasoning performance.

In our study, we employ both direct fine-tuning and CoT fine-tuning to achieve memorization on K&K
training data. Notably, our findings show that the fine-tuned GPT4o-mini and Llama3-8B models can
effectively generalize to unseen OOD and ID K&K problems, contributing new insights to the topic of
LLM fine-tuning for reasoning.

Orthogonal to our work, inference-time techniques have been explored to enhance reasoning perfor-
mance such as self-consistency (Wang et al., 2023b), self-verification (Weng et al., 2023), and integration
with external symbolic solvers (Pan et al., 2023).

Grokking. Our findings are related to Grokking, first identified by (Power et al., 2022) on a small
algorithmic dataset, where validation accuracy suddenly improves from random chance to near-perfect
generalization long after severe overfitting. Follow-up studies expanded the range of tasks where grokking
occurs and proposed various explanations (Liu et al., 2022a; Murty et al., 2023; Liu et al., 2022b).
Recently, (Wang et al., 2024a) observed grokking in the domain of complex knowledge-based tasks,
showing that implicit reasoning over parametric knowledge emerges only after extensive overfitting. In
this work, we observe a related phenomenon but through the lens of memorization and logical reasoning.
Through novel (math & language-level) perturbation tests and transferability analyses, we verify that
LLM’s reasoning skills emerge alongside memorization. Furthermore, our investigation focuses on logical
reasoning, offering new insights into how LLMs acquire logical reasoning skills.

Adversarial robustness under perturbations. Language-level perturbations have been widely used to
assess the adversarial robustness of language models, often involving manually annotated attacks, as seen
in advGLUE (Wang et al., 2021), ANLI (Nie et al., 2020), and TextFooler (Jin et al., 2020). However,
these approaches fundamentally differ from our proposed mathematical-level perturbations in purpose,
methodology, and scope. Specifically, prior studies primarily focus on natural language understanding
tasks, such as sentiment analysis and textual entailment, aiming to generate adversarial perturbations
that cause misclassification without altering the ground truth. In contrast, our proposed perturbation
method operates at a mathematical level in logical reasoning tasks and modifies not only the problem,

2756

but also the ground-truth answer. These mathematical perturbations ensure that the perturbed puzzle
has a distinctly different solution compared to the original puzzle, while remaining superficially similar
and maintaining a comparable difficulty level. This is guaranteed by the Perturber, Reasoner, and Solver
components in our data generation framework. This approach provides a direct evaluation of the models’
understanding of the underlying mathematical principles. By addressing logical reasoning robustness
through mathematical-level perturbations, our work contributes a novel perspective distinct from prior
studies.

2757

B Details on K&K Benchmark

B.1 The Abstract Representation

We use a simple internal representation using basic Python primitives (integer, string and tuple) to encode
each K&K puzzle. This allows easy inter-operation with the json format to simplify saving and loading.
Specifically, for a N -people puzzle, each person is represented by the integer 0, . . . , N − 1. Each person’s
statement is represented by a tuple (type, arguments, ...), where type indicate the statement type
listed below:

• Leaf Statements: It can be either (’lying’, i) or (’telling-truth’, i), where i is an integer
and this statement assert the ith person is lying or truthful.

• Composite Statements: It can take one or more statements as arguments, and has the following
types:

– Negation (’not’, statement)

– Conjunction (’and’, statement1, statement2, ...)

– Disjunction (’or’, statement1, statement2, ...)

– Implication (’->’, statement1, statement2)

– Equivalence (’<=>’, statement1, statement2)

B.2 The Abstract Puzzle Module: Generator

The Generator samples a problem based on a random seed and a difficulty level specification (N,W,D),
where N indicates the number of people, W indicates the max width of each statement, D indicates
the max depth of each person’s statement. To instantiate the problem, we initialize a random number
generator, and sample a statement for each person sequentially. We sample each statement type uniformly
at random. For composite statement with variable number of sub-statements, we also randomize the
number according to the max width W . We restrict the sampling to only leaf statements if the max depth
is exhausted. We avoid (skip and resample) some invalid (e.g., asserting self is lying) or uninteresting
cases (e.g., a and statement with identical sub-statements).

The following is an example K&K puzzle with 5 people in the abstract representation. We will use this
example to illustrate various component in the rest of the section.

Example puzzle of 5 people in the abstract representation

(('and', ('lying', 3), ('telling-truth', 4)),
('<=>', ('lying', 3), ('telling-truth', 4)),
('telling-truth', 4),
('telling-truth', 0),
('<=>', ('telling-truth', 2), ('lying', 2)))

B.3 The Abstract Puzzle Module: Solver and Reasoner

Each K&K problem can be transformed and solved as a Boolean satisfiability problem. Specifically,
consider a puzzle involving N people, a possible solution assign a Boolean value to N variables
B1, B2, . . . , BN , where the truth value of Bi indicates whether the ith person is telling the truth. By
definition, the ith person is telling the truth if and only if their statement Si is true. Therefore, a valid
solution to a K&K puzzle is a Boolean assignment for B1, B2, . . . , BN such that the following formula
evaluates to true.

(B1 ⇔ S1) ∧ (B2 ⇔ S2) ∧ · · · ∧ (BN ⇔ SN). (2)

We implement our Solver and Reasoner based on this reduction. We take two different approaches here,
because we want to find all possible solutions in the Solver, and we want to generate intuitive intermediate
steps for the Reasoner.

2758

Specifically, we are primarily interested in evaluating K&K puzzles with a unique valid solution.
Therefore, we design our Solver to use a simple brute-force search that enumerates all possible Boolean
assignments for N people and count the number of assignments that evaluate Eq. (2) to true. In our dataset
construction, we only include puzzles whose solution count is exactly one.

In the Reasoner, we are interested in procedurally generating intermediate reasoning steps that lead
to the final solution. We note that when explaining the reasoning steps for K&K puzzles, human or
off-the-shelf LLMs rarely use the brute-force assignment search approach adopted in our Solver. Instead,
they tend to examine the statement from each person sequentially, construct a partial assignment for the
people examined so far, and backtrack when a contradiction is found. We design our Reasoner following
the same procedure.

Specifically, we maintain a queue of people to be examined next, and a partial assignment of knight /
knave for people that have been examined so far. In each step, we examine the next person from the queue
by adding to the partial assignment the assumed knight / knave role for this person. Given the newly
proposed assignment, we go through the known statements and check if there is a contradiction. (A) If a
contradiction is found, we record the statement of contradiction as the explanation, and start backtracking.
Backtracking will put people back into the to-be-examined queue until we reach a person who has an
alternative unexamined role assignment. If no such person is found during backtracking, this means there
is no valid solution for this problem. (B) If a contradiction is not found, we can proceed to examine the
next person in the queue. Here we also implement a mechanism to reorder the queue so that it may match
the human behavior better. For example, if the current person’s statement is “If Noah is a knight, then Lily
is a knave.” then we would bring Noah and Lily to the front of the to-be-examined queue, provided that
they are in the queue (i.e., have not been previously examined).

The reasoning steps are generated and stored using a similar format as the abstract representation of the
puzzle as described in § B.1. The following snippet shows an example of the generated reasoning steps
for the example puzzle shown above:

Example of generated reasoning steps in the abstract representation

[('proposal', {'assignment': True, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (0, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'conflict_statement': (3, False), 'outcome': 'conflict', 'person': 3}),
('reconsider', {'exhausted': [3], 'person': 0}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 0}),
('proposal', {'assignment': True, 'conflict_statement': (3, True), 'outcome': 'conflict', 'person': 3}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 3}),
('proposal', {'assignment': True, 'conflict_statement': (0, False), 'outcome': 'conflict', 'person': 4}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 4}),
('proposal', {'assignment': True, 'conflict_statement': (2, True), 'outcome': 'conflict', 'person': 2}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 2}),
('proposal', {'assignment': True, 'conflict_statement': (1, True), 'outcome': 'conflict', 'person': 1}),
('proposal', {'assignment': False, 'outcome': 'ok', 'person': 1}),
('success', {'assignments': (False, False, False, False, False)})]

B.4 The Abstract Puzzle Module: Perturber
To support memorization measurement, the K&K Puzzle Perturber generate an perturbed version of a
given puzzle. We design the perturbation with the following considerations:

• The perturbation should be “local”, in the sense that the perturbed problem should be similar to the
original problem when measured in some superficial ways, such as edit distance.

• The perturbation should keep the nature of the problem, i.e., the perturbed problem should be solvable
using the same underlying principle, and the difficulty level should be roughly maintained.

• The perturbed puzzle should have a unique solution, which should be different from the solution of
the original puzzle.

With those consideration, we support two different perturbations:

• Statement perturbation: randomly choose a person and sample a new statement tree for that person.

2759

• Leaf perturbation: randomly choose a person, and from that person’s existing statement tree, randomly
choose one leaf node and change it.

B.5 The Natural Language Module: NL-Generator

The NL-Generator generate a K&K puzzle in natural language by converting a given abstract-form puzzle
into the familiar text form described in natural language. For example, the puzzle presented (in the abstract
representation) above can be materialized as follows:

Example puzzle converted to natural language representation

A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You
meet 5 inhabitants: David, Zoey, Alexander, Aurora, and Isabella. In David’s words: "Aurora is a knave and Isabella
is a knight". Zoey expressed that Aurora is a knave if and only if Isabella is a knight. Alexander said, "Isabella is a
knight." Aurora commented, "David is a knight". According to Isabella, "Alexander is a knight if and only if Alexander
is a knave". So who is a knight and who is a knave?

Specifically, given a puzzle of N people in the abstract representation, our natural language represen-
tation generator first sample N human names, and then format each people’s claim by plugging in the
corresponding name mapping. We use some heuristics to make the conversion of the tree-structured logic
statements to natural language sounds natural. Our current implementation randomly sample from 18
templates of making a statement claim and from the following common names — but this can be easily
extended to include more.

COMMON_NAMES = ['Emma', 'Liam', 'Olivia', 'Noah', 'Ava', 'Ethan', 'Sophia',
'Mason', 'Isabella', 'William', 'Mia', 'James', 'Charlotte',
'Benjamin', 'Amelia', 'Lucas', 'Harper', 'Henry', 'Evelyn',
'Alexander', 'Abigail', 'Michael', 'Emily', 'Daniel', 'Elizabeth',
'Jacob', 'Sofia', 'Logan', 'Avery', 'Jackson', 'Ella', 'Sebastian',
'Scarlett', 'Jack', 'Grace', 'Aiden', 'Chloe', 'Owen', 'Victoria',
'Samuel', 'Riley', 'Matthew', 'Aria', 'Joseph', 'Lily', 'Luke',
'Aurora', 'David', 'Zoey', 'Oliver', 'Penelope']

B.6 The Natural Language Module: NL-Reasoner

The NL-Reasoner generates detailed reasoning steps in natural language by converting the output from
the abstract Reasoner to natural language descriptions using a similar approach as the NL-Generator. The
following show the generated reasoning steps in natural language for the puzzle shown above:

2760

Reasoning steps generated by the Reasoner

Let’s think step by step, by considering whether each person is lying and if that leads to contradiction.
1. Assume David is a knight. No contradiction is found in their claim that Aurora is a knave and Isabella is a knight.

2. Aurora cannot be a knight, because this would contradict the claim of David that Aurora is a knave and Isabella is
a knight.

3. Aurora cannot be a knave, because this would contradict the false claim of their own that David is a knight.

4. We have exhausted all possibilities for Aurora, so let us go back and reconsider David.

5. Assume David is a knave. No contradiction is found in their false claim that Aurora is a knave and Isabella is a
knight.

6. Aurora cannot be a knight, because this would contradict the claim of their own that David is a knight.

7. Assume Aurora is a knave. No contradiction is found in their false claim that David is a knight.

8. Isabella cannot be a knight, because this would contradict the false claim of David that Aurora is a knave and
Isabella is a knight.

9. Assume Isabella is a knave. No contradiction is found in their false claim that Alexander is a knight if and only if
Alexander is a knave.

10. Alexander cannot be a knight, because this would contradict the claim of their own that Isabella is a knight.

11. Assume Alexander is a knave. No contradiction is found in their false claim that Isabella is a knight.

12. Zoey cannot be a knight, because this would contradict the claim of their own that Aurora is a knave if and only if
Isabella is a knight.

13. Assume Zoey is a knave. No contradiction is found in their false claim that Aurora is a knave if and only if Isabella
is a knight.

This leads to a feasible solution.

B.7 The Natural Language Module: NL-Perturber
The NL-Perturber generates perturbed puzzles at the language level. Note unlike in the perturbations
generated by the abstract Perturber, NL-Perturber keep the underlying abstract puzzle intact and only
modify the materialization in natural language. Therefore, the solution to the perturbed puzzle is identical
to the solution to the original puzzle. Specifically, the NL-Perturber supports the following perturbations:

With those consideration in mind, we provide two family of perturbations:

• Uncommon name: replace the names of the characters with randomly sampled names from the set of
uncommon names.

• Random role: change the role name from knight/knave to other pairs of role names. To avoid
introducing bias, we sample from pairs of good/bad role names, including “saint/sinner, hero/villain,
angel/devil, altruist/egoist, sage/fool, pioneer/laggard”.

• Reorder statement: shuffle the order of presenting each person’s statement.

• Flip role: change the role from knight/knave to knave/knight, i.e., knave will be telling the truth
while knight will be lying.

The uncommon names are sampled from the following list:
UNCOMMON_NAMES = [
'Zephyr', 'Elowen', 'Caspian', 'Isolde', 'Osiris', 'Vesper', 'Thaddeus', 'Ondine',
'Lysander', 'Xanthe', 'Oberon', 'Calliope', 'Leander', 'Eulalia', 'Florian', 'Forsythe',
'Nephele', 'Peregrine', 'Ianthe', 'Lazarus', 'Elodie', 'Cillian', 'Ottoline', 'Evander',
'Saffron', 'Caius', 'Zora', 'Cyprian', 'Amaryllis', 'Theron', 'Perdita', 'Ignatius',
'Zephyrine', 'Balthazar', 'Melisande', 'Zinnia', 'Sylvester', 'Cosima', 'Leocadio',
'Percival', 'Oceane', 'Evanthe', 'Zenobia', 'Eurydice', 'Quillan', 'Aeronwen',
'Thorsten', 'Xiomara', 'Zephyrus', 'Ysolde'

]

Note the flip role perturbation is somewhat adversarial as it goes against the common intuition that good
role tends to tell the truth while bad role tends to lie. We indeed observe that the models would make a lot
of mistakes under this perturbation, despite that the perturbed problem is perfect valid and unambiguous.
However, the study of how model’s bias impact its reasoning capability is not the main focus of this paper.
So we keep this perturbation as reference but primarily focus on “benign” perturbations.

2761

B.8 Dataset Generation

K&K dataset During our data construction, we use the maximum width W = 2 and depth D = 2, and
the number of persons in the puzzle N = 2, 3, 4, 5, 6, 7, 8.

We present the length distributions of K&K training dataset in Fig. 17. The length distributions of the
test dataset are similar to those of the training dataset.

80 100 120 140 160 180 200
of Token

0

25

50

75

100

125

150

#
of

S
am

pl
es

Question

2-ppl task

3-ppl task

4-ppl task

5-ppl task

6-ppl task

7-ppl task

8-ppl task

Figure 12: K&K questions

20 30 40 50 60 70
of Token

0

50

100

150

200

250

300

350

#
of

S
am

pl
es

Answer

2-ppl task

3-ppl task

4-ppl task

5-ppl task

6-ppl task

7-ppl task

8-ppl task

Figure 13: K&K answers

100 200 300 400 500
of Token

0

25

50

75

100

125

150

175

#
of

S
am

pl
es

Synthetic CoT for 3-ppl task

3-ppl task

Figure 14: 3-people K&K synthetic
CoTs

200 400 600 800 1000
of Token

0

50

100

150

200

#
of

S
am

pl
es

Synthetic CoT for 5-ppl task

5-ppl task

Figure 15: 5-people K&K synthetic
CoTs

500 1000 1500 2000 2500 3000
of Token

0

50

100

150

200

250

#
of

S
am

pl
es

Synthetic CoT for 8-ppl task

8-ppl task

Figure 16: 8-people K&K synthetic
CoTs

Figure 17: Length distributions of K&K training data.

Local perturbation Tab. 1 presents the example knight (truth-teller) and knave (liar) scenario involving
two people: Liam and Aria, with corresponding logical statements, and converted English statements,
questions, and answers. It also shows three versions of the problems: an original example, a leaf-perturbed
version, and a statement-perturbed version. Specifically, (1) leaf perturbation changes a “leaf” in the
logical tree - a single truth value. In this case, it flipped Jacob’s status in Oliver’s statement from
knave (liar) to knight (truth-teller) (2) Statement perturbation changes the entire structure of a statement.
Here, it changed Oliver’s statement entirely. Both perturbations result in changing the answer. The leaf
perturbation creates a subtle change in one statement that flips the logical outcome, while the statement
perturbation changes the entire one statement.

Moreover, we compare the math-level perturbation with language-level perturbation in Fig. 18.

A very special island is inhabited only
by knights and knaves. Knights always

tell the truth, and knaves always lie.
You meet 2 inhabitants: Liam, and Aria.

Aria is not a knave
Liam

Aria

Aria is a knight if and only if
Liam is a knight

So who is a knight and who is a knave?

Question

A very special island is inhabited only by knights and
knaves. Knights always tell the truth, and knaves
always lie. You meet 2 inhabitants: Oliver, and Jacob.

Oliver is a knight and Jacob is a knave

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem
If Oliver is a knight then Jacob is a knight

Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Fine-tuned
LLM

Locally Perturbed Problem

High
accuracy on

training
problem

Interpolating the training dataset
via fine-tuning (e.g., data contamination)

Osiris

Elowen

Oliver

Jacob

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a
knight and Jacob is a knave". Jacob remarked, "Oliver is a knight

if and only if Jacob is a knight". So who is a knight and who is a
knave?

Oliver
is a

knight,
and

Jacob
is a

knave.

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2

inhabitants: Oliver, and Jacob. Oliver commented, "Oliver is a
knight and Jacob is a knight". Jacob remarked, "Oliver is a knight

if and only if Jacob is a knight". So who is a knight and who is a
knave?

Oliver
is a

knight,
and

Jacob
is a

knight.

A very special island is inhabited only by knights and knaves.
Knights always tell the truth, and knaves always lie. You meet 2
inhabitants: Oliver, and Jacob. Oliver commented, "If Oliver is a

knight then Jacob is a knight". Jacob remarked, "Oliver is a knight
if and only if Jacob is a knight". So who is a knight and who is a

knave?

Oliver
is a

knight,
and

Jacob
is a

knight.

A very special island is inhabited only by knights and
knaves. Knights always tell the truth, and knaves
always lie. You meet 2 inhabitants: Oliver, and Jacob.

Oliver is a knight and Jacob is a knave
Oliver

Jacob

Oliver is a knight if and only if Jacob is a knight

So who is a knight and who is a knave?

Original Problem

If Oliver is a knight then Jacob is a knight
Oliver

Statement perturbation

Uncommon name

Osiris is a knight and Jacob is a knave

Osiris is a knight if and only if Jacob is a knight

Random role pair

Oliver is an angle and Jacob is a devil

Oliver is an angle if and only if Jacob is an angle

Oliver is a knight and Jacob is a knight
Oliver

Leaf perturbation

language-level pert.

math-level pert.

…….

…….

Original
problem is
solved by
reasoning

Locally Perturbed Problem

Original
problem is
solved by
memorization

Osiris

Elowen

Oliver

Jacob

Original
problem is
correctly
solved

Figure 18: Comparison between different locally perturbed problems.

2762

Table 1: 2-person puzzle generation with the knight (telling-truth) and knave (lying) and comparison between original sample,
leaf-perturbed sample, and statement-perturbed sample.

Type Example Leaf Perturbed Example Statement Perturbed Example

person Oliver (person index 0), Jacob (person index 1)

logical statement

Oliver: (’and’, (’telling-truth’, 0),
(’lying’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’and’, (’telling-truth’, 0),
(’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

Oliver: (’−→’, (’telling-truth’,
0), (’telling-truth’, 1))

Jacob: (‘⇔’, (’telling-truth’, 0),
(’telling-truth’, 1))

English statement

Oliver: Oliver is a knight and
Jacob is a knave

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: Oliver is a knight and
Jacob is a knight

Jacob: Oliver is a knight if and
only if Jacob is a knight

Oliver: If Oliver is a knight
then Jacob is a knight Jacob:
Oliver is a knight if and only if

Jacob is a knight

question

A very special island is
inhabited only by knights and

knaves. Knights always tell the
truth, and knaves always lie. You
meet 2 inhabitants: Oliver, and

Jacob. Oliver commented,
"Oliver is a knight and Jacob is a
knave". Jacob remarked, "Oliver
is a knight if and only if Jacob is

a knight". So who is a knight
and who is a knave?

A very special island is
inhabited only by knights and

knaves. Knights always tell the
truth, and knaves always lie. You
meet 2 inhabitants: Oliver, and

Jacob. Oliver commented,
"Oliver is a knight and Jacob is a
knight". Jacob remarked, "Oliver
is a knight if and only if Jacob is

a knight". So who is a knight
and who is a knave?

A very special island is
inhabited only by knights and

knaves. Knights always tell the
truth, and knaves always lie. You
meet 2 inhabitants: Oliver, and
Jacob. Oliver commented, "If

Oliver is a knight then Jacob is a
knight". Jacob remarked, "Oliver
is a knight if and only if Jacob is

a knight". So who is a knight
and who is a knave?

answer
(1) Oliver is a knight

(2) Jacob is a knave
(1) Oliver is a knight

(2) Jacob is a knight
(1) Oliver is a knight

(2) Jacob is a knight

As mentioned in § 2, the Perturber of the abstract puzzle module generates a perturbed puzzle with a
unique solution that is different from the original puzzle, or until the maximum number of attempts is
reached. We set this limit to 2000 attempts.

• For statement perturbation, the Perturber can always return a valid perturbed puzzle due to the large
perturbation space.

• For leaf perturbation, since the process is restricted to a single leaf node, it may not always find
a valid perturbed puzzle within the constraints of unique and different solution. Below are the
detailed proportions of valid leaf perturbations on training samples (under 2000 max attempts for
each sample): 76% valid for 2-person task; 93.4% valid for 3-person task; 95.4% valid for 4-person
task; 98.8% valid for 5-person task; 99.5% valid for 6-person task; 100% valid for 7/8-person tasks.

C Details on DynamicZebra

To extend our approach to more tasks and validate our findings, we designed a new dynamic data generation
pipeline for a class of structured logic puzzles, Zebra puzzles (also known as Einstein’s puzzles (Zebra
Puzzle)). These puzzles are representative of constraint satisfaction problems and are commonly used to
evaluate logical reasoning. While Lin et al. (2024) proposed ZebraLogic containing 1000 such puzzles, it
does not include the generation algorithm, so it is not suitable for controlled memorization experiments.
Our contribution lies in building a new dataset, which we name DynamicZebra, with fully controlled
generation and perturbation mechanisms.

We provide details of the dataset:

• Training set: We generate a total of 5000 Zebra puzzles with 5 difficulty levels: 4×4, 4×5, 4×6,
5×4, 5×5, where the numbers represent n_attributes × n_houses. These samples are used for
mixed-difficulty training.

• Perturbed training set: For each training sample, we construct 2 perturbed variations. A perturbed
version maintains the same solution grid except that we select a random row (attribute) and swap the
values of two randomly selected houses. The puzzle description remains nearly the same, except that

2763

clues involving the swapped values are updated accordingly. This allows us to isolate whether the
model memorizes specific value positions or can reason about the solution structure.

• Test set: We generate 100 samples for each of 12 test difficulties, ranging from 3×3 to 6×6. These
are used to evaluate generalization to unseen problem variants.

D Experimental Setups

D.1 Models

Tab. 2 provides the details of the models evaluated in our study.

Table 2: HuggingFace links or endpoint specifications for evaluated models.

Model Link

Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
Phi-3-mini https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Phi-3-medium https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
NuminaMath-7B-CoT https://huggingface.co/AI-MO/NuminaMath-7B-CoT
Deepseek-Math-7B deepseek-ai/deepseek-math-7b-instruct
Claude-3.5-Sonnet https://www.anthropic.com/news/claude-3-5-sonnet, claude-3-5-sonnet-20240620 endpoint
GPT4o-mini https://platform.openai.com/docs/models/, gpt-4o-mini-2024-07-18 endpoint
GPT4o https://platform.openai.com/docs/models/, gpt-4o-2024-05-13 endpoint
Gemini-1.5-Flash-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-flash-002 endpoint
Gemini-1.5-Prof-002 https://console.cloud.google.com/vertex-ai/model-garden, gemini-1.5-pro-002 endpoint

D.2 Experimental Details

D.2.1 Evaluation

By default, we utilize zero-shot direct prompting with task-specific instructions for open-ended question-
answering. We employ the following prompt:

0-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from which you
must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly state the
identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: {question}
Answer:

In addition to the 0-shot direct prompting used in the main paper, we explore 0-shot Chain of Thought
(CoT) prompting and 1-shot direct/CoT prompting and report the results in Appendix § E.

2764

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
https://huggingface.co/microsoft/Phi-3-medium-4k-instruct
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
deepseek-ai/deepseek-math-7b-instruct
https://www.anthropic.com/news/claude-3-5-sonnet
https://platform.openai.com/docs/models/
https://platform.openai.com/docs/models/
https://console.cloud.google.com/vertex-ai/model-garden
https://console.cloud.google.com/vertex-ai/model-garden

0-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from which you
must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end of your
answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: {question}
Answer: Let’s think step by step

In addition, we utilize a specific CoT prompting format for instruction-tuned models: DeepSeek-Math-
7B and NuminaMath-7B-CoT, as recommended by their developers:

Please reason step by step, and put your final answer within \boxed{}.

This replaces the previous prompt, "Let’s think step by step."

1-shot Direct Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from which you
must logically deduce the identity of a set of characters.

You must infer the identity of each character. At the end of your answer, you must clearly state the
identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: A very special island is inhabited only by knights and knaves. Knights always tell
the truth, and knaves always lie. You meet 2 inhabitants: Jack, and Sophia. Jack tells you that
Sophia is not a knave. Sophia says that If Jack is a knight then Sophia is a knight. So who is a
knight and who is a knave?
Answer:
CONCLUSION:
(1) Jack is a knight
(2) Sophia is a knight

Question: {question}
Answer:

2765

1-shot CoT Prompting

Your task is to solve a logical reasoning problem. You are given set of statements from which you
must logically deduce the identity of a set of characters.

You must infer the identity of each character. First, explain your reasoning. At the end of your
answer, you must clearly state the identity of each character by following the format:

CONCLUSION:
(1) ...
(2) ...
(3) ...

Question: A very special island is inhabited only by knights and knaves. Knights always tell
the truth, and knaves always lie. You meet 2 inhabitants: Ella, and Penelope. In a statement by
Ella: “Ella is a knight or Penelope is a knight”. According to Penelope, “Ella is a knave if and only
if Penelope is a knight”. So who is a knight and who is a knave?
Answer: Let’s think step by step, by considering whether each person is lying and if that
leads to contradiction. Assume Ella is a knight. Penelope cannot be a knight, because this would
contradict the claim of their own. Penelope cannot be a knave, because this would contradict
the false claim of their own. We have exhausted all possibilities for Penelope, so let us go back
and reconsider Ella. Assume Ella is a knave. Penelope cannot be a knight, because this would
contradict the false claim of Ella. Assume Penelope is a knave. This leads to a feasible solution.
CONCLUSION:
(1) Ella is a knave
(2) Penelope is a knave

Question: {question}
Answer: Let’s think step by step

In our evaluation process, we use greedy decoding with temperature t = 0 for all models and a
maximum token length of 2048.

To assess the correctness, we implement keyword matching: a response is considered correct if each
person’s ground truth identity appears in the conclusion part of the model’s output.

D.2.2 Fine-tuning

Training instance Each training instance in Direct FT includes the task instruction, question, and the
correct conclusion. In CoT FT, each training instance includes the task instruction, question, synthetic
reasoning steps, and the correct conclusion. Both formats are structured similarly to task instructions
followed by a single demonstration used in 1-shot Direct Prompting or 1-shot CoT Prompting.

Training loss In Direct FT, the loss for each training instance is computed on the tokens that appear
directly after “### Answer:\n”. In CoT FT, the loss is calculated on the tokens that appear directly after
“### Answer: Let’s think step by step”.

Training hyperparameters For Llama3-8B fine-tuning, we used LoRA fine-tuning with the following
standard hyperparameters: a batch size of 4, gradient accumulation steps of 8, and 5e-5 learning rate. The
LoRA configuration was set as follows: rank r = 32, scaling factor α = 32, and dropout rate 0.05. No
quantization techniques were used. We fine-tune for a maximum of 100 epochs. We primarily reported
results before 50 epochs, as we found the model typically converged by then.

2766

For GPT4o-mini fine-tuning, we utilized the default hyperparameters provided by the OpenAI fine-
tuning API. The model was fine-tuned for 5 epochs to achieve high accuracy within reasonable budget.

Reported Training accuracy For GPT4o-mini, the training accuracy for each N -people K&K task is
calculated using 100 training samples due to budget constraints on API usage. For open-source Llama3-8B,
the training accuracy is based on the full set of training samples.

D.2.3 Probing
As described in § 4.2, in the probing experiments, we train logistic regression models on the model’s
intermediate outputs from different transformer blocks, to distinguish between correct and incorrect
statements. For each transformer block, we extract the MLP layer’s output.

The correct/incorrect statements consist of a K&K puzzle and a conclusion about a character’s role in
the puzzle. For example, considering the following 2-people K&K puzzle:

A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver is a
knight or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a knight and
who is a knave?

with the correct answer being

Oliver is a knight, and Ethan is a knight.

We can generate two correct statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver is a knight
or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a knight and who is a
knave? Oliver is a knight.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver is a knight
or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a knight and who is a
knave? Ethan is a knight.

And two incorrect statements:

• A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver is a knight
or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a knight and who is a
knave? Oliver is a knave.

• A very special island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet 2 inhabitants: Oliver, and Ethan. Oliver told you that Oliver is a knight
or Ethan is a knave. In a statement by Ethan: “Oliver is a knight”. So who is a knight and who is a
knave? Ethan is a knave.

D.2.4 Distinguishing Memorization from Reasoning
For GPT4o-mini and Llama3-8B, we calculate the memorization score for each training sample within
each complete N -people K&K training dataset. As discussed in § 6, we omit samples where Acc(f ;x) = 0
and label the remaining samples based on whether they are consistently solved under perturbation. We
then split the dataset into 80%/20% train/test sets and perform binary classification.

2767

D.2.5 Computation Resources
The fine-tuning experiments are conducted on 2 NVIDIA A100 GPU cards, each with 80GB of memory.
The LLM evaluation experiments can be conducted on one NVIDIA RTX A6000 GPU card with 48 GB
of memory.

E Additional Experimental Results

E.1 Benchmark Performance of Off-the-shelf Models
Off-the-shelf models We evaluate Llama3-8B, Phi-3-mini, Phi-3-medium, NuminaMath-7B-CoT, and
Deepseek-Math-7B using 0/1-shot Direct/CoT prompting in Fig. 19. The results indicate that these
open-source models exhibit poor accuracy on K&K tasks, particularly as the number of people in the
K&K puzzles increases. Different prompting methods do not significantly enhance performance.

Moreover, we evaluate GPT4o-mini under the self-consistency (Wang et al., 2023b) where we query
each puzzle 40 times under temperature 0.7. Tab. 3 shows that self-consistency provides limited improve-
ment on the 3-ppl task and fails to enhance performance on the more challenging 8-ppl task, suggesting
that the model fundamentally struggles with solving such complex problems.

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.28 0.11 0.04 0.02 0.04 0.00 0.00

0.36 0.25 0.15 0.12 0.03 0.07 0.04

0.44 0.34 0.16 0.14 0.04 0.07 0.03

0.28 0.13 0.12 0.05 0.01 0.00 0.00

0.35 0.21 0.08 0.06 0.02 0.00 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.27 0.10 0.04 0.02 0.04 0.00 0.00

0.22 0.21 0.13 0.09 0.03 0.06 0.03

0.27 0.24 0.14 0.10 0.01 0.07 0.03

0.16 0.13 0.11 0.05 0.01 0.00 0.00

0.22 0.19 0.07 0.06 0.02 0.00 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.26 0.11 0.03 0.02 0.04 0.00 0.00

0.24 0.24 0.13 0.12 0.03 0.06 0.04

0.27 0.28 0.12 0.10 0.03 0.04 0.02

0.23 0.12 0.10 0.05 0.01 0.00 0.00

0.22 0.17 0.06 0.05 0.02 0.00 0.00

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

(a) 0-shot Direct prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.24 0.10 0.05 0.03 0.02 0.00 0.01

0.32 0.38 0.21 0.11 0.04 0.02 0.01

0.57 0.40 0.29 0.24 0.10 0.07 0.06

0.23 0.06 0.06 0.02 0.01 0.01 0.00

0.36 0.14 0.04 0.02 0.02 0.01 0.00

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.22 0.08 0.05 0.03 0.02 0.00 0.01

0.23 0.30 0.16 0.11 0.04 0.02 0.01

0.24 0.21 0.23 0.18 0.08 0.07 0.05

0.17 0.06 0.03 0.02 0.01 0.01 0.00

0.24 0.10 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.20 0.09 0.05 0.03 0.02 0.00 0.01

0.23 0.29 0.15 0.10 0.04 0.02 0.01

0.28 0.22 0.19 0.17 0.07 0.06 0.04

0.17 0.05 0.06 0.02 0.01 0.01 0.00

0.24 0.12 0.04 0.02 0.02 0.01 0.00

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

(b) 0-shot CoT prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.45 0.20 0.16 0.11 0.02 0.03 0.03

0.54 0.31 0.18 0.10 0.07 0.05 0.06

0.31 0.12 0.12 0.06 0.06 0.01 0.01

0.32 0.19 0.10 0.03 0.01 0.01 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.28 0.19 0.15 0.09 0.01 0.02 0.03

0.37 0.24 0.17 0.10 0.03 0.03 0.05

0.27 0.11 0.11 0.06 0.05 0.01 0.01

0.26 0.17 0.08 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.37 0.19 0.14 0.11 0.02 0.02 0.03

0.30 0.24 0.16 0.09 0.06 0.02 0.05

0.30 0.12 0.10 0.06 0.06 0.01 0.00

0.25 0.17 0.10 0.03 0.01 0.01 0.01

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

(c) 1-shot Direct prompting

2 3 4 5 6 7 8
ppl

Llama-3-8B

Phi-3-mini

Phi-3-medium

NuminaMath-7B-CoT

Deepseek-Math-7b

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.33 0.18 0.08 0.07 0.02 0.03 0.01

0.45 0.28 0.21 0.08 0.04 0.05 0.08

0.27 0.09 0.08 0.01 0.04 0.00 0.00

0.34 0.07 0.06 0.01 0.00 0.00 0.01

Acc(f ;Tst)

2 3 4 5 6 7 8
ppl

0.14 0.02 0.02 0.01 0.01 0.00 0.00

0.25 0.14 0.06 0.06 0.02 0.03 0.01

0.31 0.24 0.12 0.06 0.02 0.05 0.08

0.25 0.08 0.08 0.01 0.04 0.00 0.00

0.21 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed statement

2 3 4 5 6 7 8
ppl

0.14 0.01 0.02 0.01 0.01 0.00 0.00

0.26 0.18 0.08 0.06 0.01 0.03 0.01

0.37 0.20 0.16 0.05 0.02 0.04 0.06

0.23 0.09 0.08 0.01 0.04 0.00 0.00

0.24 0.07 0.06 0.01 0.00 0.00 0.01

LiMem(f ;Tst) perturbed leaf

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0

0.1

0.2

0.3

(d) 1-shot CoT prompting

Figure 19: Acc(f ;Tst) and LiMem(f ;Tst) of off-the-shelf models under various prompt formats.

Table 3: Self-consistency (Wang et al., 2023b) can enhance the accuracy of GPT4o-mini on the easy 2-ppl K&K task, but
has limited improvement on 3-ppl task and fails to help on the challenging 8-ppl task, which suggests that the model cannot
fundamentally solve such complex problems.

Method
Test Accuracy

2-ppl 3-ppl 8-ppl

Direct Prompting 0.63 0.42 0.01
Direct Prompting + Self-consistency 0.74 0.43 0.02

2768

E.2 Memorization Measurement
Fine-tuned models As shown in Fig. 20, the inconsistency ratio on correctly solved training puzzles (y-
axis) of CoT-FTed or Direct-FTed GPT4o-mini tends ot decreases over the training epochs (x-axis), despite
that the memorization score LiMem(f ;Tr) on training samples also increases (i.e., a larger proportion
of memorized samples in the training set). The memorization score LiMem(f ;Tr) under role-flipping is
significantly higher than other perturbation, possibly due to an internal bias that knights are truthful.

0.5 1.0

Acc(f ;Tr)

0.5

1.0

1-
C

R
(i

nc
on

si
st

en
cy

) statement pert.

0.5 1.0

Acc(f ;Tr)

0.4

0.6

0.8
leaf pert.

0.5 1.0

Acc(f ;Tr)

0.5

1.0
pair pert.

0.5 1.0

Acc(f ;Tr)

0.25

0.50

0.75

name pert.

0.5 1.0

Acc(f ;Tr)

0.25

0.50

0.75

reorder pert.

0.4 0.8

Acc(f ;Tr)

0.8

0.9

1.0
flip role

0.0

0.2

0.4

0.6

L
iM

em

3-ppl Direct FT 5-ppl Direct FT 8-ppl Direct FT

0.5 1.0

Acc(f ;Tr)

0.5

1.0

1-
C

R
(i

nc
on

si
st

en
cy

) statement pert.

0.5 1.0

Acc(f ;Tr)

0.25

0.50

0.75

leaf pert.

0.5 1.0

Acc(f ;Tr)

0.5

1.0
pair pert.

0.5 1.0

Acc(f ;Tr)

0.25

0.50

0.75

name pert.

0.5 1.0

Acc(f ;Tr)

0.25

0.50

0.75

reorder pert.

0.4 0.8

Acc(f ;Tr)

0.8

0.9

1.0
flip role

0.0

0.2

0.4

0.6

L
iM

em

3-ppl CoT FT 5-ppl CoT FT 8-ppl CoT FT

Figure 20: Inconsistency ratio (y-axis) of fine-tuned GPT4o-mini (first row: Direct FT; second row: CoT FT) decreases over
training epochs (x-axis), despite that the memorization becomes stronger as reflected by larger LiMem(f ;Tr) (deeper color).

0.0

0.5

L
iM

em

3-ppl CoT FT GPT4o-mini

0.0

0.5

L
iM

em

5-ppl CoT FT

statementleaf pair
name

reorder

perturb type

0.0

0.5

L
iM

em

8-ppl CoT FT

train

test

0.0

0.5

3-ppl Direct FT GPT4o-mini

0.0

0.5

5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

8-ppl Direct FT

train

test

0.0

0.5

3-ppl Direct FT Llama3-8B

0.0

0.5

5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

8-ppl Direct FT

train

test

Figure 21: Fine-tuned LLMs exhibit high memorization score on the training set under different perturbations, especially for
hard tasks. The score on the test set can be smaller than on the training set. Models show stronger memorization under math-level
perturbations compared to language-level perturbations.

2769

0.0

0.5

1.0

C
R

3-ppl CoT FT GPT4o-mini

0.0

0.5

1.0

C
R

5-ppl CoT FT

statementleaf pair
name

reorder

perturb type

0.0

0.5

1.0

C
R

8-ppl CoT FT

train

test

0.0

0.5

1.0
3-ppl Direct FT GPT4o-mini

0.0

0.5

1.0
5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

1.0
8-ppl Direct FT

train

test

0.0

0.5

1.0
3-ppl Direct FT Llama3-8B

0.0

0.5

1.0
5-ppl Direct FT

statement leaf pair
name

reorder

perturb type

0.0

0.5

1.0
8-ppl Direct FT

train

test

Figure 22: Consistency Ratio (CR ↑) under local perturbations. Fine-tuned LLMs generally demonstrate a higher consistency
ratio on solved problems in the test set compared to the train set, particularly for challenging tasks such as 5/8-person puzzles.
On the 3-person puzzle task, the consistency ratio between the train and test sets remains comparable. The consistency ratio
generally is higher in easy tasks than in hard tasks.

0.0

0.5

3-ppl Direct FT Llama3-8B

st
m

t
le

af
na

m
e

re
or

de
r

st
m

t+
na

m
e

st
m

t+
re

or
de

r
le

af
+

na
m

e
le

af
+

re
or

de
r

perturb type

0.0

0.5

5-ppl Direct FT

train test

Figure 23: Memorization scores of Directly Fine-Tuned Llama3-8B under various math-level (statement, leaf) and language-
level (name, reorder) perturbations. Combining math-level and language-level perturbations progressively can result in higher
memorization scores (e.g., leaf + reorder), especially compared to applying language-level perturbations alone.

2770

E.3 Evaluation on Reasoning Capability
E.3.1 Llama3-8B
Accuracy over epochs Fig. 24 reports the train and test accuracy (under different evaluation configura-
tions) for the Llama3-8B model fine-tuned on N -person tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem sizes
and training epochs in Fig. 25 and Fig. 26. Fig. 25 shows the accuracy improvements relative to the
baseline with no fine-tuning, while Fig. 26 reports the absolute accuracy values.

50 100
nepoch

0.1

0.2

0.3

0.4

0.5

ac
c

Non-CoT FT, ntrain = 2

50 100
nepoch

0.1

0.2

0.3

0.4

0.5

0.6

ac
c

Non-CoT FT, ntrain = 3

50 100
nepoch

0.2

0.4

0.6

0.8
ac

c
Non-CoT FT, ntrain = 4

50 100
nepoch

0.0

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 5

50 100
nepoch

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 6

50 100
nepoch

0.0

0.2

0.4

0.6

ac
c

Non-CoT FT, ntrain = 7

50 100
nepoch

0.0

0.1

0.2

0.3

0.4

0.5

ac
c

Non-CoT FT, ntrain = 8

train, 0-shot test, 0-shot test, 0-shot CoT test, 1-shot test, 1-shot CoT

(a) Direct FT

20 40
nepoch

0.1

0.2

0.3

ac
c

CoT FT, ntrain = 2

50 100
nepoch

0.15

0.20

0.25

0.30

0.35

0.40

ac
c

CoT FT, ntrain = 3

50 100
nepoch

0.15

0.20

0.25

0.30

ac
c

CoT FT, ntrain = 4

50 100
nepoch

0.0

0.1

0.2

0.3

ac
c

CoT FT, ntrain = 5

50 100
nepoch

0.000

0.025

0.050

0.075

0.100

0.125

ac
c

CoT FT, ntrain = 6

50 100
nepoch

0.000

0.025

0.050

0.075

0.100

0.125

ac
c

CoT FT, ntrain = 7

50 100
nepoch

0.01

0.02

0.03

0.04

0.05

0.06

ac
c

CoT FT, ntrain = 8

train, 0-shot test, 0-shot test, 0-shot CoT test, 1-shot test, 1-shot CoT

(b) CoT FT

Figure 24: Train and test accuracy (under different evaluation configurations) for the Llama3-8B model fine-tuned on N -person
tasks across multiple training epochs.

Fine-tuning on 10k 8-people K&K samples Fig. 9 shows that (1) 10k-FT significantly outperforms
1k-FT across all tasks, reaching ∼ 90% test accuracy on moderately difficult 4/5-people puzzles. (2) CoT
FT is generally more effective than Direct FT with 10k samples, likely due to the guidance provided by
reasoning steps. (3) An exception is the 2-people task, where the training and testing distribution gap
causes the CoT FTed model to occasionally get stuck in a loop of listing assumptions and contradictions,
resulting in long, repetitive responses without reaching a conclusion5. (4) Direct FT with 10k puzzles
achieves surprisingly high test accuracy on all tasks, e.g., 52% on 8-people tasks, where the un-FTed
model scores near 0. Notably, the models do not see reasoning steps during training and rely solely on
memorizing answers. We also observe high transferability for 10k Direct FTed Llama3-8B in Fig. 27,
e.g., 87% test accuracy on 3-people puzzles.

The results in Fig. 27 shows that 10k fine-tuning achieves significantly higher test accuracy than 1k
fine-tuning on all tasks. Direct FT with 10k puzzles shows surprisingly high test accuracy, e.g., 87%
accuracy on 3-person tasks, where the un-FTed model has nearly 0 accuracy as shown in Fig. 3. Notably,
the models don’t see reasoning steps during training and rely solely on memorizing answers. It also
suggests that training on the hardest (8-person) tasks helps the model learn certain underlying rules that
can be transferred to solve easier tasks.

However, the test accuracy drops for Llama3-8B when Direct FTing on 10k samples for overly long
epochs, especially evaluated on 2-people K&K task, potentially due to overfitting to the more complicated
8-people training task.

5We observe similar accuracy drop on 2-people task for Llama3-8B (see Fig. 27) when it is Direct FTed for overly long
epochs. See more examples and discussions in § E.3.2.

2771

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.32 0.29 0.25 0.17 0.10 0.10

-0.03 0.34 0.30 0.27 0.16 0.11 0.10

0.19 0.33 0.32 0.24 0.20 0.11 0.12

0.16 0.37 0.31 0.25 0.13 0.13 0.11

0.24 0.39 0.29 0.23 0.09 0.10 0.08

-0.01 0.27 0.20 0.26 0.14 0.11 0.08

-0.10 0.12 0.03 0.07 0.02 0.03 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.19 0.32 0.18 0.12 0.11 0.06

0.30 0.35 0.29 0.25 0.11 0.07 0.10

0.23 0.32 0.23 0.29 0.20 0.13 0.07

0.29 0.36 0.36 0.27 0.17 0.10 0.11

0.35 0.43 0.28 0.21 0.16 0.13 0.06

0.13 0.24 0.31 0.24 0.10 0.12 0.03

0.07 0.14 0.07 0.04 -0.02 0.02 0.03

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.14 0.25 0.22 0.20 0.06 0.08 0.08

0.32 0.39 0.37 0.29 0.18 0.10 0.09

0.21 0.33 0.33 0.30 0.18 0.14 0.15

0.38 0.34 0.34 0.29 0.13 0.12 0.11

0.31 0.44 0.35 0.23 0.15 0.08 0.11

0.33 0.46 0.36 0.25 0.15 0.12 0.07

0.11 0.11 0.06 0.03 -0.02 0.03 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.37 0.30 0.24 0.20 0.11 0.13

0.20 0.41 0.40 0.29 0.17 0.14 0.12

0.34 0.41 0.43 0.34 0.21 0.15 0.09

0.25 0.45 0.42 0.28 0.20 0.11 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.41 0.38 0.41 0.26 0.17 0.11 0.13

0.11 0.08 0.06 0.06 0.02 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.27 0.36 0.32 0.24 0.20 0.11 0.13

0.21 0.43 0.40 0.29 0.17 0.15 0.12

0.33 0.41 0.43 0.34 0.20 0.14 0.10

0.24 0.40 0.42 0.29 0.20 0.12 0.12

0.39 0.40 0.44 0.25 0.16 0.09 0.06

0.45 0.39 0.41 0.25 0.17 0.11 0.13

0.12 0.08 0.07 0.06 0.02 0.02 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.05 0.28 0.35 0.30 0.35 0.31 0.19

-0.22 0.20 0.24 0.17 0.18 0.13 0.12

0.17 0.25 0.29 0.29 0.26 0.28 0.24

-0.14 0.31 0.31 0.23 0.17 0.16 0.22

0.06 0.30 0.22 0.16 0.15 0.09 0.08

-0.04 0.30 0.26 0.30 0.25 0.22 0.15

0.11 0.14 0.04 0.03 0.06 0.06 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.14 0.19 0.18 0.09 0.06 0.07

0.17 0.26 0.22 0.20 0.13 0.05 0.06

0.25 0.22 0.22 0.20 0.14 0.08 0.09

0.28 0.26 0.24 0.17 0.13 0.08 0.07

0.25 0.22 0.21 0.12 0.09 0.07 0.06

0.30 0.29 0.26 0.22 0.07 0.04 0.03

0.24 0.11 0.08 0.02 0.03 0.02 -0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.24 0.17 0.18 0.15 0.10 0.06 0.11

0.22 0.24 0.27 0.21 0.19 0.10 0.08

0.31 0.26 0.30 0.18 0.08 0.07 0.08

0.37 0.28 0.29 0.23 0.13 0.06 0.11

0.27 0.28 0.29 0.14 0.14 0.09 0.08

0.36 0.34 0.22 0.17 0.10 0.06 0.05

0.31 0.21 0.12 0.06 0.05 0.01 0.00

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.39 0.37 0.37 0.35 0.33 0.31 0.23

0.23 0.34 0.34 0.32 0.17 0.15 0.11

0.22 0.38 0.42 0.37 0.27 0.16 0.12

0.24 0.37 0.29 0.31 0.19 0.14 0.11

0.32 0.34 0.40 0.18 0.17 0.10 0.07

0.36 0.37 0.30 0.20 0.19 0.16 0.12

0.20 0.13 0.17 0.12 0.06 0.02 0.03

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.36 0.39 0.35 0.36 0.33 0.29 0.22

0.23 0.30 0.35 0.30 0.16 0.14 0.12

0.18 0.37 0.42 0.39 0.27 0.13 0.08

0.25 0.36 0.32 0.31 0.19 0.16 0.11

0.35 0.34 0.39 0.18 0.17 0.10 0.07

0.35 0.41 0.30 0.20 0.20 0.15 0.10

0.26 0.14 0.18 0.10 0.07 0.02 0.01

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.40 0.35 0.23 0.19 0.09 0.12

0.56 0.46 0.35 0.27 0.22 0.13 0.10

0.59 0.52 0.37 0.26 0.20 0.10 0.13

0.73 0.54 0.43 0.27 0.21 0.11 0.12

0.61 0.50 0.37 0.29 0.17 0.10 0.11

0.70 0.54 0.40 0.25 0.22 0.08 0.07

0.44 0.28 0.17 0.08 0.03 0.01 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.46 0.34 0.38 0.16 0.15 0.09 0.11

0.56 0.43 0.44 0.27 0.18 0.11 0.07

0.63 0.49 0.43 0.25 0.24 0.13 0.10

0.65 0.50 0.45 0.25 0.25 0.08 0.14

0.66 0.48 0.48 0.23 0.19 0.10 0.11

0.67 0.39 0.40 0.24 0.20 0.04 0.06

0.47 0.25 0.18 0.06 0.00 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.18 0.22 0.36 0.16 0.11 0.08 0.07

0.66 0.45 0.42 0.28 0.24 0.14 0.07

0.58 0.51 0.47 0.28 0.23 0.05 0.05

0.65 0.46 0.53 0.31 0.27 0.10 0.14

0.67 0.55 0.49 0.26 0.19 0.10 0.13

0.56 0.56 0.32 0.17 0.12 0.05 0.02

0.51 0.25 0.14 0.06 0.05 0.01 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.45 0.50 0.28 0.21 0.12 0.08

0.68 0.61 0.52 0.32 0.31 0.13 0.10

0.67 0.56 0.48 0.31 0.26 0.12 0.06

0.75 0.64 0.61 0.29 0.28 0.13 0.11

0.69 0.51 0.45 0.26 0.22 0.11 0.09

0.77 0.52 0.44 0.27 0.17 0.12 0.11

0.55 0.28 0.18 0.08 0.06 0.02 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.45 0.49 0.28 0.20 0.12 0.09

0.69 0.61 0.51 0.32 0.31 0.13 0.10

0.67 0.57 0.48 0.31 0.26 0.12 0.06

0.75 0.64 0.61 0.29 0.27 0.13 0.11

0.69 0.51 0.45 0.26 0.22 0.11 0.10

0.77 0.52 0.44 0.26 0.18 0.12 0.11

0.54 0.28 0.18 0.08 0.06 0.02 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 25: Improvement in test accuracy on N -person problems for Llama3-8B fine-tuned on M -person problems with direct
FT, compared to the unfine-tuned model, under various evaluation configurations.

2772

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.38 0.42 0.34 0.27 0.21 0.10 0.11

0.24 0.44 0.35 0.29 0.20 0.11 0.11

0.46 0.43 0.37 0.26 0.24 0.11 0.13

0.43 0.47 0.36 0.27 0.17 0.13 0.12

0.51 0.49 0.34 0.25 0.13 0.10 0.09

0.26 0.37 0.25 0.28 0.18 0.11 0.09

0.17 0.22 0.08 0.09 0.06 0.03 0.05

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.49 0.29 0.37 0.20 0.16 0.11 0.07

0.57 0.45 0.34 0.27 0.15 0.07 0.11

0.50 0.42 0.28 0.31 0.24 0.13 0.08

0.56 0.46 0.41 0.29 0.21 0.10 0.12

0.62 0.53 0.33 0.23 0.20 0.13 0.07

0.40 0.34 0.36 0.26 0.14 0.12 0.04

0.34 0.24 0.12 0.06 0.02 0.02 0.04

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.41 0.35 0.27 0.22 0.10 0.08 0.09

0.59 0.49 0.42 0.31 0.22 0.10 0.10

0.48 0.43 0.38 0.32 0.22 0.14 0.16

0.65 0.44 0.39 0.31 0.17 0.12 0.12

0.58 0.54 0.40 0.25 0.19 0.08 0.12

0.60 0.56 0.41 0.27 0.19 0.12 0.08

0.38 0.21 0.11 0.05 0.02 0.03 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.52 0.47 0.35 0.26 0.24 0.11 0.14

0.47 0.51 0.45 0.31 0.21 0.14 0.13

0.61 0.51 0.48 0.36 0.25 0.15 0.10

0.52 0.55 0.47 0.30 0.24 0.11 0.13

0.66 0.50 0.49 0.27 0.20 0.09 0.07

0.68 0.48 0.46 0.28 0.21 0.11 0.14

0.38 0.18 0.11 0.08 0.06 0.01 0.03

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.54 0.46 0.37 0.26 0.24 0.11 0.14

0.48 0.53 0.45 0.31 0.21 0.15 0.13

0.60 0.51 0.48 0.36 0.24 0.14 0.11

0.51 0.50 0.47 0.31 0.24 0.12 0.13

0.66 0.50 0.49 0.27 0.20 0.09 0.07

0.72 0.49 0.46 0.27 0.21 0.11 0.14

0.39 0.18 0.12 0.08 0.06 0.02 0.03

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.39 0.37 0.32 0.36 0.31 0.20

0.00 0.31 0.26 0.19 0.19 0.13 0.13

0.39 0.36 0.31 0.31 0.27 0.28 0.25

0.08 0.42 0.33 0.25 0.18 0.16 0.23

0.28 0.41 0.24 0.18 0.16 0.09 0.09

0.18 0.41 0.28 0.32 0.26 0.22 0.16

0.33 0.25 0.06 0.05 0.07 0.06 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.39 0.25 0.21 0.20 0.10 0.06 0.08

0.39 0.37 0.24 0.22 0.14 0.05 0.07

0.47 0.33 0.24 0.22 0.15 0.08 0.10

0.50 0.37 0.26 0.19 0.14 0.08 0.08

0.47 0.33 0.23 0.14 0.10 0.07 0.07

0.52 0.40 0.28 0.24 0.08 0.04 0.04

0.46 0.22 0.10 0.04 0.04 0.02 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.46 0.28 0.20 0.17 0.11 0.06 0.12

0.44 0.35 0.29 0.23 0.20 0.10 0.09

0.53 0.37 0.32 0.20 0.09 0.07 0.09

0.59 0.39 0.31 0.25 0.14 0.06 0.12

0.49 0.39 0.31 0.16 0.15 0.09 0.09

0.58 0.45 0.24 0.19 0.11 0.06 0.06

0.53 0.32 0.14 0.08 0.06 0.01 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.61 0.48 0.39 0.37 0.34 0.31 0.24

0.45 0.45 0.36 0.34 0.18 0.15 0.12

0.44 0.49 0.44 0.39 0.28 0.16 0.13

0.46 0.48 0.31 0.33 0.20 0.14 0.12

0.54 0.45 0.42 0.20 0.18 0.10 0.08

0.58 0.48 0.32 0.22 0.20 0.16 0.13

0.42 0.24 0.19 0.14 0.07 0.02 0.04

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.58 0.50 0.37 0.38 0.34 0.29 0.23

0.45 0.41 0.37 0.32 0.17 0.14 0.13

0.40 0.48 0.44 0.41 0.28 0.13 0.09

0.47 0.47 0.34 0.33 0.20 0.16 0.12

0.57 0.45 0.41 0.20 0.18 0.10 0.08

0.57 0.52 0.32 0.22 0.21 0.15 0.11

0.48 0.25 0.20 0.12 0.08 0.02 0.02

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.55 0.41 0.35 0.23 0.19 0.09 0.12

0.57 0.47 0.35 0.27 0.22 0.13 0.10

0.60 0.53 0.37 0.26 0.20 0.10 0.13

0.74 0.55 0.43 0.27 0.21 0.11 0.12

0.62 0.51 0.37 0.29 0.17 0.10 0.11

0.71 0.55 0.40 0.25 0.22 0.08 0.07

0.45 0.29 0.17 0.08 0.03 0.01 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.47 0.35 0.38 0.16 0.15 0.09 0.11

0.57 0.44 0.44 0.27 0.18 0.11 0.07

0.64 0.50 0.43 0.25 0.24 0.13 0.10

0.66 0.51 0.45 0.25 0.25 0.08 0.14

0.67 0.49 0.48 0.23 0.19 0.10 0.11

0.68 0.40 0.40 0.24 0.20 0.04 0.06

0.48 0.26 0.18 0.06 0.00 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.19 0.23 0.36 0.16 0.11 0.08 0.07

0.67 0.46 0.42 0.28 0.24 0.14 0.07

0.59 0.52 0.47 0.28 0.23 0.05 0.05

0.66 0.47 0.53 0.31 0.27 0.10 0.14

0.68 0.56 0.49 0.26 0.19 0.10 0.13

0.57 0.57 0.32 0.17 0.12 0.05 0.02

0.52 0.26 0.14 0.06 0.05 0.01 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.55 0.46 0.50 0.28 0.21 0.12 0.08

0.69 0.62 0.52 0.32 0.31 0.13 0.10

0.68 0.57 0.48 0.31 0.26 0.12 0.06

0.76 0.65 0.61 0.29 0.28 0.13 0.11

0.70 0.52 0.45 0.26 0.22 0.11 0.09

0.78 0.53 0.44 0.27 0.17 0.12 0.11

0.56 0.29 0.18 0.08 0.06 0.02 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.55 0.46 0.49 0.28 0.20 0.12 0.09

0.70 0.62 0.51 0.32 0.31 0.13 0.10

0.68 0.58 0.48 0.31 0.26 0.12 0.06

0.76 0.65 0.61 0.29 0.27 0.13 0.11

0.70 0.52 0.45 0.26 0.22 0.11 0.10

0.78 0.53 0.44 0.26 0.18 0.12 0.11

0.55 0.29 0.18 0.08 0.06 0.02 0.02

epoch: 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) 1-shot Direct Prompting

Figure 26: Test accuracy on N -person problems for Llama3-8B fine-tuned on M -person problems with direct FT, under various
evaluation configurations.

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

(f
;T

st
)

0.26

0.18 0.17

0.09

0.01 0.02 0.03

0.75 0.74 0.73

0.64

0.51

0.35

0.45

8-ppl FT epoch: 2

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.38
0.42

0.34

0.27
0.21

0.10 0.11

0.47

0.87

0.74

0.67

0.59

0.45
0.41

8-ppl FT epoch: 5

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.49

0.29

0.37

0.20
0.16

0.11
0.07

0.01

0.42

0.60

0.46

0.37

0.29

0.43

8-ppl FT epoch: 10

2 3 4 5 6 7 8
ppl for testing

0.0

0.2

0.4

0.6

0.8

1.0

0.41
0.35

0.27
0.22

0.10 0.08 0.09

0.00

0.48
0.51

0.59

0.32
0.28

0.35

8-ppl FT epoch: 20

1k samples

10k samples

Figure 27: Transferability of Llama3-8B Direct-FTed on 1k/10k samples at different epochs.

2773

E.3.2 GPT4o-mini
Accuracy over epochs Fig. 28 reports the train and test accuracy (under different evaluation configura-
tions) for the GPT4o-mini model fine-tuned on N -person tasks across multiple training epochs.

Using the same paradigm for training and evaluation (i.e., Direct FT & Direct Prompting, CoT FT &
CoT Prompting) usually achieves the best accuracy for GPT4o-mini on training dataset and test dataset.
We focus on 0-shot setting for GPT4o-mini evaluation given its stronger capacity and higher accuracy
than Llama3-8B.

0 2 4
nepoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
c

Direct FT nppl-train = 3

0 2 4
nepoch

0.2

0.4

0.6

0.8

ac
c

Direct FT nppl-train = 5

0 2 4
nepoch

0.0

0.2

0.4

0.6

ac
c

Direct FT nppl-train = 8

train, 0-shot Direct train, 0-shot CoT test, 0-shot Direct test, 0-shot CoT

(a) Direct FT

0 2 4
nepoch

0.4

0.5

0.6

0.7

0.8

0.9

ac
c

CoT FT nppl-train = 3

0 2 4
nepoch

0.2

0.4

0.6

0.8

ac
c

CoT FT nppl-train = 5

0 2 4
nepoch

0.0

0.2

0.4

0.6

0.8

ac
c

CoT FT nppl-train = 8

train, 0-shot Direct train, 0-shot CoT test, 0-shot Direct test, 0-shot CoT

(b) CoT FT

Figure 28: Train and test accuracy (under different evaluation configurations) for the GPT4o-mini model fine-tuned on N -person
tasks across multiple training epochs.

Transferability We present the transferability results for the K&K task across different problem sizes
and training epochs in Fig. 29 and Fig. 30. Fig. 29 shows the accuracy improvements relative to the
baseline with no fine-tuning, while Fig. 30 reports the absolute accuracy values.

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.15 0.27 0.28 0.35 0.35 0.20 0.25

0.25 0.36 0.34 0.36 0.35 0.24 0.22

0.19 0.38 0.38 0.28 0.34 0.16 0.27

0.29 0.33 0.34 0.27 0.25 0.08 0.19

0.23 0.07 0.09 -0.01 0.07 -0.06 0.08

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.21 0.18 0.18 0.29 0.21 0.12 0.25

0.25 0.38 0.34 0.42 0.35 0.28 0.21

0.19 0.40 0.28 0.29 0.25 0.12 0.33

0.29 0.34 0.30 0.23 0.19 0.04 0.21

0.27 0.04 0.18 0.13 0.07 0.00 0.09

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.17 0.29 0.22 0.31 0.31 0.18 0.25

0.25 0.35 0.37 0.40 0.37 0.24 0.26

0.20 0.39 0.37 0.27 0.31 0.18 0.28

0.32 0.35 0.34 0.29 0.29 0.05 0.15

0.28 0.05 0.07 0.06 0.07 -0.05 0.07

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.03 0.09 0.26 0.28 0.19 0.32 0.27

0.15 0.19 0.38 0.22 0.25 0.28 0.23

0.21 0.29 0.28 0.10 0.11 0.08 0.19

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

-0.19 0.15 0.30 0.20 0.37 0.40 0.30

0.17 0.19 0.38 0.26 0.25 0.26 0.25

0.27 0.34 0.34 0.18 0.19 0.16 0.15

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

-0.10 0.24 0.35 0.27 0.33 0.32 0.30

0.21 0.24 0.46 0.29 0.30 0.31 0.21

0.26 0.37 0.30 0.19 0.12 0.10 0.13

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) CoT FT & 0-shot CoT Prompting

Figure 29: Improvement in test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person problems, under two
finetuning/evaluation configurations.

Fine-tuning on 10k 8-people K&K samples We present the transferability results with absolute test
accuracy for the K&K task across different 8-people task training sizes and training epochs in Fig. 31. As
shown, GPT4o-mini achieves high accuracy on all tasks at early epochs (e.g., 3 epochs). We also find that
GPT4o-mini exhibits poor test accuracy on two-person testing puzzles when CoT-FTed on 10k 8-people
puzzles, unlike the Direct FTed model that have stable performance across all task. In the failure case
below, the CoT-FTed GPT4o-mini gets stuck in a loop of listing assumptions and contradictions, resulting
in long, repetitive responses without reaching a conclusion.

2774

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2
#

pp
l

fo
r

tr
ai

ni
ng

0.78 0.69 0.62 0.52 0.44 0.30 0.26

0.88 0.78 0.68 0.53 0.44 0.34 0.23

0.82 0.80 0.72 0.45 0.43 0.26 0.28

0.92 0.75 0.68 0.44 0.34 0.18 0.20

0.86 0.49 0.43 0.16 0.16 0.04 0.09

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.84 0.60 0.52 0.46 0.30 0.22 0.26

0.88 0.80 0.68 0.59 0.44 0.38 0.22

0.82 0.82 0.62 0.46 0.34 0.22 0.34

0.92 0.76 0.64 0.40 0.28 0.14 0.22

0.90 0.46 0.52 0.30 0.16 0.10 0.10

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.80 0.71 0.56 0.48 0.40 0.28 0.26

0.88 0.77 0.71 0.57 0.46 0.34 0.27

0.83 0.81 0.71 0.44 0.40 0.28 0.29

0.95 0.77 0.68 0.46 0.38 0.15 0.16

0.91 0.47 0.41 0.23 0.16 0.05 0.08

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.74 0.58 0.58 0.54 0.30 0.36 0.28

0.86 0.68 0.70 0.48 0.36 0.32 0.24

0.92 0.78 0.60 0.36 0.22 0.12 0.20

epoch: 3

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.52 0.64 0.62 0.46 0.48 0.44 0.31

0.88 0.68 0.70 0.52 0.36 0.30 0.26

0.98 0.83 0.66 0.44 0.30 0.20 0.16

epoch: 4

2 3 4 5 6 7 8
ppl for testing

8

5

3

#
pp

l
fo

r
tr

ai
ni

ng

0.61 0.73 0.67 0.53 0.44 0.36 0.31

0.92 0.73 0.78 0.55 0.41 0.35 0.22

0.97 0.86 0.62 0.45 0.23 0.14 0.14

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) CoT FT & 0-shot CoT Prompting

Figure 30: Test accuracy on N -person problems for GPT4o-mini fine-tuned on M -person problems, under two finetun-
ing/evaluation configurations.

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.90 0.94 0.88 0.68 0.62 0.50

0.78 0.69 0.62 0.52 0.44 0.30 0.26

epoch: 3

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.92 0.90 0.86 0.68 0.66 0.56

0.84 0.60 0.52 0.46 0.30 0.22 0.26

epoch: 4

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.88 0.92 0.86 0.86 0.68 0.64 0.52

0.80 0.71 0.56 0.48 0.40 0.28 0.26

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Direct FT & 0-shot Direct Prompting

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.26 0.66 0.90 0.92 0.80 0.80 0.84

0.74 0.58 0.58 0.54 0.30 0.36 0.28

epoch: 3

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.16 0.74 0.92 0.96 0.94 0.88 0.86

0.52 0.64 0.62 0.46 0.48 0.44 0.31

epoch: 4

2 3 4 5 6 7 8
ppl for testing

10000

1000#
sa

m
pl

es
fo

r
tr

ai
ni

ng 0.12 0.78 0.94 0.98 0.96 0.88 0.84

0.61 0.73 0.67 0.53 0.44 0.36 0.31

epoch: 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) CoT FT & 0-shot CoT Prompting

Figure 31: Test accuracy on N -person problems for GPT4o-mini fine-tuned on 1k/10k 8-people problems, under two finetun-
ing/evaluation configurations.

Failure case of GPT4o-mini CoT FTed on 10k 8-people K&K task

{omitted task instruction}
Question: A very special island is inhabited only by knights and knaves. Knights always tell the truth, and knaves always lie. You meet 2 inhabitants:
Logan, and Olivia. Logan was heard saying, “Logan is a knight”. “If Olivia is a knight then Logan is a knight” - Olivia. So who is a knight and who is a
knave?
Answer: Let’s think step by step

// response from GPT4o-mini
by considering whether each person is lying and if that leads to contradiction. Assume Logan is a knight. No contradiction is found in their claim that
Logan is a knight. Assume Olivia is a knight. No contradiction is found in their claim that If Olivia is a knight then Logan is a knight. Assume this leads
to no contradiction. No contradiction is found in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim
that Logan is a knight. This leads to no contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their
claim that Logan is a knight. This leads to no contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction
in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight. This leads to no
contradiction in their claim that If Olivia is a knight then Logan is a knight. This leads to no contradiction in their claim that Logan is a knight.

2775

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

°0.4

°0.2

0.0

0.2

0.4

Figure 32: Test accuracy improves on N -people puzzles for Llama3-8B Direct FTed on M -people puzzles with completely
wrong answers, compared to the unfine-tuned model. This evaluation uses 1-shot direct prompting (see Fig. 34 for results under
different prompting setups).

E.4 Direct FT with Wrong Answers
To further explore what could the models learn from the question-answer pairs without detailed reasoning
steps, we consider an extreme scenario of learning with incorrect answers: for each N -people training
puzzle, we randomly select Ñ from [1, N] and flip the knight/knave identities of Ñ randomly chosen
individuals. Surprisingly, Fig. 32 shows that Direct FT with incorrect answers still leads to non-trivial
improvements for Llama3-8B. These improvements occur gradually over more epochs, suggesting that
the model progressively developed reasoning skills during fine-tuning. Fig. 34, Fig. 35 and Fig. 36 show
the results of Direct FT with 100%, 75% and 50% incorrect answers for the Llama3-8B model across
different prompting setups. Consistent with our earlier findings in § E.4, fine-tuning with incorrect answers
still significantly improves K&K performance, especially with 0-shot CoT prompting or 1-shot direct
prompting.

Note that in this case the improved test accuracy could not have come from pure memorization because
100% of the training examples are incorrectly labeled. However, since in each wrong answer of a N -people
puzzle, there are still N − Ñ correct role assignments where the random Ñ ≥ 1. The model might have
learned to reason from those partially correct role assignments in the wrong answer.

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.39 -0.20 -0.24 -0.15 -0.07 -0.10 -0.01

-0.15 -0.08 -0.16 0.01 0.03 -0.06 -0.01

0.09 0.24 0.08 0.09 0.09 -0.02 0.09

0.15 0.30 0.28 0.27 0.29 0.24 0.07

0.25 0.35 0.37 0.40 0.37 0.24 0.26

GPT4o-mini # epoch: 5

−0.4

−0.2

0.0

0.2

0.4

Figure 33: Direct FT w/ various wrong training answer % on 5-ppl task.

However, as shown in Fig. 33,
when applied to more capable model
GPT4o-mini, Direct FT on 5-people
puzzles where 100% training exam-
ples have corrupted answers does
not lead to improvement. Moreover,
the negative effects transfer to other
tasks, notably easier ones (2/3/4-
ppl). Nevertheless, as the percentage
of corrupt-answer training examples
reduces (≤ 50%), the model could
gain improved and generalizable rea-
soning capabilities.

Fig. 37 displays the results of
direct fine-tuning using 5-people
training K&K puzzles for the
GPT4o-mini model, containing varying percentages of incorrect answers in the dataset:
100%, 75%, 50%, 25%, 0%. This is evaluated across different epochs in the five-person puzzle. As noted
in § E.4, when the training dataset includes 50% or fewer samples with incorrect answers, fine-tuning can
still enhance K&K’s performance across various testing tasks.

2776

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.01 0.09 0.08 0.06 -0.03 0.02 0.02

-0.06 0.05 0.07 0.05 -0.03 0.02 0.02

0.01 0.07 0.09 0.06 -0.03 0.02 0.02

-0.19 0.08 0.11 0.07 -0.03 0.02 0.02

-0.09 0.23 0.14 0.06 -0.02 0.02 0.02

-0.04 0.05 0.11 0.06 -0.03 0.02 0.02

-0.01 0.06 0.08 0.02 -0.04 0.02 0.01

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.21 0.02 0.00 -0.02 0.00 -0.01

-0.01 0.05 0.00 -0.01 -0.02 0.02 -0.01

0.05 0.08 0.01 0.00 -0.02 0.02 0.01

0.03 0.06 0.02 0.01 0.00 0.01 0.01

0.06 0.07 0.01 0.00 -0.02 0.03 0.01

-0.04 0.06 0.04 -0.01 0.00 0.01 0.00

0.05 0.11 0.02 0.01 -0.02 0.02 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
-0.03 0.18 0.04 0.01 -0.04 0.00 -0.01

-0.27 -0.10 -0.05 -0.02 -0.04 0.00 -0.01

-0.01 0.13 0.06 0.01 -0.01 0.01 0.02

0.00 0.01 0.04 0.01 0.00 0.00 0.00

0.06 0.10 0.02 0.05 -0.01 0.07 0.00

-0.02 0.07 0.02 0.01 -0.02 0.00 0.02

-0.01 0.13 0.09 0.03 0.01 0.01 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.09 0.24 0.16 0.05 -0.02 0.01 0.00

0.06 0.01 0.01 0.00 -0.03 0.02 -0.01

0.04 0.14 -0.01 -0.01 -0.04 0.01 0.00

0.01 -0.01 0.05 -0.01 -0.01 0.00 0.01

0.06 0.09 -0.01 0.02 0.00 0.02 0.01

-0.03 0.04 0.01 0.00 -0.04 0.00 0.01

0.04 0.13 0.07 0.03 0.01 0.00 -0.01

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.09 0.23 0.14 0.05 0.00 0.00 0.00

0.07 0.01 0.01 0.00 -0.03 0.02 -0.01

0.04 0.14 -0.01 -0.01 -0.03 0.01 0.00

0.01 -0.01 0.05 -0.01 0.00 0.00 0.01

0.07 0.09 -0.01 0.02 0.00 0.01 0.01

-0.03 0.03 0.01 0.00 -0.04 0.01 0.01

0.02 0.13 0.05 0.03 0.02 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.20 0.13 0.36 0.21 0.10 0.15 0.08

-0.19 0.08 0.14 0.05 0.00 0.02 0.02

0.08 0.32 0.26 0.23 0.05 0.08 0.10

-0.19 0.16 0.14 0.06 0.00 0.02 0.02

-0.11 0.28 0.28 0.15 0.10 0.13 0.08

-0.09 0.21 0.23 0.12 0.08 0.07 0.07

0.18 0.17 0.19 0.10 0.10 0.07 0.07

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.16 0.26 0.32 0.29 0.12 0.16 0.07

0.11 0.15 0.13 0.00 0.01 0.01 0.00

0.24 0.17 0.17 0.10 0.11 0.10 0.05

0.20 0.20 0.07 0.00 0.02 0.00 0.03

0.15 0.12 0.16 0.09 0.04 0.03 0.02

0.06 0.18 0.12 0.12 0.10 0.04 0.04

0.24 0.18 0.24 0.17 0.06 0.06 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.01 0.25 0.18 0.16 0.14 0.09 0.10

0.22 0.11 0.09 0.00 0.01 0.00 -0.01

0.19 0.18 0.17 0.13 0.04 0.03 0.02

0.10 0.04 0.06 0.00 0.03 0.00 0.01

0.10 0.17 0.12 0.16 0.05 0.07 0.06

0.11 0.22 0.15 0.11 0.13 0.11 0.02

0.20 0.20 0.20 0.10 0.05 0.09 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.04 0.23 0.25 0.13 0.12 0.05 0.03

0.15 -0.03 0.01 0.00 0.02 0.00 0.00

0.10 0.09 0.10 0.09 0.03 0.02 0.02

0.08 -0.02 0.08 -0.02 0.04 0.01 0.00

0.07 0.10 0.15 0.13 0.08 0.09 0.02

0.04 0.14 0.24 0.11 0.08 0.07 0.03

0.22 0.22 0.17 0.11 0.08 0.06 0.04

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.04 0.22 0.26 0.11 0.13 0.03 0.03

0.10 -0.04 0.01 0.00 0.01 0.00 0.00

0.14 0.09 0.13 0.12 0.03 0.02 0.03

0.06 -0.01 0.08 -0.02 0.03 0.01 0.00

0.03 0.12 0.12 0.11 0.10 0.09 0.02

0.02 0.16 0.20 0.09 0.06 0.07 0.04

0.21 0.21 0.20 0.13 0.08 0.06 0.03

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.15 0.13 0.08 0.01 0.02 0.03

0.23 0.16 0.13 0.08 0.01 0.02 0.03

0.19 0.15 0.13 0.08 0.01 0.02 0.03

0.21 0.15 0.13 0.08 0.01 0.02 0.03

0.19 0.16 0.13 0.08 0.01 0.02 0.03

0.22 0.16 0.13 0.09 0.01 0.02 0.03

0.20 0.15 0.13 0.08 0.01 0.02 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.12 0.07 0.04 0.01 0.03 0.01

0.31 0.08 0.07 0.04 0.00 0.01 0.01

0.34 0.16 0.11 0.03 0.03 0.02 0.03

0.32 0.12 0.10 0.05 0.01 0.01 0.03

0.33 0.13 0.08 0.07 0.03 0.02 0.03

0.28 0.16 0.09 0.07 0.02 0.02 0.03

0.16 0.16 0.14 0.05 0.00 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.28 0.13 0.08 0.04 0.02 0.02 0.01

0.36 0.14 0.07 0.03 0.02 0.00 0.00

0.31 0.19 0.11 0.04 0.03 0.03 0.03

0.30 0.15 0.08 0.05 0.03 0.01 0.03

0.29 0.14 0.10 0.05 0.04 0.02 0.00

0.27 0.14 0.07 0.07 0.02 0.01 0.04

0.26 0.10 0.09 0.03 0.00 0.01 0.04

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.15 0.05 0.03 0.02 0.01 0.01

0.32 0.08 0.04 0.04 0.02 0.00 0.00

0.32 0.14 0.04 0.05 0.01 0.03 0.01

0.31 0.11 0.08 0.09 0.01 0.01 0.01

0.30 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.26 0.10 0.10 0.01 0.00 0.01 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.15 0.05 0.03 0.02 0.01 0.01

0.33 0.08 0.04 0.04 0.01 0.00 0.00

0.32 0.13 0.03 0.04 0.01 0.03 0.01

0.32 0.11 0.08 0.08 0.01 0.01 0.01

0.31 0.13 0.06 0.02 0.03 0.02 0.00

0.25 0.10 0.09 0.07 0.02 0.02 0.04

0.27 0.10 0.10 0.02 0.00 0.01 0.02

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 34: Improvement in test accuracy on N -person problems for Llama3-8B Direct FTed on M -person problems with
completely wrong answers, compared to the unfine-tuned model, under various evaluation configurations.

2777

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.03 0.07 0.08 0.06 -0.03 0.02 0.02

-0.13 0.09 0.06 0.05 -0.03 0.03 0.00

0.07 0.11 0.11 0.07 0.01 0.02 0.02

-0.02 0.07 0.10 0.07 -0.03 0.02 0.02

-0.01 0.10 0.09 0.06 -0.03 0.02 0.02

-0.13 0.17 0.12 0.06 -0.01 0.02 0.03

-0.02 0.13 0.09 0.08 0.00 0.02 0.03

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.03 0.05 0.05 0.03 -0.02 0.00 -0.01

-0.04 -0.01 0.01 0.00 -0.01 0.01 -0.01

0.14 0.14 0.06 0.04 0.01 0.02 0.02

0.05 0.07 0.03 0.03 0.00 0.02 0.02

0.15 0.14 0.13 0.03 0.05 0.04 0.02

0.05 0.21 0.07 0.05 0.02 0.03 0.04

0.12 0.10 0.05 0.03 -0.03 0.01 0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng
0.04 0.03 0.04 0.01 -0.04 0.00 -0.01

0.02 0.06 0.00 0.03 -0.02 0.01 0.00

0.06 0.16 0.07 0.01 -0.01 0.02 0.00

0.08 0.12 0.05 0.01 0.00 0.01 0.02

0.12 0.15 0.13 0.06 0.06 0.04 0.04

0.03 0.14 0.07 0.02 0.00 0.03 0.03

0.15 0.07 0.07 0.02 -0.02 0.01 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.03 0.06 0.01 -0.02 0.01 -0.01

0.00 0.02 0.00 0.04 0.02 0.02 -0.01

0.04 0.11 0.07 0.02 -0.01 0.02 0.00

0.05 0.10 0.02 0.06 -0.02 0.01 0.01

0.08 0.22 0.15 0.04 0.00 0.03 0.03

0.02 0.13 0.05 0.06 -0.03 0.00 0.02

0.11 0.07 0.06 0.03 0.00 0.00 0.00

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.00 0.02 0.06 0.01 -0.02 0.01 -0.01

-0.01 0.02 -0.01 0.04 0.02 0.02 -0.01

0.01 0.10 0.08 0.02 -0.01 0.02 0.00

0.06 0.09 0.02 0.06 -0.02 0.01 0.00

0.10 0.19 0.15 0.04 0.02 0.03 0.04

0.01 0.12 0.04 0.06 -0.03 0.00 0.02

0.12 0.06 0.06 0.01 -0.01 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.21 0.32 0.35 0.26 0.23 0.17 0.12

-0.19 0.27 0.17 0.12 0.04 0.05 0.03

-0.03 0.31 0.31 0.24 0.15 0.16 0.12

-0.15 0.32 0.19 0.06 0.00 0.02 0.02

0.15 0.23 0.27 0.13 0.14 0.10 0.08

-0.05 0.23 0.27 0.21 0.13 0.10 0.09

0.12 0.18 0.18 0.08 0.07 0.04 0.05

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.01 0.15 0.19 0.10 0.04 0.01 0.01

0.06 0.07 0.10 0.06 0.01 0.09 0.05

0.11 0.26 0.21 0.19 0.13 0.07 0.06

0.16 0.15 0.11 0.05 0.03 0.04 0.02

0.21 0.20 0.14 0.16 0.10 0.13 0.04

0.09 0.30 0.18 0.18 0.09 0.11 0.12

0.28 0.16 0.16 0.13 0.07 0.02 -0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.16 0.17 0.21 0.02 0.01 0.00 0.01

0.16 0.09 0.07 0.08 0.05 0.10 0.03

0.15 0.14 0.13 0.07 0.06 0.08 0.00

0.18 0.14 0.13 0.05 0.03 0.03 0.03

0.08 0.17 0.16 0.11 0.08 0.04 0.06

0.10 0.31 0.24 0.07 0.08 0.05 0.06

0.29 0.24 0.24 0.18 0.06 0.04 -0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.21 0.17 0.07 0.01 0.02 0.01

0.08 -0.01 0.11 0.08 0.03 0.06 0.05

0.15 0.14 0.14 0.08 0.05 0.04 0.00

0.19 0.12 0.12 0.06 0.01 0.02 0.00

0.14 0.18 0.15 0.07 0.11 0.06 0.06

0.19 0.30 0.22 0.06 0.03 0.03 0.03

0.30 0.27 0.19 0.13 0.12 0.05 0.02

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.10 0.18 0.20 0.11 0.01 0.02 0.00

0.11 0.02 0.11 0.06 0.06 0.06 0.05

0.14 0.12 0.15 0.08 0.07 0.03 0.00

0.17 0.09 0.13 0.06 0.02 0.01 0.00

0.12 0.15 0.17 0.05 0.11 0.07 0.06

0.21 0.30 0.21 0.04 0.03 0.03 0.03

0.30 0.29 0.13 0.16 0.13 0.06 0.03

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.17 0.13 0.08 0.01 0.02 0.03

0.20 0.17 0.13 0.08 0.01 0.02 0.03

0.24 0.18 0.14 0.09 0.01 0.02 0.05

0.22 0.17 0.14 0.09 0.01 0.02 0.03

0.20 0.15 0.14 0.08 0.01 0.02 0.03

0.36 0.22 0.16 0.10 0.04 0.02 0.05

0.21 0.14 0.15 0.09 0.01 0.02 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.15 0.09 0.04 0.03 0.02 0.03

0.32 0.17 0.07 0.03 0.03 0.01 0.02

0.36 0.28 0.15 0.05 0.06 0.03 0.02

0.28 0.10 0.08 0.07 0.04 0.01 0.02

0.39 0.24 0.16 0.09 0.05 0.04 0.02

0.38 0.22 0.16 0.11 0.04 0.03 0.05

0.32 0.16 0.12 0.06 0.01 0.02 0.02

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.25 0.14 0.07 0.02 0.03 0.00 0.01

0.29 0.14 0.09 0.03 0.04 0.01 0.01

0.30 0.17 0.09 0.02 0.02 0.02 0.01

0.29 0.15 0.09 0.08 0.02 0.02 0.00

0.40 0.24 0.22 0.07 0.08 0.04 0.04

0.37 0.19 0.15 0.12 0.04 0.03 0.04

0.33 0.13 0.07 0.06 0.01 0.01 0.01

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.16 0.05 0.03 0.01 0.00 0.02

0.33 0.16 0.05 0.04 0.03 0.01 0.02

0.32 0.18 0.08 0.08 0.04 0.01 0.01

0.32 0.21 0.08 0.08 0.04 0.01 0.00

0.33 0.21 0.15 0.07 0.09 0.04 0.04

0.34 0.19 0.15 0.12 0.01 0.02 0.04

0.33 0.12 0.07 0.04 0.02 0.01 0.01

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.22 0.15 0.05 0.03 0.01 0.00 0.02

0.34 0.16 0.05 0.04 0.03 0.01 0.01

0.33 0.17 0.08 0.07 0.04 0.01 0.01

0.32 0.21 0.08 0.08 0.04 0.01 0.00

0.33 0.22 0.15 0.07 0.09 0.04 0.05

0.33 0.19 0.15 0.13 0.02 0.02 0.04

0.33 0.12 0.07 0.05 0.02 0.01 0.01

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 35: Improvement in test accuracy on N -person problems for Llama3-8B Direct FTed on M -person problems with 75%
wrong answers, compared to the unfine-tuned model, under various evaluation configurations.

2778

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.04 0.14 0.09 0.04 -0.01 0.02 0.04

-0.06 0.14 0.13 0.13 0.07 0.06 0.04

0.09 0.16 0.09 0.06 0.03 0.03 0.05

0.03 0.17 0.16 0.09 -0.03 0.02 0.03

0.13 0.13 0.14 0.09 0.04 0.05 0.05

-0.23 0.17 0.12 0.08 0.02 0.02 0.05

-0.01 0.15 0.13 0.05 -0.02 0.03 0.02

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.08 0.16 0.13 0.03 0.04 0.00 0.03

0.08 0.17 0.03 0.10 0.03 0.03 0.01

0.12 0.16 0.14 0.05 0.05 0.00 0.01

-0.02 0.10 0.07 0.13 0.03 0.03 0.00

0.11 0.20 0.17 0.09 0.04 0.04 0.03

0.11 0.15 0.08 0.10 0.03 0.03 0.02

0.15 0.10 0.06 0.12 -0.02 0.02 0.01

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.11 0.10 0.09 0.06 0.02 0.01 0.02

0.04 0.14 0.08 0.12 0.08 0.03 0.05

0.13 0.20 0.13 0.06 0.05 0.03 0.01

0.02 0.14 0.12 0.09 0.06 0.04 0.03

0.12 0.17 0.18 0.07 0.04 0.04 0.03

0.20 0.16 0.14 0.06 0.03 0.05 0.02

0.01 0.12 0.10 0.13 0.01 0.08 0.02

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.06 0.15 0.08 0.08 0.03 0.00 0.02

0.09 0.21 0.07 0.11 0.04 0.02 0.01

0.12 0.24 0.22 0.08 0.04 0.04 0.01

0.08 0.06 0.12 0.06 0.03 0.04 0.02

0.17 0.28 0.16 0.07 0.04 0.04 0.04

0.20 0.17 0.12 0.09 0.06 0.06 0.01

-0.03 0.10 0.16 0.07 0.05 0.05 0.06

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.08 0.14 0.08 0.08 0.03 0.00 0.02

0.09 0.19 0.07 0.11 0.04 0.03 0.01

0.16 0.21 0.23 0.08 0.04 0.03 0.00

0.07 0.05 0.12 0.05 0.04 0.04 0.02

0.15 0.27 0.16 0.10 0.06 0.04 0.04

0.20 0.17 0.12 0.09 0.06 0.05 0.01

-0.03 0.12 0.14 0.08 0.03 0.04 0.08

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(a) 0-shot Direct Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

-0.11 0.00 0.15 0.11 0.06 0.09 0.03

-0.20 0.29 0.33 0.24 0.19 0.14 0.13

0.03 0.23 0.30 0.25 0.20 0.17 0.16

-0.12 0.25 0.25 0.13 0.04 0.05 0.06

0.08 0.30 0.44 0.32 0.23 0.18 0.13

-0.17 0.23 0.15 0.12 0.05 0.08 0.07

0.11 0.04 0.07 0.05 0.10 0.03 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.26 0.23 0.12 0.12 0.12 0.07

0.14 0.19 0.25 0.13 0.15 0.11 0.09

0.22 0.27 0.31 0.15 0.10 0.16 0.05

0.09 0.20 0.13 0.09 0.06 0.06 0.02

0.19 0.26 0.31 0.28 0.17 0.16 0.08

0.22 0.19 0.14 0.13 0.07 0.06 0.04

0.15 0.17 0.23 0.16 0.03 0.07 0.03

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.13 0.17 0.24 0.11 0.02 0.09 0.06

0.07 0.28 0.24 0.08 0.15 0.13 0.08

0.19 0.18 0.22 0.21 0.05 0.13 0.02

0.18 0.10 0.14 0.08 0.08 0.05 0.01

0.20 0.24 0.32 0.22 0.18 0.09 0.10

0.22 0.27 0.15 0.07 0.02 0.04 0.04

0.16 0.26 0.22 0.16 0.09 0.09 0.05

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.20 0.09 0.21 0.08 0.03 0.02 0.05

0.01 0.23 0.14 0.13 0.12 0.08 0.08

0.11 0.11 0.27 0.20 0.09 0.10 0.03

0.12 0.11 0.11 0.05 0.07 0.02 0.01

0.26 0.25 0.28 0.18 0.14 0.10 0.07

0.25 0.22 0.18 0.07 0.06 0.05 0.03

0.04 0.16 0.23 0.14 0.15 0.10 0.05

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.21 0.07 0.19 0.07 0.03 0.02 0.04

0.05 0.24 0.17 0.13 0.17 0.10 0.07

0.17 0.12 0.23 0.22 0.10 0.11 0.02

0.09 0.14 0.12 0.05 0.06 0.02 0.01

0.25 0.21 0.29 0.20 0.13 0.16 0.10

0.25 0.22 0.18 0.07 0.05 0.05 0.04

0.03 0.18 0.26 0.14 0.12 0.07 0.04

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(b) 0-shot CoT Prompting

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.19 0.16 0.09 0.01 0.02 0.04

0.30 0.19 0.16 0.14 0.07 0.04 0.08

0.39 0.24 0.15 0.09 0.07 0.02 0.08

0.33 0.18 0.16 0.10 0.02 0.02 0.05

0.32 0.24 0.19 0.12 0.06 0.02 0.05

0.39 0.28 0.19 0.11 0.07 0.02 0.07

0.37 0.27 0.17 0.11 0.04 0.02 0.04

epoch: 5

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.30 0.22 0.12 0.08 0.06 0.02 0.01

0.38 0.21 0.15 0.12 0.04 0.01 0.03

0.35 0.22 0.24 0.21 0.11 0.05 0.00

0.30 0.17 0.07 0.12 0.07 0.04 0.01

0.45 0.35 0.24 0.13 0.07 0.04 0.07

0.43 0.23 0.23 0.12 0.06 0.02 0.03

0.39 0.26 0.10 0.07 0.02 0.00 0.00

epoch: 10

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.31 0.16 0.14 0.07 0.07 0.02 0.02

0.34 0.27 0.17 0.13 0.05 0.02 0.05

0.30 0.21 0.26 0.11 0.10 0.05 0.00

0.37 0.26 0.12 0.07 0.09 0.06 0.02

0.43 0.25 0.27 0.12 0.11 0.02 0.06

0.41 0.28 0.23 0.12 0.06 0.02 0.03

0.43 0.23 0.12 0.08 0.02 0.00 0.00

epoch: 20

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.33 0.14 0.13 0.04 0.03 0.01 0.02

0.40 0.29 0.15 0.14 0.05 0.04 0.01

0.36 0.27 0.25 0.16 0.11 0.09 0.00

0.31 0.21 0.11 0.06 0.06 0.04 0.01

0.45 0.31 0.35 0.16 0.14 0.06 0.07

0.39 0.26 0.23 0.11 0.08 0.04 0.04

0.39 0.21 0.14 0.07 0.02 0.00 0.00

epoch: 50

2 3 4 5 6 7 8

ppl for testing

8

7

6

5

4

3

2

#
pp

l
fo

r
tr

ai
ni

ng

0.29 0.14 0.13 0.04 0.03 0.01 0.02

0.41 0.27 0.15 0.12 0.05 0.04 0.01

0.37 0.27 0.25 0.16 0.11 0.09 0.01

0.31 0.21 0.11 0.06 0.06 0.04 0.01

0.45 0.30 0.34 0.16 0.15 0.06 0.07

0.39 0.27 0.24 0.11 0.08 0.04 0.04

0.39 0.19 0.13 0.07 0.02 0.00 0.00

epoch: 100

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

(c) 1-shot Direct Prompting

Figure 36: Improvement in test accuracy on N -person problems for Llama3-8B Direct FTed on M -person problems with 50%
wrong answers, compared to the unfine-tuned model, under various evaluation configurations.

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.37 -0.28 -0.26 -0.15 -0.09 -0.08 -0.01

-0.15 -0.04 -0.10 0.07 0.03 -0.02 0.01

0.17 0.22 0.18 0.07 0.17 0.02 0.15

0.11 0.24 0.28 0.29 0.17 0.20 0.07

0.25 0.36 0.34 0.36 0.35 0.24 0.22

epoch: 3

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.33 -0.20 -0.22 -0.13 -0.07 -0.10 -0.01

-0.11 -0.06 -0.16 -0.03 -0.01 -0.06 0.01

0.13 0.22 0.14 0.11 0.13 0.00 0.13

0.17 0.26 0.26 0.21 0.29 0.26 0.07

0.25 0.38 0.34 0.42 0.35 0.28 0.21

epoch: 4

2 3 4 5 6 7 8
ppl for testing

1.0

0.75

0.5

0.25

0.0

pr
op

or
ti

on
of

w
ro

ng
tr

ai
ni

ng
an

sw
er

-0.39 -0.20 -0.24 -0.15 -0.07 -0.10 -0.01

-0.15 -0.08 -0.16 0.01 0.03 -0.06 -0.01

0.09 0.24 0.08 0.09 0.09 -0.02 0.09

0.15 0.30 0.28 0.27 0.29 0.24 0.07

0.25 0.35 0.37 0.40 0.37 0.24 0.26

epoch: 5

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

Eval config: 0-shot Direct Prompting

Figure 37: Improvement in test accuracy on N -people problems for GPT4o-mini fine-tuned on 5-people problems with different
proportion of wrong answers, compared to the unfine-tuned model. Direct FT with 50% wrong answers still improves K&K
performance.

2779

E.5 Probing
We report the probing accuracy for the un-fine-tuned Llama3-8B model in Fig. 38. As shown, without
fine-tuning, the model demonstrates relatively low probing accuracy, with values usually below 90%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Transformer Block Index

2

3

4

5

6

7

8

#
pp

l
in

th
e

K
&

K
ev

al
ua

ti
on

0.57 0.58 0.6 0.64 0.67 0.74 0.75 0.76 0.8 0.8 0.82 0.84 0.86 0.88 0.87 0.86 0.86 0.83 0.85 0.83 0.82 0.82 0.79 0.8 0.81 0.81 0.81 0.82 0.84 0.85 0.81 0.75

0.56 0.57 0.6 0.62 0.69 0.73 0.74 0.75 0.8 0.82 0.85 0.84 0.87 0.87 0.88 0.87 0.87 0.85 0.83 0.82 0.83 0.82 0.81 0.8 0.82 0.83 0.87 0.85 0.87 0.87 0.8 0.79

0.57 0.58 0.58 0.63 0.64 0.68 0.69 0.69 0.74 0.75 0.77 0.79 0.83 0.86 0.83 0.81 0.82 0.81 0.78 0.76 0.76 0.76 0.77 0.74 0.75 0.76 0.78 0.81 0.82 0.81 0.78 0.73

0.57 0.59 0.62 0.67 0.69 0.72 0.72 0.73 0.78 0.8 0.79 0.84 0.84 0.87 0.87 0.83 0.86 0.82 0.83 0.8 0.77 0.78 0.76 0.76 0.79 0.79 0.8 0.83 0.77 0.82 0.73 0.72

0.58 0.58 0.6 0.62 0.66 0.66 0.71 0.74 0.78 0.8 0.84 0.85 0.89 0.88 0.9 0.88 0.86 0.82 0.81 0.8 0.8 0.79 0.77 0.81 0.78 0.81 0.78 0.79 0.8 0.8 0.75 0.72

0.58 0.59 0.6 0.62 0.65 0.69 0.7 0.69 0.74 0.76 0.78 0.79 0.82 0.82 0.8 0.81 0.81 0.77 0.78 0.76 0.76 0.76 0.74 0.72 0.75 0.77 0.78 0.76 0.78 0.75 0.76 0.68

0.62 0.62 0.63 0.65 0.67 0.7 0.72 0.73 0.75 0.75 0.75 0.8 0.79 0.81 0.81 0.79 0.79 0.77 0.76 0.77 0.76 0.76 0.75 0.75 0.76 0.78 0.8 0.75 0.8 0.74 0.75 0.67

0.80

0.85

0.90

0.95

1.00

Figure 38: Probing accuracy of K&K puzzles with different number of people in testing puzzles across different layers of the
un-finetuned Llama3-8B transformer model.

2780

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (Llama3-8b)

0.5 0.6 0.7 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

Direct FT (GPT4o-mini)

0.6 0.7 0.8 0.9
Train AUC

0.5

0.6

0.7

0.8
CoT FT (GPT4o-mini)

Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

Figure 39: AUC for classifying 3-people puzzles under leaf perturbation based on puzzle-based indicators. Results under more
tasks and perturbations are in Fig. 40.

E.6 Distinguishing Memorization from Reasoning
Setup. We collect training samples where the targeted LLM predicts correctly, and label each as either
“consistently solved” (reasoning) or “not consistently solved” (memorization). We then train a logistic
regression classifier using an 8:2 train/test split to distinguish between puzzles the model solves through
reasoning versus memorization.

Puzzle-based indicators. We consider the following features: (1) TF-IDF; (2) Bag-of-Words; (3) Word
Length; (4) Character Length; (5) concatenation of all. Each feature can be extracted from one of the
following fields: (1) question; (2) synthetic CoT reasoning steps; (3) model response6; (4) concatenation
of the above fields. The train and test performance (measured with AUC as the dataset can be unbalanced)
are shown in Fig. 39. We observe a test AUC of 0.629/0.787 for Direct/CoT FT-ed GPT4o-mini, and
0.627 for Direct FT-ed Llama3-8B. This indicates that the puzzle-based indicators could be informative,
though not perfect, at determining which examples are reasoned vs. memorized.

Fig. 40 shows the train and test AUC for predicting whether N -person puzzles can be consistently
solved by a specific model under perturbations, using puzzle-based indicators. The results indicate that
length-related features are useful for distinguishing memorization from reasoning. Notably, the test AUC
is generally higher for CoT FTed GPT4o-mini compared to Direct FTed GPT4o-mini.

Model-based indicators. We also study model-based indicators to test whether the internal activations
of the fine-tuned model are informative for this categorization. Since we cannot access model internals of
GPT4o-mini, we conduct the experiment on Llama3-8B. Specifically, we feed each puzzle question into
the fine-tuned model, extract average embeddings from each layer, and train a linear classifier per layer.
Appendix Fig. 41 shows test AUCs, where we also compare the fine-tuned model to its non-fine-tuned
counterpart. We observe that (1) Lower-layer features poorly distinguish memorization from reasoning,
but higher layers improve. (2) The features from the FTed model are consistently more informative than
the un-FTed one, suggesting that the model’s decision regarding memorization vs. reasoning on specific
samples likely stems from the fine-tuning process. (3) The best embedding-based indicator (0.70 AUC)
outperforms the puzzle-based indicator (Fig. 39 left, 0.627 AUC) on 3-people puzzles.

We report test AUC for classifying puzzles based on whether they are consistently solved under
leaf/statement perturbation by the Llama3-8B model Direct-FTed on the 3/5-person task. As shown in
Fig. 41 and Fig. 42, the embeddings across different layers of the fine-tuned Llama3-8B provide more
distinguishable signals for memorized samples than those of the base model.

6Strictly speaking, this is a model-based indicator feature.

2781

E.7 DynamicZebra
Here we fine-tune Qwen2.5-7B-Instruct-1M on the question-answer pairs (Direct FT) using LoRA with a
learning rate of 5e-5 and batch size of 32.

In Fig. 11, the accuracy and memorization score on DynamicZebra perturbed training set (we report
results using the checkpoint at 3510 steps) shows that the model still relies on training examples and
cannot effectively solve perturbed training variants.

In Fig. 44, the accuracy on the DynamicZebra test set (full puzzle accuracy and cell accuracy of the
puzzle grid) shows that Direct FT-ed models can generalize to solve unseen puzzles at different difficulty
levels.

These results demonstrate the effectiveness of our framework in measuring reasoning and memorization
on structured logical reasoning tasks. We believe DynamicZebra complements our findings on the K&K
dataset by validating the methodology in a different logic domain with a completely different problem
format.

2782

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

Direct FT (statement perb.)

0.6 0.8
Train AUC

0.5

0.6

0.7

0.8
CoT FT (leaf perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

0.70

CoT FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(a) 3-person puzzles for GPT4o-mini.

0.6 0.8
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8
Train AUC

0.50

0.52

0.54

0.56

0.58

Direct FT (statement perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

0.70

CoT FT (leaf perb.)

0.6 0.8
Train AUC

0.50

0.55

0.60

0.65

CoT FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(b)5-person puzzles for GPT4o-mini.

0.5 0.6 0.7 0.8 0.9
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8 0.9
Train AUC

0.50

0.52

0.54

0.56

Direct FT (statement perb.)
Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(c) 3-person puzzles for Llama3-8B.

0.5 0.6 0.7 0.8 0.9
Train AUC

0.500

0.525

0.550

0.575

0.600

0.625

T
es

t
A

U
C

Direct FT (leaf perb.)

0.5 0.6 0.7 0.8 0.9
Train AUC

0.50

0.52

0.54

0.56

0.58
Direct FT (statement perb.)

Text Field

question

synthetic CoTs

response

concat all fields

Method

TF-IDF

BoW

word length

char length

concat all features

(d) 5-person puzzles for Llama3-8B.

Figure 40: AUC for predicting whether N -person puzzles can be consistently solved under perturbations based on puzzle-based
indicators.

2783

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8
T

es
t

A
U

C

0
.5

2 0
.5

4

0
.5

4

0
.5

9

0
.5

8 0
.6

0 0
.6

3 0
.6

6

0
.6

5

0
.6

5

0
.6

5

0
.6

7

0
.6

8

0
.6

6

0
.6

4

0
.6

4

0
.5

9

0
.6

3

0
.6

1

0
.6

1

0
.6

0

0
.6

1

0
.6

2

0
.6

0

0
.5

8

0
.5

7 0
.5

9

0
.5

9

0
.6

0

0
.5

5

0
.5

6

0
.5

6

0
.5

2 0
.5

5

0
.5

4

0
.5

9

0
.5

8 0
.6

0

0
.6

5

0
.6

9

0
.7

0

0
.6

5

0
.7

0

0
.6

8

0
.7

0

0
.6

9

0
.6

8 0
.7

0

0
.6

4

0
.6

1

0
.5

9 0
.6

1

0
.6

6

0
.6

4 0
.6

8

0
.6

3

0
.6

3 0
.6

5

0
.6

4

0
.6

3 0
.6

5

0
.6

4

0
.6

5

0
.6

2

Base model FTed model

Figure 41: Test AUC for predicting 3-people puzzles based on whether they are consistently solved under leaf perturbation
by the Llama3-8B model Direct-FTed. The embeddings across different layers of the fine-tuned Llama3-8B provide more
distinguishable signals than those of the un-FTed model, leading to 0.7 AUC at the middle layers. Results under more tasks and
perturbations are in Fig. 42.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

9

0
.6

0

0
.6

1

0
.6

5

0
.6

4

0
.6

6

0
.6

5

0
.6

7

0
.6

5

0
.6

3 0
.6

6

0
.6

7

0
.6

3

0
.6

1

0
.6

8

0
.6

4

0
.6

5

0
.6

5 0
.6

7

0
.6

5

0
.6

5

0
.6

6

0
.6

4

0
.6

3 0
.6

6

0
.6

5

0
.6

4 0
.6

6

0
.6

4 0
.6

6

0
.6

5

0
.6

4

0
.5

9

0
.6

0

0
.6

2 0
.6

5

0
.6

5

0
.6

6

0
.6

6

0
.6

7

0
.6

7

0
.6

2 0
.6

5

0
.6

5

0
.6

9

0
.6

6

0
.6

6

0
.6

7

0
.6

6

0
.6

6

0
.7

1

0
.6

4 0
.6

7

0
.6

6

0
.6

6 0
.6

8

0
.6

7

0
.6

8

0
.6

5

0
.6

6

0
.6

6

0
.6

6 0
.6

9

0
.6

9

Base model FTed model

(a) 3-person puzzles under statement perturbation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

3

0
.5

5

0
.5

3

0
.5

1 0
.5

4

0
.5

9

0
.5

5

0
.5

2

0
.5

0 0
.5

3

0
.4

8

0
.5

4

0
.5

5

0
.5

1 0
.5

4

0
.5

4

0
.5

2 0
.5

4

0
.5

2

0
.5

0 0
.5

3

0
.5

5

0
.5

4

0
.5

4

0
.5

1

0
.5

6

0
.4

7

0
.5

3 0
.5

5

0
.5

1

0
.5

0

0
.4

9

0
.5

4

0
.5

5

0
.5

3

0
.5

1

0
.5

6 0
.5

9

0
.5

6

0
.5

3 0
.5

5

0
.5

0

0
.5

5 0
.5

8

0
.6

3

0
.6

1

0
.5

8

0
.5

6

0
.5

2

0
.6

1

0
.6

1

0
.6

0

0
.5

6

0
.5

3

0
.5

7

0
.5

6

0
.5

4

0
.5

5

0
.5

3 0
.5

6

0
.5

6

0
.5

5

0
.5

1

0
.5

7

Base model FTed model

(b) 5-person puzzles under leaf perturbation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Transformer Block Index

0.5

0.6

0.7

0.8

T
es

t
A

U
C

0
.5

1

0
.5

2

0
.5

1

0
.4

8

0
.5

2

0
.5

0

0
.5

0

0
.5

0 0
.5

3

0
.4

9

0
.4

7

0
.4

4 0
.4

7

0
.4

6 0
.4

8

0
.4

9 0
.5

2

0
.5

0

0
.4

9

0
.4

9

0
.4

7 0
.4

9 0
.5

1 0
.5

4

0
.5

1

0
.5

2

0
.5

3

0
.5

1 0
.5

4

0
.5

5

0
.5

3

0
.4

90
.5

1

0
.5

2

0
.5

1

0
.4

8

0
.5

3

0
.5

2

0
.5

1

0
.4

9

0
.5

1

0
.5

5

0
.5

6

0
.4

9

0
.5

4

0
.5

2

0
.6

0

0
.5

4

0
.5

4

0
.5

5

0
.5

4

0
.5

2

0
.5

1 0
.5

4

0
.5

1 0
.5

4 0
.5

6

0
.5

3 0
.5

6

0
.5

3

0
.5

4

0
.5

2

0
.5

8

0
.5

8

Base model FTed model

(c) 5-person puzzles under statement perturbation.

Figure 42: Test AUC for predicting whether N -person puzzles can be consistently solved under perturbations by Direct-FTed
Llama3-8B models.

Figure 43: Cell level accuracy on training set.

2784

(a) Cell-level accuracy on test set.

(b) Puzzle-level accuracy on test set.

Figure 44: DynamicZebra test accuracy for Direct-FTed Qwen2.5-7B.

2785

