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Abstract

We investigate cross-lingual fine-tuning for id-
iomatic expression identification, addressing
the limited availability of annotated data in
many languages. We evaluate encoder and
generative decoder models to examine their
ability to generalize idiom identification across
languages. Additionally, we conduct an ex-
plainability study using linear probing and Log-
itLens to analyze how idiomatic meaning is
represented across model layers. Results show
consistent cross-lingual transfer, with English
emerging as a strong source language. All code
and models are released to support future re-
search.

1 Introduction

Idiomatic expressions are multiword constructions
whose meaning cannot be deduced from the mean-
ings of their individual words. They are typically
fixed or semi-fixed in form and exhibit semantic
non-compositionality, where the overall meaning
differs from the literal meanings of the parts. As
a subclass of multiword expressions (MWEs), id-
ioms present a significant challenge for computa-
tional models due to their ambiguity, variability,
and cultural grounding.

In this paper, we focus on potential idiomatic
expressions (PIEs), which are phrases such as spill
the beans or break the ice that may appear either
idiomatically or literally, depending on context.
The goal of the task is not merely to recognize
idioms in general, but to identify all PIEs that are
used idiomatically in context within a given text.
This form of contextual disambiguation is essential:
spill the beans in I spilled the beans during the
meeting conveys a figurative meaning, whereas the
same phrase in I spilled the beans in the kitchen
does not.

Identifying idiomatic usage is particularly chal-
lenging in multilingual and low-resource contexts.
Most previous work adopt a monolingual approach

and depends on annotated datasets, which are of-
ten scarce and expensive to create, especially for
low-resource or historical languages, where idioms
play a crucial role in interpretation.

To address these limitations, we explore cross-
lingual transfer, which involves using annotated
data in one language to improve idiom identifica-
tion in another. We hypothesize that large mul-
tilingual Large language models (LLMs) already
encode latent cross-lingual representations that can
be fine-tuned for this task. This follows findings
such as AlignXIE (Zuo et al., 2024), which showed
multilingual alignment improves zero-shot Named
Entity Recognition (NER) and inspired us to exam-
ine whether similar transfer can handle the more
complex phenomenon of idiomaticity.

To this end, we present the first systematic study
of cross-lingual fine-tuning (FT) for idiomatic ex-
pression identification. We evaluate both encoder-
based and generative decoder models, fine-tuning
them on source-language data and assess their per-
formance on typologically distinct target languages.
In addition to standard evaluation, we probe the
models’ internal representations to understand how
non-compositional meaning is encoded and trans-
ferred across languages.

Our main contributions are as follows: (1) We
introduce the first systematic study of cross-lingual
transfer learning for idiomatic expression identifi-
cation using language models, based on supervised
fine-tuning. (2) We evaluate the potential of us-
ing annotated data from one language to improve
idiom identification in target languages, offering
insight into the feasibility of such transfer. (3) We
perform a structural and representational analy-
sis of idiomatic expressions, probing how models
capture non-compositional semantics across lan-
guages.

To guide our investigation, we pose the follow-
ing research questions: RQ1: Can LLMs, when
fine-tuned on idiom identification in one language,
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generalize to accurately identify idiomatic expres-
sions in other languages? RQ2: Does fine-tuning
on a mixture of languages improve a model’s abil-
ity to recognize idiomatic expressions? RQ3: Do
the internal representations of LLMs differentiate
between idiomatic and literal usages?

We release all models, code, prompts, and eval-
uation scripts to ensure reproducibility.1

2 Related Work

2.1 Idiom Identification

Idiomatic expressions, a subclass of MWEs, have
non-compositional meanings that cannot be in-
ferred from their parts (Baldwin and Kim). De-
tecting idioms requires identifying their span in
text and distinguishing literal from figurative use.
Early approaches relied on syntactic and statistical
cues (Fazly et al., 2009; Cook et al., 2007; Shutova
et al., 2010), later enhanced by semantic vector rep-
resentations (Gharbieh et al., 2016; Nedumpozhi-
mana and Kelleher, 2021). More recent work has
applied neural models, including CNNs, RNNs,
and transformers, to idiom classification (Zeng and
Bhat, 2021; Briskilal and Subalalitha, 2022; He
et al., 2024), typically under the assumption that
the PIE has already been identified and the task is
to classify it as idiomatic or literal.

Following recent span-based idiom and MWE
identification work in monolingual settings
(Hashiloni et al., 2025), we require models to iden-
tify PIEs in context and determine whether they
are used figuratively, without access to the spans in
advance. We extend this formulation to the cross-
lingual setting and evaluate both encoder- and
decoder-based models under multilingual transfer.
This makes the task especially challenging in mul-
tilingual and low-resource settings, where idiom
inventories, cultural grounding, and figurative us-
age patterns vary substantially across languages.

2.2 Multilingual Idiom Identification Datasets

Idioms are well-studied in English, but multilin-
gual idiomaticity has only recently gained atten-
tion. PARSEME (Ramisch et al., 2020) covers
verbal MWEs in 20+ languages, offering a basis
for cross-lingual research, though its broad def-
inition of verbal idioms limits its use for idiom
identification.

1https://github.com/Intellexus-DSI/
Not-just-a-piece-of-cake

English datasets such as VNC-Tokens (Cook
et al., 2008), SemEval-2013 Task 5 (Korkontze-
los et al., 2013), and IDIX (Sporleder et al., 2010)
are foundational but small, language-limited, and
cover few idiom types (Mi et al., 2025; Arslan et al.,
2025; Haagsma et al., 2020; Tedeschi et al., 2022).
More recent sets like AStitchInLanguageModels
(Tayyar Madabushi et al., 2021), EPIe (Saxena
and Paul, 2020), and SemEval-2022 Task 2 (Tay-
yar Madabushi et al., 2022) expand coverage but
remain mostly English-centric and focus on classi-
fication. We exclude them due to overlap with our
evaluation datasets. For multilingual evaluation,
we use four idiom-specific datasets: Dodiom (Ery-
iğit et al., 2022), ID10M (Tedeschi et al., 2022),
MAGPIE (Haagsma et al., 2020), and the Open-
MWE Corpus (Hashimoto and Kawahara, 2009) -
which together cover eleven languages. Section 3.2
details their annotations, task formats, and process-
ing.

Note that while prior multilingual resources such
as PARSEME and the SemEval shared tasks have
been instrumental in advancing idiom research,
their goals differ from ours. Our combined cor-
pus focuses specifically on idiomatic expressions
exhibiting clear non-compositional meaning, offer-
ing both a larger scale and higher idiom diversity.

2.3 Fine-Tuning LLMs

Encoder models. Encoder models, such as
BERT (Devlin et al., 2019; Lee and Hsiang, 2020)
and XLM-RoBERTa (Conneau et al., 2020), are
standard for structured prediction. Idiom identifi-
cation typically uses them for binary classification
(literal vs. idiomatic) (Chakrabarty et al., 2021;
Briskilal and Subalalitha, 2022) and span iden-
tification (Tedeschi et al., 2022). Their success
in cross-lingual NER and transfer learning (Pfeif-
fer et al., 2021; Parovic et al., 2023) makes them
strong baselines for idiom identification.

Decoder models. Recently, decoder-based mod-
els like GPT (Li et al., 2024) and Llama (Šmíd
et al., 2024) have been fine-tuned for open-ended
tasks, showing strong performance in span ex-
traction and structured generation, making them
promising for multilingual idiom identification.
Ide et al. (2025) introduced the CoAM dataset
for MWE identification, where large generative
models such as Qwen-2.5-72B outperformed prior
methods, highlighting a shift toward decoder-based
approaches. Arslan et al. (2025) extended this to
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multilingual idioms, creating synthetic corpora in
four languages and fine-tuning both encoder and
decoder models. Despite these advances, idiom
identification, especially in cross-lingual settings,
remains underexplored, and our work systemat-
ically investigates cross-lingual fine-tuning and
evaluation across a broader set of natural multi-
lingual idiom datasets.

3 Method

3.1 Problem Formulation

We treat idiom identification as a token classi-
fication task, following Tedeschi et al. (2022)
and Ide et al. (2025). For a given sentence
x = {x1, x2, . . . , xn} where each xi is a sin-
gle token. The goal is to assign a sequence of
labels y = {y1, y2, . . . , yn}, where each yi ∈
{B- IDIOM, I-IDIOM, O} indicates whether the to-
ken begins, continues, or is outside an idiomatic
expression. This annotation scheme is commonly
known as BIO tagging.

This task encompasses both identification and
disambiguation elements, requiring models to not
only identify idiomatic expressions but also distin-
guish between figurative and literal usage. Notably,
no candidate expressions are provided in advance,
enhancing the realism of the task.

To address this, we fine-tune both encoder-
based models (e.g., XLM-RoBERTa, BERT) for to-
ken classification and decoder-based models (e.g.,
Llama) for generative prediction of idiom spans.
In both cases, the final output is evaluated using
BIO-formatted labels aligned with the gold la-
bels. Because evaluation is performed at the token
level, both boundary mismatches (e.g., predicting a
longer or shorter span) and errors in distinguishing
figurative from literal usage are directly reflected
in the resulting F1 scores.

3.2 Datasets

We utilize four datasets to capture the multilin-
gual and structural diversity of idioms, adhering to
their original licenses and purposes. Table 1 shows
statistics, with license details in Appendix I. Our
experiments include training data from eleven lan-
guages: English (EN), German (DE), Italian (IT),
Spanish (ES), Turkish (TR), Japanese (JA), Dutch
(NL), French (FR), Dutch (NL), Chinese (ZH), and
Portuguese (PT). Evaluation is carried out on six
languages - EN, DE, IT, ES, TR, and JA for which
test data is either publicly available or derived by

partitioning the dataset when official splits are not
available.

Dodiom (Eryiğit et al., 2022). Dodiom is a
multilingual dataset for idiom identification, con-
structed via a gamified crowd-sourcing approach
targeting Turkish and Italian. Idioms were drawn
from existing resources, including PARSEME 1.3
(Savary et al., 2023) and online lists, with a subset
manually validated by expert linguists to create a
gold standard. Lacking a predefined split, we cre-
ated our own and converted spans to token-level
BIO tags for evaluation (details in Appendix A).

ID10M (Tedeschi et al., 2022). A multilingual
idiom identification dataset with silver-standard
training data in ten languages, built from Wik-
tionary,2 idioms contextualized via WikiMatrix.
The test set includes 200 gold examples in English,
German, and Italian, and 199 in Spanish (despite
the paper stating 200). It contains only continu-
ous idiom spans, where all idiom words appear
consecutively without gaps or intervening tokens,
supports multiple idioms per instance, and uses
BIO tagging.

MAGPIE (Haagsma et al., 2020). MAGPIE is a
gold-standard English dataset of 56,622 examples
from diverse genres. Initially built for idiom classi-
fication, we adapt it for token-level classification
(Appendix B). After preprocessing, the test split
consists of 4,391 samples, from which we evaluate
400 due to inference budget limits. This version is
marked as ours in Table 1.

OpenMWE Corpus (Hashimoto and Kawa-
hara, 2009). The OpenMWE Corpus is a large
Japanese dataset for classifying idioms as figura-
tive (I) or literal (L), containing 102,334 examples
for 146 idioms from a web corpus. We convert its
annotations to token-level BIO format and create
our own train/test split, as none is publicly avail-
able. Full preprocessing details are in Appendix C.

3.3 Fine-Tuning

To study idiom identification in multilingual set-
tings, we fine-tune two language model types: (1)
encoder models using token-level classification,
and (2) instruction-tuned LLMs with supervised
fine-tuning. All models considered in this work
were originally pre-trained on the target languages

2https://www.wiktionary.org/
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Dataset Language Train Test

# Sentences # PIE # Sentences # PIE

Id10M EN 37,919 4,568 200 142
DE 24,126 819 200 111
ES 25,070 1,229 199 78
IT 26,372 452 200 139
JA 6,388 165 - -
NL 18,801 189 - -
FR 31,807 188 - -
PL 31,963 648 - -
PT 27,594 559 - -
ZH 8,249 1,301 - -

OPENMWE JA 100,503 146 577 146

MAGPIE EN 35,542 27,296 4,451 3,401
MAGPIE (our) EN 34,136 26,907 400 298

Dodiom TR 6,361 36 500 36
IT 7,033 38 500 38

Table 1: Dataset statistics used in our experiments.

to avoid zero-resource scenarios. Checkpoints, pa-
rameter sizes, and licenses are detailed in Appen-
dices J and I.

3.3.1 Fine-Tuning Decoder Models
We fine-tune two instruction-tuned Llama models3

(Grattafiori et al., 2024) for our experiments:
Meta-Llama-3.1-8B-Instruct-Reference and
Meta-Llama-3.1-70B-Instruct-Reference,
both accessed via the Together AI platform.4

To tailor the models to our idiom identification
task, we explore several prompt formats during
development (see Appendix F). We ultimately
converge on a structured schema consisting of a
system prompt, a user prompt, and an assistant re-
sponse, which yields the most accurate and format-
consistent outputs (see Figure 9 located in Ap-
pendix F).

Given the scale of the models, we adopt LoRA
(Hu et al., 2022) for parameter-efficient fine-tuning.
The complete set of training hyperparameters is
provided in Table 2, located in Appendix D.1.

To control compute costs while preserving lin-
guistic diversity, we randomly sample 1,500 train-
ing examples per language. To evaluate the ro-
bustness of our results, we repeated this sampling
process using three different random seeds. Each
subset was then used to fine-tune a separate in-
stance of the Llama 8B model. In contrast, the
70B model is fine-tuned once due to resource con-
straints.

Each model is fine-tuned separately for each
source language (excluding CZ and JA) and evalu-
ated across six target languages.

Cross-lingual transfer with language mix-
tures: In addition to the standard language-to-

3https://ai.meta.com/blog/meta-llama-3-1/
4https://www.together.ai/

language transfer fine-tuning, we explore two other
configurations in which we included multiple lan-
guages in the training set: (i) a small mixture that
includes the six languages used for evaluation (EN
(ID10M), DE, IT (ID10M), ES, TR, JA), (ii) a large
mixture that also covers NL, FR, PL, and PT. All
configurations use balanced sampling (1,500 ex-
amples per language). Each model was fine-tuned
once, and inference was repeated three times with
different seeds to assess variability.

Expected output format and evaluation. The
decoder is instructed to return a minimal JSON
object containing only the predicted idioms for the
input sentence (no explanations), which we then
convert into token-level BIO tags for scoring. Fol-
lowing Appendix E, we compute macro-averaged
token-level F1. To align predicted idioms with to-
ken spans, we normalize both the sentence and pre-
dictions (e.g., lowercasing, quote/dash standardiza-
tion) and apply character-level substring matching.
Because alignment is non-trivial and minor for-
matting deviations can lead to drops in measured
performance, the evaluation pipeline includes ro-
bust recovery for malformed outputs via relaxed
JSON parsing. Full alignment and parsing details
appear in Appendix E.

3.3.2 Fine-Tuning Encoder-Based Models
We also fine-tune encoder-based models using
the full training sets, and each training and eval-
uation process repeats five times with different
seeds to ensure robustness. We train multilingual
BERT (mBERT) (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020) as multilingual
models, both pre-trained on all target languages.

We exclude the Italian and Turkish from the Do-
diom dataset, as well as the Chinese, Portuguese,
and Dutch from ID10M as source training lan-
guages, as a preliminary experiment showed that
the datasets are too small to reach any meaning-
ful learning. For the list of hyperparameters used
during training, see Appendix D.

We fine-tune multiple encoder-based models for
idiom identification. While Tedeschi et al. (2022)
followed a comparable approach, we adopt a mini-
mal fine-tuning setup using the HuggingFace train-
ing framework (Wolf et al., 2020). The hyperpa-
rameters are provided in Appendix D.3.

Cross-lingual transfer with language mix-
tures. We further investigate cross-lingual trans-
fer learning in encoder-based models through fine-
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tuning experiments. The model is trained on data
from all eleven languages included in our study,
while evaluation is conducted on a five-language
test set comprising English (EN), German (DE),
Italian (IT), and Spanish (ES) from the ID10M
dataset, and Japanese (JA) from the OPENMWE
dataset. To explore the impact of cross-lingual
transfer, we fine-tune mBERT using training data
composed of X% from the target language and
(100−X)% from a balanced mix of the remaining
languages, where X ∈ {100, 90, . . . , 0}. To allow
for a balanced sampling from all languages, and
since Turkish has the minimum number of 6,361
samples in its training set, we cap the Japanese at
60,000 examples (for X = 0, we include 6K sam-
ples of each language). We evaluate performance
on the test set of the target language in each case.
To ensure fairness, we keep the total training size
equal to the original size of the target language’s
training set.

To ensure robustness, we repeat each experiment
across five random seeds, where the seed influences
data sampling, shuffling, and training.

Hyperparameter selection. We tune all trans-
former baselines on English ID10M and fix the best
per-model hyperparameter configuration for cross-
lingual runs to ensure comparability; full search
spaces, and outcomes are in Appendix D.3.

3.4 Explainability Analysis
To examine how LLMs encode idiomatic expres-
sions, we conduct a layer-wise probing analysis
(Conneau et al., 2018; Hewitt and Manning, 2019),
treating each Transformer layer as a representation
state. For each dataset sentence, we pass it through
a decoder model, extracting hidden states from ev-
ery layer. We compute an element-wise average
over only the tokens annotated as part of the PIE.
For example, for break the ice, only break and ice
are included, as the is unannotated, a standard con-
vention. This produces one vector per expression
per layer, which we use to compare idiomatic and
literal instances across contexts. This analysis re-
lies on precise annotations available in MAGPIE
(EN) and Dodiom (TR, IT). We obtain these rep-
resentations from Llama-3.2-3B to examine how
idiomatic and literal usages are encoded across the
model’s layers. Our investigation includes three
types of analysis:

Linear probing using Logistic Regression. For
each layer, we train a logistic regression classi-

fier on PIE representations (produced as described
above) with idiomatic vs. literal labels. We sam-
pled 1,000 training examples from each dataset per
language. For IT and TR, the datasets contain rela-
tively few unique PIE (see Table 1), so we sampled
without restrictions, resulting in 1,000 examples
covering 33 PIEs in IT and 36 in TR. For English,
which has a much larger idiom inventory, we re-
stricted sampling to 50 unique PIE types to match
the cross-lingual pattern and drew 1,000 examples
accordingly.

We then train a logistic regression classifier
on the training-set vectors using scikit-learn’s
implementation (Pedregosa et al., 2011) with
max_iter=1,000 and report F1 on the test-set vec-
tors to assess how linearly separable idiomaticity
is across layers. MAGPIE is evaluated on its full
filtered test set (4,278 samples), while for Dodiom,
we create a new test set of the same size.

Multilingual linear probing. We train a logistic
regression classifier on each language and evaluate
its performance on the test set of the other two
languages. This helps us to evaluate the transfer-
learning capability of the model through the infor-
mation encoded in its hidden states. We repeat this
process for each layer as before.

LogitLens probing. We use LogitLens probing
(Belrose et al., 2023) to examine whether idiomatic
and literal usages yield similar token-level pre-
dictions across layers. LogitLens projects hidden
states through the language modeling head, show-
ing each layer’s “intended” token distributions and
providing a layer-wise view of semantic evolution.

From each dataset, we sample 5,000 instances
containing a single PIE, balancing idiomatic and
literal usages by retaining equal counts per idiom.
This yields 192 English idioms (avg. 4 instances),
29 Italian (avg. 129), and 36 Turkish (avg. 117),
reflecting dataset-specific annotation methods.

For each layer, we apply the model’s normaliza-
tion and LM head to compute intermediate logits
and extract the top-5 predicted tokens, representing
each occurrence as a token set. We then compute
per-layer Jaccard similarity between idiomatic and
literal sets. Averaging across PIEs produces a sim-
ilarity curve: lower scores indicate greater diver-
gence and stronger semantic separation between
literal and idiomatic meanings.

2525



4 Results

Details on computational cost and resources are
provided in Appendix G.

4.1 RQ1: Cross-Lingual Generalization
Encoder results. To evaluate the cross-lingual
generalization ability of encoder-based models for
idiom identification, we fine-tuned two multilin-
gual encoders: mBERT and XLM-RoBERTa on
individual source languages and evaluated them
across a variety of target languages. The results
are visualized in Figures 1 and 8 in Appendix H.1,
where each cell represents the average F1 score
across five seeds. A redder/lighter color indicates
higher performance, while a darker blue reflects
lower scores. To aid interpretation, the heatmaps
also display the rounded F1 scores (without deci-
mal points) within each cell. For the exact numeri-
cal results, including standard deviations, refer to
Table 6 in Appendix H.2.

The results reveal moderate but noteworthy
cross-lingual transfer. For instance, mBERT
trained on high-resource languages (top left cor-
ner on the heat map) for example: EN (ID10M)
achieves F1 scores of 56.3 on DE, 61.8 on IT
(Dodiom), and 59.1 on ES. This suggests that the
model captures the concept of idiomacity and has
a substantial ability to generalize it beyond the lan-
guage it was trained on. Similarly, XLM-RoBERTa
trained on EN (MAGPIE) reaches 49.3 on DE, 57.3
on IT (ID10M), and 40.0 on ES. While the most
substantial transfer effects occur between high-
resource languages, we also observe cross-family
generalization (e.g., EN to JA or JA to TR), high-
lighting the ability of multilingual encoders to ab-
stract figurative patterns across different language
families. Although performance remains below
in-language fine-tuning (e.g., mBERT EN→EN:
75.3).

Generative decoder results. We additionally
examine generative decoder models. Figure 2
presents the difference in F1 score between various
Llama 8B fine-tuning configurations and the zero-
shot baseline, across different target languages (full
results are provided in Table 8, Appendix H.3).

Overall, the results are mixed, with many setups
showing slight drops, but several clear gains stand
out. The top-right of the heatmap displays a cluster
of light-colored cells, showing consistent improve-
ments when training on high-resource languages
and testing on low-resource ones (e.g., EN and DE

Figure 1: F1 scores of the FT mBERT. Cells show
average macro F1 over five seeds. EN uses both ID10M
(I) and MAGPIE (M) for training/eval; IT is trained on
ID10M and evaluated on ID10M (I) and Dodiom (D).

boosting Japanese by +0.41 and +0.44). Dutch
notably improves Turkish (+1.09) and Japanese
(+0.42), Turkish boosts Italian-Dodiom (+0.58)
and Spanish (+0.45), and Polish yields large gains
on Spanish (+0.80).

These patterns suggest Llama 8B benefits from
selective cross-lingual transfer, especially from
high-to-low-resource or distant languages (e.g.,
EN→TR). However, some pairs harm performance,
such as Italian training reducing German (−2.01)
and English-ID10M (−0.80), highlighting the im-
portance of source–target compatibility.

While most of our experiments focused on the
Llama 8B model due to resource constraints, we
fine-tuned the larger Llama 70B model once per
configuration to assess the effect of model scal-
ing. As shown in Table 8 in Appendix H.3, the
70B model did not consistently outperform its 8B
counterpart. In fact, for many test languages, in-
cluding EN, DE, and IT, the performance of the
larger model decreased across most training con-
figurations compared to the baseline. However,
two notable exceptions emerged: ES and JA test
languages. In these cases, the 70B model achieved
consistently higher scores across nearly all training
languages. For example, when testing on JA, per-
formance increased by (+3.98) using PT for train-
ing, and ES showed similar gains (e.g., PL→ES:
+1.31). These results suggest that model scaling
may be particularly beneficial for languages with
limited training data, such as JA. Nevertheless, the
degradation in other languages suggests that the
benefits of scale are not uniform and may interact
with factors such as language similarity, resource
availability, or training dynamics.
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Figure 2: F1 differences between the non-fine-tuned
Llama 8B baseline and its three fine-tuned variants.
Each cell represents the average difference across three
seeds. Dataset abbreviations are defined in Figure 1.

Summary (RQ1): Our results show that encoder
and decoder LLMs can generalize idiom identifi-
cation across languages from a single source lan-
guage. Encoders exhibit moderate cross-lingual
transfer, while decoders show more selective
transfer, especially from high-to-low-resource lan-
guages, supporting the idea that idiomatic meaning
encodes transferable semantic patterns.

4.2 RQ2: FT on Mixture of Languages

Encoder results. Figure 3 illustrates the effect
of gradually increasing the proportion of target-
language data in the training set during FT. which
start from strong baselines and continue to ben-
efit from additional in-language data. However,
for these languages, even a small proportion (e.g.,
10–20%) of target-language data yields substantial
performance gains, highlighting the multilingual
adaptability of encoder-based models like mBERT.
In contrast, low-resource or typologically distant
languages such as Japanese and Spanish start from
lower zero-shot baselines and exhibit smaller over-
all gains. Spanish shows an unusual pattern: per-
formance drops as more target-language data is
added, unlike the other languages, where adding
such data yields slight gains.

Examining the test sets suggests why. In Span-
ish, only 24.4% of the idioms in the test set also
appear in the training set, compared to 43.7% for
English, 63.9% for German, and 62.6% for Italian.
At the same time, 84.6% of Spanish test instances
are literal usages, the highest rate across all test sets
(English: 28.9%, German: 17.1%, Italian: 34.5%).
This means that most of the additional Spanish
training data introduces idioms absent from the

Figure 3: F1 scores of mBERT model fine-tuned on a
mixed-language training set and evaluated on the target
languages.

test set while also reducing the proportion of mul-
tilingual data in the mix. This combination ap-
pears harmful: although the added data matches
the target language, it lacks overlap with the test id-
ioms, and the reduced language diversity weakens
cross-lingual generalization. These findings sug-
gest that maintaining a balanced multilingual mix
can be more effective than simply increasing target-
language data, especially when the new examples
do not align semantically with the evaluation set.

For Japanese, however, we could not identify
a satisfying explanation for the observed perfor-
mance pattern. The interplay between cultural
specificity, idiom transparency, and typological dis-
tance remains unclear, and we plan to investigate
this open question in future work.

Decoder results. To evaluate whether multilin-
gual FT improves the ability of generative decoder
models to identify idiomatic expressions, we com-
pare the performance of Llama-3.1-8B under three
training configurations: monolingual (baseline), a
small multilingual mix (six languages), and a large
multilingual mix (ten languages). Unlike our en-
coder experiments, we were unable to replicate
the gradual target-language scaling due to resource
constraints. The results are shown in Figure 4, with
exact scores provided in Table 8 (Appendix H.3).

Overall, the small multilingual mix improves or
matches baseline performance in most cases. For
example, it improves performance on JA (from
42.38 to 43.43) and TR (from 46.32 to 46.59),
which may stem from their lower baselines, leav-
ing more room for improvement. In contrast, the
large mix yields more variable results. While it
maintains competitive performance on some tar-
gets (e.g., ES and IT (Dodiom)), it often under-
performs compared to the small mix, particularly
on DE and IT (ID10M), suggesting that increasing
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Figure 4: Average F1 scores of fine-tuned Llama 8B on
a mixed-language training set and evaluated on individ-
ual target languages. Dataset abbreviations are defined
in Figure 1.

Figure 5: Llama-3.2-3B monolingual linear-probe F1
across layers.

the number of training languages may introduce
interference or reduce focus on the target signal.

Summary (RQ2): Our findings show that in
some cases, fine-tuning on a language mix im-
proves idiom identification for both encoder- and
decoder-based models. For encoders, even lim-
ited target-language data yields strong results
in high-resource languages, making multilingual
FT an efficient alternative to monolingual train-
ing. For decoders, a small multilingual mix often
matches or outperforms baselines, especially for
low-resource languages like Japanese and Turkish,
though adding more languages produces mixed out-
comes. Overall, multilingual FT aids cross-lingual
generalization, but its impact depends on model
type and training set composition.

4.3 RQ3: Representation of Idioms
Figure 5 shows monolingual linear probing re-
sults across layers. Performance rises until about
layer 7, stabilizes through the mid-layers, and then
slightly declines after layer 26. While the absolute
differences between layers are modest, a consistent
trend emerges: English maintains F1 scores close
to 96 across layers 7–25, suggesting stable cues to

non-compositionality. Italian and Turkish plateau
just above and below 75, reflecting comparatively
weaker but still steady representations. Overall,
these results indicate that from layer 7 onward, de-
coder models capture idiomatic information stably,
even if the layer-wise differences are not signifi-
cant.

Figure 6 presents Jaccard similarity trends
from LogitLens. All languages show a parabolic
pattern with a minimum near layers 10–11, align-
ing with the linear probing results and indicating
stronger idiomatic–literal separation from layer 7
upward. A qualitative analysis supports this obser-
vation. For the PIE at the crossroads, literal uses
align with tokens like crossings, intersection, and
junction, while idiomatic uses often evoke words
such as critical, risk, and resolving, highlighting
the shift from literal to figurative meaning. A rise
in Jaccard similarity at the top layers (25 and on-
ward) mirrors the slight F1 drop in linear probing
in Figure 5, suggesting reduced sensitivity of Log-
itLens near the output without major impact on
distinguishing idiomatic from literal usages.

The cross-lingual linear probing results are
shown in Figure 7. For English as a source, we
compare two training set compositions. The first,
EN, follows Section 3.4 and uses a balanced sample
of 50 PIE types to match the Italian and Turkish
distributions. The second, EN2, removes this con-
straint and samples 1,000 examples uniformly from
the full English dataset, resulting in 574 distinct
PIEs. This setup tests whether English’s larger
idiom inventory improves transfer. Both configu-
rations show similar trends when transferring to
Italian and Turkish, with F1 scores around 70 and
stable performance across layers, suggesting En-
glish is a strong source regardless of sample bal-
ance. TR performs poorly as a source, especially
on IT (F1 < 10), while IT→TR transfers better,
indicating asymmetry and typological divergence.
Most settings show a drop in upper layers, except
English in both configurations, which remains sta-
ble across targets.

Summary (RQ3): Our results show that LLMs
do differentiate idiomatic from literal usage. Mono-
lingual probing and LogitLens reveal a clear sep-
aration from about layer 7, with English show-
ing the strongest signals and Italian and Turkish
weaker but consistent patterns. Cross-lingual prob-
ing confirms this, with English transferring well to
both languages and Turkish performing poorly as
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Figure 6: Mean Jaccard (LogitLens) by layer for PIEs
on Llama-3.2-3B.

Figure 7: Cross-lingual linear-probe F1 across Llama-
3.2-3B layers.

a source. Overall, idiomatic meaning is encoded
in intermediate layers and is detectable within and
across languages.

5 Conclusions

In this work, we studied cross-lingual idiom iden-
tification using both encoder- and decoder-based
language models. We addressed three research
questions examining (1) the ability of models to
transfer idiom identification across languages, (2)
the effect of cross-lingual transfer with language
mixtures, and (3) how idiomatic meaning is repre-
sented internally.

Our experiments show that idiomatic meaning
encodes transferable semantic patterns: encoder
models achieve moderate cross-lingual general-
ization from a single source language, while de-
coder models show more selective transfer, espe-
cially from high-to-low-resource languages. Train-
ing with language mixtures further improves per-
formance, with encoder models reaching near-
baseline accuracy even when only a small por-
tion of the mix comes from the target language,
offering a practical approach for low-resource id-
iom identification. Probing analyses reveal a clear
separation between idiomatic and literal usages in
intermediate layers, with English exhibiting the
strongest non-compositionality signals and Ital-

ian and Turkish showing weaker but consistent
patterns. Together, these results demonstrate that
LLMs capture idiomatic meaning in a way that sup-
ports cross-lingual transfer and can be leveraged
to build scalable systems for multilingual idiom
identification.

Limitations

Our study, although providing valuable insights
into cross-lingual fine-tuning for idiomatic expres-
sion identification, is subject to several limitations.
First, our reliance on existing datasets introduces
variability in annotation definition and quality, as
well as idiom coverage. Moreover, the number
of samples and unique PIEs available, particularly
for low-resource languages, varies and is limited
in some cases, which may hinder robust learning.
Second, the high computational cost of fine-tuning
large generative models, such as Llama-3.1-70B,
restricts the scope of hyperparameter tuning. For
the same reason, the number of inference runs is
limited. Both potentially contribute to the observed
variability in performance and limit our ability to
fully assess cross-lingual transfer.

Another limitation, noted in the explainability
section, is that we were able to leverage only a sub-
set of the data. While the findings present some-
what mixed signals, we view them as a promising
indication that motivates further exploration into
the factors enabling successful cross-lingual gener-
alization of idiomatic meanings.
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A Dodiom Dataset Construction

The original Dodiom dataset provides examples
of idiomatic and literal usage for a predefined set
of idioms in Turkish and Italian. Each example
includes the sentence and the idiom it contains, but
does not provide token-level span annotations.

To adapt the dataset for our idiom identification
task, we convert the idiom-level annotations into
token-level BIO tags. Since the surface form of
each idiom is provided, we align it to the sentence
using normalized character-level matching and tag
its constituent tokens accordingly. Tokens belong-
ing to the idiom are labeled as B (for the first token)

or I (for subsequent tokens), while all other tokens
are labeled as O.

As the original dataset does not include a prede-
fined train-test split, we construct one to support
reliable evaluation. Specifically, for each idiom,
we randomly select two idiomatic and two literal
examples (if available) for the test set. If fewer than
two examples exist for a given class, we include
a single instance. This strategy ensures that the
test set includes both literal and idiomatic usages
for as many idioms as possible, enabling balanced
evaluation across expression types.

To reach a target size of 500 test examples, we
first apply the above per-idiom sampling proce-
dure. If the resulting set contains fewer than 500
examples, we then randomly sample additional ex-
amples, regardless of idiom identity or label, from
the remaining pool to fill the gap. All remaining
examples are assigned to the training set.

B MAGPIE Dataset Construction

MAGPIE was initially designed for the task of
idiom classification, where each instance consists
of a context made up of five sentences taken from
a source document. The target phrase indicated
by the idiom appears in the middle sentence, and
the objective is to classify it as either idiomatic or
literal. To adapt the dataset for the task of idiom
identification, we merge all five sentences into one
continuous span and label the target idiom using
the BIO tagging scheme: B and I signify tokens
that are part of the idiom. Conversely, O denotes
all tokens that are not part of it.

This adaptation introduces potential noise, as ad-
ditional idioms may appear in the surrounding con-
text but remain unlabeled. In practice, we observe
that models occasionally identify such expressions
correctly, receiving false penalties due to missing
gold annotations. Nevertheless, we consider this is-
sue acceptable given its low frequency and limited
impact on evaluation.

To minimize uncertainty, we eliminate 60 in-
stances where the target PIE appears multiple times
in the combined text, as it is not clear whether
all occurrences should be labeled. The resulting
adapted dataset comprises 4,391 test instances.

C Open MWE Dataset Construction

To adapt the corpus for idiom identification, we
convert each example into the standard BIO tag-
ging format. The dataset marks expressions using
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LoRA

r 64
α 16
Dropout 0.05

Training

Epoch 3
Effective batch size 32 for Llama-8B, 8 for 70B
Learning rate 1e-5
Max grad norm 0.3

Table 2: LoRA and training hyperparameters used for
fine-tuning.

angle brackets (“<” and “>”), and assigns each a
label indicating figurative (I) or literal (L) usage.
We retain only the idioms labeled I, and convert
their constituents into BIO tags—labeling the first
token as B-IDIOM, subsequent tokens as I-IDIOM,
and all other tokens as O.

Additionally, the original dataset does not con-
tain predefined training and test splits. To construct
a reliable evaluation setting, we partition the data
ourselves. For each idiom, we randomly select up
to two idiomatic examples and two literal examples
(if available) to form the test set. The remaining
examples are used for training.

D Fine-Tuning

D.1 Decoder Fine-Tuning Hyperparameters

Training details are summarized in Table 2, with
hyperparameters selected based on preliminary ex-
periments.

D.2 Decoder Mix Fine-Tuning

The hyperparameters remained the same as those
used in the standard fine-tuning setup (Table 2).

D.3 Encoder Fine-Tuning

The listed hyperparameters (Table 3) were selected
based on preliminary experimentation; all remain-
ing settings follow the default configuration of the
Trainer5 class in the transformers library.

For both mBERT and XLM-Roberta, we ini-
tially optimized hyperparameters on the English
portion of ID10M and then reused the best con-
figuration for the other languages. For mBERT, a
learning rate of 2e−5 with batch size 8 yielded the
best results (F1 ≈ 0.76); with batch size 32 and
15 epochs we observed F1 ≈ 0.71; with batch size

5https://huggingface.co/docs/transformers/en/
main_classes/trainer

Parameter XLM-RoBERTa Other Models

Epochs 20 20
Batch size 8 32
Learning rate 2e-5 2e-5

Table 3: Encoders fine-tuning hyper-parameters.

128 and 25 epochs F1 ≈ 0.65; and with batch size
32 and 25 epochs F1 ≈ 0.76. For XLM-Roberta,
we began with mBERT’s best hyperparameters,
tested settings from “Using LLMs to Advance
Idiom . . . ” which did not produce good results,
and then conducted a grid search over learning
rates {5e−6, 1e−5, 2e−5, 3e−5, 4e−5, 5e−5}
and batch sizes {8, 12, 16, 32}; the best result
reached F1 ≈ 0.48.

E Generative Decoder Evaluation

Following prior work on idiom identification, we
evaluate model performance using the macro-
averaged F1 score at the token level, comparing
predicted BIO tags against gold annotations.

To enable this, we first convert the model’s pre-
dicted idioms into token-level BIO tags. For all
languages except Japanese, we normalize the pre-
dicted idioms and input sentence (lowercasing, re-
moving dashes and surrounding quotes, standard-
izing quotation characters), and apply character-
level substring matching to align idioms with token
spans. For JA, we use MeCab 6 to tokenize both the
input and predicted idioms, ensuring alignment.

The evaluation pipeline includes a fallback
mechanism for handling malformed or non-
standard model outputs. When predictions can-
not be parsed as valid JSON, we attempt recov-
ery using relaxed parsing strategies such as key
normalization (e.g., accepting “idioms”, “idoms”,
“idiom”, etc.). If all recovery attempts fail, we treat
the prediction as empty, labeling all tokens as ’O’.

All evaluation code, including normalization,
parsing, fallback recovery, BIO tagging, and metric
computation, is available in our project repository.

F Prompt Selection and Design

To identify an effective prompting strategy for fine-
tuning, we experimented with multiple configura-
tions before settling on the final schema used in
our models. These initial explorations were moti-
vated by both practical considerations (e.g., output

6https://pypi.org/project/mecab-python3/
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consistency, ease of parsing) and alignment with
prior work.

We tested two main design choices:

Instruction-based vs. conversational formatting.
We compared flat instruction-style prompts using
a {"prompt": ..., "completion":..} format
(Figure 10) with conversational schemas that fol-
low role-based formatting: {"role":"system"
|"user"|"assistant","content":..}. We
found that the conversational format—particularly
when using a well-scoped system message—led to
more structured and reliable outputs, especially for
instruction-tuned Llama models.

Output format: free text vs. structured re-
sponses. We tested open-ended natural language
completions versus structured formats, such as:

• A TVc-style list as proposed in CoAM (Ide
et al., 2025) (e.g., ["spill the beans",
"break the ice"])

• A JSON-based structure, such as:

{
"idioms": ["spill the beans"],

}

See example for different prompt design in 10.
After thorough testing, we chose a conversa-

tional setup using JSON format; see the final
prompt in Figure 9.

G Resources

Encoder-based models. We run our fine-tuning
experiments on an NVIDIA GeForce RTX 3090
machine. Overall, all runs and tests took approx-
imately 235 hours. The exact code and package
versions required are published in the project’s
repository. 7

Generative decoder models. We conduct both
fine-tuning and inference using the Together AI
platform. For fine-tuning, we do not explicitly se-
lect the hardware resource. For inference, however,
we choose the 1 NVIDIA H100 80 GB SXM hard-
ware. The total cost of this setup is approximately
$60.

Explainability analysis. To run this analysis, we
use a single NVIDIA GeForce RTX 3090 machine
with 24GB.

7https://github.com/Intellexus-DSI/
easy-as-pie

Figure 8: F1 score of the fine-tuned XLM-RoBERTa
model. Each cell represents average macro F1 across
five random seeds. For EN, both ID10M and MAGPIE
are used for training and evaluation; for IT, we train on
ID10M and evaluate on both ID10M and Dodiom.

H Full Results

H.1 Encoder heat map results
Figure 8 shows the heat map results for XLM-
RoBERTa.

H.2 Encoder full results
Table 6 presents the complete set of evaluation
results across all monolingual FT models, and the
table has the results for the mix task 7

H.3 Generative Decoder
Table 8 presents the complete set of evaluation
results across all models and configurations.

I License

We detail the models, datasets, and packages we
use and their respective licenses in Table 4.

J Model Checkpoints

In Table 5, we present the checkpoints used in this
work and the models’ sizes.

K AI assistants

We utilized AI assistants, such as ChatGPT, to
assist with code formatting, phrasing suggestions,
and LaTeX styling during writing. All outputs
were reviewed and edited by the authors, ensuring
no content was generated or used without human
verification.
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Model input
System prompt
You are a professional linguist specializing in figurative language, and your task is to analyse
sentences that may contain an idiom, also known as an idiomatic expression. This is a
definition of idiom: ’A phrase, expression, or group of words that has a meaning different
from the individual meanings of the words themselves, and employed to convey ideas in a
non-literal or metaphorical manner’. Mark idioms only when their usage in the context is
idiomatic/figurative and let literal meanings remain unmarked.

User prompt
You are given one sentence in language, you are an expert of this language. If detected, write
the idioms exactly as they are in the sentence, without any changes. Only answer in JSON.
Sentence: Sentence

Assistant
Output: Expected out put

Figure 9: Final Fine Tune message

Artifact Type License Notes

Open MWE a Dataset BSD 3-Clause subset was used
ID10Mb Dataset CC BY-NC-SA 4.0 Full test set used
MAGPIEc Dataset CC BY 4.0 Used a filtered subset
Dodiomd Dataset GNU General Public License v3.0 subset was used
Llama-3.1-8B-Instruct-Referencee Model Llama 3.1 Community License -
Llama-3.1-70B-Instruct-Referencef Model Llama 3.1 Community License -
mBERTg Model apache-2.0 -
XLM-RoBERTah Model MIT -
LangChaini Framework MIT License Used for prompting
Together AIj Provider Proprietary Used for API access
NNsightk package MIT License Used for logit lens analysis
scikit-learn l package BSD license Used for Linear probing
MeCabm package BSD 3-Clause License Used for JA tokenization
a https://github.com/nlp-waseda/OpenMWE
b https://github.com/Babelscape/ID10M/tree/master
c https://github.com/hslh/magpie-corpus/tree/master?tab=readme-ov-file
d https://github.com/Dodiom/Dodiom
e https://huggingface.co/meta-Llama/Llama-3.1-8B-Instruct
f https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
g https://huggingface.co/google-bert/bert-base-multilingual-cased
h https://huggingface.co/FacebookAI/xlm-roberta-base
i https://www.langchain.com
j https://www.together.ai
k https://nnsight.net
l https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.
html

m https://pypi.org/project/mecab-python3

Table 4: License and usage summary of all datasets, models, and tools used in this study.

Model Checkpoint # Parameters

Llama-3.1-8B Meta-Llama-3.1-8B-Instruct-Reference 8B
Llama-3.1-70B Meta-Llama-3.1-70B-Instruct-Reference 70B
XLM-RoBERTa FacebookAI/xlm-roberta-base 279M
mBERT google-bert/bert-base-multilingual-cased 179M

Table 5: Checkpoints used during experiments and the number of parameters.
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Prompt Variant 1: Instruction-style Format (Not Used in Final Experiments)
Prompt:
You are a professional linguist specializing in figurative language and your task is to analyse
sentences that may contain an idiom, also known as an idiomatic expression.
This is a definition of idiom: ’A phrase, expression, or group of words that has a meaning
different from the individual meanings of the words themselves, and employed to convey
ideas in a non-literal or metaphorical manner’. Identify all idioms in the following sentence,
but only if they are used figuratively. Do not include literal usages. Return your answer in
JSON format.
Sentence: I spilled the beans during the meeting.
Completion: {"idioms": ["spilled the beans"]}

Prompt Variant 2: Alternative Wording (Not Used in Final Experiments)
System prompt
You are a professional linguist specializing in figurative language and your task is to analyse
sentences that may contain an idiom, also known as an idiomatic expression. This is a
definition of idiom: ’A phrase, expression, or group of words that has a meaning different
from the individual meanings of the words themselves, and employed to convey ideas in a
non-literal or metaphorical manner’.

User prompt
You are given one sentence in a language, you are an expert in this language. Your task is to
identify idioms only if they are used in an idiomatic or figurative sense. If the usage is literal,
do not mark it.
Output only the idioms that appear exactly as they are in the sentence, without any changes.
Return the answer in JSON format only.
Sentence: I spilled the beans in the kitchen.

Assistant
{"idioms": []}

Figure 10: Prompt formatting strategies explored during fine-tuning
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Test Lang. Model EN (ID10M) EN (MAGPIE) DE IT (ID10M) IT (Dodiom) ES TR JA
Train Lang.

EN mBERT 75.30±0.50 54.30±1.53 56.27±0.90 61.75±1.43 53.22±0.75 59.08±1.01 33.20±1.23 35.19±0.73
(ID10M) XLM-RoBERTa 39.49±14.54 35.87±6.06 33.72±4.66 37.46±10.68 34.79±7.14 35.09±10.24 31.32±0.39 32.36±0.00
EN mBERT 63.51±3.66 80.94±2.50 57.52±1.80 61.86±0.95 53.22±1.71 52.85±2.89 41.71±4.16 42.86±1.24
(MAGPIE) XLM-RoBERTa 52.02±5.73 83.25±0.97 49.34±2.38 57.32±4.93 40.72±5.43 40.02±5.18 35.40±1.30 39.61±2.40

DE mBERT 43.11±0.32 37.24±2.11 76.22±2.33 50.70±1.09 35.26±1.18 41.63±1.23 38.53±0.97 36.19±2.00
XLM-RoBERTa 35.41±2.91 34.11±0.59 56.27±6.20 39.24±3.46 31.30±0.82 34.24±2.79 32.10±1.17 32.35±0.00

IT mBERT 47.93±0.51 42.23±0.77 39.96±3.48 68.79±0.73 53.12±0.53 55.23±1.89 36.29±1.27 36.80±0.93
(ID10M) XLM-RoBERTa 49.81±1.48 44.61±1.18 34.71±0.81 62.98±2.63 48.97±2.33 51.83±1.46 31.17±0.54 34.04±1.10

ES mBERT 36.76±0.47 38.09±0.82 44.61±2.23 54.78±1.96 37.30±0.84 37.63±0.43 34.22±1.06 32.48±0.16
XLM-RoBERTa 33.43±2.21 33.39±0.56 32.94±3.07 37.55±3.53 34.79±2.11 32.77±2.24 33.52±1.72 32.36±0.00

JA mBERT 32.45±0.52 34.11±0.51 35.41±0.87 35.90±1.02 32.46±0.50 33.09±1.19 42.95±2.36 82.92±1.21
XLM-RoBERTa 37.89±2.03 39.21±1.53 39.61±3.29 39.56±3.29 33.27±1.96 34.00±3.69 40.29±3.53 82.68±2.02

FR mBERT 30.64±0.54 33.78±0.33 32.72±0.90 35.57±1.24 32.66±1.48 31.42±0.30 31.29±0.22 32.71±0.28
XLM-RoBERTa 30.39±0.01 33.39±0.32 31.25±0.10 33.80±1.64 31.99±1.20 29.29±0.03 31.14±0.00 32.50±0.14

PL mBERT 32.50±1.11 33.66±0.23 44.04±4.28 41.25±0.34 30.51±0.27 32.22±0.72 33.62±1.26 32.40±0.04
XLM-RoBERTa 31.31±0.35 33.30±0.27 41.67±0.36 39.39±0.78 31.99±0.20 30.37±0.58 32.19±0.33 32.36±0.00

PT mBERT 34.06±1.21 41.98±0.32 44.58±1.86 51.79±1.75 44.64±1.08 38.03±0.73 34.21±1.44 34.82±0.37
XLM-RoBERTa 37.05±4.89 40.33±4.56 39.60±5.67 46.38±9.28 44.03±7.55 35.75±4.49 32.29±0.75 32.40±0.10

Table 6: The performance of fine-tuned mBERT and XLM-RoBERTa was evaluated across eight languages. The
results are reported in terms of F1 scores (bounds = mean ± standard deviation over five runs).

Language 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

EN 41.06±2.55 63.22±1.44 67.55±2.00 69.64±1.22 71.50±0.59 71.96±1.71 72.67±1.12 73.43±0.62 74.05±0.23 73.74±0.52 74.31±0.85

DE 65.18±2.32 70.80±0.67 71.34±1.69 72.32±1.76 72.87±2.44 73.24±2.27 73.05±1.83 75.62±2.96 76.47±2.09 74.64±0.89 75.56±2.04

IT 60.91±1.50 67.39±0.54 67.93±0.33 68.32±0.89 68.92±0.69 68.75±0.43 69.39±0.52 69.09±0.93 70.11±0.59 69.79±0.70 69.18±0.97

JA 33.16±0.30 47.70±1.08 49.38±0.74 50.09±1.02 50.32±0.87 51.04±1.36 51.80±1.04 52.85±0.69 52.44±0.99 52.48±1.21 52.45±0.94

ES 50.57±2.19 52.51±1.44 48.59±2.00 45.95±1.41 42.68±2.61 41.82±2.50 40.21±1.26 37.79±1.24 37.50±2.19 37.57±2.33 37.55±2.04

Table 7: The performance of fine-tuned mBERT mix.The results are reported in terms of F1 scores (bounds = mean
± standard deviation over five runs).

Test Lang. Model EN (ID10M) EN-magpie DE IT (ID10M) IT (Dodiom) ES TR JA

Baseline Llama 70B 81.31 68.21 77.68 73.11 58.49 69.07 51.87 46.9
Llama 8B 81.94 53.52 72.14 64.51 51.09 65.09 46.32 42.38

EN (ID10M) Llama 70B 81.34 67.07 67.06 63.62 58.26 61.82 47.53 50.85
Llama 8B 80.14±1.37 53.31±0.82 71.80±0.09 64.26±1.59 51.52±0.34 65.53±0.45 46.41±0.42 42.79 ±0.15

DE Llama 70B 81.6 67.03 75.88 71.74 57.53 70.34 50.67 51.14
Llama 8B 82.17±0.75 53.22±0.28 71.50±0.31 64.46±0.22 50.66±0.75 65.35±1.32 46.46±0.40 42.82±0.44

IT (ID10M) Llama 70B 81.45 67.17 76.41 71.84 57.44 70.19 50.82 50.59
Llama 8B 81.14±0.89 52.98±0.50 70.13 ±0.83 63.75±0.75 51.17±0.25 65.42±0.43 46.55±0.27 42.57±0.29

ES Llama 70B 81.34 59.75 77.04 71.07 57.68 70.26 50.65 50.45
Llama 8B 81.37±0.56 53.06±0.08 71.02 ±0.43 64.14±0.79 51.39±0.51 64.65±0.73 46.34±0.94 42.08±0.15

TR Llama 70B 81.64 68.45 77.93 72.62 58.13 69.93 51.41 50.87
Llama 8B 81.18±0.61 53.15±0.55 71.37 ±0.55 65.09±0.27 50.80±0.46 65.54±0.36 46.31±0.93 42.32±0.17

NL Llama 70B 81.47 67.24 76.95 71.11 58.02 70.22 50.1 50.78
Llama 8B 80.43±1.02 52.78±0.24 71.60 ±0.24 64.47±0.55 51.35±0.66 64.98±0.75 47.41±0.87 42.80±0.75

FR Llama 70B 81.23 67.49 76.83 70.59 58.19 70.08 49.74 50.64
Llama 8B 81.49±0.52 53.09±0.16 72.48 ±0.94 64.72±0.97 50.74±0.26 64.55±1.26 46.58±0.46 42.53±0.17

PL Llama 70B 81.21 67.37 77.6 71.43 58.01 70.38 49.88 50.39
Llama 8B 81.43±0.39 53.09±0.57 71.32 ±1.01 64.13±1.81 50.93±0.33 65.89±0.51 46.20±1.04 42.03±0.51

PT Llama 70B 81.34 66.39 76.79 71.45 57.22 69.64 50.27 50.88
Llama 8B 81.84±0.97 52.70±0.44 71.45 ±1.50 64.29±0.25 50.87±0.29 65.42±0.8 46.57±0.25 42.50±0.56

Small mix Llama 8B 81.77±0.88 53.10±0.43 63.70±2.66 62.48±1.46 51.78±0.32 65.72±0.73 46.59±0.73 43.43±1.93

Large mix Llama 8B 79.07±0.62 55.44±0.66 46.98±0.68 51.75±1.05 52.45±0.56 65.86±1.16 42.94±1.93 41.17±0.56

Table 8: Performance of Fine-Tuned Generative Decoder Models on Test Languages. Reports F1 scores for
Llama 8B and Llama 70B models fine-tuned on various language combinations. Results are shown across our test
languages. Bounds denote mean ± standard deviation over five runs.
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