
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2561–2575

December 20-24, 2025 ©2025 Association for Computational Linguistics

Differential Mamba

Nadav Schneider1,2, Itamar Zimerman3,4, Eliya Nachmani1

1School of Electrical and Computer Engineering, Ben-Gurion University of the Negev
2IAEC

3Tel-Aviv University
4IBM Research

nadavsch@post.bgu.ac.il zimerman1@mail.tau.ac.il eliyanac@bgu.ac.il

Abstract

Sequence models like Transformers and RNNs
often overallocate attention to irrelevant con-
text, leading to noisy intermediate representa-
tions. This degrades LLM capabilities by pro-
moting hallucinations, weakening long-range
and retrieval abilities, and reducing robustness.
Recent work has shown that differential design
can mitigate this issue in Transformers, improv-
ing their effectiveness across various applica-
tions. In this paper, we explore whether these
techniques, originally developed for Transform-
ers, can be applied to Mamba, a recent archi-
tecture based on selective state-space layers
that achieves Transformer-level performance
with greater efficiency. We show that a naive
adaptation of differential design to Mamba is
insufficient and requires careful architectural
modifications. To address this, we introduce
a novel differential mechanism for Mamba,
empirically validated on language modeling
benchmarks, demonstrating improved retrieval,
long-context capabilities and superior perfor-
mance over vanilla Mamba. Finally, we con-
duct extensive ablation studies and empirical
analyses to justify our design choices and pro-
vide evidence that our approach effectively mit-
igates the overallocation problem in Mamba-
based models. Our code is publicly available.

https://github.com/NadavSc/
Diff-Mamba

1 Introduction

Designing enhanced architectures for deep se-
quence modeling is a pivotal task in the ML com-
munity, as sequence models drive breakthroughs
such as ChatGPT (Achiam et al., 2023) in NLP and
Stable diffusion (Rombach et al., 2022) in com-
puter vision, which are fundamental to modern
generative models. However, these models face
two major challenges as: efficiency, constrained by
the quadratic time complexity in sequence length
of the Transformer architecture (Vaswani, 2017),

and robustness, which is hindered by inconsistency,
reliability issues, and hallucinations, leading to sub-
optimal performance. Our work addresses these
challenges by enhancing the robustness of recent
efficient architectures with sub-quadratic complex-
ity such as Mamba (Gu and Dao, 2024), making
them more reliable and robust.

To address this robustness issue, we aim to re-
duce the over-allocation of attention to irrele-
vant context across hidden layers, which often
leads to noisy representations. Our approach is
inspired by Ye et al. (2024), who mitigated this
problem in transformers through differential design.
This architectural modification was the core of the
Diff-Transformer, a transformer variant that demon-
strated improved performance, including greater
robustness, enhanced retrieval and long-context ca-
pabilities compared to the original model.

Our focus is on improving the recently intro-
duced Mamba architecture, which builds upon
selective state-space layers (S6). This architec-
ture is known for its efficiency, introducing sub-
quadratic complexity in sequence length while also
enabling auto-regressive decoding with a complex-
ity that remains independent of sequence length.
Beyond these efficiency advantages, recent stud-
ies have demonstrated that Mamba-based archi-
tectures can match or even surpass the SoTA per-
formance of transformers, even at relatively large
scales. For example, Falcon-Mamba 7B (Zuo et al.,
2024), a pure Mamba model, matches the perfor-
mance of LLaMA- 3-8B on several language tasks.
Additional notable examples of Mamba’s integra-
tion in LLMs include Jamba (Lieber et al., 2024),
Zamba (Glorioso et al., 2024), Hymba (Dong et al.,
2024), and others (Wang et al., 2024; Waleffe et al.,
2024; Ren et al., 2024). More importantly, recent
Mamba-based models have demonstrated remark-
able performance as reasoning models (Paliotta
et al., 2025; Wang et al., 2025), underscoring their
central role in the ongoing test-time scaling revolu-

2561

https://github.com/NadavSc/Diff-Mamba
https://github.com/NadavSc/Diff-Mamba

tion, as exemplified by models such as OpenAI’s
O1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo
et al., 2025).

While the over-allocation problem is a general is-
sue not specific to any architecture, we hypothesize
that Mamba-based LLMs have a stronger tendency
toward over-allocation compared to transformers.
This is primarily due to two factors: (i) Mamba is
a softmax-free architecture, meaning it lacks the
exponential scaling effect that helps suppress irrel-
evant attention weights, and (ii) as a state-based
model, Mamba operates locally and cannot directly
process distant tokens without considering all in-
termediate tokens, resulting in the dispersion of
important tokens among irrelevant ones. This leads
to our central research question:

Can differential design be leveraged to improve the
robustness of Mamba models?

where we hypothesize that improving robustness by
mitigating the over-allocation problem can enhance
the model’s general capabilities, improve retrieval
and long-context processing, and potentially reduce
issues related to consistency and hallucinations.

We provide a positive answer to this question
by showing that, although a naive implementa-
tion of differential mechanisms does not improve
Mamba architectures, a more carefully designed
mechanism does. Through a systematic evaluation
on language tasks, ablation studies, and empirical
analysis, we conclude that our variant is favorable
compared to the vanilla Mamba.

Our main contributions are as follows: (i) We
present Diff-Mamba, a modification of the Mamba
architecture inspired by Diff-Transformer, which
mitigates the problem of over-allocating attention
scores to irrelevant context and improves the gen-
eral language modeling abilities of the model. (ii)
Through a series of ablation studies and empirical
analysis using mechanistic interpretability tools,
we justify our design choices and demonstrate that
the intermediate representations obtained from our
method are indeed less noisy. (iii) Finally, we show
that Diff-Mamba demonstrates improved retrieval
and long-context capabilities compared to Mamba.
This is particularly important, as recurrent LLMs
such as Mamba are primarily designed to address
the inefficiencies caused by the quadratic complex-
ity of transformers, which becomes especially crit-
ical in long-context regimes. Accordingly, Diff-
Mamba achieves improvements over Mamba pre-
cisely in the domain where such architectures are

most needed (Ben-Kish et al., 2025b).

2 Background

Here we describe the scientific context and intro-
duce the terminology for discussing our method.

2.1 Differential Transformer
Self-Attention Self-Attention is a fundamental
component of Transformer architectures (Vaswani,
2017), has significantly shaped recent advances in
both NLP and computer vision. This mechanism
enables dynamic focus allocation by capturing pair-
wise token dependencies, allowing the model to
determine the relative importance of each token
within a sequence. Mathematically, it defined by:

Attn(Q,K, V) = αV, α = softmax
(
QKT

√
dk

)
(1)

In this formulation, Q,K, and V represent the
queries, keys, and values, respectively, while dk
denotes the key dimension. Transformers extend
this mechanism by employing H parallel attention
heads, enabling the model to capture a broader
spectrum of dependencies.

Differential Attention To address the problem
of over-allocation of attention to irrelevant tokens,
Ye et al. (2024), introduced Diff-Transformer, a
mechanism that reduces attention noise through
differential denoising by splitting each attention
head into two, and subtracting one attention map
from the other. This mechanism is defined by:

DiffAttn(Q1,K1, Q2,K2, V) = (α1 − λα2)V (2)

αi = softmax
(
QiKi

T

√
dk

)
(3)

where λ is a learnable scalar. To better improve
the training dynamics, λ is re-parameterized and
Group Normalization (Wu and He, 2018) is applied
at the end of each head (post-subtraction).

2.2 State-Space Layers
State-space layers were first introduced in Gu et al.
(2021) and were later substantially improved by
the S4 model (Gu et al., 2022). Since then, they
have demonstrated strong performance across a va-
riety of domains, including NLP (Fu et al., 2022;
Mehta et al., 2022), audio generation (Goel et al.,
2022), image modeling (Baron et al., 2023; Nguyen
et al., 2022), long-horizon video understanding
(Wang et al., 2023), reinforcement learning (David

2562

et al., 2022; Lu et al., 2024), and speech recognition
(Saon et al., 2023). These models implement linear
recurrent update rules derived from time-invariant
state-space formulations, which can be efficiently
computed in parallel using convolutions and with
sub-quadratic complexity.

2.3 Mamba and Selective State-Space Layers
A Mamba block processes a signal U ∈ RL×D

where D is the hidden dimension and L is the num-
ber of tokens. Its core mechanism is the S6 layer,
and it forward path formalized by:
X = σ(Conv1D(Linear(U))), Z = σ(Linear(U))

Y = S6(X), Ŷ = Linear(Y ⊗ Z)
(4)

where X is the input to the S6 layer, and to the S6
layers, X,Z, Y, Ŷ ∈ RL×D. The function σ repre-
sents SiLU activation, and ⊗ represents element-
wise multiplication with the gating branch. Each
Mamba block is primarily parameterized by linear
and convolutional layers, along with the internal
components of the S6 layer described below.

S6 The S6 layer is the most popular variant of
SSMs, and it employ real, diagonal and selective
SSM. Standard real and diagonal SSMs parameter-
ized by a diagonal transition matrix A ∈ RN ′×N ′

,
input and output matrices B,C ∈ RN ′×1 where
N ′ is the state size, and a timescale ∆ ∈ R. Each
channel of such an SSM can be viewed as a map-
ping from an input scalar sequence x to an output
scalar sequence y via the following recurrent rule:

ht = Āht−1 + B̄xt, yk = Cht

Ā = fA(A,∆), B̄ = fB(B,∆)
(5)

where fA, fB are discretization functions, and
the discrete system matrices are Ā ∈ RN ′×N

and B̄ ∈ RN ′×1. The recurrent rule in Eq. 5
can be computed efficiently in parallel on modern
hardware accelerators using work-efficient parallel
scans (Smith et al., 2022) or a simple scalar convo-
lution via FFTs (Gu et al., 2021). Note that Eq. 5 is
a map from RL to RL, and to process D channels,
multiple independent instances are used.

The S6 layer differs from standard SSMs by
employing a selective mechanism, where the sys-
tem matrices are input-dependent. As a result, the
system becomes time-invariant, with the per-step
system matrices determined by the entire set of
channels and then applied to process each chan-
nel independently. The entire mechanism can be
computed by: SB, SC ∈ RN ′×D, A ∈ RD×N ′

and
S∆ ∈ R1×D to define the time-variant matrices by:

Bt = SBX∗t, Ct = SCX∗t, ∆t = softplus(S∆X∗t)

Āt = exp(∆tA), B̄t = ∆tBt

(6)

and the time-variant recurrent rule by:

ht = Ātht−1 + B̄txt, yk = Ctht (7)

We study the ’many-to-one’ setting, where the
model processes an entire input sequence to pro-
duce a single output. This regime is widely used
in NLP, encompassing both auto-regressive next-
token prediction and sequence classification tasks.

2.3.1 Mamba as Implicit Attention
The connection between Mamba and linear atten-
tion layers is well-established in (Ali et al., 2024;
Dao and Gu, 2024; Sieber et al., 2025). Specifically,
it has been shown that the time-variant recurrent up-
date rule of S6 for a single channel (see Eq. 7) can
be explicitly unrolled into the linear attention for-
mulation Y = AX when A is an implicit attention
matrix defined by:




C1B̄1 0 · · · 0
C2Ā2B̄1 C2B̄2 · · · 0

...
...

. . . 0

CL

∏L
k=2 ĀkB̄1 CL

∏L
k=3 ĀkB̄2 · · · CLB̄L


 (8)

This perspective is further extended by Zimer-
man et al. (2024), who generalize the interpretation
of S6 as implicit attention from Eq. 8 to encom-
pass most components of the Mamba block, includ-
ing activations, normalization layers, convolutional
layers, and the gate branch, into a unified implicit
attention formulation.

Data-Controlled Linear Operators The formu-
lation of data-controlled linear operators was first
introduced by Poli et al. (2023), who demonstrated
that self-attention can be viewed as an expressive
form of such operators. This principle guided
the authors in designing the Hyena layer. Sub-
sequently, Ali et al. (2024) showed that S6 layers
could also be unified under an implicit variant of
this formulation, which Zimerman et al. (2024)
further extended to additional architectures, includ-
ing the entire Mamba block, RWKV (Peng et al.,
2023), and Griffin (De et al., 2024). This extended
perspective inspired our approach, leading us to
interpret differential design as a method to implic-
itly parameterize less noisy data-controlled linear
operators. This insight motivated our decision to
apply differential design at the Mamba level.

2563

3 Method

We begin with the simplest implementation of in-
corporating the differential mechanism into the
Mamba block. Our approach is inspired by the
Differential Transformer (Ye et al., 2024), which
applies subtraction at the attention-level rather than
at the transformer level. This mechanism is built
on top of self attention and it can be described as:

∀i ∈ [1, 2] : Qi = XWQ
i ,Ki = XWK

i , V = XWV

(9)

DiffAttn(x) =
(
S(Q1K

T
1√

d
)− λS(Q2K

T
2√

d
)
)
V (10)

Here, S is the softmax and λ is parameterized to
ensure stability and improve training dynamics:

λ = exp(λq1 · λk1)− exp(λq2 · λk2)− λinit (11)

To better adapt this technique to Mamba mod-
els, we reinterpret differential attention through the
lens of a data-controlled linear operator (Poli et al.,
2023), leading to the following formulation:

DiffAttn(x) = AV, A = A1 − λA2

A1 = S
(
Q1K

T
1√

d

)
, A2 = S

(
Q2K

T
2√

d

) (12)

here, the matrix A defines a data-controlled linear
operator.

3.1 Diff S6

Eq. 12 defines a straightforward approach to imple-
menting differential Mamba by subtracting values
obtained from S6 layers instead of attention layers.
This builds upon two key similarities between S6
and attention: (i) S6 in Mamba serves the same role
as attention in Transformers–capturing interactions
between tokens, and (ii) S6 layers have been shown
to be an implicit form of causal linear attention.

Thus, incorporating the differential mechanism
into the Mamba block can be achieved by:

Diff S6(X) = S61(X)− λS62(X) (13)

where λ is defined similarly to Eq. 11.
Similar to Eq. 12, this formulation can be rewrit-

ten in the form of a data-controlled linear operator:

Diff S6(x) = (A1 − λA2)X = AX (14)

where A1 and A2 are the implicit attention matri-
ces of S6 controlled by the system matrices Āij ,B̄ij

and Cij for any time-step j ∈ [L] and model index
j ∈ 1, 2 defined as follows:




Ci1B̄i1 0 · · · 0
Ci2Āi2B̄i1 Ci2B̄i2 · · · 0

...
...

. . . 0

CiL

∏L
k=2 ĀikB̄i1 CiL

∏L
k=3 ĀikB̄i2 · · · CiLB̄iL




(15)

One crucial difference between Diff S6 and Diff
Attention (see Eqs. 13 and 10) is that Diff At-
tention subtracts elements on the same scale, as
softmax produces values in the range [0,1]. In con-
trast, S6 produces unnormalized and unbounded
outputs. To address this discrepancy, we introduce
an additional normalization step denoted by N:

N-Diff S6(X) = N(S61(X)− λS62(X)) (16)

For simplicity, we define λ as:

λ = Sigmoid(
∑

λ̄) + λinit (17)

where λ̄ ∈ RD is a learnable parameter used to pa-
rameterize λ as a positive and more stable weight.

3.2 Diff-Mamba

However, as detailed in the results section, Diff S6
does not perform well and, in practice, falls short
of standard Mamba layers. We suspect this arises
from S6 being too simple and not functioning as a
general-purpose, expressive mixing alternative to
attention layers. Consequently, it fails to leverage
the full potential of differential techniques. To
address this limitation, we draw inspiration from
Zimerman et al. (2024), who demonstrated that the
entire Mamba block can function as an alternative
mixing mechanism to attention by formulating it
as a data-controlled linear operator. In particular,
the authors show that Mamba can be reformulated
as implicit attention by:

Mamba(X) = AX (18)

A = SILU(Linear(x))α̂ diag (Sig(Conv(x)))M

where M is a matrix representing the convolution
layer, and α̂ is the linear operator corresponding to
S6, as formalized by Ali et al. (2024). This formu-
lation characterizes Mamba as a data-control linear
operator with richer and more expressive implicit
attention matrices. Building on this insight, we
introduce Diff-Mamba, a mechanism that extends
the differential approach to the full Mamba block:

Diff-Mamba(X) = Mamba1(X)− λ Mamba2(X) (19)

Similar to Eqs. 12 and 14, this can be rewritten as
a data-controlled linear operator, defined by:

2564

MambaDiff-MambaDiff-S6

𝜎

SSM

𝜎

Conv

𝑿 𝑩 𝑪𝑨

×

N

𝒀

𝜎

𝑿𝟏𝑩𝟏𝑪𝟏𝑨𝟏

N

𝒀𝟏

−

𝑿𝟐 𝑩𝟐 𝑪𝟐𝑨𝟐

𝒀𝟐
SSM SSM

××

Conv

× (1 − 𝜆𝑖𝑛𝑖𝑡)

× 𝜆

𝜎

SSM

𝜎

Conv

𝑿 𝑩 𝑪𝑨

×

N

𝒀

𝜎

SSM

𝜎

Conv

𝑿 𝑩 𝑪𝑨

×

N

𝒀

N
× (1 − 𝜆𝑖𝑛𝑖𝑡)

× 𝜆
−

𝜎

NN

𝜎

Figure 1: Comparative illustration of our variants Diff-Mamba and Diff-S6 versus the original Mamba architecture,
where ⊗ is elementwise multiplication, σ is the SILU activation, Linear and Conv1D are standard linear projection
and 1-dimensional convolution layers, and N stands for normalizations.

Diff-Mamba(X) = AX, A = A1 − λA2 (20)

A key distinction between Diff Attention and
Diff-Mamba is that the latter applies subtraction
across a broader set of components, as illustrated
in Figure 1.

Similar to the normalized Diff S6 variant in
Eq. 16, we add a normalization term:
N-Diff-Mamba(x) = N(Mamba1(x)−λMamba2(x)) (21)

Resulting in the normalized Diff-Mamba mecha-
nism, which is our primary contribution. Finally,
following Ye et al. (2024), we multiply the output
of all variants by 1− λinit.

4 Experiments

In this section, we empirically evaluate the effec-
tiveness of the Diff-Mamba architecture. We begin
in Section 4.1 by demonstrating that Diff-Mamba
outperforms the original Mamba architecture in
small-scale language modeling tasks across mul-
tiple datasets. In Section 4.2, we justify our key
design decisions through a comprehensive series
of ablation studies. Subsequently, in Section 4.3,
we use carefully designed synthetic tasks that are
predictive of model behavior in large scale settings.
Then, in Section 4.4 we train the models at medium
scale and test long-context capabilities. Afterwards,
in Section 4.5 we showcase the superior retrieval
performance of Diff-Mamba relative to Mamba.
Finally, in Section 4.6, we utilize tools from the do-
main of mechanistic interpretability, such as Tuned-
lens (Belrose et al., 2023), to examine the internal

Model Dataset # Layers # Params PPL (↓)

Mamba Wikitext-103 6 167M 22.357
Diff-Mamba Wikitext-103 6 169M 22.282

Mamba Wikitext-103 12 255M 20.413
Diff-Mamba Wikitext-103 12 259M 20.012

Mamba Text8 6 127M 2.416
Diff-Mamba Text8 6 129M 2.396

Mamba Text8 12 255M 2.525
Diff-Mamba Text8 12 259M 2.479

Mamba Enwik8 6 127M 2.321
Diff-Mamba Enwik8 6 129M 2.314

Mamba Enwik8 12 255M 2.422
Diff-Mamba Enwik8 12 259M 2.381

Table 1: Final performance of Mamba and Diff-Mamba
across model sizes. All models were trained for 40
epochs on each dataset. Trends shown in Figure 2.

representations of Diff-Mamba in comparison to
Mamba, empirically validating that our differential
approach effectively reduces noise in intermediate
representations. A full description of our experi-
mental setup, as well as an efficiency analysis, is
provided in Appendix A and Appendix B.

4.1 Language Modeling

To evaluate the performance of Diff-Mamba rel-
ative to Mamba on general NLP tasks, we train
both models from scratch using comparable model
sizes and an identical training setup, including the
same codebase (Gu et al., 2022), datasets, and hy-
perparameters. We focus on three widely used
benchmarks: WikiText-103, Text8, and Enwik8,

2565

0 5 10 15 20 25 30 35 40
Training Epoch

1.20

1.25

1.30

1.35

1.40

1.45

1.50
Te

st
/b

pb
Mamba
Diff-Mamba

0 5 10 15 20 25 30 35 40
Training Epoch

1.25

1.30

1.35

1.40

1.45

1.50

Te
st

/b
pb

Mamba
Diff-Mamba

0 5 10 15 20 25 30 35 40
Training Epoch

22

23

24

25

26

27

Te
st

/p
pl

Mamba
Diff-Mamba

0 5 10 15 20 25 30 35 40
Training Epoch

1.3

1.4

1.5

1.6

1.7

1.8

Te
st

/b
pb

Mamba
Diff-Mamba

0 5 10 15 20 25 30 35 40
Training Epoch

1.3

1.4

1.5

1.6

1.7

1.8

Te
st

/b
pb

Mamba
Diff-Mamba

0 5 10 15 20 25 30 35 40
Training Epoch

25

30

35

40

45

50

Te
st

/p
pl

Mamba
Diff-Mamba

Figure 2: Comparison of test curves through the training for Mamba and Diff-Mamba. The top row shows results
for 6-layer models, and the bottom row for 12-layer models. Columns correspond to datasets: Enwik8 (left), Text-8
(center), and WikiText-103 (right).

and experiment with models of varying depth. The
final results are reported in Table 1. To provide a
more comprehensive view of the optimization pro-
cess, we include test curves through the training in
Figure 2.

As shown in Table 1, Diff-Mamba outperforms
Mamba across all evaluated environments, achiev-
ing consistently lower loss. In particular, for the 12
layer model, Diff-Mamba improves over Mamba by
0.4 perplexity on WikiText-103, 0.046 bits per byte
(bpb) on Text8, and 0.041 bpb on Enwik8. For 6
layer model, Diff-Mamba improves over Mamba by
0.075 on WikiText-103, 0.02 on Text8, and 0.007
on Enwik8. Interestingly, we observe that as the
number of layers increases, the differential design
in Mamba becomes increasingly effective. A possi-
ble explanation for this is that, in the lower layers,
the dependencies captured by the implicit attention
matrices are shorter and simpler. In these cases,
Mamba can manage overallocation effectively with-
out the need for a differential mechanism. How-
ever, in the upper layers, the dependencies become
more complex, spanning longer ranges (Ben-Kish
et al., 2025a) and exhibiting more diverse patterns.
This amplifies the impact of overallocation, thereby
making the benefits of the differential design more
pronounced. Furthermore, the training curves in
Figure 2 provide insight into the optimization prop-
erties of Diff-Mamba, showing that it consistently
outperforms Mamba and achieves faster conver-

Model w.o Nrm w. Nrm # Params

Mamba 2.577 – 127M
Diff-S6 2.520 2.512 128M
Diff-S6 + re. λ̄ 2.529 2.517 128M
Diff-Mamba 2.508 2.493 128M
Diff-Mamba + re. λ̄ 2.517 2.503 128M

Table 2: Ablation study comparing (i) the scope at
which the differential mechanism is applied (Diff-S6 vs.
Diff-Mamba), (ii) the effect of including normalization
("w. Nrm") versus excluding it ("w.o Nrm"), and (iii)
the importance of reparameterization for λ̄ ("re. λ̄").
All models were trained on full Text8 with an identical
parameter count. Reported values are test perplexity
(PPL) on epoch 10. Lower is Better.

gence. We hypothesize that this phenomenon arises
from the fact that the differential design reduces
the amount of noise, which appears to be critical
for improving convergence (Johnson and Zhang,
2013; Zhang et al., 2019).

4.2 Ablations Analysis

To validate our design decisions regarding (i) ap-
plying the differential operation at the S6 versus
Mamba layer, (ii) incorporating an additional nor-
malization sub-layer before subtraction, and (iii)
reparameterization λ̄ ∈ RD to a scalar, we con-
ducted dedicated ablation experiments on the Text8
benchmark. Table 2 summarizes the results. All
models share an identical parameter count and were
trained with same hyper-parameters that optimized

2566

for the baseline model. It can be seen that all three
design choices are justified, specifically Diff-S6
outperforms Mamba without normalization, while
Diff-Mamba outperforms Diff-S6. Incorporating
additional normalization leads to improved results,
yielding gains of 0.015 and 0.008 perplexity for
Diff-Mamba and Diff-S6, respectively. Finally, λ̄
reparameterization doesn’t contribute to better per-
formance demonstrated both in Diff-S6 and Diff-
Mamba models.

4.3 Unit Tests as Predictors of Scaling
Training LLMs at scale is prohibitively resource-
intensive. Nevertheless, prior work has established
that carefully designed small-scale capability eval-
uations (Gupta et al., 2022) are predictive of model
behavior in large-scale (Poli et al., 2024). To this
end, we follow the MAD pipeline (Poli et al., 2024)
and adopt a rigorous suite of synthetic token ma-
nipulation tasks, that serve as capability unit tests.
These tasks allow us to isolate and assess core
mechanisms that underpin scalable performance.
We investigate Mamba and Diff-Mamba. Diff-
Mamba model consistently demonstrates superior
results (Figure 5), providing strong evidence that
the architecture is well-positioned to retain and
extend these capabilities when trained at larger
scales. Both models achieve the highest accu-
racy on in-context-recall (ICR), noisy ICR, and
selective-copying tasks, while Diff-Mamba outper-
forms Mamba on the rest of the tasks, specifically
up to 10.6% improvement in compression, 80%
in fuzzy ICR, and 0.2% in memorization. Diff-
Mamba surpasses Mamba by 3.7% in total.

4.4 Early Results at Medium Scale
To thoroughly evaluate Diff-Mamba, we trained
both Mamba and Diff-Mamba from scratch, each
with 370M parameters, on a 50B token subset of
The Pile dataset (Gao et al., 2020). After an ab-
lation study (Figure 7 in the Appendix), the most
effective Diff-Mamba variant for scalable perfor-
mance was found to be a repeated alternation of
Mamba and Diff-Mamba layers throughout the net-
work. This hybrid variant performs better than both
models with fully Mamba or Diff-Mamba layers.

Next, we evaluated the models via zero-shot
tests on the LongCrawl64 dataset (Buckman, 2024),
a long-sequence subset of RedPajama-v2 (Weber
et al., 2024) designed particularly for research on
long-context. In Figure 3 (a), per-token loss was
calculated over the dataset following (Lin et al.,

(a)

Model The Pile (↓) PG19 (↓)

Mamba 11.212 28.064
Diff-Mamba 11.081 26.619

(b)

Figure 3: Diff-Mamba excels in both tests. (a) The
x-axis is the token index, and the y-axis is the corre-
sponding per-token loss. (b) PPL results on test set of
The Pile and PG19.

2025). In addition, in Figure 3 (b), we calculated
PPL on the test subset of The Pile and PG19. Diff-
Mamba demonstrates impressive long context capa-
bilities, maintaining per-token loss of around 9.98
across different context lengths, while Mamba in-
creases significantly as the context grows. Further-
more, Diff-Mamba outperforms Mamba by PPL
scores of 0.131, and 1.445 on The Pile and PG19
test sets respectively. We consider the positive re-
sults at medium scale promising, suggesting that
alternating between Mamba and Diff-Mamba lay-
ers yields a more effective, scalable, and robust
architecture.

0k 1k 2k 4k 8k 16k 32k 64k
Context Length

qa1

qa2

qa3

qa4

qa5

Ta
sk

s

1.05 1.12 1.03 1.24 1.64 1.75 1.77 1.64

1.01 1.18 1.24 1.82 2.07 1.86 2.25 2.67

1.03 1.12 1.12 1.56 2.27 2.40 3.21 3.53

1.21 1.03 1.11 2.09 3.43 2.39 2.36 3.47

1.40 1.52 1.55 1.92 2.85 2.77 3.31 3.95

Figure 4: Retrieval Abilities: Comparison of Diff-
Mamba and Mamba models across five retrieval tasks
from BABILong. X-axis represents the context length,
and y-axis corresponds to the task index. Each cell
displays the ratio in which one model outperforms the
other. Green cells indicate wins by Diff-Mamba, while
red cells indicate wins by Mamba.

2567

Compression Fuzzy ICR ICR Memorization Noisy ICR Selective Copying Total
Task

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

+10.6%

+80.0%

+0.2%
+3.7%

Mamba Diff-Mamba

Figure 5: Performance comparison on synthetic token manipulation tasks. We evaluate Mamba and Diff-Mamba
architectures across six synthetic capability benchmarks. Diff-Mamba consistently outperforms Mamba, with
notable improvements in Fuzzy ICR of 80.0% and Compression with 10.6%. Stars indicate the best model per task.

4.5 Retrieval

The Diff-Transformer exhibits significantly im-
proved retrieval capabilities compared to the origi-
nal Transformer. Consequently, we conduct exper-
iments across five retrieval tasks from the BABI-
Long benchmark (Kuratov et al., 2024) to evaluate
whether these enhanced abilities transfer to Diff-
Mamba. BABILong comprises a diverse array of
reasoning tasks, including fact chaining, simple in-
duction, and deduction, where relevant facts are em-
bedded within lengthy natural language passages
of varying context lengths. This setup provides a
rigorous benchmark for evaluating models’ ability
to retrieve and reason over extended contexts. To
ensure a fair comparison, both Diff-Mamba and
Mamba (from Section 4.4) were fine-tuned on BA-
BILong tasks with up to 1k tokens to facilitate
a more targeted comparison, ensuring that their
learning processes were aligned with the same ob-
jectives.

Results (Figure 4) are reported on the test set.
Each cell displays the ratio in which one model out-
performs the other. Green indicates wins by Diff-
Mamba, while red indicates wins by Mamba. As
evident from the results, Diff-Mamba outperforms
Mamba, exhibiting a slower performance degra-
dation and a larger ratio score as context length
increases. Diff-Mamba wins consistently, achiev-
ing a ratio of up to 3.95. Our findings demonstrate
that Diff-Mamba achieves superior retrieval perfor-
mance, particularly in long-context scenarios.

4.6 Noise in Intermediate Representations

Our empirical analysis in previous sections, as well
as the results of Diff-Transformer suggest that the

differential design can mitigate the overallocation
problem and improve general performance. To
further investigate the underlying causes of this
phenomenon, we analyze the model’s internal rep-
resentations using tools from the field of mecha-
nistic interpretability. In particular, we leverage
Tuned-lens (Belrose et al., 2023) - a method de-
signed to examine intermediate representations by
training an affine probe to map activations at each
layer to the model’s final prediction, thereby en-
abling layer-wise interpretability and insight into
the model’s internal computation. Building on this
tool, we measure the signal-to-noise ratio in the
hidden representations of Diff-Mamba compared
to standard Mamba models. The Tuned-lens tool
projects logits from each layer into predictions for
the next token on the retrieval task. By measuring
the predicted probability of the needle token, we
can estimate the signal-to-noise ratio at different
layers. Notably, as can be seen in Figure 6, across
the majority of layers Diff-Mamba exhibits a higher
signal-to-noise ratio compared to Mamba. This
difference is especially pronounced in the early
to mid layers, where the predicted probability of
the needle token in Diff-Mamba is substantially
higher. This analysis empirically demonstrates that
Diff-Mamba produces less noisy representations,
directly aligning with the key principles underlying
the differential mechanism, which is designed to
mitigate the overallocation problem.

5 Discussion: Why Differential Design

A key question that arises from the empirical
findings presented in this paper and in Diff-
Transformer is why differential design is so effec-

2568

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Layer

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Ne
ed

le
 P

ro
ba

bi
lit

y
[%

]
Diff-Mamba
Mamba

Figure 6: Measuring Signal-to-Noise Ratio: The y-axis represents the probability of predicting the desired
needle token, where lower values indicate higher noise. The x-axis denotes various layers within the model where
intermediate noise is measured. Results show the average needle probabilities in each layer on 1k examples in
BABILong questions of 1k-2k tokens.

tive and what the underlying causes of its power are.
Our work sheds light on this question by first show-
ing that the problem of over-allocating attention
to irrelevant context is not a phenomenon unique
to transformers, but rather a general challenge in
architectural research. Moreover, while previous
work has primarily motivated the differential de-
sign through analogies to noise-canceling head-
phones and differential amplifiers, and supported
it with strong empirical performance, we take this
a step further. In Figure 6, we present a quantita-
tive analysis using tools from the field of model
understanding, showing that the intermediate rep-
resentations in Diff-Mamba exhibit a higher signal-
to-noise ratio compared to their non-differential
Mamba counterparts, providing empirical support
for the motivation previously proposed in the liter-
ature. Yet, the underlying reasons behind the em-
pirical success of differential design remain largely
unexplored, and further investigation from both the-
oretical and empirical perspectives is required to
advance progress in this important direction.

6 Conclusions

In this paper, we introduced Diff-Mamba, a variant
of the Mamba architecture that leverages differen-
tial design principles to mitigate the problem of
attention score over-allocation to irrelevant tokens,
thereby enhancing overall performance, with a par-
ticular emphasis on long-context, retrieval and ro-
bustness capabilities. Diff-Mamba advances archi-
tectural research on Mamba variants by introducing
an inductive bias that enhances the signal-to-noise
ratio, a property that may be critical at scale, as
hallucinations remain one of the most significant
challenges in LLMs.

7 Limitations

Although the experimental results show promis-
ing improvements over language modeling and re-
trieval tasks, we did not provide a rigorous theoret-
ical framework explaining precisely why differen-
tial designs improve Transformer or Mamba-based
LLMs. Developing such a theoretical justification
is left as future work. Additionally, our results
are limited to small-to-medium scale experiments
due to constraints imposed by our academic bud-
get. Finally, it remains an open question whether
differential design principles can be effective in
other domains, beyond NLP tasks, for instance, to
domains such as computer vision, graph modeling,
or time-series analysis.

Ethics Statement

Our work aims to improve the robustness of
Mamba models by increasing the signal-to-noise
ratio through differential design. In the broader
context, this contribution supports the development
of more efficient, reliable, and trustworthy LLMs.
Additionally, our findings highlight when and how
differential design is effective and offer practical
guidance for incorporating inductive biases that
lead to less noisy architectures. Thus, we conclude
that our approach contributes to the principled de-
sign of safer and more reliable LLMs.

2569

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Ameen Ali, Itamar Zimerman, and Lior Wolf. 2024.
The hidden attention of mamba models. arXiv
preprint arXiv:2403.01590.

Ethan Baron, Itamar Zimerman, and Lior Wolf. 2023. 2-
d ssm: A general spatial layer for visual transformers.
arXiv preprint arXiv:2306.06635.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein,
Nadav Cohen, Amir Globerson, Lior Wolf, and Raja
Giryes. 2025a. Decimamba: Exploring the length
extrapolation potential of mamba. In The Thirteenth
International Conference on Learning Representa-
tions.

Assaf Ben-Kish, Itamar Zimerman, M Jehanzeb Mirza,
James Glass, Leonid Karlinsky, and Raja Giryes.
2025b. Overflow prevention enhances long-context
recurrent llms. arXiv preprint arXiv:2505.07793.

Jacob Buckman. 2024. Longcrawl64: A Long-Context
Natural-Language Dataset.

Tri Dao and Albert Gu. 2024. Transformers are
ssms: Generalized models and efficient algorithms
through structured state space duality. arXiv preprint
arXiv:2405.21060.

Shmuel Bar David, Itamar Zimerman, Eliya Nach-
mani, and Lior Wolf. 2022. Decision s4: Efficient
sequence-based rl via state spaces layers. In The
Eleventh International Conference on Learning Rep-
resentations.

Soham De, Samuel L Smith, Anushan Fernando, Alek-
sandar Botev, George Cristian-Muraru, Albert Gu,
Ruba Haroun, Leonard Berrada, Yutian Chen, Sri-
vatsan Srinivasan, and 1 others. 2024. Griffin:
Mixing gated linear recurrences with local atten-
tion for efficient language models. arXiv preprint
arXiv:2402.19427.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon,
Zijia Chen, Ameya Sunil Mahabaleshwarkar, Shih-
Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen,
Yoshi Suhara, and 1 others. 2024. Hymba: A hybrid-
head architecture for small language models. arXiv
preprint arXiv:2411.13676.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W
Thomas, Atri Rudra, and Christopher Ré. 2022.
Hungry hungry hippos: Towards language mod-
eling with state space models. arXiv preprint
arXiv:2212.14052.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, and 1
others. 2020. The pile: An 800gb dataset of di-
verse text for language modeling. arXiv preprint
arXiv:2101.00027.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov,
James Whittington, Jonathan Pilault, Adam Ibrahim,
and Beren Millidge. 2024. Zamba: A compact 7b
ssm hybrid model. arXiv preprint arXiv:2405.16712.

Karan Goel, Albert Gu, Chris Donahue, and Christopher
Ré. 2022. It’s raw! audio generation with state-space
models. In International Conference on Machine
Learning, pages 7616–7633. PMLR.

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces. In
First Conference on Language Modeling.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In The International Conference on Learning
Representations (ICLR).

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri
Dao, Atri Rudra, and Christopher Ré. 2021. Com-
bining recurrent, convolutional, and continuous-time
models with linear state space layers. Advances in
neural information processing systems, 34:572–585.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Ankit Gupta, Harsh Mehta, and Jonathan Berant.
2022. Simplifying and understanding state space
models with diagonal linear rnns. arXiv preprint
arXiv:2212.00768.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Rie Johnson and Tong Zhang. 2013. Accelerating
stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates, Inc.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rod-
kin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. 2024. Babilong: Testing the limits of llms
with long context reasoning-in-a-haystack. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 106519–106554. Curran Asso-
ciates, Inc.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen,
Jhonathan Osin, Itay Dalmedigos, Erez Safahi,

2570

https://openreview.net/forum?id=iWSl5Zyjjw
https://openreview.net/forum?id=iWSl5Zyjjw
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c0d62e70dbc659cc9bd44cbcf1cb652f-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c0d62e70dbc659cc9bd44cbcf1cb652f-Paper-Datasets_and_Benchmarks_Track.pdf

Shaked Meirom, Yonatan Belinkov, Shai Shalev-
Shwartz, and 1 others. 2024. Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Zhixuan Lin, Evgenii Nikishin, Xu He, and Aaron
Courville. 2025. Forgetting transformer: Softmax
attention with a forget gate. In The Thirteenth Inter-
national Conference on Learning Representations.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio
Parisotto, Jakob Foerster, Satinder Singh, and Fer-
yal Behbahani. 2024. Structured state space models
for in-context reinforcement learning. Advances in
Neural Information Processing Systems, 36.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and
Behnam Neyshabur. 2022. Long range language
modeling via gated state spaces. arXiv preprint
arXiv:2206.13947.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs,
Preey Shah, Tri Dao, Stephen Baccus, and Christo-
pher Ré. 2022. S4nd: Modeling images and videos as
multidimensional signals with state spaces. Advances
in neural information processing systems, 35:2846–
2861.

Daniele Paliotta, Junxiong Wang, Matteo Pagliardini,
Kevin Y Li, Aviv Bick, J Zico Kolter, Albert Gu,
François Fleuret, and Tri Dao. 2025. Thinking slow,
fast: Scaling inference compute with distilled reason-
ers. arXiv preprint arXiv:2502.20339.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Huanqi Cao, Xin Cheng, Michael
Chung, Matteo Grella, Kranthi Kiran GV, and 1 oth-
ers. 2023. Rwkv: Reinventing rnns for the trans-
former era. arXiv preprint arXiv:2305.13048.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hierar-
chy: Towards larger convolutional language models.
arXiv preprint arXiv:2302.10866.

Michael Poli, Armin W Thomas, Eric Nguyen, Pra-
gaash Ponnusamy, Björn Deiseroth, Kristian Kerst-
ing, Taiji Suzuki, Brian Hie, Stefano Ermon, Christo-
pher Ré, and 1 others. 2024. Mechanistic design
and scaling of hybrid architectures. arXiv preprint
arXiv:2403.17844.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen
Liang, and Weizhu Chen. 2024. Samba: Sim-
ple hybrid state space models for efficient unlim-
ited context language modeling. arXiv preprint
arXiv:2406.07522.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684–10695.

George Saon, Ankit Gupta, and Xiaodong Cui. 2023.
Diagonal state space augmented transformers for
speech recognition. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE.

Jerome Sieber, Carmen Amo Alonso, Alexandre Di-
dier, Melanie Zeilinger, and Antonio Orvieto. 2025.
Understanding the differences in foundation models:
Attention, state space models, and recurrent neural
networks. Advances in Neural Information Process-
ing Systems, 37:134534–134566.

Jimmy TH Smith, Andrew Warrington, and Scott W Lin-
derman. 2022. Simplified state space layers for se-
quence modeling. arXiv preprint arXiv:2208.04933.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Bran-
don Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, and 1 others. 2024. An empirical study
of mamba-based language models. arXiv preprint
arXiv:2406.07887.

Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda
Liu, Mohamed Omar, and Raffay Hamid. 2023. Se-
lective structured state-spaces for long-form video
understanding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 6387–6397.

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan
Yan, and Alexander M Rush. 2024. Mambabyte:
Token-free selective state space model. arXiv
preprint arXiv:2401.13660.

Junxiong Wang, Wen-Ding Li, Daniele Paliotta, Daniel
Ritter, Alexander M Rush, and Tri Dao. 2025. M1:
Towards scalable test-time compute with mamba rea-
soning models. arXiv preprint arXiv:2504.10449.

Maurice Weber, Daniel Y. Fu, Quentin Anthony,
Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Vir-
ginia Adams, Ben Athiwaratkun, Rahul Chalamala,
Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang,
Christopher Ré, Irina Rish, and Ce Zhang. 2024. Red-
pajama: an open dataset for training large language
models. NeurIPS Datasets and Benchmarks Track.

Yuxin Wu and Kaiming He. 2018. Group normalization.
Preprint, arXiv:1803.08494.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu,
Gao Huang, and Furu Wei. 2024. Differential trans-
former. arXiv preprint arXiv:2410.05258.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. Advances in neural information
processing systems, 32.

2571

https://openreview.net/forum?id=q2Lnyegkr8
https://openreview.net/forum?id=q2Lnyegkr8
https://arxiv.org/abs/1803.08494

Michael Zhang, James Lucas, Jimmy Ba, and Geof-
frey E Hinton. 2019. Lookahead optimizer: k steps
forward, 1 step back. Advances in neural information
processing systems, 32.

Itamar Zimerman, Ameen Ali, and Lior Wolf. 2024. A
unified implicit attention formulation for gated-linear
recurrent sequence models. arXiv e-prints, pages
arXiv–2405.

Jingwei Zuo, Maksim Velikanov, Dhia Eddine Rhaiem,
Ilyas Chahed, Younes Belkada, Guillaume Kunsch,
and Hakim Hacid. 2024. Falcon mamba: The first
competitive attention-free 7b language model. arXiv
preprint arXiv:2410.05355.

A Experimental Setup

All experiments were conducted with Mamba-2 on
an L40s GPU using PyTorch, on publicly available
datasets.

A.1 Language Modeling

We train all models with a maximum sequence
length of 512 for 40 epochs using 3 seeds (0, 42, 77)
with settings as in Table 3. Diff-Mamba uses 1024
channels and 64 heads, while Mamba uses 1024
channels and 128 heads. In Diff-Mamba, we reduce
the number of parameters in the linear projections
of each Mamba block by half to achieve a similar
number of parameters to Mamba. Following (Ye
et al., 2024), the parameter λinit in Eq. 11 is defined
as λinit = 0.8 − 0.6 · exp

(
−0.3 (ilayer − 1)

)
. In

addition, the normalization we use in Eq. 21 is
RMS-Norm (Zhang and Sennrich, 2019).

Model Dataset # Layers Dropout Batch lr

Mamba Wikitext-103 6 0.25 100 5e-4
Diff-Mamba Wikitext-103 6 0.25 100 5e-4

Mamba Wikitext-103 12 0.5 50 5e-4
Diff-Mamba Wikitext-103 12 0.5 50 5e-4

Mamba Text8 6 0.4 170 5e-4
Diff-Mamba Text8 6 0.4 170 5e-4

Mamba Text8 12 0.5 50 5e-5
Diff-Mamba Text8 12 0.5 50 5e-5

Mamba Enwik8 6 0.4 170 5e-4
Diff-Mamba Enwik8 6 0.4 170 5e-4

Mamba Enwik8 12 0.5 80 1e-4
Diff-Mamba Enwik8 12 0.5 80 1e-4

Table 3: Configuration of Mamba and Diff-Mamba
across model sizes. All models were trained for 40
epochs on each dataset. Test trends are presented in
Figure 2.

A.2 Ablations Analysis

To validate our architecture design, an ablation
study has been done. To match the number of
parameters, each architecture has a different inner
parameter division. Additional configuration and
models architecture details are presented in Table
4 and Table 5.

A.3 Unit Tests as Predictors of Scaling

We follow the MAD pipeline (Poli et al., 2024) and
adopt a rigorous suite of synthetic token manipula-
tion tasks, that serve as capability unit tests. We in-
vestigate Mamba and Diff-Mamba. Each model has

2572

1B 1.5B 2B 2.5B 3B
Tokens

40

45

50

55

60

Lo
ss

Mamba
Diff-Mamba-Full
Diff-Mamba-Hybrid

Figure 7: Loss training curve of Diff-Mamba variants compared to Mamba through pre-training on The Pile.
Diff-Mamba-Hybrid indicates alternating layers of Mamba and Diff-Mamba, while Diff-Mamba-Full indicates only
Diff-Mamba layers model. The trends were smoothed for display adjustment.

Params Values

Layers 6
lr 5e-4
Warmup Steps 1000
Steps 15,000
Droput 0.4
Batch Size 170

Table 4: Hyperparameters used for the ablation trainings.

Model # Channels # Heads Expand

Mamba 1024 128 2
Diff-S6 864 108 2
Diff-S6 + re. λ 864 108 2
Diff-Mamba 1024 64 1
Diff-Mamba + re. λ 1024 64 1

Table 5: Models architecture details used for the abla-
tion study.

four layers, consisting of the core blocks. Hyperpa-
rameters and a set of tests were applied similarly
to the MAD pipeline, including different numbers
of examples for training, learning rates, sequence
lengths, and vocabulary size upon tasks such as
compression, ICR, and selective-copying.

A.4 Early Results at Medium Scale

We pre-trained both the Mamba and Diff-Mamba
architectures and conducted an ablation study on
the Diff-Mamba model to evaluate the impact of
architectural variations. The results indicate that in-
terleaving Mamba and Diff-Mamba layers through-

out the network yeilds improved loss performance
during pre-training, compared to using fully Diff-
Mamba architecture (Figure 7). The pre-training
was performed on 8 GPUs over 50 billion tokens
using the GPTNeoX tokenizer. The Mamba model
contains 368M parameters, Diff-Mamba-Hybrid
has 375M parameters, and Diff-Mamba-Full con-
figuration comprises 382M parameters. Although
Diff-Mamba-Hybrid has 7 million fewer parame-
ters than Diff-Mamba-Full, it achieves better per-
formance. The models were trained with 48 layers,
a learning rate of 1.5e-3, 10,000 warm-up steps,
the AdamW optimizer with a weight decay of 0.1,
a batch size of 1M tokens per step, and a maximum
sequence length of 2048 tokens.

A.5 Retrieval
For retrieval experiments, we use 50B checkpoint
of Diff-Mamba and Mamba trained on The Pile,
as described in Section 4.4 and finetune those on
BABILong tasks, followed by an evaluation on
a test set. For statistically significant results, we
finetuned and evaluated with 3 seeds.

A.5.1 BABILong Fine-tuning
The models were fine-tuned on 90% exam-
ples up to 1k tokens inside the dataset across
all tasks, which is approximately equivalent to
17k examples. The other 10% remained for
test. Following (Kuratov et al., 2024), we em-
ploy a preprocessing step that shapes each sam-
ple as follows: "<context>{input}</context>
Question:{question} Answer:" and the loss

2573

was calculated on the answer label only. Since
the training tiny size, three seeds have been tested
and averaged through the results. Original scores
for each model are presented in Figure 8. The
configuration for the training is in Table 6.

Params Values

Layers 48
lr 3e-4
Max Length 2048
Steps 500
Batch Size 6
Warmup Steps 50
Optimizer AdamW
Weight Decay 0.1

Table 6: Hyperparameters used for the BABILong fine-
tuning

0k 1k 2k 4k 8k 16k 32k 64k
Context Length

qa1

qa2

qa3

qa4

qa5

Ta
sk

s

36.00 36.47 32.47 24.80 19.43 16.33 13.83 13.70

32.33 34.83 29.46 26.16 22.76 19.29 17.78 17.62

19.33 33.95 32.36 30.06 26.23 22.59 19.69 18.38

50.33 43.18 30.90 22.89 16.58 14.41 13.65 12.11

44.67 50.45 49.55 46.21 40.91 34.03 29.36 24.66

(a) Diff-Mamba

0k 1k 2k 4k 8k 16k 32k 64k
Context Length

qa1

qa2

qa3

qa4

qa5

Ta
sk

s

37.67 41.00 33.47 19.97 11.87 9.33 7.80 8.33

32.67 29.46 23.69 14.38 10.98 10.34 7.91 6.61

20.00 30.28 28.99 19.25 11.54 9.41 6.14 5.21

61.00 41.91 27.89 10.98 4.84 6.04 5.77 3.49

32.00 33.17 31.90 24.02 14.35 12.28 8.88 6.24

(b) Mamba

Figure 8: Comparison of original scores of Diff-Mamba
and Mamba models after fine-tuning on BABILong.
Values are the percentage of correct examples, while
green indicates a larger score than the other model, and
red indicates the opposite.

A.6 Noise in Intermediate Representations
To measure the signal-to-noise ratio, we employ
Tuned-lens (Belrose et al., 2023). Specifically,

we train linear projections to learn the appropriate
transformation over intermediate representations
across layers and we demonstrate it using the BA-
BILong finetuned models from Section 4.5. The
probe for finetuned BABILong models have been
trained on the validation set of The Pile for 3 seeds
with a similar configuration to the original Tuned-
lens paper. Evaluation was conducted on a test set
derived from the BABILong benchmark, consist-
ing of 1,000 examples with context lengths ranging
from 1k to 2k tokens. These examples were sam-
pled from the first five tasks, with 200 examples
per task. For each example, the needle probability
was extracted from every layer.

B Efficiency Benchmark

We evaluate the computational efficiency of
Diff-Mamba-Hybrid (375M params) compared to
Mamba (368M params) with respect to inference
speed, memory footprint, and forward-pass la-
tency. These measurements provide a comprehen-
sive view of the trade-offs introduced by the archi-
tectural modifications.

B.1 End-to-End Inference

We calculate end-to-end inference throughput
across varying batch sizes, measured on an L40S
GPU with 48GB of memory (Figure 9). The bench-
mark was conducted using a prompt length of 2048
tokens and generating 128 new tokens with un-
trained models of Mamba, Diff-Mamba-Full, Diff-
Mamba-Hybrid, and Transformer for a baseline.
Throughput (tokens/s) is computed as batch size
× 128 / inference time. Both fully and hybrid
Diff-Mamba exhibits lower throughput compared
to the original Mamba at small batch sizes; how-
ever, this gap narrows considerably as the batch
size increases, and becomes only a 12% difference
with a batch size of 64 for Diff-Mamba-Hybrid.

B.2 Memory Benchmark

GPU memory usage across different batch sizes
is reported in Table 7. Each batch consists of se-
quences of length 2048, and memory was measured
after a forward pass. Diff-Mamba incurs only a
modest increase in memory consumption relative to
Mamba, with a difference of less than 1GB even at
batch size 32 (44.30GB vs. 43.80GB). This result
suggests that the additional computational layers
introduced in Diff-Mamba achieve efficiency im-
provements without imposing prohibitive memory

2574

1 2 4 8 16 32 64
Batch Size

0

200

400

600

800

1000
Th

ro
ug

hp
ut

 (t
ok

en
s/

se
c)

145
206 232 234 236

OOM OOM39
72

140

253

423

634

803

53
98

186

329

535

754

893

88
158

291

487

743

929

1014Transformer (366M)
Diff-Mamba-Full (382M)
Diff-Mamba-Hybrid (375M)
Mamba (368M)

Figure 9: Inference throughput on L40s 48GB (prompt
length 2048).

demands, thereby maintaining practical feasibility
in resource-constrained environments.

Batch Size Mamba (GB) Diff-Mamba (GB)

1 3.92 3.95
2 5.16 5.25
4 7.72 7.84
8 12.84 13.03
16 23.09 23.43
32 43.80 44.30

Table 7: Memory usage comparison across different
batch sizes.

B.3 Forward-Pass Latency
We further examine forward-pass latency across
varying sequence lengths, summarized in Table 8.
Forward-pass time serves as a direct proxy for train-
ing efficiency, since it closely aligns with per-step
training duration. The results demonstrate that Diff-
Mamba sustains comparable per-step efficiency to
Mamba, introducing only marginal latency over-
head at extended sequence lengths.

Seq Length Mamba (s) Diff-Mamba (s)

512 0.063 0.076
1024 0.079 0.090
2048 0.073 0.087
4096 0.147 0.172
8192 0.271 0.282

Table 8: Forward time comparison for different se-
quence lengths.

2575

