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Abstract

As the adoption of large language models
(LLMs) continues to grow, the risk of sensi-
tive data leakage from their training datasets
has become a critical concern. This study pro-
poses a novel method for encrypting training
data using a polyalphabetic substitution cipher.
This approach prevents the model from learn-
ing sensitive information while allowing it to
capture abstract linguistic patterns. We pre-
trained a Llama 3 model (551M parameters)
using approximately 7.5 billion tokens of en-
crypted data and subsequently conducted con-
tinual pre-training with another 2.5 billion to-
kens of plaintext data. The effectiveness of the
model was evaluated by comparing its down-
stream task performance with a model trained
solely on plaintext data. In addition, we evalu-
ated the risk of sensitive data leakage through
name reconstruction, true-prefix and data ex-
traction attacks. These results demonstrate the
potential of our approach to balance data secu-
rity with model performance1.

1 Introduction

As of 2025, the rapid advancement of large lan-
guage models (LLMs) has raised concerns about
their potential to reproduce data from pre-training
corpora. Their increased capacity to memorize vast
amounts of text has enabled attacks that extract sen-
sitive information, such as personal data (Carlini
et al., 2021, 2023; Nasr et al., 2023). In the EU,
the GDPR 2 regulates personal data handling, and
LLMs lacking sufficient protection mechanisms
may face legal or commercial inaccessibility. Ad-
ditionally, the risk of unintentionally reproducing
copyrighted content poses further legal challenges.
Stricter regulations may reduce the amount of us-
able data for pre-training, threatening scalability.

1The code is available at https://github.com/
yohei-kobashi/crypto_llm

2https://gdpr-info.eu/

To mitigate these risks, protection techniques
such as scrubbing and differential privacy (DP)
have been proposed (Yan et al., 2024). However,
these approaches face limitations: scrubbed con-
tent may still be recoverable (Lukas et al., 2023),
and DP introduces high computational overhead,
making it difficult to apply at scale (Beltran et al.,
2024). Even when protection methods are avail-
able, organizations may hesitate to share sensitive
data in raw form. Thus, there is a need for practical
techniques that data owners can easily apply.

LLM-generated synthetic data is another option,
but exclusive reliance on it can degrade model per-
formance (Shumailov et al., 2024; Alemohammad
et al., 2024). Moreover, synthetic data generation
itself may inadvertently leak sensitive information.

To address these challenges, we propose Crypto-
LLM, a method that encrypts sensitive data prior to
pre-training and transfers learned patterns from the
encrypted text to natural language. As shown in the
right panel of Figure 1, the entire text is encrypted
before tokenization and model training, preventing
the LLM from memorizing it as natural language.
This protects not only personal information but also
diverse unstructured content such as copyrighted
materials.

Crypto-LLM uses classical polyalphabetic sub-
stitution ciphers, which are lightweight, widely
available, and easy to implement. The encryption
strength can be adjusted by varying the key length,
allowing users to balance privacy and utility.

In this paper, we evaluate a Llama 3 551M model
pre-trained on encrypted data and then continually
pre-trained on English plaintext. Compared to a
baseline model trained only on the plaintext contin-
ual pre-training data, ours achieved a 7.75% aver-
age improvement in downstream task performance
using key lengths of 1 and 10. We further show that
Crypto-LLM offers stronger protection for personal
and copyrighted content than do scrubbed-data ap-
proaches.
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Figure 1: Comparison of Training Pipelines. (Left) Normal pre-training on plaintext using a standard tokenizer and Decoder
Transformer. (Center) Scrubbed pre-training: Sensitive entities are masked (e.g., replacing “Alice” with <PERSON>) to protect
PII data. (Right) Our Crypto-LLM pre-training: All tokens in the text are first encrypted by an encryptor, tokenized by an
encrypted text tokenizer, and then fed into the Transformer.

2 Related Work

2.1 Defences against Privacy Leakage or
Attack

Scrubbing and differential privacy are widely stud-
ied methods for preventing the reproduction of
training data during inference (Yan et al., 2024).
We describe these techniques below.

Scrubbing refers to masking personal informa-
tion such as names, addresses, and phone numbers.
For example, using Presidio3, which is Microsoft’s
scrubbing library, the sentence "Alice was born
in Canada" is transformed into "<PERSON> was
born in <LOCATION>". The goal of this tech-
nique is to prevent the memorization of personal
information. However, scrubbing does not guaran-
tee complete protection, as it has been pointed out
that personal information could potentially be re-
constructed from surrounding context (Lukas et al.,
2023; Beltran et al., 2024). Moreover, because
scrubbing protects only structured and predefined
information, it may be ineffective in protecting
other forms of content, such as copyrighted mate-
rial.

Differential privacy (DP) is a technique designed
to ensure that, by adding random noise, the prob-
ability of outputting sensitive information differs
by at most a constant factor depending on whether
that information is included in the dataset (Dwork,
2006). While DP can be applied directly at in-
ference time, this approach significantly degrades
model performance. To address this, DP-SGD, a
method that adds noise during stochastic gradient
descent, has been proposed for deep learning mod-
els (Abadi et al., 2016). Nevertheless, DP-SGD
requires gradient clipping at each step and very
large batch sizes to stabilize training. This nega-
tively affects computational efficiency and memory

3https://microsoft.github.io/presidio/

usage (Anil et al., 2021).

2.2 Cross-lingual Transfer Learning

If encryption is regarded as a transformation into
another language, Crypto-LLM can be considered
a type of cross-lingual transfer learning. Crypto-
LLM aims to transfer performance from pre-trained
models that have learned encryption patterns to
English tasks. In cross-lingual transfer learning
research, several studies have explored training
models for low-resource languages by continu-
ally pre-training foundational models pre-trained
in English or multiple languages, thereby trans-
ferring the foundational models’ capabilities to the
low-resource languages (Ulčar and Robnik-Šikonja,
2023; Luukkonen et al., 2023; Balachandran, 2023;
Kuulmets et al., 2024; Toraman, 2024; Joshi et al.,
2025).

Studies have shown that transfer learning to
natural language tasks is feasible even when us-
ing artificial languages or text transformed into
forms incomprehensible to humans (Ri and Tsu-
ruoka, 2022; Tamura et al., 2023; Duan et al., 2025).
Artificial language research involves pre-training
with languages generated solely from statistical
properties, such as integer tokens, word counts
per sentence, word frequency distributions, and
co-occurrence relationships arising from syntactic
properties. When such models underwent addi-
tional training in English, they outperformed mod-
els trained exclusively on English. Furthermore,
Duan et al. (2025) demonstrated that LLMs could
still interpret text even when it was transformed
into unintelligible strings by shuffling words or
inserting special characters.
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3 Preliminaries

3.1 Substitution Cipher

Text-based encryption has existed since ancient
times and has evolved significantly for modern ap-
plications, such as network communications. His-
torically and theoretically, symmetric key encryp-
tion algorithms utilize substitution primarily as a
fundamental building block (Shannon, 1949; Sa-
lomon, 2003). Substitution is an encryption method
that replaces each symbol with another according
to a given key. A classic example is the Caesar
cipher, which shifts each letter by a fixed number
of positions. Consider the plaintext “I AM A CAT”
encrypted with the key “c.” Since “c” is the third
letter of the alphabet, each character is shifted by
three positions, resulting in the ciphertext:

L DP D FDS

Modern stream ciphers used for real-time com-
munications continue to perform substitution at the
bit level.

3.2 Polyalphabetic Substitution Cipher

While basic substitution ciphers like the Caesar
cipher use a single fixed shift, polyalphabetic sub-
stitution ciphers enhance security by varying the
substitution key throughout the encryption process.
Specifically, these ciphers employ multiple shifts
determined by a repeating keyword. For example,
encrypting the plaintext “I AM A CAT” using the
key “cfb” means the first character is shifted by
three positions, the second by six, the third by two,
and then this pattern repeats (3, 6, 2). The resulting
ciphertext is:

L GO D JCS

Here, “cfb” represents a key of length three.
Despite being a classical technique, polyalpha-

betic substitution ciphers can achieve theoretically
unbreakable encryption under conditions resem-
bling a one-time pad (Borowski and Leśniewicz,
2012; Salomon, 2003; Shannon, 1949). These con-
ditions stipulate that the key must be as long as
the plaintext, completely random, and never reused.
If the key is shorter than the plaintext, shifts re-
peat periodically, potentially aiding cryptanaly-
sis. Conversely, a longer key reduces the repeti-
tion frequency, enhancing security. The Caesar
cipher can be viewed as a polyalphabetic substitu-
tion cipher with a key length of one; in this case,
it always substitutes identical plaintext characters
with the same ciphertext character. Increasing the

key length introduces variation in character sub-
stitutions, thereby substantially increasing crypto-
graphic strength.

4 Method

4.1 Training Methodology

The training process is illustrated in Figure 2. Ini-
tially, any text in the corpus that contains sensitive
information, such as privacy-related data, is en-
crypted. Then, tokenizers are trained separately
on the encrypted data and the plaintext. Following
this, the base model is trained exclusively on the
tokenized encrypted data. Finally, the model un-
dergoes continual pre-training using the plaintexts.
We assume pre-training with a large encrypted cor-
pus followed by continual pre-training with a small
volume of plaintext. Given the comparatively low
cost of preparing small amounts of high-quality
plaintext, this approach is considered practical.

4.2 Cryptography Technique

We use a polyalphabetic substitution cipher to en-
crypt training data, as stronger encryption methods
like block or stream ciphers often result in overly
random strings that hinder learning. Our goal is
to prevent sensitive data leakage while demonstrat-
ing that effective model training can occur with
lower-strength encryption. After encryption-based
pre-training, we conduct continual pre-training on
plaintext English data to evaluate whether Crypto-
LLM provides effective initialization for language
tasks. While some LLMs have successfully learned
patterns from encrypted texts (Halawi et al., 2024;
Yuan et al., 2024), we investigate whether the ca-
pabilities acquired by Crypto-LLM on encrypted
data can be transferred to English.

We implement encryption by mapping text char-
acters to numerical values, adding corresponding
numerical key values, and applying modular divi-
sion. Figure 3 illustrates this process. Symbols
outside the defined alphabet remain unchanged.

Our choice to encrypt only alphabetic charac-
ters is based on both practical and methodologi-
cal considerations. Alphabet-only encryption has
long been used in classical cryptography, and most
pseudo-PII entities in our corpus, such as personal
names, are composed almost entirely of alphabetic
characters.

Digits and spaces were excluded because, in our
SentencePiece-based tokenizer, they are treated as
special symbols that define token boundaries. En-
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Figure 2: Training Methodology. The plaintext corpus is divided into data requiring encryption and data that does not. The
former data is encrypted. Tokenizers are then trained separately on the encrypted texts and the plaintexts. In the first stage,
pre-training is performed using the encrypted texts along with the tokenizer trained on them. In the second stage, continual
pre-training is conducted on the pre-trained model using the plaintexts and the corresponding plaintext tokenizer.

crypting them would disrupt tokenization and sig-
nificantly reduce token efficiency, although han-
dling numeric PII such as phone numbers remains
an open challenge.

This limitation can be mitigated by extending the
set of characters included in encryption. Increasing
the range of encrypted symbols reduces the proba-
bility that substituted characters will correspond to
digits or whitespace, thereby alleviating the issue
of token over-segmentation. Furthermore, adopt-
ing Unicode or byte-level normalized tokenizers or
expanding the tokenizer’s vocabulary could help
maintain tokenization efficiency even without treat-
ing digits as special cases. However, implement-
ing such modifications would require substantially
larger datasets and model capacities, and we leave
this direction for future work.

4.3 Evaluation of Model Performance

In this study, we conduct pre-training on en-
crypted data and subsequently perform continual
pre-training on plaintext to evaluate two primary
aspects. First, by examining the evolution of the
pre-training loss during encryption-based learning,
we investigate whether linguistic patterns can in-
deed be learned from encrypted data. Next, we
compare the downstream task performance on En-
glish benchmarks of our Crypto-LLM against base-
line models trained solely on plaintext. This com-
parison assesses the effectiveness of the transfer
learning derived from Crypto-LLM.

4.4 Evaluation of PII Leakage Risk

We evaluate the privacy protection performance
of our method using three benchmarks: the name
reconstruction attack (Lukas et al., 2023), the true-
prefix attack (Nakka et al., 2024; Huang et al.,
2022), and the data extraction attack (Nasr et al.,
2023). The first two focus on attacks targeting

personally identifiable information (PII), while the
data extraction attack addresses sensitive data more
broadly.

In the following, we explain the three attacks.

4.4.1 Name Reconstruction Attack
Given an original sentence

S = S0 + name + S1,

The name reconstruction attack is as follows:
1. Extract exactly one name from each of the N

pseudo-PII sentences, resulting in a set of N
candidate names. If multiple names appear
in a sentence, we replace the true name with
the top prediction from RoBERTa-large4, as-
suming that all names are masked during the
experiment.

Name(i) = ExtractName(S(i)),

i = 1, . . . , N.

2. Extract candidate names n̂ame(i) from each
X(i) via morphological analysis.

3. Select the name into its context (S0 and S1)
with minimal perplexity:
n̂ame = arg min

name(i)
PPL

(
S0 + name(i) + S1

)

4. Evaluate success: check if n̂ame = nametrue.
4.4.2 True-prefix Attack
Second, we employ the true-prefix attack, evalu-
ating the risk of reconstructing the sequence of
tokens following a name based on information
provided up to that name. We define the prefix
P = S0 + name and attempt to reconstruct the
suffix S1 as follows:

1. Prompt the model with P and sample
Nsampling continuations

{Ŝ(i)}Nsampling

i=1 , Ŝ(i) = P + Ŝ1
(i)
.

4https://huggingface.co/FacebookAI/
roberta-large
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The Table of Characters (upper - and lower-case letters, N=52)
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Figure 3: Example of Encryption Using Polyalphabetic Substitution Cipher Employed in This Study. The text and repeated key
are converted into numbers according to the table. The numbers at corresponding positions are added, and the remainder when
divided by 52 becomes the encrypted numbers. These numbers are then converted back into characters using the same table,
resulting in the encrypted text

2. Compute the normalized Levenshtein distance
by removing function words and using mor-
phological units

dLev(Ŝ1
(i)
, S1

)

3. Select the reconstruction
Ŝ1

∗
= argmin

Ŝ1
(i)
dLev(Ŝ1

(i)
, S1

)
.

In our evaluation, we adopt the normalized Lev-
enshtein distance as a metric to quantify how
closely the generated suffix S1 matches the ground
truth in terms of both word identity and position.
When assessing the reproducibility of sentences
seen during training, we consider it more appro-
priate to evaluate token-level similarity rather than
semantic similarity, such as that captured by met-
rics like BERTScore. The specific procedure for
computing the normalized Levenshtein distance is
provided in Appendix A.1.

4.4.3 Data Extraction Attack

To evaluate protection against sensitive data in var-
ious formats, including copyrighted material, we
employ a data extraction attack. While member-
ship inference attacks are commonly used to de-
tect whether specific data was included in training,
Duan et al. (2024) shows that such attacks perform
no better than random when applied to pre-training
data. Therefore, we adopt the method proposed
by Nasr et al. (2023), which measures extraction
success rates using a suffix array built from the en-
tire pre-training dataset and a large number of input
queries. Details are provided in Appendix A.2. The
evaluation procedure is as follows:

1. Randomly extract 100,000 prompts from
Wikipedia, each consisting of five tokens.

2. Input each prompt into the model and collect
the output.

3. Using a suffix array constructed from the pre-
training data, determine whether the output
contains a substring of 35 words or more that
matches the training data.

4.5 Concept and Motivation for Crypto-LLM

The contribution of this study is twofold. First, we
test the hypothesis that transfer learning is possible
from encrypted data treated as a new language.
Second, we evaluate how increasing encryption
strength—by disrupting the statistical properties of
natural language—affects transferability.

4.5.1 Transfer Learning from Encrypted to
Natural Language

Previous studies have shown that LLMs can learn to
interpret encrypted text (Halawi et al., 2024; Yuan
et al., 2024; Lin et al., 2024). The key question is
whether the knowledge acquired from encrypted
inputs can transfer to natural language tasks. Ulčar
and Robnik-Šikonja (2023) compared a monolin-
gual Slovenian model (T5-sl) with a multilingual
model (mT5) fine-tuned on Slovenian. At 60 mil-
lion parameters, T5-sl performed better. However,
at 750 million parameters, mT5 outperformed T5-sl
on several benchmarks. This suggests that cross-
lingual transfer becomes more effective with suf-
ficiently large models. In this study, we examine
whether such transfer occurs from encryption to
English using a 551 million parameter model.

Encryption also allows for controlled manipu-
lation of linguistic properties. Research on arti-
ficial languages has shown that mimicking word
frequency and co-occurrence patterns enables trans-
fer learning (Ri and Tsuruoka, 2022; Tamura et al.,
2023). With a key length of 1, polyalphabetic sub-
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stitution changes the surface form of each word
but preserves its statistical and syntactic structure.
Therefore, effective transfer is expected. In con-
trast, with key lengths ≥ 2, these distributions tend
to become more uniform, likely weakening transfer.
To investigate this effect, we vary the key length
across 1, 10, and 100, and analyze how this loss of
linguistic regularities impacts transfer performance.
To examine how key length influences the degree
of syntactic variation, we report the conditional en-
tropies of the encrypted data used for training in
the Appendix A.3.

4.5.2 Data Protection for Pre-training
Crypto-LLM offers a promising solution for incor-
porating sensitive texts in pre-training that would
otherwise be excluded due to privacy concerns. We
demonstrate its advantages over existing methods
in Table 1.

First, compared to scrubbing, Crypto-LLM is su-
perior in both pre-processing speed and coverage.
Polyalphabetic substitution encryption has linear
time complexity O(N) (AlTuhafi, 2022) and re-
quires only simple character mapping using a small
substitution table. In contrast, scrubbing tools typi-
cally rely on CRF-based named entity recognition.
While CRFs also operate in linear time (Sutton
et al., 2012), they require more memory and in-
volve more complex token-level processing.

We benchmarked both methods on 1,000 ran-
domly sampled texts from the Fineweb-Edu
sample-10BT dataset. Using PyCryptodome5 with
a key length of 100, encryption took an average of
1.01 seconds (SD = 0.018), whereas scrubbing us-
ing the Presidio default configuration took 251.30
seconds (SD = 39.246).

In terms of performance impact, scrubbing mod-
ifies only parts of the input, preserving the overall
structure but offering limited coverage for sensitive
data. Crypto-LLM, by transforming the entire in-
put, may affect performance more but can protect
a broader range of private content.

Compared to DP-SGD, Crypto-LLM has a clear
advantage in training efficiency. While DP-SGD
has been applied in fine-tuning (Li et al., 2021; Yu
et al., 2021; Charles et al., 2024), scaling it to full
LLM pre-training remains challenging due to its
significant computational overhead. In contrast,
Crypto-LLM only requires a preprocessing step
and otherwise uses standard training procedures.

5https://www.pycryptodome.org/

Both methods offer tunable privacy: DP-SGD
adjusts privacy via noise magnitude, while Crypto-
LLM uses key length. If our study successfully
demonstrates a favorable utility–privacy trade-off,
Crypto-LLM could serve as a viable alternative to
DP-SGD in large-scale pre-training.

5 Experiment

5.1 Dataset

In our experiment, we used the "sample-10BT"
dataset, which is officially provided by FineWeb
Edu and contains approximately 10 billion tokens 6.
During training with encrypted data, we randomly
split the text obtained from the dump at a 3:1 ra-
tio, using three parts for encrypted data and one
part for plaintext. We used three variants of the
polyalphabetic substitution cipher for encryption:
one with a key length of 1, equivalent to the Caesar
cipher, one with a key length of 10, and the other
with a key length of 100.

Additionally, 18,051 texts containing personal
names were randomly extracted from the pre-
training data, and these were used as pseudo-
PII for evaluating Crypto-LLM. To evaluate pro-
tection against name reconstruction, pseudo-PII
data were extracted from the corpus, and per-
sonal names were identified using SpaCy7 with
the en_core_web_sm model.

5.2 Models

These experiments employ the Llama 3 model
(551M parameters). Detailed model configurations
are provided in Appendix A.4.

5.3 Tokenizers

The tokenizer for the encrypted text and the tok-
enizer for the plaintext were trained separately. For
encrypted text, a dedicated tokenizer was trained

6https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu

7https://spacy.io/

Table 1: Comparison of Scrubbing, DP, and Encryption. The
comparison of downstream task performance and data protec-
tion is based on the results of this study. However, since we
did not conduct experiments with DP, its evaluation is based
on prior work that compared DP with scrubbing

Aspect Scrubbing Differential Privacy Encryption
(Presidio) (DP-SGD) (Proposed)

Target PII All All
Pre-processing High No Low
Training Cost Low High Low
Downstream Task High Moderate(Lukas et al., 2023) Low
Data Protection Limited Moderate(Lukas et al., 2023) High
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for each key length. The tokenization was per-
formed using SentencePiece8 with Byte Pair En-
coding (BPE), and the vocabulary size was set to
32,000.

The tokenization efficiency (measured as tokens
per character) for encrypted text is generally worse
(i.e., results in more tokens per character) than
for[A13.1] plaintext, except for the case where key
length = 1 (see Table 2).

5.4 Experiment Details

In this experiment, we compare a total of five mod-
els:

• Crypto-LLM Key1 (Pre-training with Cipher
with Key Length = 1 and Continual Pre-
training with Plaintexts)

• Crypto-LLM Key10 (Pre-training with Cipher
with Key Length = 10 and Continual Pre-
training with Plaintexts)

• Crypto-LLM Key100 (Pre-training with Ci-
pher with Key Length = 100 and Continual
Pre-training with Plaintexts)

• Scrubbing-LLM (Pre-training with scrubbed
texts and Continual Pre-training with Plain-
texts)

• Plain-LLM PT+CPT (Pre-training with Plain-
texts and Continual Pre-training)

• Plain-LLM CPT (Only Continual Pre-
training)

Pre-training was conducted for 7,829 million
tokens, followed by an additional 2,598 million
tokens of continual pre-training with the remaining
25% plaintext. The number of steps for continual
pre-training corresponds to the iterations required
for one epoch of training on the prepared plaintext
data. Both the pre-training and the continual pre-
training were conducted for one epoch. However,
for the PII leakage risk evaluation, the model was
fine-tuned for 10 epochs on the extracted pseudo-
PII data.

8https://github.com/google/sentencepiece

Table 2: Compression Rate (Tokens per Character) for Plain-
text and Encrypted Text Tokenizers

Text Type Compression Rate
Plaintext 0.228
Key Length = 1 0.229
Key Length = 10 0.304
Key Length = 100 0.412

2

3

4

5

6

7

8

9

10

11

0 1000 2000 3000 4000 5000 6000 7000

L
os

s

Step

Crypto-LLM Key1
Crypto-LLM Key10
Crypto-LLM Key100
Plain-LLM PT+CPT
Scrubbing-LLM

Figure 4: Crypto-LLM Training Loss Curve with Encrypted
Data.

6 Results

6.1 Loss

Figure 4 illustrates the loss trajectory during pre-
training for Crypto-LLMs and Plain-LLMs. Plain-
LLM PT+CPT and Crypto-LLM Key1 exhibit al-
most identical loss reduction trends. This similarity
is likely because when the key length = 1, each char-
acter is simply replaced with a fixed, predetermined
character, effectively resulting in learning patterns
that are nearly identical to those of plaintext train-
ing.

In contrast, Crypto-LLM Key10 and Key100,
which use stronger encryption, show a slower loss
reduction in the early stages due to the increased
complexity of character substitutions. As train-
ing progresses, however, their loss decreases more
rapidly and ultimately falls below that of Plain-
LLM PT+CPT. This suggests that the model can
learn the more complex patterns over time, result-
ing in further loss reduction.

Next, Figure 5 presents the loss trajectory dur-
ing continued pre-training. Throughout the pro-
cess, Plain-LLM PT+CPT consistently exhibits the
lowest loss, followed by Crypto-LLM Key1 and
Crypto-LLM Key10. Plain-LLM CPT shows a
higher loss compared to these models, suggesting
that Crypto-LLMs have already learned certain lin-
guistic patterns relevant to English.

6.2 Downstream Tasks

Table 3 compares Crypto-LLMs and Plain-LLMs
on downstream tasks. These scores were computed
using the lm-evaluation-harness. Although some
tasks fall below the chance rate, Crypto-LLMs gen-
erally outperform Plain-LLM CPT but underper-
form compared to Plain-LLM PT+CPT. The aver-
age performance of Crypto-LLM Key100 shows
no significant differences from Plain-LLM CPT,
whereas Crypto-LLM Key1 and Key10 outperform
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Table 3: Model Performance on Benchmarks

Model HellaSwag Obqa WinoGrande ARC-c ARC-e boolq piqa avg.
Plain-LLM PT+CPT 0.300 0.210 0.494 0.217 0.531 0.618 0.629 0.428
Plain-LLM CPT 0.265 0.134 0.492 0.173 0.365 0.449 0.561 0.348
Crypto-LLM Key1 0.280 0.165 0.493 0.192 0.457 0.456 0.580 0.375
Crypto-LLM Key10 0.270 0.144 0.495 0.189 0.415 0.526 0.587 0.375
Crypto-LLM Key100 0.267 0.150 0.497 0.167 0.400 0.387 0.571 0.348
Scrubbing-LLM 0.300 0.234 0.516 0.201 0.528 0.612 0.628 0.431

Chance rate 0.250 0.250 0.500 0.250 0.250 0.500 0.500 0.357

Table 4: Evaluation of Sensitive Data Protection under Three Privacy Attacks Comparison of Crypto-LLMs, Plain-LLMs, and
Scrubbing-LLM on Name Reconstruction, True-Prefix, and Data Extraction Attacks

Model Name Reconstruction Attack True-prefix Attack Data Extraction Attack
(success rate) (Normalized LD) (N of unique extracted strings)

Plain-LLM PT+CPT 0.068 0.839 35
Plain-LLM CPT 0.004 0.908 0
Crypto-LLM Key1 0.016 0.862 6
Crypto-LLM Key10 0.011 0.876 1
Crypto-LLM Key100 0.007 0.885 2
Scrubbing-LLM 0.053 0.869 28
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Figure 5: Loss Reduction: Crypto-LLM Continual Pre-
training with Plaintext vs. LLM Pre-training with Plaintext
from Scratch.

it. Both models achieve an average score of 0.375
across tasks, representing a 7.75% increase com-
pared to 0.348 for Plain-LLM CPT.

An interesting observation is that Crypto-LLM
Key1 and Key10 exhibit almost no difference in
downstream task performance. This suggests that
moderate-strength encryption can still improve
downstream performance on plaintext tasks.

However, the performance gap between Crypto-
LLMs and Plain-LLM PT+CPT remains signifi-
cant. This indicates that, at least under the pro-
posed method, the amount of plaintext-related in-
formation that can be learned from encrypted data
is inherently limited.

6.3 Sensitive Information Protection

Table 4 summarizes the robustness of each model
against name reconstruction, true-prefix, and data
extraction attacks. The name reconstruction attack
measures the success rate of 1,000 attempts to cor-
rectly identify a name from 1,000 candidates. The
true-prefix attack reports the average normalized
Levenshtein distance over 1,000 trials. The data ex-

traction attack indicates the number of unique pre-
training samples recovered from 100,000 prompt
queries. As the true-prefix attack uses Levenshtein
distance, higher values indicate better privacy pro-
tection, unlike the other two metrics.

Compared to Scrubbing-LLM, Crypto-LLMs
achieves a substantial reduction in both the name
reconstruction attack success rate and the num-
ber of extracted strings in the data extraction at-
tack, demonstrating strong protection of names and
copyrighted content. On the other hand, Scrubbing-
LLM slightly outperforms Crypto-LLM Key1 in
the true-prefix attack. It suggests that scrubbing
remains effective against certain types of attacks.

7 Conclusion and Discussion

This study proposed a method for pre-training
LLMs on data encrypted with a polyalphabetic sub-
stitution cipher to mitigate the risk of sensitive data
leakage during inference. We evaluated two key
questions: (1) whether capabilities learned from
encrypted data can transfer to English-language
tasks, and (2) how cipher strength affects learn-
ing dynamics and model performance. Using the
Llama 3 (551M) model and sampled FineWeb-Edu
data (sample-10BT), we found that Crypto-LLMs
continually pre-trained on English outperformed
Plain-LLM CPT (which was trained solely on the
continual pre-training data) in both loss reduction
and downstream task performance.

Regarding cipher strength, models trained with
Key1 and Key10 performed similarly, while
Key100 showed a significant drop, comparable to
Plain-LLM CPT. This suggests that overly strong
encryption hinders transfer. This result implies that
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strong encryption disrupts the syntactic character-
istics inherent in natural language, making transfer
learning more difficult. However, the underlying
mechanism of transfer remains unclear, and further
investigation is required in future work.

In terms of data protection, Crypto-LLM signifi-
cantly outperformed Scrubbing-LLM in both name
reconstruction and data extraction attacks. In par-
ticular, its strong performance on data extraction
highlights its effectiveness in protecting a broad
range of sensitive content.

A key challenge for future work is to improve
transfer learning strategies. In this study, we clearly
separated pre-training and continual pre-training
to isolate the effect of encrypted data. However,
preventing catastrophic forgetting may require tech-
niques such as rehearsal (Rolnick et al., 2019; Shi
et al., 2024).

Furthermore, although Key1 and Key10
achieved similar task performance, they differed in
protection strength, highlighting the importance of
exploring the performance–privacy trade-off.

In addition, a discussion of differential pri-
vacy (DP), which was excluded from our compar-
isons for computational efficiency, is warranted.
As models pre-trained using DP, such as Vault-
Gemma (Sinha et al., 2025), have emerged, further
improvements in computational efficiency are ex-
pected. Beyond performance comparisons with
DP, exploring hybrid approaches that combine both
methods to achieve stronger privacy protection is a
promising direction.

Finally, since cross-lingual transfer effects are
often more pronounced in larger models, future
work should investigate whether scaling beyond
551M parameters yields stronger gains.

Limitations

The primary limitation of this experiment is the
restricted number of training tokens due to limited
resources. It is anticipated that additional training
data would further improve performance on down-
stream tasks. This might also affect the reconstruc-
tion capacity of PII. Furthermore, we could gain
deeper insights and more comprehensive findings
by training larger models.

Furthermore, in this experiment, we randomly
divided the sampled FineWeb Edu data, treating
75% as pseudo-sensitive data. However, utilizing
a corpus that includes actual sensitive information
would allow us to evaluate the effectiveness of our

approach in preventing data leakage compared to
traditional methods. While our approach encrypted
all lexically sensitive data, such as personal names
in the training data, empirically demonstrating that
no leakage occurs would significantly enhance the
credibility of our method.

As with other methods, it is important to note
that Crypto-LLM does not completely prevent the
leakage of sensitive data. In large-scale probabilis-
tic models like LLMs, it is generally understood
that fully eliminating data leakage is practically
infeasible.

These limitations highlight the potential for fur-
ther research to improve and validate the robustness
of our cipher-based approach to LLM training.
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A Appendix

A.1 Normalized Levenshtein Distance:
Example

We illustrate how the normalized Levenshtein dis-
tance is computed at the morpheme level using
an example. Let the ground truth suffix be S1,
where S1 is “(Tom) has been lived in Canada for
10 years.”. and the model generated suffix obtained
via the true-prefix attack be

Ŝ1
∗
= "(Tom) likes Canada and U.S."

1. Remove all function words from both se-
quences. Function words are defined as to-
kens whose part-of-speech tag, according to
SpaCy, corresponds to one of the following:

• Auxiliary verbs (AUX)
• Pronouns (PRON)
• Determiners (DET)
• Particles (PART)
• Adpositions (ADP)
• Coordinating conjunctions (CCONJ)
• Subordinating conjunctions (SCONJ)
• Interjections (INTJ)

In addition, all punctuation symbols are also
excluded.

C1 = [”lived”, ”Canada”, ”10”, ”years”]

Ĉ∗
1 = [”likes”, ”Canada”, ”U.S.”]

2. Using the content word lists from step 1, we
compute the normalized Levenshtein distance,
denoted as dnorm

Lev , as follows:

dnorm
Lev (C1, Ĉ

∗
1 ) = 0.75
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A.2 Data Extraction Attack
A.2.1 Extracted Strings
In the data extraction attack, some strings were
extracted repeatedly from multiple prompts. Ta-
ble 5 shows both the total number of extractions
and the number of unique extractions. Since re-
peated strings of the same information do not pro-
vide additional value in the context of information
extraction, we use the number of unique extractions
as the primary evaluation metric.

Table 5: Numbers of Total and Unique Extracted Strings

Model Total N Unique N
Plain-LLM PT+CPT 59 35
Plain-LLM CPT 0 0
Crypto-LLM Key1 10 6
Crypto-LLM Key10 1 1
Crypto-LLM Key100 2 2
Scrubbing-LLM 148 28

The extracted strings are shown below. The lead-
ing number indicates the frequency of occurrence.

Plain-LLM PT+CPT

• 9: billion nsf funds reach all 50 states through
grants to nearly 2 000 colleges universities
and other institutions each year nsf receives
more than 48 000 competitive proposals for
funding and makes about 12 000

• 3: - spacedaily afp and upi wire stories are
copyright agence france-presse and united
press international esa portal reports are copy-
right european space agency all nasa sourced
material is public domain additional copy-
rights may apply in

• 3: the information provided herein should not
be used during any medical emergency or for
the diagnosis or treatment of any medical con-
dition a licensed medical professional should
be consulted for diagnosis and treatment of
any

• 3: world encyclopedia writers and editors
rewrote and completed the wikipedia article
in accordance with new world encyclopedia
standards this article abides by terms of the
creative commons cc-by-sa 3 0 license cc-by-
sa which may be

• 2: always seek the advice of your physician
or other qualified health provider with any
questions you may have regarding a medical

condition never disregard professional med-
ical advice or delay in seeking it because of
something

• 2: the american heritage dictionary of the en-
glish language fifth edition copyright 2018
by houghton mifflin harcourt publishing com-
pany all rights reserved indo-european semitic
roots appendices thousands of entries in the
dictionary include etymologies that trace

• 2: nih is the primary federal agency conduct-
ing and supporting basic clinical and transla-
tional medical research and is investigating
the causes treatments and cures for both com-
mon and rare diseases for more information
about nih and

• 2: by houghton mifflin harcourt publishing
company all rights reserved indo-european
semitic roots appendices thousands of entries
in the dictionary include etymologies that
trace their origins back to reconstructed proto-
languages you can obtain more information
about

• 2: - 1199 surnames became necessary when
governments introduced personal taxation in
england this was known as poll tax through-
out the centuries surnames in every country
have continued to develop often leading to
astonishing variants of

• 2: article distributed under the terms of the
creative commons attribution license http cre-
ativecommons org licenses by 4 0 which per-
mits unrestricted use distribution and repro-
duction in any medium provided the original
work is properly cited

• 2: of the u s department of health and hu-
man services nih is the primary federal agency
conducting and supporting basic clinical and
translational medical research and is inves-
tigating the causes treatments and cures for
both

• 2: for more information about nih and its pro-
grams visit www nih gov about the national
institutes of health nih nih the nation’s medi-
cal research agency includes 27 institutes and
centers and is a component of

• 2: purposes only it is not intended to be a
substitute for professional medical advice di-
agnosis or treatment always seek the advice
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of your physician or other qualified health
provider with any questions you may have

• 2: conducting and supporting basic clinical
and translational medical research and is in-
vestigating the causes treatments and cures
for both common and rare diseases for more
information about nih and its programs visit
www nih gov

• 1: educational purposes only it is not intended
to be a substitute for professional medical ad-
vice diagnosis or treatment always seek the
advice of your physician or other qualified
health provider with any questions you may

• 1: all rights reserved please be aware that
this information is provided to supplement
the care provided by your physician it is nei-
ther intended nor implied to be a substitute for
professional medical advice call your

• 1: it is not intended as medical advice for in-
dividual conditions or treatments talk to your
doctor nurse or pharmacist before following
any medical regimen to see if it is safe and
effective for you what

• 1: is for informational purposes only and is
not intended to be a substitute for professional
medical advice diagnosis or treatment always
seek the advice of your physician or other
qualified health provider with any questions

• 1: 1272 - 1307 surnames became necessary
when governments introduced personal tax-
ation in england this was known as poll tax
throughout the centuries surnames in every
country have continued to develop often lead-
ing to astonishing variants

• 1: for the u s department of energy’s office of
science the u s department of energy’s office
of science is the single largest supporter of
basic research in the physical sciences in the
united states

• 1: this article is for information only and
should not be used for the diagnosis or treat-
ment of medical conditions patient platform
limited has used all reasonable care in compil-
ing the information but make no warranty

• 1: there is low ocean tide on this date sun and
moon gravitational forces are not aligned but
meet at big angle so their combined tidal force
is weak the moon is 2 days young earth’s

• 1: www nimh nih gov about the national in-
stitutes of health nih nih the nation’s medical
research agency includes 27 institutes and cen-
ters and is a component of the u s department
of health and human

• 1: shall make no law respecting an establish-
ment of religion or prohibiting the free ex-
ercise thereof or abridging the freedom of
speech or of the press or the right of the people
peaceably to assemble and

• 1: wa also reviewed by david zieve md mha
medical director a d a m inc the information
provided herein should not be used during
any medical emergency or for the diagnosis
or treatment of any

• 1: 1189 - 1199 surnames became necessary
when governments introduced personal tax-
ation in england this was known as poll tax
throughout the centuries surnames in every
country have continued to develop often lead-
ing to astonishing variants

• 1: this is an open-access article distributed
under the terms of the creative commons at-
tribution license cc by the use distribution or
reproduction in other forums is permitted pro-
vided the original author s and the copyright

• 1: for informational purposes only and is not
intended to be a substitute for professional
medical advice diagnosis or treatment always
seek the advice of your physician or other
qualified health provider with any questions
you

• 1: university of washington school of
medicine the information provided herein
should not be used during any medical emer-
gency or for the diagnosis or treatment of any
medical condition a licensed medical profes-
sional should be consulted

• 1: the content herein unless otherwise known
to be public domain are copyright 1995-2010
- spacedaily afp and upi wire stories are copy-
right agence france-presse and united press
international esa portal reports are copyright
european space

• 1: et al this is an open-access article dis-
tributed under the terms of the creative com-
mons attribution license which permits unre-
stricted use distribution and reproduction in
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any medium provided the original author and
source are credited

• 1: which states that congress shall make no
law respecting an establishment of religion or
prohibiting the free exercise thereof or abridg-
ing the freedom of speech or of the press or
the right of the people

• 1: the catholic encyclopedia is the most com-
prehensive resource on catholic teaching his-
tory and information ever gathered in all of
human history this easy-to-search online ver-
sion was originally printed in fifteen hardcopy
volumes designed to present

• 1: copyright 2008 by the american academy
of family physicians this content is owned by
the aafp a person viewing it online may make
one printout of the material and may use that
printout only for

• 1: surnames became necessary when govern-
ments introduced personal taxation in england
this was known as poll tax throughout the cen-
turies surnames in every country have contin-
ued to develop often leading to astonishing
variants of the original

Crypto-LLM Key1

• 4: it is not intended to be a substitute for pro-
fessional medical advice diagnosis or treat-
ment always seek the advice of your physi-
cian or other qualified health provider with
any questions you may have regarding a

• 2: the catholic encyclopedia is the most com-
prehensive resource on catholic teaching his-
tory and information ever gathered in all of
human history this easy-to-search online ver-
sion was originally printed between 1907 and
1912 in fifteen hard

• 1: a person viewing it online may make
one printout of the material and may use
that printout only for his or her personal
non-commercial reference this material may
not otherwise be downloaded copied printed
stored

• 1: et al this is an open-access article dis-
tributed under the terms of the creative com-
mons attribution license which permits unre-
stricted use distribution and reproduction in
any medium provided the original author and
source are credited

• 1: purposes only it is not intended to be a
substitute for professional medical advice di-
agnosis or treatment always seek the advice
of your physician or other qualified health
provider with any questions you may have

• 1: the cassini-huygens mission is a coopera-
tive project of nasa the european space agency
and the italian space agency the jet propulsion
laboratory a division of the california insti-
tute of technology in pasadena manages the
mission

Crypto-LLM Key10

• 1: the i0nformation provided herein should
not be used during any medical emergency
or for the diagnosis or treatment of any medi-
cal condition a licensed medical professional
should be consulted for diagnosis and treat-
ment of any

Crypto-LLM Key100

• 1: new world encyclopedia writers and editors
rewrote and completed the wikipedia article
in accordance with new world encyclopedia
standards this article abides by terms of the
creative commons cc-by-sa 3 0 license cc-by-
sa which may

• 1: world encyclopedia writers and editors
rewrote and completed the wikipedia article
in accordance with new world encyclopedia
standards this article abides by terms of the
creative commons cc-by-sa 3 0 license cc-by-
sa which may be

Scrubbing-LLM

• 89: the u s department of energy s office of
science is the single largest supporter of basic
research in the physical sciences in the united
states and is working to address some of the
most

• 8: this document is subject to copyright apart
from any fair dealing for the purpose of private
study or research no part may be reproduced
without the written permission the content is
provided for information purposes

• 5: by harpercollins publishers all rights re-
served indo-european semitic roots appen-
dices thousands of entries in the dictionary
include etymologies that trace their origins
back to reconstructed proto-languages you can
obtain more information about these forms in
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• 5: the u s department of energy’s office of
science is the single largest supporter of basic
research in the physical sciences in the united
states and is working to address some of the
most pressing

• 4: the catholic encyclopedia is the most com-
prehensive resource on catholic teaching his-
tory and information ever gathered in all of
human history this easy-to-search online ver-
sion was originally printed in fifteen hardcopy
volumes designed to present

• 4: world encyclopedia writers and editors
rewrote and completed the wikipedia article
in accordance with new world encyclopedia
standards this article abides by terms of the
creative commons cc-by-sa 3 0 license cc-by-
sa which may be

• 3: the american heritage dictionary of the en-
glish language fifth edition copyright 2018
by houghton mifflin harcourt publishing com-
pany all rights reserved indo-european semitic
roots appendices thousands of entries in the
dictionary include etymologies that trace

• 3: surnames became necessary when govern-
ments introduced personal taxation in england
this was known as poll tax throughout the cen-
turies surnames in every country have contin-
ued to develop often leading to astonishing
variants of the original

• 3: is not intended to be a substitute for profes-
sional medical advice diagnosis or treatment
always seek the advice of your physician or
other qualified health provider with any ques-
tions you may have regarding a medical

• 2: conducting and supporting basic clinical
and translational medical research and is in-
vestigating the causes treatments and cures
for both common and rare diseases for more
information about nih and its programs visit
www nih gov

• 2: a web site to get translated content where
available and see local events and offers based
on your location we recommend that you se-
lect you can also select a web site from the
following list

• 2: the u s department of energy’s office of
science the u s department of energy’s office
of science is the single largest supporter of

basic research in the physical sciences in the
united states and

• 2: the doe office of science is the single largest
supporter of basic research in the physical
sciences in the united states and is working to
address some of the most pressing challenges
of our time

• 2: feedback if you see any errors or have any
questions or suggestions on what is shown on
this page please fill in the feedback form so
that we can correct or extend the information
provided

• 1: century the catholic encyclopedia is the
most comprehensive resource on catholic
teaching history and information ever gath-
ered in all of human history this easy-to-
search online version was originally printed
in fifteen hardcopy volumes designed to

• 1: - 1307 surnames became necessary when
governments introduced personal taxation in
england this was known as poll tax through-
out the centuries surnames in every country
have continued to develop often leading to
astonishing variants of

• 1: office of science is the single largest sup-
porter of basic research in the physical sci-
ences in the united states and is working to
address some of the most pressing challenges
of our time for more

• 1: - authors are able to enter into separate
additional contractual arrangements for the
non-exclusive distribution of the journal’s pub-
lished version of the work e g post it to an
institutional repository or publish it in

• 1: for the u s department of energy’s office of
science the u s department of energy’s office
of science is the single largest supporter of
basic research in the physical sciences in the
united states

• 1: 2018 truven health analytics inc informa-
tion is for end user’s use only and may not
be sold redistributed or otherwise used for
commercial purposes all illustrations and im-
ages included in carenotes are the copyrighted
property

• 1: and grant the journal right of first publi-
cation authors are able to enter into separate
additional contractual arrangements for the
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non-exclusive distribution of the journal’s pub-
lished version of the work e g post it to

• 1: this article is for information only and
should not be used for the diagnosis or treat-
ment of medical conditions emis has used all
reasonable care in compiling the information
but make no warranty as to

• 1: in - british world english dictionary what do
you find interesting about this word or phrase
comments that don’t adhere to our commu-
nity guidelines may be moderated or removed
most popular in the us most

• 1: office of science the u s department of en-
ergy’s office of science is the single largest
supporter of basic research in the physical sci-
ences in the united states and is working to
address some of

• 1: doe’s office of science is the single largest
supporter of basic research in the physical
sciences in the united states and is working to
address some of the most pressing challenges
of our time for

• 1: for the u s department of energy s office
of science the office of science is the single
largest supporter of basic research in the physi-
cal sciences in the united states and is working
to

• 1: definitions with the community word of the
day would you like us to send you a free new
word definition delivered to your inbox daily
use the citation below to add this definition to
your

• 1: 2020 this document is subject to copyright
apart from any fair dealing for the purpose
of private study or research no part may be
reproduced without the written permission the
content is provided for information

A.2.2 Justification for Compression Ratio
Threshold and Digit Normalization

We describe the differences between our approach
and that of Nasr et al. (2023). First, while the orig-
inal paper uses a threshold of 50 tokens for suffix
array matches, we instead evaluate on a word basis
to reduce the tokenization computation cost. Based
on an evaluation using 1,000 randomly sampled
texts from Fineweb-Edu sample-10BT, we found
that 50 tokens correspond to approximately 35.4
words using our tokenizer, and therefore we set the
threshold at 35 words.[A17.1]

Second, although the original paper excludes
prompts with low entropy, it does not specify how
entropy is calculated. In our work, we exclude
matches whose compression ratio (computed by
first replacing all digits 1 through 9 with 0, then
applying the DEFLATE algorithm via Python’s
zlib.compress) falls below 0.275. The upper bound
of the compression ratio is determined by en-
tropy (Shannon, 1948). This threshold corresponds
to the top 0.01% most compressible strings in the
Fineweb-Edu sample-10B dataset. The digit re-
placement step is introduced to filter out sequences
of numbers, such as years or page numbers.

However, this threshold is ad hoc and not based
on any theoretical justification. In the follow-
ing[A18.1], we evaluate the justification for these
choices.

First, we evaluated which strings would be ex-
cluded under compression thresholds of [0.2, 0.25,
0.3, 0.35, 0.4]. For thresholds from 0.25 to 0.4,
the exclusion results were identical to those ob-
tained with 0.275. The table 6 shows the number of
unique strings that remain at each threshold. When
the threshold was set to 0.2, more strings remained,
but most consisted only of digits, whitespace, and
hyphens. Such strings are considered to carry lit-
tle meaningful information and were therefore ex-
cluded.

The only example that contains characters other
than digits, whitespace, and hyphens was output by
Plain-LLM PT+CPT, as shown below. However,
this consists of repeated occurrences of the same
string, making it a clear case of high compressibil-
ity.

new york university school of
medicine new york university school of
medicine new york university school of
medicine new york university school of
medicine new york university school of
medicine new york university school of
medicine

Next, we present the number of unique strings

Table 6: Comparison of Extracted Unique Strings by Com-
pression Ratio

Model 0.2 0.25 0.3 0.35 0.4
Plain-LLM PT+CPT 47 35 35 35 35
Plain-LLM CPT 0 0 0 0 0
Crypto-LLM Key1 28 6 6 6 6
Crypto-LLM Key10 7 1 1 1 1
Crypto-LLM Key100 7 2 2 2 2
Scrubbing-LLM 33 28 28 28 28
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obtained without applying digit-to-zero replace-
ment (table 7). In this case as well, most of the
additional strings consist only of digits, whitespace,
and hyphens.

Table 7: Comparison of Extracted Unique Strings by Com-
pression Ratio

Model 0.2 0.25 0.3 0.35 0.4
Plain-LLM PT+CPT 150 142 142 127 122
Plain-LLM CPT 0 0 0 0 0
Crypto-LLM Key1 114 97 97 97 84
Crypto-LLM Key10 51 50 50 50 50
Crypto-LLM Key100 15 15 15 15 15
Scrubbing-LLM 100 100 100 100 100

The exceptions are strings containing "page,"
"chapter," or "x" along with numbers and sym-
bols. Although the numeric values differ, the word-
number patterns fall into one of the following three
formats.

Chapter 12, Chapter 13, Chapter
14, Chapter 15, Chapter 16, Chapter
17, Chapter 18, Chapter 19, Chapter
20, Chapter 21, Chapter 22, Chapter
23, Chapter 24, Chapter 25, Chapter
26, Chapter 27, Chapter 28, Chapter
29, Chapter 30, Chapter 31, Chapter
32, Chapter 33, Chapter 34, Chapter
35, Chapter 36, Chapter 37, Chapter
38, Chapter 39, Chapter 40, Chapter
41, Chapter 42, Chapter 43, Chapter
44, Chapter 45, Chapter 46, Chapter
47, Chapter 48, Chapter 49, Chapter
50, Chapter 51, Chapter 52, Chapter
53, Chapter 54, Chapter 55, Chapter
56, Chapter 57, Chapter 58, Chapter
59, Chapter 60, Chapter 61, Chapter
62, Chapter 63, Chapter 64, Chapter
65, Chapter 66, Chapter 67, Chapter
68, Chapter 69, Chapter 70, Chapter
71, Chapter 72, Chapter 73, Chapter
74, Chapter 75, Chapter 76, Chapter
77, Chapter 78, Chapter 79, Chapter
80, Chapter 81, Chapter 82, Chapter
83, Chapter 84, Chapter 85, Chapter
86, Chapter 87, Chapter 88, Chapter
89, Chapter 90, Chapter 91, Chapter
92, Chapter 93, Chapter 94, Chapter
94, Chapter 95, Chapter 96, Chapter 97,
Chapter 98, Chapter 99, Chapter 100,
Chapter 101, Chapter 102, Chapter 103,
Chapter 104, Chapter 105, Chapter 106,
Chapter 107, Chapter 108, Chapter 109

page 191 191 page 191 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192 191 page 192
191 page 192 191 page 192

x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x
8" x 8" x 8" x 8" x 8" x 8" x 8" x 8" x 8"
x 8" x 8" x 8" x 8" x 8" x 8" x 8"

A.3 Differences in Syntactic Characteristics
by Encryption Strength

We analyzed how encryption alters token-to-token
dependencies using n-gram statistics and condi-
tional entropies. The results are shown in Table
8. For Key Length = 100, the 2-gram conditional
entropy is higher, indicating that the uncertainty of
predicting the next token from the preceding one
is greater than in plaintext or for Key Lengths 1
and 10. In contrast, for 3-grams and 4-grams, the
conditional entropy decreases, suggesting that the
natural syntactic dependencies are distorted under
stronger encryption. This trend may be related to
the degradation in downstream task performance
observed for Key Length = 100 in Table 3. Addi-
tionally, we included Table 9, reporting changes
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Table 8: Unigram and Conditional Entropies (bits) Across Text Types (Plaintext and Encrypted with Different Key Lengths).
Unigram entropy reflects overall unpredictability, while conditional entropies (2- to 4-gram) indicate how much uncertainty
remains given a short-range context, thus highlighting the strength or weakness of syntactic dependencies.

Text Type Unigram Entropy 2-gram H(X|X−1) 3-gram H(X|X−2, X−1) 4-gram H(X|X−3, X−2, X−1)

Plaintext 10.760 7.373 4.608 2.106
Key Length = 1 10.756 7.372 4.614 2.109
Key Length = 10 12.276 7.233 4.116 1.839
Key Length = 100 12.446 8.049 3.741 1.624

Table 9: Distributional Characteristics of n-grams (n = 1–4) across Plaintext and Encrypted Text with Different Key Lengths.
Reported are the number of unique n-grams, the Jensen–Shannon distance to the uniform distribution, and the unbiased effective
vocabulary size (EVS).

Text Type n Unique n-grams JS Distance to Uniform EVS (Unbiased)

Plaintext 1 30,941 0.497 137.390
Key Length = 1 1 28,598 0.486 138.887
Key Length = 10 1 31,059 0.362 413.303
Key Length = 100 1 31,281 0.384 668.280

Plaintext 2 7,621,231 0.528 3,536.624
Key Length = 1 2 7,513,612 0.531 3,592.550
Key Length = 10 2 9,135,218 0.497 9,895.890
Key Length = 100 2 11,047,697 0.453 18,988.857

Plaintext 3 32,360,899 0.245 65,233.510
Key Length = 1 3 32,294,297 0.246 66,103.317
Key Length = 10 3 43,434,828 0.225 148,246.656
Key Length = 100 3 57,778,692 0.216 280,586.335

Plaintext 4 55,167,510 0.098 415,156.694
Key Length = 1 4 55,300,622 0.098 419,898.627
Key Length = 10 4 74,685,311 0.088 883,525.819
Key Length = 100 4 97,770,052 0.093 1,607,419.221

in n-gram distributions and effective vocabulary
size. While these analyses are exploratory, they
demonstrate that the degree to which syntactic de-
pendencies are preserved varies with encryption
strength, and they provide initial insights into the
reviewer’s question about what kinds of structures
are being learned.

A.4 Model Configurations and GPU
Resources

The configurations used for training the Llama-3
551M models in this study are outlined below.

Hidden Size 1536

Number of Layers 16

Attention Heads 12

Batch size 32

Sequence Length 2,048

Multiple of 2.0× 10−4

Normalization Epsilon 1.0× 10−5

Rotary positional embedding base 10,000.0

Optimizer AdamW

Vocabulary Size 32,000

Each model was trained on a node equipped with
eight H200 GPUs, with the pre-training phase tak-
ing approximately two hours and the continual pre-
training phase taking approximately 40 minutes.

A.5 Detailed Description of True-Prefix
Attack

This section provides a detailed description of the
True-Prefix Attack experiment conducted in this
study. We extracted 1,000 target sentences from
texts containing 18,051 pseudo-PII instances using
the following procedure:

1. Starting from the beginning of each text, we
identified sentences containing name entities
as detected by SpaCy.

2. To manage computational cost and task dif-
ficulty, we excluded sentences whose token
length measured using the tokenizer exceeded
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20. In such cases, we continued scanning the
same text for the next sentence that contains
a name entity. If the token length was 20 or
fewer, we proceeded to step 3.

3. Each sentence was segmented into S0, name,
and S1. If S1 was empty (i.e., the name ap-
peared at the end of the sentence), the sentence
was discarded and the search resumed as in
step 2. If S1 contained any characters, the sen-
tence was retained for use in the experiment.

For the true-prefix attack, we perform sampling
100 times for each prefix. During inference, we use
temperature = 1 and set top-k = 64.
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