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Abstract

In many real-world settings like journalism,
law, medicine, and science communication, in-
formation is passed from one person or system
to another through multiple rounds of summa-
rization or rewriting. This process, known as
multi-hop information transfer, also happens
increasingly in workflows involving large lan-
guage models (LLMs). But while summariza-
tion models and factuality metrics have im-
proved, we still don’t fully understand how
meaning and factual accuracy hold up across
long chains of transformations, especially when
both humans and LLMs are involved.

In this paper, we take a fresh look at this
problem by combining insights from cogni-
tive science (Bartlett’s serial reproduction) and
information theory (Shannon’s noisy-channel
model). We build a new dataset of with
more than 200 original source paragraph and
700 five-step transmission chains that include
human-only, LLM-only, mixed human–LLM,
and cross-LLM settings across a wide range
of source texts. To track how meaning de-
grades, we introduce three new metrics: In-
formation Degradation Rate (IDR) for seman-
tic drift, Meaning Preservation Entropy (MPE)
for uncertainty in factual content, and Cas-
caded Hallucination Propagation Index (CHPI)
for how hallucinations accumulate over time.
Our findings reveal that hybrid chains behave
asymmetrically. When a human summary is
refined by a language model, the final out-
put tends to preserve meaning well, suggest-
ing that models can improve upon human-
written summaries. The code and data will
be avilabe at : https://github.com/
transtrace6/TransTrace.git.

*These authors contributed equally.
†Corresponding author:
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1 Introduction

”ChatGPT Is a Blurry JPEG of the Web”

Ted Chiang
The Newyorker
February, 2023

The flow of information is a fundamental driver
of techno-scientific progress in contemporary so-
ciety. From policy making and industry decisions
to medical advancements, educational progress,
and artificial intelligence achievements, the seam-
less transmission of information drives nearly
every aspect of innovation. As large language
models (LLMs) increasingly mediate how knowl-
edge is processed and communicated (Shahzad
et al., 2025), concerns arise about the integrity
and continuity of information within these sys-
tems. These concerns are magnified in multi-
agent environments, where multiple LLMs or AI
agents exchange and build upon shared informa-
tion. With each communicative iteration, subtle
distortions, omissions, or reinterpretations can lead
to cumulative information loss. This phenomenon
poses significant challenges for tasks that require
sustained reasoning, coordination, or consensus
among agents. Therefore, a systematic understand-
ing of how LLMs retain, transform, or degrade
information across dynamic multi-agent commu-
nication pathways is critical for advancing model
reliability, interpretability, and resilience in com-
plex, real-world deployment scenarios.

Information often changes as it is transmitted
across people or machines. In cognitive psychol-
ogy, Bartlett’s (1932) “serial reproduction” exper-
iments demonstrated that repeated retelling of a
story progressively simplify content and shift mean-
ing (Roediger III et al., 2014), a phenomenon
now known as information degradation. This phe-
nomenon is reflected in contemporary language
practices, where text is frequently summarized,
paraphrased, or reformulated through successive
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stages of human editing or machine-assisted pro-
cessing workflows.

This phenomenon can be formally characterized
as compound information loss. Let S0 denote the
original input and T (.) be the transformation func-
tion applied at step i. The transformation function
may represent a variety of operations, such as sum-
marization, paraphrasing, or rephrasing, among
others. These operations are lossy in nature. As
a result, nuanced information can be compressed
or omitted during encoding, leading to a potential
degradation of the information. After n number of
sequential transformations, the final output can be
represented using Equation 1.

Sn = Tn(Tn−1(...(T1(S0)))) (1)

The information retention between the original se-
quence and the sequence after nth transmission can
be represented as Equation 2

Rn = I(S0, Sn) (2)

where I measures the mutual information. Conse-
quently, the compound information loss is defined
by Equation 3

Ln = 1−Rn (3)

LLMs, systems fundamentally designed to gen-
erate and transform language, operate on the Trans-
former architecture, which, while powerful, is in-
herently lossy in nature due to its reliance on fixed-
size token representations (Vaswani et al., 2017).
This compression can lead to subtle distortions or
omissions during encoding and generation, espe-
cially when transformations are performed sequen-
tially. Previous research in NLP has predominantly
focused on single-step fidelity in tasks such as sum-
marization (Maynez et al., 2020) or iterative model
refinement for editing and summarization (Chen
et al., 2023). In parallel, multistage workflows,
spanning human-AI collaboration and multi-agent
LLM communication, have become increasingly
prevalent in real-world applications, such as docu-
ment drafting, revision, and cascading summariza-
tion pipelines (Park et al., 2023).

Despite this trend, the multi-hop dynamics of
information flow, which examine how meaning
evolves, degrades, or is potentially recovered
as it passes through chains of humans, LLMs,
or their combinations, remain critically underex-
plored. These transformation chains resemble

Bartlett’s (1932) ’serial reproduction’ effect. In
the context of LLMs and hybrid pipelines, such
degradation can affect semantic consistency, with
implications for reliability in downstream tasks.

To address this gap, we present the first system-
atic investigation of information degradation across
sequential transformation chains. Our main contri-
butions are as follows:

• We present a systematic study of information
transfer across human-only, LLM-only, hybrid
human-LLM, and cross-LLM chains, draw-
ing connections between cognitive theories of
memory decay and contemporary NLP work-
flows.

• We introduce TransTrace, a large-scale dataset
comprising 700 summarization chains con-
structed from more than 200 diverse source
paragraphs. This dataset enables controlled
and systematic investigation of semantic
degradation, fidelity loss, and transforma-
tion patterns across sequential summarization
steps in both human and LLM-mediated set-
tings.

• We introduce three metric such as, Informa-
tion Degradation Rate (IDR) for calculate se-
mantic drift per hop, Meaning Preservation
Entropy (MPE) for uncertainty in factual reten-
tion calculation, and Cascaded Hallucination
Propagation Index (CHPI) for persistence of
hallucinated content.

• We characterize the differences in information
degradation across humans, LLMs, hybrid
human-LLM setups, and cross-LLM chains,
uncovering patterns of compression, semantic
drift, and hallucination propagation. These
findings inform the design of fidelity-aware
summarization pipelines, robust human-AI
collaboration workflows, and stable multi-
agent LLM systems.

2 Theoretical Foundations

Information transfer is fundamentally constrained
by the nature of the communication channel. In
Shannon’s information theory, a message S is en-
coded and transmitted over a noisy channel C, re-
sulting in a received message Ŝ. The fidelity of
transmission is quantified by the mutual informa-
tion I(S, Ŝ) which decreases with noise and trans-
formation steps as mentioned in Equation 4. Here
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we assume that the sequence of transformations
S− > Ŝ1− > ...− > Ŝn forms a first order
Markov Chain. Under this assumption, the data
processing inequality (Cover, 1999) guarantees
that mutual information is non-increasing across
these transformations. This framework provides
a foundational understanding of how fidelity can
be lost during communication, particularly through
repeated transformations.

I(S; Ŝn) ≤ I(S; Ŝn−1) ≤ ... ≤ I(S;S) (4)

We emphasize that this inequality asserts non-
increase, not necessarily strict decrease; strict
contraction generally requires additional assump-
tions on the transformation channels (Raginsky,
2016; Polyanskiy and Wu, 2017). This insight
extends naturally to both human and machine-
mediated language processing. In modern NLP
workflows, repeated paraphrasing, summarization,
and re-encoding of text can compound seman-
tic drift, factual inconsistency, and hallucinations.
These effects mirror the behavior of noisy chan-
nels, where transformations act as potential points
of degradation. This iterative transformation ampli-
fies entropy and reduces the semantic overlap with
the original input. For modeling convenience, we
treat the sequence of transformations as a first order
Markov process, where each transformed message
depends only on its immediate predecessor, as in
Equation 5.

P (Ŝn | S) =
n∏

i=1

P (Ŝi | Ŝi−1) (5)

This factorization is intended to express first order
dependency for analytical clarity. This formula-
tion in Equation 5 enables us to interpret human
and LLM-driven language processing as a proba-
bilistic communication chain. Each transformation
Ŝi = Ti(ŝi−1) not only contributes to possible in-
formation loss but also alters the message distribu-
tion over time. As the number of hops n increases
the cumulative entropy H(ŝn) is often observed to
increase, while the mutual information I(S; Ŝn) is
expected to decrease under these assumpions.

dI(S; Ŝn)

dn
≤ 0 and

dH(Ŝn)

dn
≥ 0

This decay in fidelity is critical in both theoretical
and practical terms, especially when information is
passed across multiple agents (i.e. human, machine,
or a combination).

Given this framework, we propose the following
hypothesis regarding multi-hop information trans-
mission chains.

Hypothesis Statement

Null Hypothesis (H0): The fidelity of transmit-
ted information, as measured by semantic simi-
larity or factual consistency, remains constant
regardless of the number or type of transforma-
tion steps in the communication chain.

Alternative Hypothesis (H1): The fidelity of
transmitted information degrades with increas-
ing transformation steps, and the rate of degra-
dation varies depending on whether transfor-
mations are performed by humans, LLMs, or
mixed-agent chains.

3 Proposed Metrics for Modeling Fidelity
Degradation

To formalize the cognitive and information-
theoretic foundations of information transmission,
we propose three novel fidelity metrics: Informa-
tion Degradation Rate (IDR), Meaning Preserva-
tion Entropy (MPE), and Cascaded Hallucination
Propagation Index (CHPI). These metrics capture
distinct but complementary aspects of fidelity loss
in iterative language transformations, providing a
principled framework for analyzing degradation
in human, machine, and hybrid communication
chains.

For example, consider the fact: “Lionel Messi
scored the winning goal for Argentina in the 2022
World Cup final.” After one iteration, a paraphrase
such as “Messi secured Argentina’s victory in the
2022 World Cup final with a goal” maintains the
original meaning with minimal drift, resulting in a
low IDR and low MPE, indicating strong seman-
tic alignment and factual preservation. In the next
hop, “Messi helped Argentina win the 2022 World
Cup” omits the specific detail of the goal, introduc-
ing semantic uncertainty that increases both IDR
and MPE. By the third hop, the statement becomes

“Messi scored a hat-trick in the final,” introducing
a hallucinated event. If this fabrication remains
unchanged in a subsequent hop, CHPI increases,
reflecting the persistence and amplification of hal-
lucinated content over time.

Unlike conventional metrics such as ROUGE
(Lin, 2004) or BERTScore (Zhang et al.), which
provide static, pairwise similarity estimates, the
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proposed metrics are designed to model the tempo-
ral dynamics of fidelity degradation across succes-
sive transformations. IDR captures semantic drift
grounded in schema-driven memory decay. MPE
draws from Shannon’s information theory to quan-
tify uncertainty in factual retention. CHPI identifies
and quantifies the propagation of hallucinations
across hops—an effect critical to understanding
cascading failures in generation pipelines. These
metrics are particularly relevant for applications
such as multi-hop summarization, serial paraphras-
ing, and staged information relay, where fidelity
loss is gradual, cumulative, and context-dependent.

Information Degradation Rate (IDR):
Bartlett’s serial reproduction theory posits that
memory undergoes schema-driven compression,
progressively omitting or distorting details over
retellings. We operationalize this effect as the
average semantic drift per hop. Given a chain
of N texts {S0, S1, . . . , SN−1} where S0 is the
original, we define:

IDR =
1

N − 1

N−1∑

i=1

[1− BERTScore (Si−1, Si)]

(6)
where BERTScore(·, ·) measures semantic simi-
larity between adjacent hops. A higher IDR indi-
cates faster semantic drift and thus lower preserves
fidelity.

Two-hop Chain and IDR Computation

Statements:

• S0: “COVID-19 is caused by the
SARS-CoV-2 virus.”

• S1: “The coronavirus SARS-CoV-
2 is responsible for COVID-19.”
(BERTScore ≈ 0.95)

• S2: “COVID-19 stems from vari-
ous viruses including SARS-CoV-2.”
(BERTScore ≈ 0.78)

Computation:

IDR =
1

2
[(1− 0.95) + (1− 0.78)]

=
1

2
(0.05 + 0.22) = 0.135

Here, the first hop retains meaning closely (low

drift), but the second hop introduces factual distor-
tion, increasing the overall IDR.

Meaning Preservation Entropy (MPE): Shan-
non’s information theory models communication
as a noisy channel, where entropy quantifies uncer-
tainty in transmitted information. In the context
of multi-hop summarization or transformation, we
view the preservation of meaning as a probabilistic
process. Let p(h)i denote the probability that atomic
fact i is preserved at hop h, which is basically the
BERTScore of the same model. We define:

MPE =
1

N − 1

N−1∑

h=1

[
−

F∑

i=1

p
(h)
i log p

(h)
i

]
(7)

where F is the number of atomic facts extracted
from the original text. A higher MPE reflects in-
creased uncertainty (entropy) in fact preservation
across hops, consistent with the noisy channel view
of information degradation.

Two hop Fact Preservation and MPE
Computation

Original Fact Set (from S0): {(COVID-19,
caused by, SARS-CoV-2), (SARS-CoV-2,
is a, coronavirus)}
After Two Hops:

• S1: “The coronavirus SARS-CoV-2 is
responsible for COVID-19.”
(Fact preservation probabilities:
p(1) = [0.95, 0.92])

• S2: “COVID-19 stems from various
viruses including SARS-CoV-2.”
(Fact preservation probabilities:
p(2) = [0.60, 0.30])

Computation:

MPE =
1

2

[
−
(
0.95 log 0.95 + 0.92 log 0.92

)

−
(
0.60 log 0.60 + 0.30 log 0.30

)]

≈ 0.397.

Here, hop 1 retains facts with low uncertainty
(low entropy), while hop 2 shows high uncertainty,
reflecting significant information loss.

Cascaded Hallucination Propagation Index
(CHPI): Hallucinations refer to synthetic or
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spurious content introduced during iterative para-
phrasing or summarization, which may persist and
propagate across successive hops. To model this
phenomenon, we redefine CHPI by leveraging
entailment-based (Ge et al., 2023) scoring to quan-
tify the persistence of hallucinations relative to the
original source text S0. Formally:

CHPI =
1

N − 1

N−1∑

h=1

[1− P (Sh |= S0)] , (8)

where P (Sh |= S0) denotes the probability that
the statement at hop h, Sh, is logically entailed
by the original text S0. The term 1 − P (Sh |=
S0) thus measures the degree of hallucination at
each hop. CHPI aggregates this measure across the
transformation chain, capturing how hallucinated
content is preserved or amplified over time.

Entailment Drop across Hops and CHPI
Computation

Statements:
Original Statement (S0): “COVID-19 is
caused by the SARS-CoV-2 virus.”
Hopwise Paraphrases:

• Hop 1 (S1): “The coronavirus SARS-
CoV-2 is responsible for COVID-19.”
(Entailment: 0.95)

• Hop 2 (S2): “COVID-19 is caused by
influenza viruses.” (Entailment: 0.10)

Computation:

CHPI =
1

2
[(1− 0.95) + (1− 0.10)]

=
1

2
(0.05 + 0.90) = 0.475

Here, hallucination introduced in hop 2 signifi-
cantly increases CHPI, indicating amplified factual
divergence.

Together, IDR, MPE, and CHPI provide a prin-
cipled lens for quantifying how meaning degrades
through chains of transformations. IDR opera-
tionalizes schema-driven semantic drift, MPE cap-
tures information-theoretic uncertainty, and CHPI
models error cascades analogous to amplification
in a noisy communication channel. This unified for-
mulation enables a rigorous investigation of fidelity
loss across human cognition, LLM-only workflows,
and hybrid human–LLM pipelines, thereby bridg-

ing classical theories of memory and communi-
cation with contemporary multi-hop evaluation in
NLP.

4 Proposed TransTrace Dataset

We introduce TransTrace, a large-scale dataset de-
signed to support systematic investigation of se-
mantic degradation and fidelity loss in iterative
summarization processes. The dataset comprises
700 summarization chains, each constructed from
more than 200 diverse source paragraphs span-
ning a wide range of topics and writing styles. The
dataset encompasses a diverse range of domains,
including news articles, medical abstracts, legal
case summaries, Wikipedia passages, and scientific
reports, thereby enhancing the overall coverage and
representational breadth. TransTrace enables fine-
grained analysis of meaning drift, hallucination
propagation, and transformation dynamics across
multiple hops of summarization under different
communication regimes.

The dataset is organized into four experimental
settings as shown in Figure 1, each targeting a dis-
tinct mode of transformation. In the first setting,
designed to capture fidelity degradation in human-
to-human communication, each of the source para-
graphs was assigned to a unique participant with
the instruction to summarize it in 50–60 words.
Their summaries were then passed sequentially
to four additional participants, each unaware of
the original source, who repeated the summariza-
tion task based only on the previous hop’s output.
This results in five-hop human-only summarization
chains for source texts.

In the second setting, we replicate the same
five-hop summarization chain structure using large
language models (LLMs), where each LLM re-
ceives the previous hop’s output and produces a
50–60 word summary. This allows us to evaluate
fidelity degradation in LLM-only pipelines under
controlled conditions. To explore hybrid communi-
cation dynamics, the remaining two settings alter-
nate between human and LLM agents. In the LLM-
to-Human setting, the initial summary is generated
by an LLM and subsequently passed through one
human participant for summarization. Conversely,
in the Human-to-LLM setting, the process begins
with a human-generated summary followed by only
one LLM summarization. These configurations
enable comparative analysis of error propagation
patterns across mixed human–LLM interfaces.
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Figure 1: Overview of the four experimental settings in
the TransTrace dataset. (a) Human–Human: A source
paragraph is summarized iteratively by five different
human participants, each with access only to the previ-
ous summary. (b) Human–LLM: The first summary is
written by a human, followed by one successive sum-
marizations by a large language model. (c) LLM–LLM:
All five summarization hops are performed by an LLM,
each conditioned only on the previous hop’s output.
(d) LLM–Human: The process begins with an LLM-
generated summary and proceeds through one human
summarizers in sequence.

TransTrace provides a unified testbed for study-
ing meaning preservation, semantic drift, and hallu-
cination behavior across iterative summarization. It
bridges controlled experimentation with real-world
communication dynamics, supporting evaluation of
both cognitive theories and modern LLM behavior
in multi-hop settings.

5 Results and Interpretation

To evaluate how meaning is preserved across dif-
ferent summarization chains, we compute six com-
plementary metrics, summarized in Table 1. Three
of these, IDR, MPE, and CHPI—are specifically
designed to capture semantic shifts and distortions
during iterative summarization. The remaining met-
rics, ROUGE, BERTScore, and Entailment are stan-
dard in the summarization and NLP literature.

To quantify semantic alignment, we use
BERTScore and Entailment, both computed using
the deberta-xlarge-mnli model (He et al.,
2021). The entailment metric leverages natural lan-
guage inference (NLI) to measure whether the final
summary logically follows from the original source.
Together, these metrics provide a comprehensive
view of fidelity, hallucination, and pragmatic drift
across conditions. We organize our findings across
two paradigms: single-agent summarization chains,
in which either a human or an LLM performs all
summarization hops; and hybrid chains, in which a
human and LLM alternate roles across hops.

5.1 Single-Agent Summarization

When five humans summarize in sequence without
seeing the original text there’s a sharp drop in mean-
ing preservation. This is reflected in high CHPI
scores, meaning hallucinations (added or imagined
content) grow as the summary is passed along. This
finding aligns with cognitive theories suggesting
that human memory and language processing in-
troduce bias and noise over time, especially when
information is recalled and rewritten without full
context.

LLM-only chains, like those generated by
LLaMA3-8B (Grattafiori et al., 2024) and
Mistral-Saba (Jiang et al., 2023), performed
better in keeping the original meaning intact. These
models had lower IDR and CHPI, which suggests
that even without understanding in the human sense
they can repeat and rephrase content more consis-
tently than humans in chain-like tasks. This may
be due to their ability to operate with perfect mem-
ory of the previous input, avoiding the cognitive
“telephone effect” humans experience.

Among all models, the Compound Beta
(Upadhye et al., 2019) system stood out. While
its ROUGE score wasn’t the highest, it had the
lowest error in meaning (MPE), low hallucination
propagation (CHPI), and the highest entailment
scores. In other words, it may not match words
as closely as others, but it captures the core mean-
ing better. This supports the idea from cognitive
pragmatics that shallow similarity (e.g., repeating
the same words) doesn’t always mean true under-
standing or faithful retelling. The Qwen2.5 (Yang
et al., 2025) and GEMMA (Team et al., 2024) amod-
els landed somewhere in the middle. Qwen2.5
seemed more prone to letting hallucinations build
up over time, while GEMMA preserved meaning a
bit more reliably, but wasn’t as consistent as the top
performers. Tresults show that large language mod-
els especially those with hybrid designs—can actu-
ally outperform humans when it comes to preserv-
ing meaning over multiple summarization steps.
This reflects a growing realization in cognitive sci-
ence and AI research: humans are flexible but noisy
communicators, while models, though not truly un-
derstanding, can offer high-fidelity transmission
under certain conditions.
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Table 1: Comparison of fidelity and standard evaluation metrics across Human and several LLM summarization
chains. Lower IDR, MPE, and CHPI indicate better semantic preservation and reduced hallucination; higher
ROUGE, BERTScore, and Entailment suggest stronger alignment with the source content.

Metric Human LLaMA3 Mistral-Saba Compound Beta Qwen2.5 GEMMA

IDR ↓ 0.2431 0.1434 0.1130 0.2062 0.1842 0.1676
MPE ↓ 0.0657 0.0572 0.0921 0.0312 0.0528 0.0391
CHPI ↓ 0.5434 0.2660 0.2969 0.1777 0.3372 0.3002
ROUGE ↑ 0.2484 0.2846 0.4070 0.1428 0.2068 0.2348
BERTScore ↑ 0.6213 0.7014 0.7950 0.6260 0.6814 0.6967
Entailment ↑ 0.4566 0.7351 0.7031 0.8223 0.6628 0.6998

Table 2: Metric comparison between hybrid summariza-
tion directions: Human→LLM vs LLM→Human.

Metric Human→LLM LLM→Human

IDR ↓ 0.2296 0.2453
MPE ↓ 0.0906 0.0771
CHPI ↓ 0.1978 0.1807
ROUGE ↑ 0.3876 0.3989
BERTScore ↑ 0.7704 0.7547
Entailment ↑ 0.8022 0.8193

5.2 Asymmetries in Human–LLM Hybrid
Summarization Chains

We uncover a marked asymmetry in semantic fi-
delity across hybrid summarization chains involv-
ing alternating human and machine summarizers.
In this experiment, we employ LLaMA3-8B as the
representative LLM. We compare two configura-
tions: Human→LLM, where the model revises
a human-written summary, and LLM→Human,
where a human revises a model-generated sum-
mary. While both chains yield similar surface-level
ROUGE scores (0.388 vs. 0.399), more semanti-
cally grounded metrics reveal distinct behavioral
profiles.

The Human→LLM chain achieves a higher
BERTScore (0.770) and entailment score (0.802),
indicating strong preservation of source meaning.
Although this setting also shows a relatively ele-
vated IDR (0.230) and the highest MPE (0.091),
these distortions appear to be mitigated by the
model’s capacity for semantic repair. This pattern
suggests that LLMs function effectively as seman-
tic ”correctors” when presented with compressed
or pragmatically altered human input. From a cog-
nitive standpoint, this aligns with the notion that

LLMs, unconstrained by limitations in working
memory or attentional bandwidth, can restore omit-
ted content by leveraging distributional priors over
language and meaning.

In contrast, the LLaMA3→Human configura-
tion shows a higher IDR (0.245) and slightly lower
BERTScore (0.755), despite achieving the high-
est entailment score (0.819) among all conditions.
This suggests that human summarizers, when pre-
sented with model-generated input, tend to rein-
terpret underspecified or ambiguous language in
ways that introduce plausible—but potentially un-
grounded—semantic content. The lower CHPI
score (0.181) indicates relatively fewer hallucina-
tions, yet the increased IDR reflects lexical or para-
phrastic drift. This mirrors phenomena observed
in cognitive science, where humans—particularly
under ambiguity or lossy input—rely on pragmatic
inference and prior world knowledge, leading to
expansions that may not strictly preserve the source
intent.

These findings reveal cognitively motivated
asymmetries in hybrid summarization pipelines.
LLaMA3 demonstrates robustness to human-
induced compression, whereas humans may over-
interpret model outputs, leading to subtle semantic
drift. Notably, both hybrid configurations surpass
human-only and model-only baselines on entail-
ment and hallucination metrics, suggesting that al-
ternating human and LLM contributions can lever-
age complementary inductive biases.

6 Ablation Study

Since the proposed metrics (IDR, CHPI, and MPE)
rely on the underlying embedding model used
in BERTScore, we conducted an ablation study
by substituting the original BERTScore encoder
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with RoBERTa-large and Sentence-BERT encoders.
The Pearson correlation between BERTScore
(BERT-base encoder) and RoBERTa-large was
0.90, indicating very high agreement, with a one-
tailed paired t-test yielding a p-value nearly equal
to 0. Similarly, the correlation between BERTScore
and Sentence-BERT was 0.82, also indicating
strong agreement, with a corresponding p-value
= 1× 10−9. These results demonstrate that the pro-
posed metrics are robust to the choice of encoder.

7 Limitation

Our study comes with several limitations. First,
we used only one LLM architecture (LLaMA3-8B)
across all model-based steps. This may limit gener-
alizability, as different models (or scales) could
behave differently. Second, the summarization
tasks were performed in isolation and lacked real-
world constraints like time pressure, user intent,
or discourse context, all of which can influence
how humans and models summarize. Third, while
our metrics capture semantic drift and hallucina-
tion persistence, they rely on automated proxies
and may miss subtler dimensions of meaning such
as pragmatic nuance, discourse coherence, or cul-
tural framing. Additionally, we treated humans
and models as fixed agents without modeling varia-
tion within each group—different humans or model
prompts may yield significantly different trajecto-
ries.

8 Conclusion & Future Work

In this work, we presented the first systematic study
of meaning preservation in multi-hop summariza-
tion chains involving humans, LLMs, and their
hybrids. Using over 700 five-step transformation
chains and introducing three fidelity-focused met-
rics such as IDR, MPE, and CHPI we offer a deeper
understanding of how information decays through
iterative rewriting. Our findings reveal that hybrid
human–LLM chains behave asymmetrically: while
LLMs can effectively clean and sharpen human
summaries, humans tend to reinterpret or drift from
LLM outputs. LLM-only chains show the highest
semantic drift, while human-only chains strike a
more stable middle ground.

In future work, we plan to extend this framework
to interactive summarization and co-editing scenar-
ios, where humans and LLMs iteratively revise con-
tent together. We also hope to evaluate multilingual
and multimodal settings, and incorporate human

judgments to better align fidelity metrics with real-
world expectations. Ultimately, understanding how
meaning evolves across human–LLM chains can
help design more trustworthy and controllable sum-
marization workflows for high-stakes domains like
healthcare, law, and journalism.
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