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Abstract

The rapid growth of social networks has led
to a surge in social bots, which often dissemi-
nate low-quality content and may manipulate
public opinion, posing threats to online secu-
rity. Although recent GNN-based bot detec-
tion methods perform strongly, they still face
two major challenges. First, deep GNNs are
prone to over-smoothing: neighbor aggregation
blends bot and human node representations, ob-
scuring bot-specific features. Second, social
graphs are dominated by human–human and
human–bot connections, while direct bot–bot
links are scarce, making it difficult for effec-
tive bot representations to propagate within
GNNs. To address these issues, we propose
a Topology-Aware Gated Graph Neural Net-
work (TopGateGNN) to detect social bots. Top-
GateGNN employs topology-aware data aug-
mentation to synthesize realistic bot nodes that
preserve the original graph structure, mitigating
class imbalance; it also introduces a hierarchi-
cal gating mechanism that restructures node
embeddings into a tree format, selectively fil-
tering noise and enhancing discriminative fea-
tures. Experiments on three standard bench-
mark datasets show that TopGateGNNconsis-
tently surpasses leading baselines in highly im-
balanced settings, delivering superior accuracy
and robustness.

1 Introduction

The swift progress in social media has escalated
the proliferation of social bots, which engage in
automated information manipulation, posing signif-
icant threats to cybersecurity (Ferrara et al., 2016;
Höhne et al., 2025). Leveraged by malicious en-
tities, social bots disseminate misinformation and
generate fabricated interactions, thereby eroding
the integrity of information ecosystems and public
trust (Cresci, 2020; Orabi et al., 2020; Xu et al.,
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Figure 1: The figure shows the class imbalance and
over-smoothing problems faced by GNNs in social bot
detection, showing how minority class features become
indistinguishable during multi-layer message aggrega-
tion, and how node embeddings become similar as the
number of layers increases.

2020; Cresci et al., 2023; Starbird, 2019; Zannet-
tou et al., 2019). Therefore, effective social bot
detection is crucial to ensure cybersecurity. Many
methods are proposed to effectively detect social
media bots, necessitating robust detection methods
to safeguard cybersecurity (Hagen et al., 2022). To
address the above issues, many methods have been
proposed to effectively detect social media bots.

Current social bot detection approaches include
feature-based, text-based, and graph-based method-
ologies. Feature-based methods (Kudugunta and
Ferrara, 2018; Yang et al., 2020) depend on manu-
ally engineered features, which are susceptible to
class imbalance and ineffective at detecting sparse
bot signals (Feng et al., 2022b). Text-based ap-
proaches (Dukić et al., 2020; Heidari and Jones,
2020; Guo et al., 2021; Nedungadi et al., 2025)
leverage natural language processing (NLP) to
derive features, but produce confounded repre-
sentations from sophisticated bot-generated text,
exacerbating over-smoothing challenges (Cresci,
2020). In contrast, graph-based methodologies,
particularly those that utilize graph neural net-
works (GNN), such as graph convolutional net-
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works (GCN) (Kipf and Welling, 2016; Mendoza
et al., 2020; Yang et al., 2024), efficiently capture
the structural properties of social networks.

Graph Neural Networks (GNNs) effectively de-
tect social bots by capturing network structures and
interactions (Dehghan et al., 2023). Deep GNNs,
by modeling multi-hop relationships, can better un-
cover features of complex bot behaviors (Li et al.,
2020). However, significant challenges remain. As
shown in Figure 1. Primarily, class imbalance
in datasets causes GNNs to favor majority class
features, suppressing minority class features and
reducing detection accuracy (Feng et al., 2022b).
Moreover, node connections in social networks
are predominantly human-to-human, diluting bot-
specific features. Additionally, traditional Graph
Convolutional Networks (GCNs) exacerbate over-
smoothing through neighbor aggregation, blurring
distinctions between bot and human accounts (Kipf
and Welling, 2016; Song et al., 2023). Recent data
augmentation (Shi et al., 2024) and aggregation
methods (Song et al., 2023) attempt to address
these issues but often overlook graph topology or
fail to effectively counter minority class feature
suppression. These issues make bot detection diffi-
cult.

To address these challenges, we introduce Top-
GateGNN , a framework designed to simultane-
ously mitigate class imbalance and over-smoothing.
Our approach comprises two key components. Ini-
tially, we propose a topology-aware data augmen-
tation strategy that dynamically generates syn-
thetic samples near minority class nodes. our
topology-aware sampling method leverages local
topological properties to create high-quality sam-
ples. These samples preserve network connectivity
while strengthening the connection between bot
and human users.Additionally, we introduce a hi-
erarchical recursive gating mechanism that trans-
forms node embeddings into tree-structured repre-
sentations and iteratively captures multi-hop neigh-
borhood information. By dynamically weighting
and filtering neighbor information based on at-
tribute and structural heterogeneity, this mecha-
nism preserves essential structural and attribute
features while mitigating over-smoothing. Our key
contributions are as follows:

• We propose a Topology-Aware Sampling
method that generates high-quality synthetic
samples in regions with sparse minority
classes, enhancing bot feature representations

in human-dominated networks.

• We introduce a hierarchical recursive gat-
ing mechanism that transforms embeddings
into tree-structured representations, capturing
multi-hop patterns and retaining discrimina-
tive features to mitigate over-smoothing.

• Evaluations on three benchmark datasets
demonstrate the superior performance and
robustness of TopGateGNN across vari-
ous GNN models, validating its effective-
ness in addressing class imbalance and over-
smoothing.

2 Related work

2.1 Twitter Bot Detection

Early social bot detection relied on hand-crafted
features from tweet content (Cresci, 2020) and user
metadata (Yang et al., 2020; Cai et al., 2017), con-
strained by static patterns. Deep learning meth-
ods (e.g., (Kudugunta and Ferrara, 2018; Wei and
Nguyen, 2019; Stanton and Irissappane, 2019))
utilized multidimensional data to improve per-
formance. However, feature-based methods are
challenged by class imbalance and sparse signals,
while deep learning approaches suffer from over-
smoothing due to feature confounding.

2.2 Class Imbalance in Bot Detection

Class imbalance in social networks impedes bot
detection by underrepresenting minority classes.
Prior work (Zhao et al., 2024) shows that synthetic
minority nodes improve classification, but aligning
them with graph topology remains challenging. OS-
GNN (Shi et al., 2024) applies SMOTE to feature
and neighborhood spaces but overlooks edge struc-
ture, weakening local connectivity. GraphSMOTE
(Zhao et al., 2021) preserves neighborhoods but
struggles with complex topologies. SMOTENN
(Kudugunta and Ferrara, 2018) generates discon-
nected nodes, limiting pattern capture. These meth-
ods fail to prevent feature dilution in human-centric
networks. TopGateGNN generates topology-aware
bots, preserving connectivity to address imbalance.

2.3 Graph-based Bot Detection

Recent advances in bot detection utilize graph-
based methods to leverage social network rela-
tions. Graph neural networks (GNNs), like GAT
(Veličković et al., 2017), aggregate neighborhood
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information via message passing. GCNN (Ali Al-
hosseini et al., 2019) introduced GNNs to social
user classification, leveraging node and edge struc-
tures for detection. BotRGCN (Feng et al., 2021b)
applies Relational GCNs (Schlichtkrull et al., 2018)
with multimodal data to detect disguised bots and
coordinated attacks. BotMoE (Liu et al., 2023)
combines metadata, text, and network features us-
ing a community-aware mixture-of-experts model
to enhance detection. Yang et al. (Yang et al.,
2023) proposed a heterogeneous graph modeling
user relations and text, improving detection accu-
racy. Despite progress, over-smoothing and limited
generalization remain challenges (Ma et al., 2021;
Song et al., 2023).

3 Methodology

3.1 Overview
Problem Definition. We model a social network as
a graph G = (V, E ,X), where V = {vi}ni=1 repre-
sents user accounts, E ⊆ V ×V denotes interaction
edges (e.g., follows, mentions), and X ∈ Rn×d

contains node feature vectors xi ∈ Rd (e.g., post
frequency, profile attributes). Each node vi ∈ V
has a binary label yi ∈ {0, 1}, with yi = 1 for
social bots and yi = 0 for human accounts. Graph
neural networks (GNNs) update node embeddings
via message passing:

h(k)v = AGG
(
h(k−1)
v , {h(k−1)

u | u ∈ N (v)}
)
,

(1)
where N (v) is the neighbor set of node v, and
AGG(·) is an aggregation function (e.g., mean,
sum). Class imbalance and over-smoothing hin-
der social bot detection: imbalance biases GNNs
toward the majority class, while deep layers cause
embeddings to converge (over-smoothing), reduc-
ing discriminability. The overall framework is
shown in Figure 2

3.2 Topology-Aware Sampling
3.2.1 Topology-Aware Weighting
To integrate graph topology into synthetic node gen-
eration, we assign weights to minority-class nodes
based on degree centrality and local clustering co-
efficient. Specifically, nodes with high centrality
and low clustering are prioritized to better capture
the structure of sparse subregions. The weight wi

for each minority class node i is defined as:

wi =
deg(i)/(ci + δ)∑

j∈M deg(j)/(cj + δ)
, (2)

where deg(i) denotes the degree of node i, and
ci represents the clustering coefficient of node i,
calculated as the ratio of actual to possible edges
in the subgraph induced by node i and its neigh-
bors. M denotes the set of minority class nodes in
the training set, and δ as a small positive constant
ensuring numerical stability.

3.2.2 Topology-Aware Node Generation
Based on the computed topological weights, we
propose a Topology-Aware Sampling (TAS) strat-
egy that adaptively allocates the number of syn-
thetic nodes to improve class balance. For each
minority-class node i, the number of synthetic sam-
ples is set to ni = ⌊wi ·N⌋, where N is the total
number of synthetic samples determined by the
imbalance ratio.

Each synthetic node is generated by interpolating
between a minority node xi and one of its nearest
neighbors xj in the feature space:

xnew = xi + λ(xj − xi) + ϵ, (3)

where λ ∈ [0, 1] is a random interpolation coeffi-
cient, and ϵ ∼ N (0, σ2) is Gaussian noise added
for diversity, with σ as a small constant.

To ensure quality, synthetic nodes are filtered
based on their proximity to original samples and
their connectivity to high-weight nodes.

3.2.3 Topology-Constrained Edge Generation
To effectively incorporate synthetic nodes into the
graph, we propose an edge generation mechanism
that integrates feature similarity with topological
constraints, ensuring that the augmented graph re-
flects realistic connectivity patterns. For each syn-
thetic node xnew, we apply the K-nearest neighbors
(KNN) algorithm to identify the top K most similar
existing nodes in the feature space.

An edge is established between xnew and a can-
didate node xj if the following condition holds:

dist(xnew,xj) < θ and xj ∈ NK(xnew), (4)

where dist(·) denotes Euclidean distance, θ is a
distance threshold, and NK(·) denotes the set of K
nearest neighbors.

To preserve topological fidelity, we further con-
strain connections by requiring that the candi-
date node xj has degree greater than a threshold
(deg(j) > δd) and clustering coefficient below an-
other threshold (cj < δc). This encourages con-
nections to structurally informative but sparsely
connected nodes, aligning with the topology of
minority class regions.
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Figure 2: Overview of the TopGateGNN framework. For each node v, a rooted k-hop tree Tv is constructed to
capture hierarchical neighborhood information. The embedding hv ∈ RD is partitioned into k+1 segments using
learned split points P (0)

v , . . . , P
(k)
v , assigning disjoint dimensions to l-hop neighbors. Attribute heterogeneity sα,v

and structural heterogeneity ss,v are computed and fused as sf,v , guiding gated message passing where embedding
h
(k)
v is updated using previous layer embedding h

(k−1)
v , neighbor messages m(k)

v , and gating vector g(k)v . Final
embeddings are used for prediction ŷv .

3.3 Node Embedding Alignment

3.3.1 Rooted-Tree Hierarchical Mapping
We represent each node v’s neighborhood as a k-
hop rooted tree Tv, with v as the root (see Fig-
ure 2 for an illustration). This tree organizes
neighbors into layers based on their hop distance
from v, enabling the isolation of multi-hop fea-
tures. To map the hierarchical structure of Tv
to the node embedding hv ∈ RD while preserv-
ing multi-hop information, we partition the em-
bedding into k + 1 segments using split points
0 = P

(0)
v ≤ P

(1)
v ≤ · · · ≤ P

(k)
v = D, where

P
(l)
v marks the boundary for encoding features of

l-hop neighbors, preventing feature mixing across
hops to mitigate over-smoothing, as illustrated in
Figure 2. These split points are dynamically pre-
dicted via a learnable gating mechanism detailed
in Section 3.3.3.

3.3.2 Heterogeneity Assessment
To capture the complex connectivity patterns in so-
cial networks, we introduce a heterogeneity assess-
ment mechanism that adaptively adjusts message-
passing weights by evaluating differences in node
features and local structures. This mechanism com-
prises two components: attribute heterogeneity and
structural heterogeneity.

Attribute heterogeneity sa,v quantifies feature
variance among a node’s neighbors and is normal-
ized via a sigmoid function:

sa,v = σ


 1

|N (v)|
∑

u∈N (v)

(h(k−1)
u − h̄(k−1)

v )2


 ,

(5)
where h

(k−1)
u is the embedding of neighbor node

u at layer k−1, and h̄
(k−1)
v is the mean neighbor

embedding. The set N (v) denotes the neighbors
of node v, and σ(·) is the sigmoid function.

Structural heterogeneity ss,v captures local topo-
logical variation and is computed using the entropy
of the neighbor degree distribution:

ss,v = σ

(
−
∑

b

pb log(pb + ε)

)
, (6)

where pb is the proportion of neighbor degrees
falling into bin b, and ε is a small constant to ensure
numerical stability.

The final heterogeneity score sf,v is obtained
by fusing the two components through a learnable
transformation:

sf,v = σ (Wf [sa,v; ss,v]) , (7)

where Wf is a trainable weight matrix, and [·; ·]
denotes vector concatenation.
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3.3.3 Gated Embedding Refinement
To address heterogeneity in social networks, we
introduce a dynamic heterogeneity gating mecha-
nism, where the initial gating vector is computed
via linear projection:

ĝ(k)v = cumsoft
(
W(k)[h(k−1)

v ;m(k)
v ]
)
, (8)

where h
(k−1)
v denotes the embedding from the pre-

vious layer, m(k)
v = 1

|N (v)|
∑

u∈N (v) h
(k−1)
u repre-

sents the aggregated neighbor message, W(k) de-
notes a learnable weight matrix, and cumsoft(·) =
cumsum(softmax(·)) denotes the cumulative soft-
max operation, ensuring a monotonically increas-
ing gating signal for stable embedding updates. To
further ensure monotonicity across layers, the gat-
ing vector is refined by

g̃(k)mono
v = g̃(k−1)

v + (1− g̃(k−1)
v ) ◦ ĝ(k)v , (9)

where g̃
(k−1)
v is the previous layer’s refined gating

vector and ◦ denotes element-wise multiplication.
The heterogeneity score sf,v further refines the gat-
ing vector as

g̃(k)v = σ
(
g̃(k)mono
v + wfsf,v

)
, (10)

where wf is a trainable parameter. Finally, the node
embedding is updated through gated fusion:

h(k)v = g̃(k)v ◦ h(k−1)
v + (1− g̃(k)v ) ◦m(k)

v , (11)

3.4 Training
We train the TopGateGNN for social bot detec-
tion in a supervised manner, where each node v
is labeled yv ∈ {0, 1}, with yv = 0 indicating a
human account and yv = 1 indicating a bot. The
training objective is to minimize a weighted binary
cross-entropy loss:

L = − 1

N

N∑

v=1

wv[yv log(ŷv)+(1−yv) log(1−ŷv)],

(12)
where N denotes the total number of nodes, ŷv =

σ(Wouth
(K)
v + bout) represents the predicted prob-

ability of a node being a bot, derived from the
final gated embedding h

(K)
v ∈ RD through a linear

layer. To address class imbalance, we employ class-
balanced weights defined as wv = N

2Nyv
, where

Nyv represents the number of nodes in class yv.
Detailed description of these trainings is provided
in Appendix A.1.

4 Experimental Setups

Datasets. We use three social bot detection bench-
mark datasets to evaluate the performance of Top-
GateGNN : Cresci-15 (Cresci et al., 2015), TwiBot-
20 (Feng et al., 2021a), and MGTAB (Shi et al.,
2023). Detailed descriptions of these datasets are
provided in Appendix A.2.
Baselines. We compare it against a diverse set of
baseline methods for social bot detection, catego-
rized into three groups: Graph Neural Network
(GNN)-based approaches (e.g., BotRGCN (Feng
et al., 2021b), SimpleHGN (Lv et al., 2021), Se-
Bot (Yang et al., 2024), and RGT (Feng et al.,
2022a)); sample synthesis-based approaches (e.g.,
GraphSmote (Zhao et al., 2021) and OS-GNN (Shi
et al., 2024)); and feature-based approaches (e.g.,
BotBuster (Ng and Carley, 2023), BotMoe (Liu
et al., 2023), RoBERTa (Liu et al., 2019), and SG-
Bot (Yang et al., 2020)). Detailed descriptions of
these baselines are provided in Appendix A.3.
Implementation. Experiments were conducted
on two NVIDIA RTX 3090 GPUs using PyTorch,
PyTorch Geometric, and scikit-learn. Models were
trained using Adam, with GNNs set to 4 layers and
a 256-dimensional hidden layer. Hyperparameters
included a learning rate of 0.001, dropout of 0.3,
and weight decay of 1e-5, with nearest neighbor
k = 5 and λ = 0.8 for preprocessing. Models were
trained until convergence for up to 300 epochs.

5 Results and Analysis

5.1 Main Results
We evaluate TopGateGNN on nine representative
baselines from three widely used Twitter bot de-
tection benchmarks: Cresci-15, TwiBot-20, and
MGTAB. As shown in Table 1.

Existing GNN-based methods offer limited gains
over traditional approaches on MGTAB, with only
marginal F1 improvements. In contrast, Top-
GateGNN consistently outperforms all baselines
across Cresci-15, TwiBot-20, and MGTAB by
leveraging topology-aware augmentation to alle-
viate class imbalance. It surpasses OS-GNN and
Simple-HGN on MGTAB in F1 and balanced ac-
curacy, respectively, and outperforms SEBot in
balanced accuracy on TwiBot-20. On Cresci-
15, TopGateGNN achieves substantial perfor-
mance gains. These results confirm that Top-
GateGNN effectively addresses class imbalance
and over-smoothing through topology-aware aug-
mentation, dynamic gating, and heterogeneity-
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Cresci-15 TwiBot-20 MGTAB

Method F1-score Accuracy bAcc F1-score Accuracy bAcc F1-score Accuracy bAcc

GraphSmote 96.26 96.56 95.98 71.50 76.40 75.25 79.21 83.28 81.96
SGBot 77.91 77.10 80.40 84.15 79.50 81.00 - - -
BotBuster 97.53 96.90 96.28 82.47 79.34 78.30 - - -
RoBERTa 97.22 96.41 95.84 76.58 71.93 70.59 - - -
Simple-HGN 94.68 93.13 87.65 86.33 83.93 83.28 79.43 89.08 87.68
BotRGCN 96.50 97.60 87.00 87.25 85.75 86.50 79.83 89.37 84.20
RGT 97.78 96.63 96.07 87.80 86.36 86.70 79.97 89.47 83.56
BotMoE 98.82 98.50 87.50 88.04 86.59 86.55 79.83 88.97 84.10
OS-GNN 96.38 96.65 96.35 82.30 82.49 82.41 85.39 86.75 87.18
SEBot - - - 88.41 86.85 87.31 81.61 90.24 84.38

TopGateGNN (Ours) 98.55 98.62 98.60 88.12 87.25 87.50 87.31 91.62 89.32

Table 1: Performance comparison of various methods on Cresci-15, TwiBot-20, and MGTAB datasets (F1-score,
Accuracy, and Balanced Accuracy). Bold indicates the best, underline indicates the second best. ’-’ indicates that
the baseline is not scalable to the corresponding dataset.

aware modeling, enhancing the detection of bot-
specific multi-hop anomalies.

5.2 Augmentation Study
To assess the effectiveness of topology-aware aug-
mentation in enhancing robot account connectivity,
we analyzed edge type proportions (robot-robot
[R-R], robot-human [R-H], human-human [H-H])
on the MGTAB dataset before and after augmenta-
tion, as depicted in Figure 3. Initially, R-R edges
were scarce (0.07%), with H-H edges dominating
(91.02%) and R-H edges at 8.91%, reflecting sparse
robot connections. Post-augmentation, R-R edges
increased to 17.43%, R-H edges to 48.56%, and H-
H edges decreased to 34.02%, indicating enhanced
robot connectivity and strengthened bot-specific
patterns.

New edges connect these synthetic social bot
nodes to existing nodes based on feature proximity
and topological constraints. Since the new nodes
are robots, all new edges are R-R or R-H edges,
with R-H edges dominating because there are more
human nodes in the original graph. This enhance-
ment enhances the connectivity of robots, makes
robot-specific patterns more prominent, enhances
the model’s capture of minority class node features.

5.3 Gating Analysis
To investigate the role of the proposed gating mech-
anism in TopGateGNN for social bot detection, we
visualize the distribution of gating signals across
six graph convolutional layers, separated by user
(Label 0) and bot (Label 1) labels. As shown in Fig-
ure 4, in the first layer, user nodes exhibit a broader
signal distribution with lower intensity, while bot

(a) Edge Ratio (b) Performance

Figure 3: The proportion and performance changes of
different edge types before and after enhancement on
MGTAB.

nodes display a more concentrated and stronger
signal. With deeper layers, bot signals remain fo-
cused and prominent, whereas user signals become
increasingly varied, reflecting adaptive information
flow control.

This divergence in signal dynamics effectively
mitigates over-smoothing in deep GNNs by limit-
ing excessive feature mixing for user nodes while
enhancing targeted aggregation for bot nodes. Con-
sequently, TopGateGNN maintains distinct repre-
sentation boundaries between users and bots, im-
proving classification accuracy and interpretability
in social bot detection across layers.

5.4 Over-Smoothing Analysis

We evaluated its performance on the MGTAB
dataset across varying layer depths (2, 3, 4, 6, 8,
12), comparing it with baselines GCN (Kipf and
Welling, 2016), BotRGCN (Feng et al., 2021b), and
OS-GNN (Shi et al., 2024). We also conducted an
ablation study by removing the gating mechanism
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Figure 4: Visualization of gating signals.

(Ours w/o Gating) to examine its role.
As shown in Figure 5, TopGateGNN main-

tains stable performance across all layers, consis-
tently outperforming baselines. In contrast, GCN,
BotRGCN, and OS-GNN exhibit a marked perfor-
mance decline as layers deepen, reflecting their
susceptibility to over-smoothing and loss of dis-
criminative power between bots and users. The
ablation study further reveals that without the gat-
ing mechanism, performance degrades similarly to
baselines, underscoring its critical role in preserv-
ing feature distinctiveness.

Figure 5: Test accuracy across increasing layers.

5.5 Topology-Aware Sampling Study

To evaluate our topology-aware sampling (TAS),
we conducted experiments on the MGTAB dataset,
comparing TAS with fixed sampling ratios. Unlike
fixed ratios, TAS dynamically adjusts the sampling
ratio based on minority class node topology, gener-
ating synthetic samples that mitigate class imbal-
ance.

As shown in Figure 6, TAS outperforms fixed
sampling ratios across all metrics. Fixed sampling
ratios peak then decline in performance, as exces-
sive sampling introduces noise and insufficient sam-
pling underrepresents the minority class. In con-
trast, TAS optimizes sampling ratios, improving the
representational capacity of graph neural networks
in imbalanced networks. By integrating topological

information, TAS generates high-quality samples
to alleviate class imbalance and refine classification
boundaries, thereby improving TopGateGNN ’s pat-
tern detection capabilities for specific robots.

Figure 6: Performance comparison at different sampling
rates on the MGTAB dataset.

Table 2: Data Augmentation Effects with Different K
Values on MGTAB

K Dist. Acc F1 bAcc

1 0.7845 90.40 87.66 87.61
3 0.8082 90.24 87.68 88.24
5 0.8231 91.62 87.31 89.32
7 0.8323 89.95 87.24 88.02

5.6 Synthetic Study
To evaluate topology-aware data augmentation for
social bot detection in TopGateGNN on imbal-
anced networks, we conducted experiments on the
MGTAB dataset, analyzing how the number of
nearest neighbors (K ∈ {1, 3, 5, 7}) affects perfor-
mance. We assessed two metrics: (1) Dist., measur-
ing sample diversity; and (2) performance metrics,
for detection capability. Results are shown in Ta-
ble 2.

As K increases, Dist. rises from 0.7845 to
0.8323, as larger K includes diverse neighbors,
improving minority class representation. At K=5,
TopGateGNN achieves optimal performance with
a Dist. of 0.8231, balancing diversity and deviation.
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Figure 7: Node embedding visualization (bots are shown in red, while humans are shown in blue).

At K=7, performance declines due to excessively
divergent samples impairing generalization.

5.7 Ablation Study
Ablation experiments on MGTAB assess the con-
tribution of each TopGateGNN component, using
Bare GNN as the backbone. See Table 3 for results.

• Without a heterogeneous gating mechanism,
the model overmixes features during aggre-
gation, making bot and human nodes hard
to distinguish in deeper layers due to over-
smoothing.

• Without gating, the model cannot separate
multi-hop information, leading to mixed em-
beddings that weaken its ability to detect com-
plex bot behaviors.

• Without synthesizing minority class nodes,
GNNs rely on the original imbalanced graph,
where human connections dominate, diluting
robot-specific features.

Model Acc F1 bAcc

Full TopGateGNN 91.62 87.31 89.32

w/o HeteGating 90.61↓1.01 86.87↓0.44 88.34↓0.98
w/o Gating 89.37↓2.25 86.07↓1.24 88.12↓1.20
w/o TAS 88.28↓3.34 85.29↓2.02 86.75↓2.57

Table 3: Ablation study.

5.8 Visualization Analysis
We visualize node embeddings from various meth-
ods with t-SNE(Van der Maaten and Hinton, 2008)
to compare their performance in social bot detec-
tion. As shown in figure 7, our model achieves
better clustering and class separation compared to
baseline methods.

BotRGCN forms compact clusters, but class
boundaries are blurred, with notable overlap. OS-
GNN has overlapping clusters and poor class sep-
aration. GCN clusters with intra-cluster compact-
ness lacking and unclear class boundaries. GAT

slightly improves local structure capture, but its
distribution is scattered, with poor class transitions.
In contrast, our model shows tighter clusters and
clearer class boundaries, with compact intra-cluster
distributions and distinct inter-cluster separation.
These results suggest that our model captures node
similarities and ensures smoother class transitions
globally, improving the quality of node representa-
tions and class differentiation accuracy.

6 Conclusion

We propose TopGateGNN , which employs
topology-aware sampling to generate synthetic mi-
nority class samples and uses a hierarchical gating
mechanism to create tree-like node embeddings,
addressing class imbalance while reducing over-
smoothing and improving feature discrimination.
Experiments on three benchmark datasets show
TopGateGNN surpasses existing methods. These
results confirm TopGateGNN ’s effectiveness in so-
cial bot detection, offering avenues for graph-based
anomaly detection research.
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Limitations

TopGateGNN effectively relieves class imbalance
and over-smoothing in social bot detection but has
limitations. Evaluations on Cresci-15, TwiBot-
20, and MGTAB datasets may not reflect evolving
bot behaviors, as (Cresci et al., 2023) note issues
with dataset labeling and collection. Testing on
real-time networks could strengthen validation, but
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shifting interactions complicate this. Our topology-
aware sampling relies on local topological proper-
ties, which may overlook global or temporal net-
work structures, as explored by (Yang et al., 2024).
Although large language models could extract user
features (Yang and Menczer, 2023), we prioritized
graph neural networks, leaving LLM integration
for future work. These limitations suggest direc-
tions for improving TopGateGNN ’s applicability
in diverse networks.
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A Experimental Details

A.1 Training Setting

We optimize L using the Adam optimizer, with in-
puts comprising an augmented graph G = (V, E)
generated through topology-aware sampling, along
with node features xv ∈ Rd. This approach incor-
porates multi-relational edge support to generate
high-quality embeddings, thereby improving social
bot detection performance.

A.2 Datasets

Cresci-15 contains 5,301 Twitter accounts, of
which 3,351 are bot accounts and 1,950 are human
accounts, covering follow and follow relationships.
TwiBot-20 contains 11,826 Twitter accounts, of
which 6,589 are bot accounts and 5,237 are human
accounts, involving follow and follow interactions.
MGTAB contains 10,384 accounts, of which 2,830
are bot accounts and 7,554 are human accounts,
supporting multiple relationship types. The exper-
iments follow the training, validation, and testing
splits defined in (Shi et al., 2023).

A.3 Baselines

To validate our approach, we compare our model
with a variety of baseline methods:

• GraphSmote (Zhao et al., 2021) constructed
an embedding space to encode the similarities
between nodes. New samples are synthesized
in this space to ensure their authenticity.

• SGBot (Yang et al., 2020) constructed a
dataset A and a rigorous validation system
was designed in addition to traditional cross-
validation to optimize the performance of the
model on the prediction dataset.

• BotBuster (Ng and Carley, 2023) proposed
a social robot detection method based on the
Mixture of Experts architecture, aiming to ad-
dress the limitations of existing methods in
the face of data loss and cross-platform appli-
cations.

• RGT (Feng et al., 2022a) proposed a
heterogeneity-aware bot detector that dynami-
cally incorporates and exploits heterogeneous
relationships and influence patterns among
users.

• SimpleHGN (Lv et al., 2021) proposed a sim-
ple and powerful baseline model, Simple-
HGN, to promote HGNN research towards
a more robust and reproducible development.

• BotRGCN (Feng et al., 2021b) constructed
a heterogeneous graph and applied the Rela-
tional GCN (RGCN) for detection.

• OS-GNN (Shi et al., 2024) improved the
model’s ability to recognize minority classes
by synthesizing minority class samples in the
feature space, avoiding the generation of new
graph structures or edges.

• RoBERTa(Liu et al., 2019) is a pre-trained
language model based on the Transformer ar-
chitecture, optimized the BERT pre-training
process.

• BotMoe (Liu et al., 2023) introduced a mul-
timodal Twitter robot detection framework
with a community-aware MoE architecture,
which effectively solved problems such as
feature manipulation, camouflage, and cross-
community generalization.

• SeBot (Yang et al., 2024) is a social robot
detection framework based on graph neural
networks, which uses structural entropy to
guide multi-view contrastive learning.
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