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Abstract

Reference-free metrics such as CLIPScore and
PAC-S are increasingly used in vision-language
tasks due to their scalability and independence
from human-written references. However, their
reliability under linguistic, visual, and cultural
variation remains underexplored. In this work,
we present a systematic audit of CLIPScore and
PAC-S using an eight-factor diagnostic frame-
work applied to MS-COCO validation images.
Our analysis reveals consistent failure modes
across dimensions including object size, con-
tent category, syntax, named entities, spatial
relations and cultural context. Both metrics
penalize captions referencing African (—5.5%,
—4.8%) and Arabian (—4.9%, —5.3%) cul-
tures, favor large-object and animal-centric
scenes (by 20-30%) and show limited sensi-
tivity to spatial negation and word order. CLIP-
Score correlates more strongly with syntactic
complexity, while PAC-S demonstrates greater
robustness to verbosity and named—entity vari-
ation highlighting complementary strengths
rather than superiority. These findings expose
cultural and content bias, weak semantic robust-
ness, and limited compositional understanding.
We conclude with design recommendations to
improve fairness, scale invariance, and seman-
tic grounding in future reference-free evalua-
tion metrics. !

1 Introduction

The rise of multimodal large language models
(MLLMs) (Liu et al., 2023) has enabled signifi-
cant advances in vision—language tasks, including
image captioning, text-to-image generation, and
visual question answering. As these systems gener-
ate increasingly fluent and contextually grounded
outputs, the need for reliable evaluation becomes
more critical. Evaluation metrics play a central
role in this ecosystem—they benchmark model per-
formance, shape training objectives, and inform
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deployment decisions.

Historically, reference-based metrics such as
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005), CIDEr (Vedantam et al., 2015)
and SPICE (Anderson et al., 2016) have dominated
image—text evaluation. These metrics compare
generated outputs to fixed sets of human-written
references and provide interpretable, reproducible
scores. However, their reliance on limited refer-
ences makes them brittle in open-ended genera-
tion settings, where linguistic diversity is a feature
rather than a flaw. They frequently penalize factu-
ally correct yet stylistically novel captions, limiting
their usefulness for flexible or creative generation.

To address these limitations, reference-free met-
rics such as CLIPScore (Hessel et al., 2021) and
PAC-S (Sarto et al., 2023a) have gained promi-
nence for their scalability and independence from
reference captions. These metrics leverage pre-
trained vision—language models to assess semantic
alignment without requiring ground-truth captions.
However, despite their scalability, their reliability
across linguistic, visual, and cultural variations re-
mains poorly understood.

In this work, we present a systematic audit of
CLIPScore and PAC-S using a controlled diagnos-
tic framework. Treating these metrics themselves
as systems under test, we evaluate their behavior
across eight dimensions including syntax, object
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size, spatial relations and cultural context. Our anal-
ysis is based on 5,000 curated MS-COCO valida-
tion images, enabling reproducible and fine-grained
evaluation.

Our contributions are as follows:

* We propose a diagnostic framework for au-
diting reference-free metrics across linguistic,
visual, and cultural axes.

* We uncover consistent biases and failure
modes in CLIPScore and PAC-S, including
cultural bias, scale sensitivity and limited se-
mantic robustness.

* We provide actionable design recommenda-
tions to improve fairness, compositional un-
derstanding, and semantic grounding in future
metrics.

These findings highlight the need for more eq-

uitable and interpretable evaluation tools as multi-
modal systems continue to evolve.

2 Related Work

Emergence of reference-free evaluation metrics
has significantly reshaped the landscape of vision-
language evaluation. Among the most widely
adopted is CLIPScore, which estimates image-text
similarity using CLIP embeddings and has demon-
strated superior performance over reference based
metrics. Zelezny (2023) established its robustness
across MS-COCQO, while Cho et al. (2023a) em-
ployed CLIPScore to reward semantic specificity
during caption generation. Barraco et al. (2022)
further solidified CLIP’s role as a powerful visual
encoder, helping establish CLIPScore as a de facto
semantic metric. This established utility, however,
leaves open questions around its sensitivity to spa-
tial structure, compositionality, & cultural nuance.

To address some of these limitations, contrastive
learning-based metrics have gained traction. PAC-
S, proposed by Sarto et al. (2023a), employs
augmented-positive contrastive learning to improve
alignment with human preferences and detect hallu-
cinations more effectively. Its successor, PAC-S++,
offers improved sensitivity to syntactic noise and
redundant phrasing. Complementary approaches
such as HICE-S (Zeng et al., 2024) and compar-
ative analyses by Gonzalez-Chavez et al. (2023)
underscore the growing interest in contrastive and
multi-scale evaluation strategies. As a result, PAC-
S represents a valuable counterpoint to CLIPScore
in our comparative analysis.

Building on core paradigms, several recent

works have explored architectural strategies for
improving evaluation reliability. Fusion-based
methods such as ECO (Jeong et al., 2024) &
BRIDGE (Sarto et al., 2023b) aggregate multiple
metric signals to improve caption ranking and hal-
lucination detection. Ross et al. (2024) argue that
current T2I metrics over-rely on surface-level tex-
tual overlap, while Wu et al. (2018), through their
work on visual change detection, highlight the chal-
lenge of evaluating object relationships and spa-
tial directionality challenges we explore through
prompt perturbation. These innovations inform our
methodological choice to apply structural interven-
tions & test metrics.

Parallel to architectural advances, optimization-
based efforts have focused on tuning metric behav-
ior. ReCap, by Paischer et al. (2025), demonstrates
that fine-tuning alignment layers can enhance se-
mantic fidelity in vision-language models, while
Kornblith et al. (2023) show that classifier-free
guidance can yield more expressive and stable gen-
erations, highlighting the importance of embedding
calibration in metric performance. These insights
guide our use of controlled test conditions to isolate
metric behavior under shared embeddings.

While these developments have advanced the
field, a growing body of work has drawn attention
to the limitations and blind spots of reference-free
metrics. Ahmadi and Agrawal (2024) and Ka-
sai et al. (2022) question whether popular metrics
like CLIPScore and PAC-S adequately reflect hu-
man preferences or linguistic complexity. Zur
et al. (2024) surface accessibility concerns, espe-
cially for blind and low-vision users, showing that
CLIP-based metrics poorly assess utility-driven
captioning. In response, Lee et al. (2024) propose
FLEUR, a rationale-aligned and explainable eval-
uation framework. These critiques underscore the
importance of interrogating biases, fairness, and
cultural representation in metric behavior dimen-
sions that we place at the center of our analysis.

Together, these contributions form the founda-
tion for our study. They reveal that while metrics
like CLIPScore and PAC-S perform well on av-
erage correlation benchmarks, they may fail un-
der structured stressors, cultural shifts, or com-
positional transformations. Our work builds on
these insights by systematically auditing these met-
rics across multiple controlled axes such as object
count, syntax, spatial relations, and cultural cues
using MS-COCO as a testbed for fine-grained di-
agnostic evaluation.
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3 Methodology

3.1 Diagnostic Framework

To critically assess the reliability and fairness of
reference-free evaluation metrics, we propose a sys-
tematic diagnostic framework that treats the metrics
themselves as systems under test. Rather than as-
suming these metrics to be reliable surrogates for
human judgment, we audit their behavior across
a diverse set of diagnostic axes designed to reveal
hidden biases, robustness gaps, and semantic insen-
sitivities. Our analysis focuses on reference-free
metrics: CLIPScore and PAC-S. We restrict our
evaluation to these metrics not only because they
are prominent in current multimodal evaluation,
but also because they are most compatible with a
controlled diagnostic setup that isolates metric be-
havior. Both methods rely on shared CLIP-based
embeddings, ensuring comparability under identi-
cal input conditions.

We exclude other methods such as UMIC(Lee
et al., 2021), TIFA(Hu et al., 2023), VPEval(Cho
et al., 2023b) and DSG(Cho et al., 2024) for spe-
cific methodological reasons. UMIC depends
on the UNITER(Chen et al., 2020) architecture,
which processes images and text through decoupled
pipelines, complicating the attribution of evaluation
behavior and reducing transparency, contrary to our
goal of treating metrics as interpretable systems.
Metrics like TIFA, VPEval and DSG are VQA-
based, requiring multiple grounded questions per
image; however, our single-dominant-object setup
permits only one meaningful grounded query, lim-
iting their ability to evaluate fine-grained semantic
variation. By constraining the study to CLIPScore
and PAC-S, we ensure that our audit remains trans-
parent, interpretable, and computationally tractable
(/25,000 evaluations). This design enables us to
isolate systematic biases (e.g., cultural, content,
scale, and syntax) without interference from archi-
tecture or dataset specific confounds introduced by
more complex evaluators.

We structure our audit around the following guid-
ing question: “How well do these metrics satisfy the
key desiderata of a good evaluator?** Specifically,
WE assess:

* Scene understanding — Can metrics handle

dense, compositional, or complex inputs?
 Linguistic alignment — Do metrics reward
relevance and precision over verbosity?
 Fairness — Are scores invariant to cultural or
contextual variation?

* Semantic sensitivity — Do metrics reliably

distinguish correct from incorrect text?

This framing allows us to evaluate metric behav-
ior across linguistic and visual dimensions while
maintaining reproducibility and methodological
control, establishing a foundation for the diagnostic
analyses presented in subsequent sections.

3.2 Dataset Construction

We use MS-COCO 2017 validation set (Lin et al.,
2015) as our evaluation benchmark. It is a widely
used Common Objects corpus used in vision-
language research, containing richly annotated im-
ages with bounding boxes and multiple human-
written captions. Images were filtered to contain
single occurance of the objects identified through
bounding box size, object count and category la-
bels. Specifically, we selected images in which
a single object class appeared exactly once in the
scene, ensuring an unambiguous visual target per
image and avoiding the semantic ambiguity that
arises from multiple instances of the same category.
For example, if an image contained a bicycle, a
toothbrush, and two spoons, only the unique ob-
jects (bicycle and toothbrush) were retained, while
categories with repeated instances (spoons) were
discarded.

Although the dataset emphasizes single-object
clarity, we also incorporated controlled synthetic
spatial relations to probe metric sensitivity to spa-
tial language (e.g., “There is a cycle left of a tooth-
brush* / “There is a toothbrush right of a cycle®).
These captions were programmatically generated
using fixed templates while maintaining syntactic
coherence and visual grounding. This design al-
lowed us to test spatial awareness without violating
the single-dominant-object constraint, since rela-
tions were applied only between distinct unique
categories within the filtered set. To ensure rep-
resentativeness, the subset was stratified across
MS-COCO supercategories and cultural modifiers,
enabling broad semantic coverage despite its re-
duced scale. The decision to limit the sample to
5,000 images was driven by computational feasibil-
ity; each image-caption pair was evaluated by two
metrics under multiple perturbation axes, amount-
ing to /25,000 evaluations and also comparable
scales have been adopted in prior studies, including
Gonzalez-Chavez et al. (2023), Wu et al. (2018),
and Kasai et al. (2022), which demonstrate that
such subsets are sufficient for robust correlation
and bias analysis. Captions were drawn from two
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complementary sources:

¢ Natural captions — the five human-authored
MS-COCO captions per image, preserving
natural linguistic variation.

* Fixed-format captions — synthetically gener-
ated templates (e.g., “There is a/an [object],
“There is a/an [cultural_modifier] [object]*,
“There is a/an object_i left of object_j* and
There is a/an object_j right of object_i*), cre-
ated to isolate specific linguistic or cultural
factors while maintaining semantic consis-
tency.

This hybrid setup balances experimental con-
trol and ecological validity, reconciling real-world
linguistic diversity with reproducible, fine-grained
diagnostics. A full visualization of the dataset con-
struction pipeline and filtering process is provided
in Appendix A, Figure 8.

3.3 Evaluation Setup

As a sanity check and to establish baseline behav-
ior, we compute score distributions (Figure 2) and
conduct statistical comparisons (Table 1) between
CLIPScore and PAC-S over all image-text pairs.
Using paired ¢-tests (Student, 1908) and Pearson
correlation (Spearman, 2015), we quantify both
agreement and divergence, setting the stage for
deeper diagnostic evaluation. The results indicate
that CLIPScore and PAC-S exhibit complementary
behaviors rather than interchangeable performance.
CLIPScore tends to assign lower but more tightly
clustered scores, whereas PAC-S displays a broader
distribution with higher mean values.

We report both statistical significance and ef-
fect sizes, and treat differences as meaningful
only when (i) results are statistically significant
(p < 0.05) and (ii) the effect magnitude exceeds
a practical threshold (e.g., >3-5% deviation for
subgroup comparisons). This ensures that small
or non-significant deviations are not automatically
interpreted as bias, but rather as normal variability.

Distributions of metric scores are visualized in
Figure 2, showing that CLIPScore values are more
concentrated around the mean, while PAC-S ex-
hibits a wider spread and slightly higher central
tendency. The moderate correlation (r = 0.53)
(Table 1) suggests that the two metrics capture re-
lated but distinct aspects of image-text alignment,
supporting our decision to audit both jointly across
diagnostic axes.

Number of Samples

Similarity Score

Figure 2: Score distribution comparison between CLIP-
Score and PAC-S.

Test Statistic P-value
T-test -1266.19  0.0000
Pearson correlation 0.5326  0.0000

Table 1: Statistical comparison between CLIPScore and
PAC-S

3.4 Evaluation Protocol

We employ two complementary strategies to ana-
lyze metric behavior.

Correlation Analysis: We compute Spearman
and Pearson correlations between metric scores
and textual or visual properties (e.g., object count,
color variance, caption complexity). Strong corre-
lations in unintended directions indicate potential
bias. Only statistically significant results (p <
0.05) with practical effect sizes are interpreted as
meaningful.

Subgroup Comparison: We compare average
scores across controlled subgroups (e.g., “Ameri-
can” vs. “African”, “small” vs. “large” objects)
to assess fairness and consistency. Differences are
considered substantial when exceeding 3-5% and
statistically significant.

This dual approach combines quantitative sensi-
tivity analysis with interpretable group-level com-
parisons, capturing both general trends and local-
ized failure modes. The metrics are evaluated
across eight diagnostic dimensions summarized in
Table 2.

4 Results

4.1 Textual Property - Evaluating Sensitivity
to Linguistic Structure

An ideal evaluation metric should reward captions
that accurately describe image content rather than
those that are longer or more complex. In this sec-
tion, we examine whether CLIPScore and PAC-S
are overly sensitive to surface-level language fea-
tures. To examine this, we analyze the correlation
between metric scores and four textual attributes:
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Axis

Description

Caption Type

Eval Protocol

Text Properties
Visual Properties
Object Count
Cultural Context
Content Category
Object Size
Spatial Awareness
Perturbations

Caption length, syntax complexity, passivity
Entropy, sharpness, color, edge complexity
Number of distinct objects in image

7 Fixed Cultural references

MSCOCO Category references

Percent of image area covered by object
Absolute and relative object positioning
Grayscale, negation, word order changes

Original
Original
Original
Fixed Format
Fixed Format
Fixed Format
Fixed Format
Original

Corr. Analysis
Corr. Analysis
Corr. Analysis
Subgroup Eval.
Subgroup Eval.
Subgroup Eval.
Subgroup Eval.
Subgroup Eval.

Table 2: Evaluation framework across key diagnostic dimensions for metric auditing.

1. Text Length: Total number of non-stopword
tokens.

2. Sentence Complexity: Ratio of tokens and
noun phrases to the number of clauses, ap-
proximating syntactic density.

3. Flesch—Kincaid Grade Level: Approximate
U.S. school grade required to comprehend a
caption.

4. Named Entity Count: Number of recognized
named entities such as people, locations, or
organizations.
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Figure 3: Spearman (p) between textual features and
evaluation scores.

Observation: As observed in Figure 3, CLIP-
Score exhibits a notable positive correlation with
caption length (p = 0.211) and syntactic com-
plexity, indicating a tendency to favor longer or
more elaborate phrasing. PAC-S also shows a pos-
itive but weaker correlation (p = 0.149) and is
less influenced by sentence structure. Addition-
ally, CLIPScore correlates positively with sentence
complexity and readability grade, indicating sen-
sitivity to caption structure, while PAC-S appears
less affected. Interestingly, PAC-S displays slightly
higher responsiveness to the presence of named
entities (p = 0.106), suggesting an implicit bias
toward entity-rich descriptions.

Metric Expectation: Metrics should score cap-
tions based on semantic relevance and remain in-

variant to linguistic verbosity and structural varia-
tion.

Failure Mode: CLIPScore tends to penalize con-
cise yet accurate captions, while PAC-S favors sim-
pler phrasing but rewards named-entity presence.

4.2 Visual Property-Testing Robustness to
Low-Level Image Attributes

Metrics for vision-language evaluation should re-
main stable under low-level visual variations such
as color richness, texture, or structural detail when
the semantic meaning of an image is unchanged.
We evaluate whether CLIPScore and PAC-S are
affected by these visual features. All images are
resized to 224 x 224 pixels and normalized to [0,1]
prior to feature computation. We extract three de-
scriptive visual attributes:

1. Color Variance: Measures the average vari-
ance across RGB channels-higher values indi-
cate richer color diversity.

2. Energy and Homogeneity: Derived from the
Gray-Level Co-occurrence Matrix (GLCM),
these texture features capture local pixel rela-
tionships without altering image semantics.

3. Edge Density: Computed using the Canny
edge detector as the ratio of edge pixels to
total image pixels, indicating visual detail.

Spearman p between image properties and evaluation scores
o0

== CLIPScore
PACS

0.019
0015
0.00 -

Spearman Correlation (p)

cotor V'

Figure 4: Spearman p between image properties and
evaluation scores.
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Observation: As observed in Figure 4 CLIP-
Score shows a weak negative correlation with color
variance (r = —0.078), indicating a mild penalty
for visually diverse images, while PAC-S remains
largely unaffected (r = 0.019). Both metrics also
exhibit weak negative correlations with texture-
based features such as energy and homogeneity,
suggesting slight penalties for highly textured or
overly uniform images irrespective of semantic
correctness. Additionally, PAC-S shows a slight
preference for images with higher edge density
(r = 0.062), reflecting a modest bias toward more
detailed or structured visuals, whereas CLIPScore
remains mostly invariant.

Metric Expectation: An ideal evaluation metric
should remain invariant to low-level visual changes
that do not affect semantic alignment.

Failure Mode: While CLIPScore slightly penal-
izes images with richer color variance or texture,
PAC-S tends to favor sharper, edge-dense visuals.
These tendencies reveal that both metrics retain
limited robustness to low-level image attributes,
coupling semantic judgment with perceptual qual-
ity.

4.3 Object Count — Assessing Compositional
Generalization

A reliable evaluation metric should effectively han-
dle complex scenes containing multiple distinct
objects, as commonly found in real-world environ-
ments such as surveillance, robotics, and caption-
ing benchmarks. Captions describing such images
should not be penalized merely due to scene com-
plexity. We evaluate whether CLIPScore and PAC-
S are sensitive to object count by correlating their
evaluation scores with the number of distinct ob-
ject classes per image, computed from MS-COCO
annotations.

Observation: As observed in Table 3 Both met-
rics exhibit a small but consistent negative correla-
tion with object count, suggesting that evaluation
scores tend to decrease as the number of objects
increases. This pattern indicates that both metrics
slightly undervalue captions describing more com-
plex scenes, potentially due to difficulty in ground-
ing multiple entities simultaneously.

Metric Expectation: Metrics should evaluate
captions based solely on their semantic accuracy
and grounding, irrespective of how many objects
are present.

CLIPScore
-0.084

PAC-S
-0.080

Feature

Object Count

Table 3: Spearman (p) between object count and evalua-
tion scores for both metrics

Failure Mode: Both CLIPScore and PAC-S
demonstrate mild sensitivity to scene complexity,
penalizing captions in multi-object settings. This
reveals a limited capacity for compositional gen-
eralization, as both metrics struggle to maintain
consistent alignment when multiple visual entities
interact within a single frame.

4.4 Cultural Context — Auditing Cultural
Fairness in Evaluation

A reliable evaluation metric should be culturally
agnostic, giving comparable scores to semantically
identical captions regardless of geographic or cul-
tural modifiers. To test this, we evaluated how
CLIPScore and PAC-S respond to captions that
differ only by cultural adjectives, while maintain-
ing identical syntax and object identity. For each
single-object image (e.g., “chair,” “car”), we cre-
ated fixed-syntax captions of the form: “There is
a/an [American / African / Asian / European / Rus-
sian / Arabian / Oceania] [object name].”. The
image remained constant across all variants, allow-
ing us to isolate the effect of the cultural term itself.
Average scores across regions are shown in Fig-
ure 5.

Observation: Both metrics consistently assign
lower scores to culturally modified captions com-
pared to the neutral form, revealing a uniform
drop across modifiers. CLIPScore shows the
strongest bias against African (—5.5%) and Ara-
bian (—4.9%) descriptors, while PAC-S registers
similar declines for Arabian (—5.3%) and Oceania
(—5.2%) terms. American and European modifiers
receive scores closest to the baseline, indicating a
clear Western-centric bias in both evaluation mea-
sures.

Metric Expectation: Scores should depend
solely on the semantic correctness and grounding
of the caption.

Failure Mode: Both metrics demonstrate sys-
tematic Western preference, lowering scores for
non-Western cultural adjectives even under syntac-
tically fixed and semantically equivalent conditions.
This pattern suggests that pretraining data distribu-
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tions and embedding representations contribute to
inherited cultural bias.

Cultural Bias in Evaluation Metrics (0-100 Scale)

-8~ CLIPScore

European vy

Oceania American

Asian Default

Russian African

Arabian

Figure 5: Cultural bias analysis using a radar plot show-
ing evaluation scores (on a 0-100 scale) across various
cultural regions.

4.5 Object Category — Evaluating
Content-Type Sensitivity

A fair evaluation metric should assess captions
based on semantic correctness, irrespective of the
type of visual content whether it depicts animals,
humans, objects, or environmental elements. Sys-
tematic variation in scores across content types,
without semantic justification, indicates domain-
level bias. To evaluate this, we analyzed average
metric scores across 12 MS-COCO supercategories,
using images containing a single dominant object
from each category. Fixed-format captions (“There
is a/an object_name‘‘) were used to ensure consis-
tency in linguistic structure. Figure 6 presents the
mean CLIPScore and PAC-S results for all cate-
gories.

Observation: Both metrics exhibit consistent
content-type bias. Animal-related images receive
the highest scores (CLIPScore: 0.2508; PAC-S:
0.7341), reflecting an overemphasis on easily rec-
ognizable subjects. Appliance and sports scenes
also score relatively high, whereas person, kitchen,
and accessory categories show the lowest aver-
age scores. The person category demonstrates
the strongest negative deviation, 16.2% below the
mean for CLIPScore and 11.6% for PAC-S indi-
cating that both metrics systematically undervalue
human-centric or indoor scenes.

Object Category Bias in Evaluation Metrics (Dumbbell Plot)
Animal .
Sports .
Outdoor .
Appliance °
Food L4

Vehicle L4

Object Category

Indoor .
Electronic »
Person °
Furniture .
Accessory .
Kitchen .

0.2 0.3 0.4 0.5 0.6 0.7

Score

Figure 6: Dumbbell plot showing Object Category bias,
indicating metric sensitivity to semantic content.

Metric Expectation: An ideal metric should pro-
vide consistent evaluations across object types
when captions are semantically accurate, avoiding
preferential treatment for specific visual domains.

Failure Mode Both CLIPScore and PAC-S re-
veal domain bias, favoring animal, sports, and ap-
pliance scenes while penalizing person-centric and
indoor content. These trends likely stem from train-
ing data imbalances in CLIP and related embedding
models.

4.6 Object Size — Evaluating Scale Sensitivity
and Visual Prominence Bias

An effective evaluation metric should be scale-
invariant, assigning similar scores to accurate cap-
tions regardless of object size or prominence. Oth-
erwise, it risks undervaluing small-object recogni-
tion or penalizing captions for cluttered or zoomed-
out scenes. To examine scale sensitivity, we
grouped images by object-area percentage, the
proportion of the image occupied by the single-
dominant-objects, and computed average metric
scores using fixed-format captions (‘“There is a/an
object_name*) to isolate the effect of size while
keeping caption syntax constant. Figure 7 presents
average scores across size bins.

Observation: Evaluation scores increase with ob-
ject size, revealing a clear dependence on scale.
Both CLIPScore and PAC-S peak in the 60-80%
range, favoring medium-to-large, clearly visible
objects. However, performance drops at both ex-
tremes: very small objects (0-10%) receive lower
scores, likely due to difficulty in grounding fine
details, while extremely large objects (90-100%)
also score lower, possibly from loss of contextual
grounding in cropped or zoomed-in views.
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Obiject Size Bias in Evaluation Metrics
Optimal Scoring Zone

PAC-S

4050 5060 070
Object Coverage (% of Image)

Figure 7: Evaluation metrics (CLIP and PAC-S) peak
within the 50-80% object coverage range, indicating a
bias toward medium-sized objects.

Metric Expectation: Metric should maintain
consistent scoring across object scales, reflect-
ing semantic correctness rather than visual promi-
nence.

Failure Mode: Both metrics favor mid-sized ob-
jects and undervalue very small or very large ones
(90-100% of the image area), limiting their relia-
bility in tasks requiring fine-grained or contextual
grounding. This trend likely reflects the data distri-
bution bias of pretrained embedding models.

4.7 Spatial Awareness — Testing Positional
Sensitivity and Object Relations

Spatial awareness is a crucial component of visual-
linguistic understanding, enabling models and met-
rics to reason about object placement and relation-
ships within an image. A reliable evaluation metric
should assign consistent scores to captions describ-
ing the same spatial configuration, regardless of
object orientation or phrasing. To evaluate this ca-
pability, we analyze whether CLIPScore and PAC-
S remain invariant under changes in absolute object
position and relative spatial relations between dis-
tinct objects.

Table 4: Mean scores for absolute vs. relative position-
ing; % differences are relative to baseline. * indicates
baseline, Abs.-Absolute, Rel.-Relative, L-Left and R-
Right)

Positioning CLIPScore  PAC-S

Type

Abs.: Left* 0.2281 0.6805

Abs.: Right 0.2281 0.6803
0.0%) (-0.02%)

Rel.: LtoR*  0.2301 0.667

Rel.: Rto L 0.2337 0.6620
(+1.5%) (-0.07 %)

Experimental Setup:

1. Absolute Positioning: To test positional bias,
we compare metric scores for identical cap-
tions describing objects located on different
sides of the image. Left and right configu-
rations are created by horizontal image flip-
ping, ensuring that only the object’s posi-
tion changes while the caption remains fixed
(There is a/an ‘object_name’).

2. Relative Positioning: To test relational bias,
we generate semantically equivalent but syn-
tactically reversed captions for pairs of dis-
tinct objects such as: i) There is a/an [ob-
ject_i] left to [object_j] and ii) There is a/an
[object_j] right to [object_i].

Observation: As observed in Table 4 Both met-
rics show strong invariance to absolute position-
ing, producing nearly identical scores for left and
right object placements. However, in relative po-
sitioning, CLIPScore exhibits a minor asymmetry,
slightly favoring “right of” over “left of” phrasing
(+1.5%), suggesting sensitivity to linguistic for-
mulation rather than visual semantics. PAC-S, by
contrast, remains largely stable across both cases.

Metric Expectation: Metrics should treat equiv-
alent spatial relationships equally, regardless of ori-
entation or caption order, as both convey identical
semantic meaning.

Failure Mode: While PAC-S demonstrates stable
spatial awareness, CLIPScore reveals directional
phrasing bias, indicating mild sensitivity to syntac-
tic ordering in relative spatial expressions. This
asymmetry implies partial reliance on textual em-
beddings over grounded spatial understanding.

4.8 Perturbations & Negations

Robust evaluation metrics should accurately distin-
guish semantically correct captions from incorrect
or syntactically degraded ones, while remaining sta-
ble under irrelevant visual changes. We assess the
resilience of CLIPScore and PAC-S to controlled
perturbations in spatial accuracy, visual appearance,
and word order. We evaluate the following cate-
gories of perturbations,

1. Relative Spatial Negation: We switch ob-
ject positions in captions to create mismatches
(e.g., “There is a [object A] left of [object B]”
vs. incorrect “right of” when A is actually on
the left).
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Perturbation Category Condition CLIPScore PAC-S
Absolute Position Correct placement 0.2356 0.6594
Incorrect placement 0.2354 (-0.08 %) 0.6591 (-0.04 %)
Relative Position Correct referenced 0.2301 0.6670
Incorrect referenced 0.2340 (+0.5 %) 0.6626 (-0.7 %)
Original image and caption 0.3077 0.8204

Multimodal Augmentation

Black & white image
Reverse word order
Random word order

0.2996 (-2.63 %)
0.2836 (-8.70 %)
0.2769 (-10.28 %)

0.8110 (-1.15 %)
0.8015 (-2.38 %)
0.7937 (-3.29 %)

Table 5: Evaluation scores for spatial negation and multimodal perturbations.

2. Absolute Spatial Negation: We flip spatial
terms like “left” and “right” in captions (e.g.,
“There is a [object A] on the left side” vs. in-
correct “right side” when A is on the left).

3. Multimodal Input Perturbations: Convert
image grayscale (tests visual robustness), Re-
verse word order (tests mild syntactic distor-
tion) and Randomize word order (tests full
syntactic corruption)

Observation: As visible in Table 5, CLIPScore
frequently fails to penalize spatially incorrect cap-
tions, occasionally assigning slightly higher scores
than correct ones. PAC-S performs marginally bet-
ter but with minimal margin. Both metrics remain
mostly unaffected by grayscale conversion, show-
ing visual invariance. However, they exhibit lim-
ited sensitivity to syntactic corruption-maintaining
relatively high scores even for reversed or random-
ized captions-revealing bag-of-words behavior that
overlooks sentence structure.

Metric Expectation: Metrics should penalize se-
mantically incorrect or negated captions, remain
robust to visual changes, and clearly reduce scores
when sentence structure loses grammatical or se-
mantic integrity.

Failure Mode: Both CLIPScore and PAC-S
demonstrate low semantic robustness, failing to
effectively distinguish between correct and negated
or disordered captions. Their overreliance on token-
level similarity instead of sentence-level meaning
limits their ability to capture true compositional
semantics.

5 Summary of Metric Behavior

We provide a summary of the diagnostic behavior
of CLIPScore and PAC-S on all axes of evaluation
in Table 6 in Appendix B. Both provide scalable,

reference-free evaluation, but our analysis demon-
strates a number of reliable shortcomings: Visual
and Textual Bias, Cultural Bias, Content-Type Bias,
Scale & Object Count Sensitivity, Spatial Robust-
ness and Perturbation Weakness. Overall, these
findings highlight systematic dependence on tex-
tual verbosity, cultural framing, and visual promi-
nence, emphasizing the need for future metrics that
combine semantic grounding, cultural fairness, and
compositional understanding for robust multimodal
evaluation.

6 Conclusion

Reference-free metrics like CLIPScore & PAC-S
are gaining traction in vision-language research
due to their scalability and independence from an-
notated references. However, our analysis shows
they often fail to align with human judgment across
diverse contexts.

We identify key limitations, including over re-
liance on surface features, low robustness to syntac-
tic variation, and cultural biases e.g., consistently
lower scores for modifiers like “African” & “Ara-
bian.” These findings raise concerns about their
equitability and generalizability.

To address these gaps, we recommend: (1) pri-
oritizing semantic grounding over shallow cues;
(2) ensuring fairness across cultures, geographies,
and object categories; (3) maintaining robustness
in complex, multi-entity scenes; (4) penalizing syn-
tactic or factual errors; (5) improving transparency
through interpretable diagnostics; and (6) expand-
ing fairness evaluation to underrepresented group.

We hope these guidelines inform the develop-
ment of reference-free metrics that are equitable,
interpretable, and reliable. As multimodal systems
advance, robust evaluation standards will be essen-
tial to ensure meaningful progress.
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7 Limitations

Although our study provides a systematic and trans-
parent audit of reference-free evaluation metrics, it
is bounded by several methodological limitations.
Our dataset design prioritized experimental con-
trol by focusing on single-object images, which
enabled clear attribution of metric behavior but lim-
ited applicability to real-world, multi-object scenes
that involve more complex spatial and composi-
tional reasoning. The dataset size (= 5,000 images,
~ 25,000 evaluations) was chosen for computa-
tional tractability and consistency with prior stud-
ies, yet this smaller scale constrains generalizabil-
ity to larger or more diverse datasets. In addition,
the cultural fairness audit, though broader than in
previous work, covered only seven modifiers and
corresponding global regions, leaving finer-grained
cultural or linguistic variations underexplored. The
use of fixed-format captions further ensured se-
mantic control but could not capture the richness
and ambiguity of natural human language, which
may influence how metrics respond to real-world
linguistic diversity.

Beyond dataset factors, our analysis was re-
stricted to two representative metrics, CLIPScore
and PAC-S excluding emerging VQA-based and
LLM-based scoring methods due to architectural
incompatibility with our diagnostic setup. Finally,
while our framework combined quantitative and
qualitative analyses, it relied primarily on subgroup
analysis and correlation-based evaluations that do
not fully capture nonlinear or interdependent ef-
fects between linguistic and visual attributes. Fu-
ture work should address these limitations by ex-
panding dataset diversity and scale, incorporating
multi-object and context-rich scenes, and extending
the framework to a broader range of metrics and
nonlinear analytical models to enable more compre-
hensive and inclusive auditing of vision—language
evaluation systems.
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A Supplementary Details on Dataset
Construction

Figure 8 provides a visual overview of our dataset
construction pipeline, illustrating the filtering of
MS-COCO images, object class extraction, and the
generation of both natural and fixed form captions
used in our experiments.

B Qualitative Summary of Metric
Behavior

We present in Table 6 a qualitative comparison
of CLIPScore and PAC-S across diagnostic axes,
highlighting observed biases and deviations from
ideal metric behavior.
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Figure 8: Overview of dataset composition

Table 6: Qualitative summary of CLIPScore and PAC-S behavior across diagnostic axes.

Axis

CLIPScore / PAC-S Behavior

Ideal Metric Behavior

Visual Properties
Text Properties
Object Count
Cultural Context

Content Category

Object Size
Spatial Awareness

Perturbations

Mild penalty on texture/color (CLIP-
Score more so)

CLIPScore favors length, complexity /
PAC-S favors NEs

Scores slightly decrease with more ob-
jects

Default (Culture Neutral) > Cultural
modifiers

Domain preference for specific cate-
gories like Animal/Appliances over in-
door scenes

Scores peak at mid-size (60—80%) ob-
jects

Slight scoring inconsistency for reversed
phrases (CLIPScore)

Scores stay high despite incorrect spatial
& word order

Invariant to superficial visual changes
unless semantically meaningful
Reward informativeness and clarity;
avoid verbosity bias

Fair to complex scenes when captions
are accurate

Culturally neutral scoring for equivalent
semantics

No unfair preference for content types

Consistent scoring across scales if se-
mantically correct

Equal scoring for equivalent spatial rela-
tions

Strong semantic sensitivity; penalize cor-
rupted captions
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