More Than a Score: Probing the Impact of Prompt Specificity on LLM
Code Generation

Yangtian Zi
Northeastern University
zi.ya@northeastern.edu

Harshitha Menon
Lawrence Livermore
National Laboratory

Arjun Guha
Northeastern University
a.guha@northeastern.edu

harshitha@llnl.gov

Abstract

State-of-the-art Large Language Models
(LLMs) achieve high pass@1 on general
benchmarks like HumanEval (Chen et al.,
2021) but underperform on specialized
suites such as ParEval (Nichols et al.,
2024). Is this due to LLMs missing domain
knowledge or insufficient prompt detail
is given? To answer this, we introduce
PARTIALORDEREVAL, which augments any
code generation benchmark with a partial
order of prompts from minimal to maximally
detailed. Applying it to HumanEval and both
serial and OpenMP subsets of ParEval, we
measure how pass@1 scales with prompt
specificity. Our experiments with Llama-3.x
and Qwen2.5-Coder demonstrate varying
degrees of prompt sensitivity across different
tasks, and a qualitative analysis highlights
explicit I/O specifications, edge-case handling,
and stepwise breakdowns as the key drivers of
prompt detail improvement.

1 Introduction

Since the emergence of Large Language Models
(LLMs), there has been broad discourse about
their effectiveness at code generation in both pop-
ular press and curated benchmarks. Recent LLMs
have become powerful code synthesis tools, achiev-
ing high pass@1 scores on common benchmarks
such as MBPP (Austin et al., 2021) and SWE-
Bench (Jimenez et al., 2024). However, when
evaluated on more niche programming domains—
such as Bioinformatics (Tang et al., 2023), Data
Science (Lai et al., 2022) and parallel computing
(Nichols et al., 2024)—models often fall short of
expert-level performance, suggesting they are not
yet a silver bullet for all programming challenges.

One interpretation is that current models simply
lack the specialized knowledge to succeed in these
more niche domains. Another possibility, however,
is that they require more comprehensive contex-
tual prompts than those provided by users (and, by

extension, by existing benchmarks). Indeed, begin-
ning programmers frequently struggle to craft ef-
fective prompts due to an incomplete mental model
of the information that needs to be conveyed and a
limited grasp of model capabilities (Nguyen et al.,
2024). This raises a key question: could LLMs
solve harder tasks—Ilike parallel programming—if
only they were guided with more detailed instruc-
tions?

We introduce PARTIALORDEREVAL, a novel
evaluation framework for LLM code generation
that explicitly characterizes the spectrum of prompt
specificity. Rather then measuring performance
under a single prompt, PARTIALORDEREVAL
assesses each problem by generating multiple
prompts of varying detail—ranging from mini-
mal, high-level task descriptions to richly anno-
tated, stepwise specifications (Figure 1). Specif-
ically, in §3.1 we detail our source benchmarks,
in §3.2 we formalize the partial-order framework,
and in 3.3 we describe how we construct the PAR-
TIALORDEREVAL datasets.

This approach more faithfully captures how mod-
els perform under various realistic prompting strate-
gies and reveals how sensitivity to prompt detail
differs across models and task types. By applying
PARTIALORDEREVAL to both HumanEval (Chen
et al., 2021) and the serial and OpenMP subsets
of ParEval (Nichols et al., 2024) and evaluating
the resulting dataset against 2 series of models
(§4), we show that this framework provides a more
nuanced and accurate picture of model capabili-
ties. To give an example, we showed that LLM
can indeed achieve higher pass@1 for two subsets
of ParEval, even exceeding HumanEval figures—
it suffices to add significantly more detail to the
prompt.

Moreover, through analysis of our augmented
prompts (§5), we identified key categories of in-
formation, such as detailed input/output specifica-
tions, explicit handling of edge cases, and struc-

2380

Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics, pages 2380-2402
December 20-24, 2025 ©2025 Association for Computational Linguistics

(it Do e)
Original Prompt /W

* Compute the inv
of x in-pl

Prompt

(vector<complex<double>> &x)
et R
Solution **Step 2: Perform the Forward Fast

e comple: nbers Manual Fourier Transform (FFT) In-Place**

mplex num
Edifing

**Step 1: Conjugate All Complex
” Numbers in the Input Vector™*

No **Step 3: Conjugate the Complex
Numbers Again*

>=08 **Step 4: Scale the Output by the
erse of the Vector Size**

LLM Summary
Detailed | L={10,20, 50, 75, 100, —>
150, 200}

Paragraph
Sampling
=0.2,04,06,0.8

Sentence Block

r5=0.2,04,06 08

Computes inverse FFT using forward FFT:
conjugate input, apply FFT, conjugate again, scale
by 1/N. In-place operations ensure efficiency.
Qwen3-8B

**Step 1: Conjugate All Complex Numbers in the Input
Vector**

**Step 2: Perform the Forward Fast Fourier Transform
(FFT) In-Place**

L

*Step 1: Conjugate All Complex Numbers in the Input
Vector**

[REDACTED]

*Step 4: Scale the Output by the Inverse of the Vector
Size**..

Masking

Inve of the Vector Size' /
\ J Yes

Figure 1: Overview of the PARTIALORDEREVAL prompt-generation pipeline. Starting from an Original Prompt and
its reference Solution, we use GPT-4.1 to draft a Maximally Detailed Prompt, manually refine it to ensure a pass@1
> 0.8, and designate it as py,p. From py,;,, we automatically derive three families of less-detailed variants: (1) LLM
Summarization at word-count limits L € {10, 20, 50, 75, 100, 150, 200}, (2) Paragraph Sampling at retention ratios
rp and (3) Sentence Block Masking with mask ratios r,. These variants form the partial-order prompt set used to
evaluate model performance as a function of prompt specificity.

tured implementation steps, that appear important
for enabling LLMs to generate correct code. These
findings suggest practical priorities for prompt en-
gineering, helping developers focus on the details
that yield the greatest return on effort.

We believe that PARTIALORDEREVAL will facil-
itate the development of more reliable prompting
techniques, help developers identify the point of
diminishing returns in prompt refinement, and ulti-
mately drive progress toward LLMs that can truly
assist programmers with minimal manual interven-
tion.

We release all artifacts of this work on GitHub'.

2 Related Work

Multi-Prompt Evaluation in Code Generation
Prior work has extended established benchmarks
such as HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) by adding support
for more programming languages (Cassano et al.,
2022; Athiwaratkun et al., 2022; Orlanski et al.,
2023; Zheng et al., 2023) and translating prompts
to new natural languages (Wang et al., 2023; Peng
et al., 2024; Raihan et al., 2025). Our work probes
the depth of prompting by systematically varying
the level of detail in a prompt to quantify how
prompt specificity affects LLM performance.
New programmers are worse at prompting than
experts on coding tasks (Nguyen et al., 2024;
Mordechai et al., 2024; Feldman and Ander-
son, 2024; Prather et al.,, 2024; Kazemitabaar
et al., 2023). Close inspection of the StudentEval
dataset (Babe et al., 2024) shows that new program-

Thttps://github.com/nuprl/partialordereval

mers often miss vital details in their prompts (Luc-
chetti et al., 2025).

Prompting Strategies Several lines of work have
explored prompting strategies to improve quality
of LLM generation. Self-Refine (Madaan et al.,
2023), has the model critique and rewrite its own
code over multiple turns. Reflexion (Shinn et al.,
2023) is a technique to improve quality of gener-
ated text through feedback in natural languages.
Gao et al. (2023) improve problem solving perfor-
mance, using prompts guiding LLMs to delegate
problem-solving to generated Python programs. In
contrast to iterative feedback and program-aided
techniques,PARTIALORDERE VAL employs a fixed
hierarchy of prompt refinements, controlling the
details, to precisely isolate how additional detail
impacts code-generation performance.

Multi-prompt for Evaluation Robustness Eval-
uating LLMs on a problem with multiple prompts
have been advocated well before our work for the
sake of robustness. Mizrahi et al. (2024) found
evidence that different prompt paraphrases leads
to large performance disparity with various tasks
including describing code, calling for aggregate
metrics over diverse prompts. PromptSet (Pister
et al., 2024) mines over 61,000 real-world devel-
oper prompts from open-source Python code, re-
vealing broad variability in prompt effectiveness
and suggesting that benchmarks should cover many
prompt styles. Zhu et al. (2024) and Gu et al. (2023)
investigated performance impacts of models when
the prompt is perturbed. Our work also employs
different prompts to evaluate a given problem, but
we systematically tune the level of detail in the

2381

https://github.com/nuprl/partialordereval

prompts, capturing a new dimension in LLM eval-
uation.

3 Building PARTIALORDEREVAL
Benchmarks

PARTIALORDEREVAL builds on any existing code-
generations benchmark by systematically augment-
ing each problem with a suite of prompts that span
a graduated spectrum of detail. More precisely, we
impose a partial order over prompts based on a
well defined detail measure. During evaluation, an
LLM is presented with each prompt in the set and
its performance is recorded as a function of prompt
specificity.

3.1 Source Benchmarks

We start with two code synthesis benchmarks. First,
we use HumanEval (Chen et al., 2021), which has
been widely used for LLM evaluation. It is a bench-
mark of 164 Python problems. The largest and
most capable LLMs achieve roughly 0.90 pass@]1.

The second benchmark that we use is
ParEval (Nichols et al., 2024), which is a family
of seven benchmarks that test model’s ability to
write scientific code using a variety of parallelism
paradigms, including serial C++ (no parallelism),
CUDA, AMD HIP, Kokkos (Trott et al., 2022),
and others.” In this paper, we use the serial and
OpenMP (OMP) problems. OpenMP is an API
for shared-memory parallel processing code. Each
subset has 60 problems (120 total) that exercise
the ability of models to write code to solve scien-
tific and parallel-computing tasks, e.g., fast Fourier
transforms, prefix sums, and graph operations.

Whereas HumanEval is saturated, both ParEval-
Serial and ParEval-OpenMP are significantly
harder. For example, while Qwen2.5-Coder-14B-
Instruct (Hui et al., 2024) gets 0.866 on Hu-
manEval, it gets 0.800 and 0.667 on ParEval-Serial
and ParEval-OpenMP respectively (Table 1).

But, what really makes ParEval harder? Could it
be that with just a little more detail in the prompts,
success rates on ParEval would improve dramati-
cally? We formalize this problem and study it in
depth below.

3.2 Problem Definition

Consider a fixed model M under evaluation. A
coding benchmark consists of pairs (p,eval,),

2ParEval also includes a translation task, e.g., translate
serial C++ to use CUDA, which we do not use in this paper.

where p is a prompt and eval, denotes the asso-
ciated hidden tests. We first construct a maxi-
mally detailed prompt p,, from p, constructed
such that the model M generates correct solu-
tions with high pass@1. Formally, we require
E(eval,(M(ptop))) > 7. In this paper we use
7 = 0.8 as the threshold.

We define a prompt detail metric D that mea-
sures the level of detail within prompts. Given
this metric, we identify the top prompt p;,, with
maximum details and the bottom prompt py,; with
minimal details. We then construct an interme-
diate set of prompts P, such that for all p € P,
DPhot <D P <D DPtop When ordered by D. Thus
D imposes a partially ordered set of prompts
P* = P U {ptop, Prot }> With pyop, as the maxi-
mum and py,; as the minimum as defined by D.
The question that we ask is the following: given
any two prompts p1, pe € P* satisfying the order
p1 <p P2, does increasing prompt detail always
yield non-decreasing model correctness, that is,
E(evaly(M(p1))) < E(eval,(M(p2)))?

As we show in Section 4, as long as the metric
D is reasonably defined, this empirically gener-
ally holds for three programming benchmarks and
several models.

3.3 Dataset Construction

Each HumanEval and ParEval prompt is comprised
of three components:

* Preamble: any necessary imports or helper
functions.

* Description: the natural-language problem
statement.

* Signature: the function signature (including
argument types for ParEval).

During evaluation, the LLM is tasked with gen-
erating the function body immediately following
the header. Our augmentation strategies operate
on the description component, producing alterna-
tive prompt texts that replace the original problem
statement. See Figure 2 for an illustration of this
procedure.

We construct PARTIALORDEREVAL variants
from HumanEval and Pareval: PO-HUMANEVAL
(164 problems), PO-PAREVAL-SERIAL (60 prob-
lems) and PO-PAREVAL-OMP (60 problems). See
an illustration of the entire dataset generation pro-
cedure in Figure 1.

2382

~

N (7
#include <numeric> #include <numeric>
R Preamble) Preamble
#include <vector> #include <vector>
/* Compute the prefix sum of the vector x /* Parallel prefix sum using OpenMP
into output. divides input into chunks, computes
Example: local sums, stores partial results,
adjusts with sequential prefix sums,
input: [1, 7, 4, 6, 6, 2] and synchronizes threads for global
output: [1, 8, 12, 18, 24, 26] correctness.
*f */
void prefixSum(void prefixSum(
std::vector<double> const& x, std::vector<double> consté& x,
std::vector<double> &output) { std::vector<double> &output) {
\Z NG

_/

Figure 2: The three components of a prompt: Preamble, Description and Signature, illustrated by comparing the
original ParEval prompt for problem 30_scan_prefix_sum (left) with its PO-ParEval-OMP variant produced by a
25-word LLM summary (right). In PARTIALORDEREVAL, only the Description section is replaced when generating

prompt variants.

For each problem in HumanEval, ParEval-Serial
and ParEval-OMP, we constructed a maximally
detailed prompt p;,, by combining the original
dataset prompt and solution and asking GPT-4.1-
2025-04-14 (OpenAl, 2025) to produce a richly
specified task description (Appendix B). We en-
sured that p;,, never produces the complete so-
lution verbatim and the prompts can achieve
pass@1 > (.8 for all problems with Qwen2.5-
Coder-14B (Hui et al., 2024). Reaching this thresh-
old required minor manual edits or regeneration for
6 ParEval-Serial and 19 ParEval-OMP items.

Our primary manipulation of prompt de-
tail is LLM summarization: we prompt
Qwen3-8B (Qwen Team, 2025) to condense
each ps,, to a target word budget L €
{10, 25, 50, 75, 100, 150, 200}. We take the word
budget as our detail metric D: smaller L implies
fewer details.

To contextualize the effect of targeted LLM sum-
marization, we include two random deletion base-
lines that vary content primarily by chance rather
than by guided condensation:

1. Paragraph Sampling. Starting from the seed
description, we randomly retain paragraphs at
ratios 7, € {0.2,0.4,0.6,0.8}; higher 7, in-
cludes more content. For each r;,, we produce
4 variants to capture sampling variability.

2. Sentence Block Masking. For each mask
ratio s € {0.2,0.4,0.6,0.8}, we remove a
contiguous block of r4 x 100% of sentences.
The block starts at four evenly spaced start po-
sitions (beginning, two midpoints, end), yield-
ing 4 variants that progressively strip more

detail as r increases.

For LLM summarization, we generate only a sin-
gle prompt per word-limit, since summaries at the
same length tend to be paraphrases of each other.
In contrast, paragraph sampling and sentence block
masking introduce randomness in which content is
retained or removed. To account for this variability,
we produce 4 distinct prompts at each sampling
ratio or masking level, ensuring a consistent degree
of detail while capturing differences in content lo-
cation.

In summary, LLM summarization provides the
main graded series of prompts that systematically
reduce detail by controlled word budgets, while
paragraph sampling and sentence block masking
serve as stochastic ablation baselines. A complete
set of augmented prompts per problem appears in
Appendix E.

Together, these techniques enable PAR-
TIALORDEREVAL to probe model performance
across and within detail levels, revealing fine-
grained insights into LLMs’ sensitivity to prompt
engineering. Thus each problem yields 41 distinct
prompts, consisting of:

* The minimally detailed prompt, containing
only the original function signature and any
required preamble with no description, pp,;.

* The maximally detailed prompt p;op,.

* 39 Intermediate prompts obtained via our
three augmentation strategies. LLM summa-
rization have 1 intermediate prompt per L,
yielding 7 prompts. Paragraph sampling and
sentence block masking have 4 intermediate

2383

Model Size

Pass@1 (n = 1, Greedy Sampling)

HumanEval

ParEval-Serial ParEval-OMP

Qwen 2.5 Coder Series

Qwen2.5-Coder-1.5B-Instruct 1.5B 0.659 0.517 0.300
Qwen2.5-Coder-3B-Instruct 3B 0.762 0.717 0.433
Qwen2.5-Coder-7B-Instruct 7B 0.774 0.817 0.517
Qwen2.5-Coder-14B-Instruct 14B 0.866 0.800 0.667
Llama 3.x Series
Llama-3.2-1B-Instruct 1B 0.305 0.283 0.100
Llama-3.2-3B-Instruct 3B 0.506 0.467 0.183
Llama-3.1-8B-Instruct 8B 0.622 0.583 0.367
Llama-3.3-70B-Instruct 70B 0.744 0.750 0.533

Table 1: Instruction-tuned LLMs evaluated in our study, listed by family and parameter count, with their correspond-
ing pass@1 scores on the original HumanEval, ParEval-Serial and ParEval-OMP source datasets.

prompts per r;, and 7, yielding 32 distinct
prompts.

4 Evaluation

We measure pass@ l—reported as a decimal be-
tween 0 and 1—for each prompt variant by running
the generated code on the hidden test suites and
averaging over all problems at that specificity level.
We plot these averages against prompt detail to pro-
duce performance curves that show how accuracy
changes as prompts become more detailed.

4.1 Models and Parameters

We benchmark two families of instruction-tuned
LLMs: Qwen 2.5 Coder (Hui et al., 2024) and
Llama 3.x (Grattafiori et al., 2024). See Table 1
for a list of models we used, their size and Pass@1
score for the source datasets for reference. By se-
lecting two series of open-weights models with
model size spanning from 1B to 70B parame-
ters. This selection allow us to isolate how model
scale and architectural differences influence perfor-
mance.

4.2 Metrics

We report pass@ 1 values as decimal numbers from
0to 1, instead of percentages. To visualize how sen-
sitive the models are to varying degrees of prompt
detail, we plot the pass@1 values across different
prompt specificity, creating a performance curve
for each model-benchmark pair. Such curves en-
able us to identify the minimum prompt-detail level
required for models to reliably produce correct so-
lutions and quantify the performance improvement

as prompts become increasingly informative.

4.3 Results

To present the results, we will show a representative
subset of performance curves. Each curve shows a
model’s average pass@1 (vertical axis) as prompt
specificity increases (horizontal axis), starting from
a minimal description on the left and ending with
the fully detailed seed prompt on the right. Line
styles and markers distinguish different models or
augmentation strategies. A rising segment indicates
that more information helps the model, a plateau
shows that further detail no longer improves accu-
racy, and any dips suggest potential information
overload or confusion. We illustrate our findings
using Qwen results primarily but observed similar
patterns in the Llama models. We provide com-
plete results of our experiments in Figure 6 in the
Appendix.

LLM Summary Figure 3 presents pass@]1
as a function of summary length L for PO-
HUMANEVAL, PO-PAREVAL-SERIAL, and PO-
PAREVAL-OMP. On PO-HUMANEVAL, all mod-
els show rapid gains from py,¢ to L = 50, tapering
off toward L = 100 where performance nearly
equals that at py,,, and exhibit a slight decline be-
yond L = 200. For instance, Qwen2.5-Coder-
14B-Instruct climbs from 0.280 at pp,; to 0.799 at
L = 50 and reaches 0.860 by L = 100 (matching
Diop)- Its performance plateaus for L = 200 at
0.921, but declines back to 0.860 at p;.p.

By contrast, PO-PAREVAL-SERIAL sees more
gradual improvements—Qwen2.5-14B-Instruct

2384

PO-HumanEval

PO-ParEval-Serial

PO-ParEval-OMP

1.0
et
0.8 _/,g/:-/-:""-. W T -4 s | 3 1 /./'/.
— /. — " — P
=

%06 % % /0—0//,--\\',/‘
& & Sy w

0.4 d i ‘-f

0.24

pbot 50 100 150 200 p_top

LLM Summary Word Limit

p_bot 50 100 150 200
LLM Summary Word Limit

pbot 50 100 150 200 p_top

LLM Summary Word Limit

p_top

Models

Qwen2.5-Coder-1.5B-Instruct

PO-HumanEval

Qwen2.5-Coder-3B-Instruct

PO-ParEval-Serial

—m— Qwen2.5-Coder-7B-Instruct —— Qwen2.5-Coder-14B-Instruct

PO-ParEval-OMP

1.01

0.8 1 s . ="

= p—
— — . - — /.J
©0.61 @ T 4E R STmTe o @ o
0 0 1 o...gt @a =
& 0.4 S, g g / e
Py o e »
fea .
0.24 vy g
p_bot 50 100 150 200 ptop pbot 50 100 150 200 ptop pbot 50 100 150 200 p_top

LLM Summary Word Limit

LLM Summary Word Limit

LLM Summary Word Limit

Models

Llama-3.2-1B-Instruct e Llama-3.2-3B-Instruct

—m— Llama-3.1-8B-Instruct

—4+— Llama-3.3-70B-Instruct

Figure 3: Pass@1 versus prompt detail (word limit) for LLM summarization across all PARTIALORDEREVAL
datasets and model sizes. The y-axis shows average pass@ 1, and the x-axis shows word limits from the minimal
prompt (pyo¢) through various summary lengths to the fully detailed seed (p;,,,). Panels (left to right) display results
on PO-HUMANEVAL, PO-PAREVAL-SERIAL, and PO-PAREVAL-OMP. Each line style corresponds to a different
Qwen or Llama model size, and horizontal lines denote each model’s performance on the original benchmark prompt.
Note how curves plateau around L = 100 for PO-HUMANEVAL but continue rising for the ParEval variants.

reaches 0.867 at L = 75 and 0.900 at L. = 150,
yet remains below its py,, score of 0.983. PO-
PAREVAL-OMP is the most challenging: the same
model rises slowly from 0.483 at py,; to 0.800 at
L = 200, but never attains its ps,, accuracy of
0.967.

All of the above trends can also be reconfirmed
with Llama models.

Across all benchmarks, larger models consis-
tently outperform smaller ones at every specificity
level. The contrast between swift convergence on
PO-HUMANEVAL and protracted gains on ParEval
variants underscores how prompt sensitivity can
signal task difficulty. Taken together, these patterns
show that prompt length alone is an unreliable pre-
dictor of performance: task difficulty and the quali-
ty/specificity of included details govern the gains,
with PO-HUMANEVAL converging quickly while
ParEval variants require more detail without fully
matching py,p.

Paragraph Sampling and Sentence Block Mask-
ing Figure 4 shows that both paragraph sampling
and sentence-block masking yield very similar
trends: for all three datasets, pass@1 steadily im-
proves as prompt detail increases (i.e., higher 7, or

lower r,), and larger models consistently outper-
form smaller ones at every level. However, the gap
between large and small models remains modest
on PO-HUMANEVAL but widens substantially on
the ParEval variants. For instance, at r, = 0.8 in
paragraph sampling, Qwen2.5-Coder-14B-Instruct
achieves 0.747 on PO-HUMANEVAL—just 0.16
above the 1.5B model’s 0.587—but the gap grows
to 0.296 on PO-PAREVAL-SERIAL (0.933 vs.
0.637) and 0.338 on PO-PAREVAL-OMP (0.767
vs. 0.429).

These results confirm that more detailed prompts
not only boost overall accuracy but also serve as a
sensitive probe of model capability: stronger mod-
els require less prompt specificity to reach a given
performance level, especially on more challenging,
domain-specific tasks.

Comparing to Original Prompts Figures 3
and 4 also show that, at the maximally detailed
prompt py.p,, models substantially outperform their
scores on the original ParEval prompts. For ex-
ample, Qwen2.5-Coder-14B reaches 0.983 on PO-
PAREVAL-SERIAL and 0.967 on PO-PAREVAL-
OMP—uversus only 0.800 and 0.667 on the unaug-
mented ParEval benchmarks. By contrast, per-

2385

PO-HumanEval

PO-ParEval-Serial

PO-ParEval-OMP

1.0
—a
- -

0.8 = s
— — — 7
Q06 9] @ / /
0]] 0 _.a
© © © -
o o o 0\./_/0/ S

e
0.41 1e—— -
0.2] |
p_bot 0.2 0.4 0.6 0.8 p_top p_bot 0.2 0.4 0.6 0.8 p_top p_bot 0.2 0.4 0.6 0.8 p_top
Paragraph Sampling Ratio Paragraph Sampling Ratio Paragraph Sampling Ratio
1.0
0.8 /.’
7

— — z — Rd
(O ® | 2 ® _.—
0 0.6 @ z a -
0 vl «n -
& & 8 [zt =

0.4 1 = -

0.2 1 1

p_bot 0.8 0.6 0.4 0.2 p_top p_bot 0.8 0.6 0.4 0.2 p_top p_bot 0.8 0.6 0.4 0.2 p_top

Sentence Block Masking Ratio

Sentence Block Masking Ratio

Sentence Block Masking Ratio

Models

Qwen2.5-Coder-1.5B-Instruct

Qwen2.5-Coder-3B-Instruct

—m— Qwen2.5-Coder-7B-Instruct ~ —#— Qwen2.5-Coder-14B-Instruct

Figure 4: Pass@1 versus prompt detail for Paragraph Sampling and Sentence Block Masking augmentation across
all PARTTALORDEREVAL datasets and Qwen models. As in Figure 3, the y-axis shows pass@1, x-axis ranges from
minimal to maximal prompt detail (note that for Sentence Block Masking, detail increases as 75 decreases), and
horizontal lines stand for original dataset performance. Each line style represents a different model size, illustrating
that larger models achieve higher accuracy with less prompt specificity. Similar trends hold for the Llama series of

models (see Appendix Figure 6.)

formance on HumanEval remains essentially un-
changed (= 0.86) whether using the original
prompt or piop.

This difference indicates that a increase in con-
textual detail can unlock dramatic improvements—
up to a 0.30 absolute gain on ParEval-OMP—
whereas extra detail yields diminishing returns on
the relatively easier HumanEval tasks. Notably, at
intermediate specificity levels (e.g. 50-100 words
in the LLM summarization), PO-PAREVAL per-
formance already surpasses the original prompt,
suggesting that only a moderate amount of addi-
tional instruction is required to outperform the orig-
inal benchmarks. However, achieving near-perfect
pass@1 still requires substantial additional prompt
engineering effort.

Summary: ParEval is More Challenging for
LLMs Our evaluation shows that models con-
verge to their maximal-detail performance much
more slowly on ParEval than on HumanEval: on
both ParEval-Serial and ParEval-OMP, pass@1 in-
creases gradually and never quite reaches the p;,,
ceiling that HumanEval models hit by around 100
words of detail. Moreover, whereas the gap be-
tween large and small models on HumanEval is
relatively small, it widens dramatically on ParEval,

making these datasets stronger discriminators of
model capability. Finally, significant performance
improvements achieved through enhanced prompt
specificity—up to 0.30 absolute gains for ParEval-
OMP—underscore that ParEval tasks, especially
in parallel programming, are inherently more chal-
lenging and sensitive to prompt specificity than
HumanEval.

5 What Prompt Details Matter?

Beyond quantitative pass@1 measurements, we
performed a qualitative analysis focusing specifi-
cally on prompts generated through the LLM Sum-
marization augmentation strategy. Our goal is to
better understand which categories of prompt de-
tails most strongly contribute to the observed per-
formance gains as prompt specificity increases.

To systematically analyze prompt contents, we
first developed a structured taxonomy with guid-
ance from 03-2025-04-16 (OpenAl, 2025) . This
taxonomy organizes prompt details into four high-
level categories: 1. Functional Specification, 2.
Constraints and Robustness, 3. Solution Structure
and Design Guidance, 4. Verification and Integra-
tion. Each category comprises multiple detailed
themes, numbered as under these themes. for ex-

2386

1.1
Task Goal
35

NS 15
Core Behaviour

Implementation
Patterns

\ 2.3
" Edge Case
7 Handling

2.1
Complexity /
Targets |-

3.4
mplementation
/Sketch or Step
/' Breakdown

13
Input
Specification \

-+ 10 words
== 25 words
==+ 50 words 3.2
Specifyin
— - 75 words pecitying
100 words Data Structure

3.1

Specifying
Algorithmic
Strategy

150 words 1.4

Output
——+ 200 words Specification
— p_top

Figure 5: Radar chart of the top 10 taxonomy themes
as they appear in LLM-summarized prompts of varying
length, including the fully detailed prompt (p,;,). Each
axis corresponds to one theme, and concentric gridlines
denote percentage increments (e.g., 20%, 40%, 60%) of
prompts containing that theme at each summary length.
The radial position of each marker indicates the propor-
tion of prompts (out of 284 per length) in which the
theme occurs, averaged across all problems.

ample, the Functional Specification category in-
cludes themes such as 1.1 Task Goal, 1.3 Input
Specification, and 1.5 Core Behavior. Themes are
not mutually exclusive, and a single prompt may
be annotated with several overlapping themes. A
complete version of the taxonomy, along with con-
cise descriptions of each theme, is provided in Ap-
pendix F.

Using claude-sonnet-4-20250514 (Anthropic,
2025), we annotated all LLM Summary prompts
at different word limits according to our taxonomy.
Specifically, each prompt was labeled with all appli-
cable instruction themes identified within its text.
We then select the top 10 themes ranked by the
number of occurrences averaged by length and plot
them in Figure 5. We place our prompting strategy
for LLM-assisted prompt annotation in Appendix
D.

We found that /.1 Task Goal, which signifies
the required outcome of the program, consistently
appeared in nearly all prompts regardless of their
length, highlighting it as a foundational component
of effective prompting. More intriguingly, certain
themes exhibited substantial growth in frequency
as prompt specificity increased. Specifically, the
themes 1.5 Core Behavior, 1.3 Input Specification,
1.4 Output Specification, 2.3 Edge Case Handling,

and 3.4 Implementation Sketch or Step Breakdown
significantly rose in prominence at higher word
limits. The increased presence of these themes sug-
gests they might play particularly influential roles
in enabling LLMs to achieve higher correctness,
possibly by offering more structured and explicit
guidance on how the task should be approached,
clarifying requirements, and reducing ambiguity.
Other themes among the top 10 seemed to exhibit
less growth: 3.1 Specifying Algorithmic Strategy,
3.2 Specifying Data Structure and 3.5 Common Im-
plementation Patterns. This phenomenon suggests
that these themes might be implicitly understood
by LLMs—for example, by describing an implemen-
tation sketch, all three themes with more modest
gains might already be implicitly mentioned. Men-
tioning them again might provide only marginal
improvement to correctness.

Our preliminary observations indicate potential
avenues for effective prompt design. In particu-
lar, they suggest prioritizing explicit instruction on
expected input/output formats, critical problem-
solving steps, handling of edge cases, and pro-
viding structured breakdowns or pseudo-code as
prompts are elaborated. Future work could involve
targeted ablation studies to quantify the impact of
each identified theme individually, thereby confirm-
ing and further refining these recommendations.

6 Conclusion

In summary, we introduced PARTIALORDEREVAL,
a framework for evaluating models across prompts
ranging from minimal to fully detailed. Through
experiments on HumanEval, ParEval-Serial and
ParEval-OMP, that increased prompt specificity
consistently improves pass@1, though improve-
ments vary by task complexity. Furthermore,
ParEval tasks, especially parallel variants, converge
more slowly and show greater sensitivity to prompt
detail, making them more effective benchmarks
than HumanEval for distinguishing model capabili-
ties. We demonstrated that PARTIALORDEREVAL
provides a more nuanced differentiation of model
capabilities than single-prompt pass@1 number
alone. Additionally, our qualitative analysis identi-
fies key instruction elements that significantly im-
prove correctness, offering concrete guidance for
prompt engineering.

We envision PARTIALORDEREVAL as a first
step toward a more holistic suite of evaluation
tools for LLM-driven programming, one that ac-

2387

counts for both the breadth of tasks and the depth of
prompt design. Future work can extend this frame-
work to interactive prompting, dynamic feedback
loops, and domain-specific benchmarks, ultimately
advancing our understanding of how to leverage
LLMs as effective coding assistants.

Limitations

While PARTIALORDEREVAL offers a more fine-
grained view of LLM code-generation capabilities,
there are several limitations:

Model Generated Prompts Most of PAR-
TIALORDEREVAL prompts are generated from
LLMs. While LLLMs can generate coherent and
sound text by inspection, its capability of gener-
ating prompts have not been formally evaluated.
We recognize that model-generated prompts are
an inherent limitation of our methods. Neverthe-
less, these prompts stem from high-quality, human-
curated maximally detailed prompts.

Alternative Augmentation Strategies We ex-
plore three augmentation techniques: LLM-based
summarization, paragraph sampling, and sentence-
block masking. However, these represent only a
small portion of the possible ways to vary prompt
detail. Alternative strategies might interact differ-
ently with model architectures or training regimes,
and could yield distinct model performance versus
sensitivity profiles.

Qualitative Analysis Our taxonomy-based anal-
ysis (§5) of prompt content uses an LLM to gener-
ate the taxonomy and classify text. The taxonomy
is potentially biased by choice of model, but we
manually verified a sample of results to ensure va-
lidity.

Programming Languages Used Our experi-
ments employ Python (for HumanEval) and C++
(for ParEval), both of which are classified as
high-resource programming languages. Prior stud-
ies have shown that high-resource programming
languages tend to outperform low-resource ones in
code generation tasks (Cassano et al., 2023, 2024).
Investigating how PARTIALORDEREVAL perfor-
mance curves vary for low-resource languages is
future work.

Acknowledgments

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Of-

fice of Advanced Scientific Computing Research,
through solicitation DE-FOA-0003264, "Advance-
ments in Artificial Intelligence for Science," un-
der Award Number DE-SC0025598 and contract
DE-AC52-07NA27344. This work was performed
under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory
(LLNL) under Contract DE-AC52-07NA27344
(LLNL-CONF-2009663).

References

Anthropic. 2025. System card: Claude opus 4 & claude
sonnet 4. System card, Anthropic.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang,
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Su-
jan Kumar Gonugondla, Hantian Ding, Varun Ku-
mar, Nathan Fulton, Arash Farahani, Siddhartha Jain,
Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, and 6 others. 2022. Multi-lingual Evalu-
ation of Code Generation Models. In The Eleventh
International Conference on Learning Representa-
tions.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program Synthesis with Large
Language Models. Preprint, arXiv:2108.07732.

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi,
Arjun Guha, Molly Q Feldman, and Carolyn Jane An-
derson. 2024. StudentEval: A benchmark of student-
written prompts for large language models of code.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 8452-8474, Bangkok,
Thailand. Association for Computational Linguistics.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowl-
edge Transfer from High-Resource to Low-Resource
Programming Languages for Code LLMs. Artifact:
Knowledge Transfer from High-Resource to Low-
Resource Programming Languages for Code LLMs,
8(OOPSLA2):295:677-295:708.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q. Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2022. MultiPL-E: A Scalable
and Extensible Approach to Benchmarking Neural
Code Generation. Preprint, arXiv:2208.08227.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,

2388

https://www-cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
https://www-cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.18653/v1/2024.findings-acl.501
https://doi.org/10.18653/v1/2024.findings-acl.501
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227

and Abhinav Jangda. 2023. Multipl-e: A scalable and
polyglot approach to benchmarking neural code gen-
eration. IEEE Trans. Softw. Eng., 49(7):3675-3691.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating Large Language Models Trained
on Code. Preprint, arXiv:2107.03374.

Molly Q Feldman and Carolyn Jane Anderson. 2024.
Non-Expert Programmers in the Generative Al Fu-
ture. In Proceedings of the 3rd Annual Meeting of
the Symposium on Human-Computer Interaction for
Work, pages 1-19, Newcastle upon Tyne United King-
dom. ACM.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided Language
Models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764—
10799. PMLR.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie,
Hongyuan Mei, and Wenpeng Yin. 2023. Robustness
of learning from task instructions. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 13935-13948, Toronto, Canada. Associ-
ation for Computational Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Kai Dang, and 1 others. 2024.
Qwen2.5-coder technical report. arXiv preprint
arXiv:2409.12186.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Majeed Kazemitabaar, Xinying Hou, Austin Hen-
ley, Barbara J. Ericson, David Weintrop, and Tovi
Grossman. 2023. How Novices Use LLM-Based
Code Generators to Solve CS1 Coding Tasks in
a Self-Paced Learning Environment. Preprint,
arXiv:2309.14049.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi
Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu.

2022. DS-1000: A Natural and Reliable Bench-
mark for Data Science Code Generation. Preprint,
arXiv:2211.11501.

Francesca Lucchetti, Zixuan Wu, Arjun Guha, Molly Q
Feldman, and Carolyn Jane Anderson. 2025. Sub-
stance beats style: Why beginning students fail to
code with LLMs. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 8541-8610, Albuquerque, New Mexico. Asso-
ciation for Computational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,
Dafna Shahaf, and Gabriel Stanovsky. 2024. State
of what art? a call for multi-prompt LLM evaluation.
Transactions of the Association for Computational
Linguistics, 12:933-949.

Asaf Achi Mordechai, Yoav Goldberg, and Reut Tsar-
faty. 2024. NoviCode: Generating programs from
natural language utterances by novices. Transac-

tions of the Association for Computational Linguis-
tics, 12:1330-1345.

Sydney Nguyen, Hannah McLean Babe, Yangtian Zi,
Arjun Guha, Carolyn Jane Anderson, and Molly Q
Feldman. 2024. How Beginning Programmers and
Code LLMs (Mis)read Each Other. In Proceedings of
the CHI Conference on Human Factors in Computing
Systems, pages 1-26, Honolulu HI USA. ACM.

Daniel Nichols, Joshua H. Davis, Zhaojun Xie, Arjun
Rajaram, and Abhinav Bhatele. 2024. Can Large
Language Models Write Parallel Code? In Proceed-
ings of the 33rd International Symposium on High-
Performance Parallel and Distributed Computing,
HPDC 24, pages 281-294, New York, NY, USA.
Association for Computing Machinery.

OpenAl 2025. Introducing gpt-4.1 in the api. Accessed
via OpenAl API, version 4.1.

OpenAl. 2025. Introducing openai 03 and
o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey
Hui, Joshua Howland, Jonathan Malmaud, Jacob
Austin, Rishabh Singh, and Michele Catasta. 2023.
Measuring the impact of programming language dis-
tribution. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
ICML’23, pages 26619-26645, Honolulu, Hawaii,
USA. JMLR.org.

2389

https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3663384.3663393
https://doi.org/10.1145/3663384.3663393
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2023.findings-acl.875
https://doi.org/10.18653/v1/2023.findings-acl.875
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2309.14049
https://arxiv.org/abs/2309.14049
https://arxiv.org/abs/2309.14049
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.48550/arXiv.2211.11501
https://doi.org/10.18653/v1/2025.naacl-long.433
https://doi.org/10.18653/v1/2025.naacl-long.433
https://doi.org/10.18653/v1/2025.naacl-long.433
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.1162/tacl_a_00681
https://doi.org/10.1162/tacl_a_00681
https://doi.org/10.1162/tacl_a_00694
https://doi.org/10.1162/tacl_a_00694
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3625549.3658689
https://doi.org/10.1145/3625549.3658689
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
HumanEval-XL: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 8383-8394, Torino, Italia.
ELRA and ICCL.

Kaiser Pister, Dhruba Jyoti Paul, Ishan Joshi, and
Patrick Brophy. 2024. Promptset: A programmer’s
prompting dataset. In Proceedings of the st Inter-
national Workshop on Large Language Models for
Code, LLM4Code ’24, page 62-69, New York, NY,
USA. Association for Computing Machinery.

James Prather, Brent N Reeves, Juho Leinonen, Stephen
MacNeil, Arisoa S Randrianasolo, Brett A. Becker,
Bailey Kimmel, Jared Wright, and Ben Briggs. 2024.
The Widening Gap: The Benefits and Harms of Gen-
erative Al for Novice Programmers. In Proceedings
of the 2024 ACM Conference on International Com-
puting Education Research - Volume 1, pages 469—
486, Melbourne VIC Australia. ACM.

Qwen Team. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2025. mHumanEval - a multilingual
benchmark to evaluate large language models for
code generation. In Proceedings of the 2025 Confer-
ence of the Nations of the Americas Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 11432-11461, Albuquerque, New Mexico. As-
sociation for Computational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen,
Xinyun Chen, and Mark Gerstein. 2023. BioCoder:
A Benchmark for Bioinformatics Code Generation
with Contextual Pragmatic Knowledge.

Christian R. Trott, Damien Lebrun-Grandié, Daniel
Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood,
Rahulkumar Gayatri, Evan Harvey, Daisy S. Holl-
man, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff
Miles, David Poliakoff, Amy Powell, Sivasankaran
Rajamanickam, Mikael Simberg, Dan Sunderland,
Bruno Turcksin, and Jeremiah Wilke. 2022. Kokkos
3: Programming model extensions for the exascale
era. IEEFE Transactions on Parallel and Distributed
Systems, 33(4):805-817.

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F.
Xu, and Graham Neubig. 2023. MCoNaLa: A bench-
mark for code generation from multiple natural lan-
guages. In Findings of the Association for Compu-
tational Linguistics: EACL 2023, pages 265-273,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
CodeGeeX: A Pre-Trained Model for Code Genera-
tion with Multilingual Benchmarking on HumanEval-
X. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
KDD ’23, pages 5673-5684, New York, NY, USA.
Association for Computing Machinery.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Gong, and Xing Xie. 2024. PromptRo-
bust: Towards Evaluating the Robustness of Large
Language Models on Adversarial Prompts. In Pro-
ceedings of the 1st ACM Workshop on Large Al Sys-
tems and Models with Privacy and Safety Analysis,
LAMPS °24, pages 57-68, New York, NY, USA.
Association for Computing Machinery.

A Experimental Details

A.1 Computational Information and Budget

All experiments in Section 4 were run in a server
with Intel Xeon Gold 6342 CPU at 2.80GHz with
96 cores and 4 Nvidia H100 GPUs. Each model
and source dataset pair is evaluated on 18 data
points (7 LLM summaries, 4 paragraph samplings,
4 sentence-block maskings, 1 minimal prompt, 1
maximal prompt, and 1 original prompt). With
each run lasting 10 minutes (= 0.167 GPU-hours)
and using 2 GPUs (4 GPUs for Llama-3.3-70B),
the total compute is:

¢ Qwen-2.5-Coder series (4 models on 2
GPUs): 4 x 18 x 0.167 x 2 x 3 =~ 72 GPU-
hours

e Llama-3.x series small (3 models on 2
GPUs): 3 x 18 x 0.167 x 2 x 3 ~ 54 GPU-
hours

e Llama-3.3-70B (1 model on 4 GPUs): 1 x
18 x 0.167 x 4 x 3 =~ 36 GPU-hours

In total, our evaluation consumes on the order
of 162 GPU-hours.Additionally, we spend 10 GPU
hours on experimenting and prototyping LLM Sum-
marization using Qwen3-8B. Hence, for this work
we spend at around 172 GPU-hours.

Program correctness verification ran on CPU:

* HumanEval tests: ~ 8 s per data point (24
threads)

* ParEval-Serial tests: ~ 1.5 min per data point

* ParEval-OMP tests: 5-30 min per data point
(due to potential deadlocks)

2390

https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://doi.org/10.1145/3643795.3648395
https://doi.org/10.1145/3643795.3648395
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3632620.3671116
https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.18653/v1/2025.naacl-long.570
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.18653/v1/2023.findings-eacl.20
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3580305.3599790
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621
https://doi.org/10.1145/3689217.3690621

Overall, end-to-end evaluation for each
model—dataset pair required roughly 8-12
CPU hours under this setup.

A.2 API Usage and Cost

In addition to the open-weight LL.Ms, we leverage
GPT-4.1 and Claude Sonnet 4 via their respective
APIs for summarization and taxonomy labeling.
By batching requests where possible, our total API
expenditure remains under $10 USD. We also ac-
cessed 03-2025-04-16 through the ChatGPT inter-
face under a $20 USD/month subscription plan.

A.3 Model Inference Parameters

For generating maximally detailed prompt (§3.3),
we used GPT-4.1 with temperature = 0.7 and top_p
=0.95.

All code-generation evaluations in §4 use greedy
decoding (temperature = 0).

For the LLM Summarization augmentation
(§3.3), we invoke Qwen3-8B with temperature =
0.2 and top_p = 0.95.

In the qualitative analysis (§5), taxonomy labels
are obtained via single-shot prompts to ChatGPT
(03-2025-04-16) and Claude Sonnet 4, both using
their default inference settings.

A.4 Prompting Procedure for Evaluation

For HumanEval, we prepend each prompt with a
fixed instruction template (see Appendix C). In
ParEval, we follow the authors’ original prompt de-
sign (Nichols et al., 2024), injecting our augmented
description in place of their problem statement. All
prompts include any necessary import statements
or helper functions to ensure that generated com-
pletions can be executed directly.

B Prompt for Generating Maximally
Detailed Prompt

System Prompt

You are an expert in <C++ or Python, depending on
the language>. The user will provide a code
snippet, and the code snippet will contain a
function whose name starts with *xcorrectx*. You
should produce a description of that specific
function as a hint for how to implement it. You
should **only** describe the function itself (not
the surrounding code), and refer to it as “the
function” or “the function provided,” never by
its actual name. If the implementation requires
helper functions, your description should still
be self-contained.

You should describe the function step by step,
and include all the details of the function.

User Prompt

<Code snippet>

C Prompt for HumanEval Evaluation

System Prompt

You are a helpful programming expert that
generates clean, idiomatic Python code
according to the user's instructions.

User prompt

Complete the following Python function. Write
only the body of the function, do

not include any other text, e.g. do not include
any other text before or after

the function body. Enclose your solution in

T Tpython and TT 7.

<HumankEval Prompt here>

D Prompting for Qualitative Analysis

We designed two distinct prompt templates for our
qualitative analysis:

1. Taxonomy Generation Prompt: Issued to
03-2025-04-16 via the ChatGPT interface,
this prompt solicited a structured taxonomy
based on sample LLM-summarized prompts.

2. Theme Labeling Prompt: Sent to Claude
Sonnet 4 through its API, this prompt pre-
sented each LLM-summarized prompt in-
stance and asked the model to assign all appli-
cable taxonomy themes.

D.1 Taxonomy Generation Prompt
Query

[all_llm_summary.txt, containing 1lm summaries
at 7 lengths for all problems]

Here is a file containing a lot of solution
descriptions for nearly 300 coding problems with
different lengths. You need to look into each and
every descriptions, and produce a generalized
2-level taxonomy system (with 4-6 top-level
categories, but you can have as many
sub-categories as you can) that generalizes the
possible information portrayed in the
descriptions.

Reply from Model

To generate a well-structured 2-level taxonomy
from the coding problem solution descriptions,
I’d like to confirm a few things:

1. *xFocus Dimensions**: Should the taxonomy
categorize solutions based on the type of
**xalgorithms*x, *xproblem domainsxx, xxdata
structures*x, **implementation techniquesx*, or
a combination of these?

2391

2. **xDesired Format*x: Do you want the output in
a visual hierarchy (like a tree or outline) or as
a structured list?

3. x*xIntended Use*x: Is the taxonomy meant for
tagging/classification, search optimization,
curriculum design, or something else?

Clarifying these will help me tailor the taxonomy
more effectively.

Response

1.The taxonomy should encode as much generalized
information as possible. So yes, all of these are
included, but also include others if you think
it's relevant.

2. output first as a detailed list of
explanations, then also as a simple list, without
explanation, but with numbered codes. e.g. 1.
for top level and 1.1, 1.2 ... for second level
codes.

3. it is meant for tagging/classification.

D.2 Theme Labeling Prompt
System Prompt

The following series of prompts are for the same
problem but at different word limits. For each
prompt, summarize what information is included in
the prompt by assigning a code from the list
below to the information that is included.

Use the list of taxonomies below to guide your
analysis. You should only report the information
that is included in the prompt using the
second-level taxonomies. For example, if the
prompt includes "1.1 Task Goal” and "1.2 Scope &
Assumptions”, you should report "1.1 Task Goal”
and "1.2 Scope & Assumptions”.

Report your findings in a json file. e.g.:

json
L
{
"prompt”: "<fill the prompt here>",
"word_limit": 1@,
"taxonomies”: ["1.1 Task Goal”, ...]
}’

List of taxonomies
1. Functional Specification

*Describes what the code must do and the exact
data it consumes and produces.*

* 1.1 Task Goal - One-sentence statement of the
required outcome.
* 1.2 Scope & Assumptions — Preconditions or

problem constraints (e.g., "input list is
sorted”).

* 1.3 Input Specification — Types, structures,
and constraints on inputs (e.g., "n <= 10"5,

non-negative integers”).

* 1.4 OQutput Specification - Return type and
format of the output (e.g., "boolean value, list
of strings").

* 1.5 Core Behaviour - Essential functional steps
the code must perform, usually mapped to a
problem domain.

2. Constraints & Robustness

*Sets performance and correctness boundaries for
safe, efficient behavior.x

* 2.1 Complexity Targets - Desired time and space
complexity (e.g., "<= 0(n log n)", "in-place").

* 2.2 Environment Constraints - Platform,
language, or hardware requirements (e.g., "no
recursion due to stack limit").

* 2.3 Edge Case Handling - Explicit mention of
inputs like empty arrays, max values, or special
formats.

* 2.4 Error Handling - Required exception
behavior, validation, or fallback logic.

* 2.5 Data Invariants — Conditions that must hold
true before/after execution (e.g., "list remains
sorted”).

3. Solution Structure & Design Guidance

*Guides how the solution should be implemented or
structured. *

* 3.1 Specifying Algorithmic Strategy -
Recommends a general technique (e.g.,
brute-force, recursion, DP, greedy).

* 3.2 Specifying Data Structure - Recommends a
structure (e.g., array, set, tree, heap) to
enable efficient access.

* 3.3 Forbidden Techniques — Prohibits certain
APIs, heuristics, or styles (e.g., "don't use
sorting”).

* 3.4 Implementation Sketch or Step Breakdown -
Provides a sequence of logical steps or
pseudocode.

* 3.5 Common Implementation Patterns — Highlights
structural motifs (e.g., prefix sum, two-pointer,
hash map).

* 3.6 Role or Persona Framing — Adopts a tone or
style based on audience (e.g., "explain like I'm
a beginner”).

4. Verification & Integration

*Specifies how correctness is tested and how the
code fits into a larger system.x

* 4.1 Sample I/0 Pairs - Concrete examples
showing expected outputs for given inputs.

* 4.2 Unit Tests or Oracle Checks — Lists or
refers to test cases that must pass.

* 4.3 Integration Context - Describes where/how
the code will be called or embedded.

* 4.4 Dependencies — External libraries,
packages, or imports required (e.g., "uses
“collections.Counter™").

User Prompt

[LLM Summaries at 7 different levels]

2392

E Sample PARTIALORDEREVAL
Prompts

Original Prompt

/* forward declare fft. computes fourier
transform in-place */

void
fft(std::vector<std::complex<double>>
&x);

/* Compute the inverse fourier
transform of x in-place.

Example:
input: [1.0, 1.0, 1.0, 1.0, 0.0, 0.0,
0.0, 0.0]

output: [{0.5,0},
{0.125,0.301777}, {0,-03},
{0.125,0.0517767}, {0,-0},
{0.125,-0.0517767}, {0,-0},
{0.125,-0.301777}]
*/
void
ifft(std::vector<std::complex<double>>
&x) {

Original Solution Description

**Step 1: Conjugate All Complex Numbers
in the Input Vector*x

The function

begins by applying the complex conjugate
operation to each element in the input
vector of complex numbers. The purpose
of this step is to prepare the data for
the inverse Fourier transform by
leveraging the mathematical property
that the inverse discrete Fourier
transform (IDFT) can be computed using
the forward discrete Fourier transform
(DFT) if the input is conjugated before
and after the transformation. This is
achieved using a standard algorithm from
the C++ Standard Library, which applies
the “std::conj”~ function to each
element, effectively negating the
imaginary part of every complex number
in the vector. This operation is
performed in-place, ensuring that no
additional memory is allocated and the
original data is directly modified.
Special care is taken to ensure that the
transformation is applied to all
elements, regardless of their initial
values, and that the operation is
efficient for vectors of any size.

**Step 2: Perform the Forward Fast
Fourier Transform (FFT) In-Placexx

After conjugating the input, the
function proceeds to compute the forward
FFT on the modified vector. The FFT is
an efficient algorithm for computing the

DFT, reducing the computational
complexity from O(N*2) to O(N log N),
where N is the size of the input. By
calling the FFT function in-place, the
function avoids unnecessary copying and
leverages the optimized structure of the
input vector. The FFT function itself is
assumed to handle all the necessary bit-
reversal and butterfly operations
internally, ensuring that the frequency-
domain representation is computed
correctly. This step is crucial because,
due to the initial conjugation, the
result of the forward FFT at this stage
is mathematically equivalent to the
conjugate of the inverse FFT of the
original data.

**Step 3: Conjugate
the Complex Numbers Againxx

Once the

forward FFT is complete, the function
applies the complex conjugate operation
to each element of the transformed
vector a second time. The goal of this
step is to reverse the initial
conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the
Output by the Inverse of the Vector
Size*x

The final step involves

normalizing the output by dividing each
element of the vector by the total
number of elements, N. This scaling is
necessary because the forward FFT and
its inverse differ by a normalization
factor; specifically, the inverse FFT
requires division by N to ensure that
the transformation is mathematically
correct and that the output matches the
expected amplitude of the original time-
domain signal. The function accomplishes
this using another in-place
transformation, dividing each complex
number by the size of the vector. This
step is essential for correctness, as
omitting it would result in output
values that are N times larger than
intended. Care is taken to use a

2393

floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

LLM Summary at length 10

Use forward FFT with conjugation and
scaling for inverse transform.

LLM Summary at length 25

Computes inverse FFT using forward FFT:
conjugate input, apply FFT, conjugate
again, scale by 1/N. In-place operations
ensure efficiency.

LLM Summary at length 50

The ifft function computes the inverse
Fourier transform by conjugating the
input, applying the forward FFT,
conjugating again, and scaling by 1/N.
This method uses the existing FFT
implementation, ensuring in-place
operations and mathematical correctness
through conjugation and normalization
steps.

LLM Summary at length 75

The inverse FFT function computes the
inverse transform using the forward FFT.
It conjugates the input vector, applies
the FFT, conjugates again, and scales by
1/N. This leverages the mathematical
equivalence between forward FFT and
inverse FFT via conjugation. All
operations are in-place, ensuring
efficiency and avoiding memory
allocation. The scaling ensures correct
amplitude normalization, making the
result equivalent to the standard

inverse FFT. This method efficiently
computes the inverse using only the
forward FFT implementation and standard
C++ operations.

LLM Summary at length 100

The “ifft™ function computes the inverse
FFT using a forward FFT implementation.
It first conjugates the input vector
elements, then applies the forward FFT
in-place. After the FFT, the result is
conjugated again to reverse the initial
step, achieving mathematical equivalence
to the inverse transform. Finally, the
output is scaled by dividing each
element by the vector size “N” to
normalize the amplitude. This approach
leverages the relationship between
forward and inverse FFTs, ensuring
correctness without requiring a separate
inverse FFT implementation. All
operations are performed in-place,
optimizing memory usage and
computational efficiency. The
conjugation and scaling steps ensure the
output matches the expected time-domain
signal, making the function both
accurate and resource-efficient.

LLM Summary at length 150

The “ifft> function computes the inverse
FFT using the forward FFT by conjugating
the input vector, performing the FFT,
conjugating the result again, and
scaling by 1/N. First, all complex
numbers are conjugated to prepare for
the inverse transform. The forward FFT
is then applied in-place, leveraging its
efficiency. After the FFT, the result is
conjugated again to reverse the initial
conjugation, completing the mathematical
equivalence to the inverse FFT. Finally,
each element is scaled by 1/N to
normalize the output, ensuring correct
amplitude. This approach uses in-place
operations to minimize memory usage and
relies on the forward FFT
implementation, making it efficient and
suitable for environments where only a
forward FFT is available. The steps
ensure mathematical correctness while
maintaining performance through
optimized in-place transformations.

LLM Summary at length 200

2394

The provided solution computes the
inverse Fourier transform (IFFT) using a
forward FFT implementation, leveraging
mathematical properties to avoid direct
implementation of the inverse transform.
The process begins by conjugating all
complex numbers in the input vector,
preparing the data for the forward FFT.
This conjugation ensures that the
subsequent FFT operation aligns with the
mathematical equivalence between the
inverse DFT and the conjugated forward
DFT. Next, the forward FFT is applied
in-place to the conjugated data,
efficiently transforming the signal into
the frequency domain. After the FFT, the
result is conjugated again to reverse
the initial conjugation, completing the
mathematical transformation equivalent
to the inverse FFT. Finally, the output
is scaled by dividing each element by
the vector's size (N), ensuring correct
amplitude normalization. This step is
critical as the forward FFT inherently
lacks the normalization factor required
for the inverse transform. The entire
process is optimized for in-place
operations, minimizing memory usage and
computational overhead. By reusing the
existing FFT implementation, the
solution achieves efficiency and
correctness while adhering to standard
C++ practices. The approach is
mathematically rigorous, ensuring the
output matches the expected time-domain
signal after inverse transformation.
This method is particularly valuable in
scenarios where only a forward FFT is
available, enabling code reuse and
performance optimization.

Paragraph Sampling at ratio 0.2

Once the forward FFT is complete, the
function applies the complex conjugate
operation to each element of the
transformed vector a second time. The
goal of this step is to reverse the
initial conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the

Output by the Inverse of the Vector
Size*x

*/

void
ifft(std::vector<std::complex<double>>
&x)

Paragraph Sampling at ratio 0.4

Once the forward FFT is complete, the
function applies the complex conjugate
operation to each element of the
transformed vector a second time. The
goal of this step is to reverse the
initial conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the
Output by the Inverse of the Vector
Size*x

The function begins by applying

the complex conjugate operation to each
element in the input vector of complex
numbers. The purpose of this step is to
prepare the data for the inverse Fourier
transform by leveraging the mathematical
property that the inverse discrete
Fourier transform (IDFT) can be computed
using the forward discrete Fourier
transform (DFT) if the input is
conjugated before and after the
transformation. This is achieved using a
standard algorithm from the C++ Standard
Library, which applies the “std::conj"”
function to each element, effectively
negating the imaginary part of every
complex number in the vector. This
operation is performed in-place,
ensuring that no additional memory is
allocated and the original data is
directly modified. Special care is taken
to ensure that the transformation is
applied to all elements, regardless of
their initial values, and that the
operation is efficient for vectors of
any size.

2395

**Step 2: Perform the

Forward Fast Fourier Transform (FFT) In-
Place*x

*/

void
ifft(std::vector<std::complex<double>>
&x)

Paragraph Sampling at ratio 0.6

Once the forward FFT is complete, the
function applies the complex conjugate
operation to each element of the
transformed vector a second time. The
goal of this step is to reverse the
initial conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the
Output by the Inverse of the Vector
Sizex*

The function begins by applying

the complex conjugate operation to each
element in the input vector of complex
numbers. The purpose of this step is to
prepare the data for the inverse Fourier
transform by leveraging the mathematical
property that the inverse discrete
Fourier transform (IDFT) can be computed
using the forward discrete Fourier
transform (DFT) if the input is
conjugated before and after the
transformation. This is achieved using a
standard algorithm from the C++ Standard
Library, which applies the “std::conj"
function to each element, effectively
negating the imaginary part of every
complex number in the vector. This
operation is performed in-place,
ensuring that no additional memory is
allocated and the original data is
directly modified. Special care is taken
to ensure that the transformation is
applied to all elements, regardless of
their initial values, and that the
operation is efficient for vectors of
any size.

**Step 2: Perform the
Forward Fast Fourier Transform (FFT) In-
Place*x

After conjugating the input,

the function proceeds to compute the
forward FFT on the modified vector. The
FFT is an efficient algorithm for
computing the DFT, reducing the
computational complexity from O(N*2) to
O(N log N), where N is the size of the
input. By calling the FFT function in-
place, the function avoids unnecessary
copying and leverages the optimized
structure of the input vector. The FFT
function itself is assumed to handle all
the necessary bit-reversal and butterfly
operations internally, ensuring that the
frequency-domain representation is
computed correctly. This step is crucial
because, due to the initial conjugation,
the result of the forward FFT at this
stage is mathematically equivalent to
the conjugate of the inverse FFT of the
original data.

**Step 3: Conjugate

the Complex Numbers Againxx

*/

void
ifft(std::vector<std::complex<double>>
&x)

Paragraph Sampling at ratio 0.8

Once the forward FFT is complete, the
function applies the complex conjugate
operation to each element of the
transformed vector a second time. The
goal of this step is to reverse the
initial conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the
Output by the Inverse of the Vector
Size*x

The function begins by applying
the complex conjugate operation to each

2396

element in the input vector of complex
numbers. The purpose of this step is to
prepare the data for the inverse Fourier
transform by leveraging the mathematical
property that the inverse discrete
Fourier transform (IDFT) can be computed
using the forward discrete Fourier
transform (DFT) if the input is
conjugated before and after the
transformation. This is achieved using a
standard algorithm from the C++ Standard
Library, which applies the “std::conj"
function to each element, effectively
negating the imaginary part of every
complex number in the vector. This
operation is performed in-place,
ensuring that no additional memory is
allocated and the original data is
directly modified. Special care is taken
to ensure that the transformation is
applied to all elements, regardless of
their initial values, and that the
operation is efficient for vectors of
any size.

**Step 2: Perform the
Forward Fast Fourier Transform (FFT) In-
Place*x

After conjugating the input,

the function proceeds to compute the
forward FFT on the modified vector. The
FFT is an efficient algorithm for
computing the DFT, reducing the
computational complexity from O(N*2) to
O(N log N), where N is the size of the
input. By calling the FFT function in-
place, the function avoids unnecessary
copying and leverages the optimized
structure of the input vector. The FFT
function itself is assumed to handle all
the necessary bit-reversal and butterfly
operations internally, ensuring that the
frequency-domain representation is
computed correctly. This step is crucial
because, due to the initial conjugation,
the result of the forward FFT at this
stage is mathematically equivalent to
the conjugate of the inverse FFT of the
original data.

*xStep 3: Conjugate
the Complex Numbers Againxx

The final

step involves normalizing the output by
dividing each element of the vector by
the total number of elements, N. This
scaling is necessary because the forward
FFT and its inverse differ by a
normalization factor; specifically, the
inverse FFT requires division by N to
ensure that the transformation is
mathematically correct and that the
output matches the expected amplitude of
the original time-domain signal. The

function accomplishes this using another
in-place transformation, dividing each
complex number by the size of the
vector. This step is essential for
correctness, as omitting it would result
in output values that are N times larger
than intended. Care is taken to use a
floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

*/

void
ifft(std::vector<std::complex<double>>
&x)

Sentence Block Masking at ratio 0.2

/*

[REDACTED]. Special care is taken to
ensure that the transformation is
applied to all elements, regardless of
their initial values, and that the
operation is efficient for vectors of
any size.

**Step 2: Perform the
Forward Fast Fourier Transform (FFT) In-
Placexx

After conjugating the input,

the function proceeds to compute the
forward FFT on the modified vector. The
FFT is an efficient algorithm for
computing the DFT, reducing the
computational complexity from O(N*2) to
O(N log N), where N is the size of the
input. By calling the FFT function in-
place, the function avoids unnecessary
copying and leverages the optimized
structure of the input vector. The FFT
function itself is assumed to handle all
the necessary bit-reversal and butterfly
operations internally, ensuring that the
frequency-domain representation is
computed correctly. This step is crucial
because, due to the initial conjugation,
the result of the forward FFT at this
stage is mathematically equivalent to
the conjugate of the inverse FFT of the
original data.

2397

**Step 3: Conjugate
the Complex Numbers Againxx

Once the

forward FFT is complete, the function
applies the complex conjugate operation
to each element of the transformed
vector a second time. The goal of this
step is to reverse the initial
conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

*xStep 4: Scale the
Output by the Inverse of the Vector
Size**

The final step involves

normalizing the output by dividing each
element of the vector by the total
number of elements, N. This scaling is
necessary because the forward FFT and
its inverse differ by a normalization
factor; specifically, the inverse FFT
requires division by N to ensure that
the transformation is mathematically
correct and that the output matches the
expected amplitude of the original time-
domain signal. The function accomplishes
this using another in-place
transformation, dividing each complex
number by the size of the vector. This
step is essential for correctness, as
omitting it would result in output
values that are N times larger than
intended. Care is taken to use a
floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

*/

void
ifft(std::vector<std::complex<double>>
&x) {

Sentence Block Masking at ratio 0.4

/*

[REDACTED]. The FFT function itself

is assumed to handle all the necessary
bit-reversal and butterfly operations
internally, ensuring that the frequency-
domain representation is computed
correctly. This step is crucial because,
due to the initial conjugation, the
result of the forward FFT at this stage
is mathematically equivalent to the
conjugate of the inverse FFT of the
original data.

**Step 3: Conjugate
the Complex Numbers Againxx

Once the

forward FFT is complete, the function
applies the complex conjugate operation
to each element of the transformed
vector a second time. The goal of this
step is to reverse the initial
conjugation and complete the
mathematical equivalence to the inverse
FFT. By conjugating the data both before
and after the forward FFT, the function
effectively computes the IDFT using only
the forward FFT algorithm. This approach
is particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

**Step 4: Scale the
Output by the Inverse of the Vector
Sizexx

The final step involves

normalizing the output by dividing each
element of the vector by the total
number of elements, N. This scaling is
necessary because the forward FFT and
its inverse differ by a normalization
factor; specifically, the inverse FFT
requires division by N to ensure that
the transformation is mathematically
correct and that the output matches the
expected amplitude of the original time-
domain signal. The function accomplishes
this using another in-place
transformation, dividing each complex
number by the size of the vector. This
step is essential for correctness, as
omitting it would result in output

2398

values that are N times larger than
intended. Care is taken to use a
floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

*/

void
ifft(std::vector<std::complex<double>>

&x) {

Sentence Block Masking at ratio 0.6

/*

[REDACTED]. This approach is
particularly useful in environments
where only a forward FFT implementation
is available or when code reuse is
desired. The use of the standard
library's transformation algorithm
ensures that this operation is performed
efficiently and in-place, maintaining
the integrity and performance of the
function.

*xStep 4: Scale the
OQutput by the Inverse of the Vector
Size**

The final step involves

normalizing the output by dividing each
element of the vector by the total
number of elements, N. This scaling is
necessary because the forward FFT and
its inverse differ by a normalization
factor; specifically, the inverse FFT
requires division by N to ensure that
the transformation is mathematically
correct and that the output matches the
expected amplitude of the original time-
domain signal. The function accomplishes
this using another in-place
transformation, dividing each complex
number by the size of the vector. This
step is essential for correctness, as
omitting it would result in output
values that are N times larger than
intended. Care is taken to use a
floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

*/

void
ifft(std::vector<std::complex<double>>
&) {

Sentence Block Masking at ratio 0.8

/*

[REDACTED]. The function accomplishes
this using another in-place
transformation, dividing each complex
number by the size of the vector. This
step is essential for correctness, as
omitting it would result in output
values that are N times larger than
intended. Care is taken to use a
floating-point division to avoid integer
truncation, and the operation is applied
uniformly to all elements, ensuring
consistent scaling across the entire
output.

This sequence of steps

allows the function to compute the
inverse Fourier transform efficiently
and accurately, using only the forward
FFT implementation and standard C++
library facilities for in-place data
manipulation.

*/

void
ifft(std::vector<std::complex<double>>
&x) {

F Taxonomy of Prompt Details

F.1 Functional Specification

Describes what the code must do and the exact data

it consumes and produces.

1.1 Task Goal — One-sentence statement of the

required outcome.

1.2 Scope & Assumptions — Preconditions or
problem constraints (e.g., "input list is

sorted").

1.3 Input Specification — Types, structures, and
constraints on inputs (e.g., n < 10° non-

negative integers").

2399

1.4 Output Specification — Return type and for-
mat of the output (e.g., "boolean value, list of
strings").

1.5 Core Behaviour — Essential functional steps
the code must perform, usually mapped to a
problem domain.

F.2 Constraints & Robustness

Sets performance and correctness boundaries for
safe, efficient behavior.

2.1 Complexity Targets — Desired time and space

complexity (e.g., "< O(nlogn)", "in-place").

2.2 Environment Constraints — Platform, lan-
guage, or hardware requirements (e.g., "no
recursion due to stack limit").

2.3 Edge Case Handling — Explicit mention of in-
puts like empty arrays, max values, or special
formats.

2.4 Error Handling — Required exception behav-
ior, validation, or fallback logic.

2.5 Data Invariants — Conditions that must hold
true before/after execution (e.g., "list remains
sorted").

F.3 Solution Structure & Design Guidance

Guides how the solution should be implemented or
structured.

3.1 Specifying Algorithmic Strategy — Recom-
mends a general technique (e.g., brute-force,
recursion, DP, greedy).

3.2 Specifying Data Structure — Recommends a
structure (e.g., array, set, tree, heap) to enable
efficient access.

3.3 Forbidden Techniques — Prohibits certain
APIs, heuristics, or styles (e.g., "don’t use
sorting").

3.4 Implementation Sketch or Step Breakdown
— Provides a sequence of logical steps or pseu-
docode.

3.5 Common Implementation Patterns — High-
lights structural motifs (e.g., prefix sum, two-
pointer, hash map).

3.6 Role or Persona Framing — Adopts a tone
or style based on audience (e.g., "explain like
I’'m a beginner").

F.4 Verification & Integration

Specifies how correctness is tested and how the
code fits into a larger system.

4.1 Sample I/0 Pairs — Concrete examples show-
ing expected outputs for given inputs.

4.2 Unit Tests or Oracle Checks — Lists or refers
to test cases that must pass.

4.3 Integration Context — Describes where/how
the code will be called or embedded.

4.4 Dependencies — External libraries, pack-
ages, or imports required (e.g., '"uses
collections.Counter").

2400

PO-HumanEval

PO-ParEval-Serial PO-ParEval-OMP
1.04
0.81
— — —
9 0.61 © ©
@ @ @
© © ©
a a [
0.44
0.2
No desc 50 100 150 200 ... Fulldesc Nodesc 50 100 150 200 ... Fulldesc Nodesc 50 100 150 200 ... Full desc
LLM Summary Word Limit LLM Summary Word Limit LLM Summary Word Limit
1.04
— —
© ©
@ a
© ©
« <
No desc 0.2 0.4 0.6 0.8 Fulldesc Nodesc 0.2 0.4 0.6 0.8 Fulldesc Nodesc 0.2 0.4 0.6 0.8 Full desc
Paragraph Sampling Ratio Paragraph Sampling Ratio Paragraph Sampling Ratio
No desc 0.8 0.6 0.4 0.2 Fulldesc Nodesc 0.8 0.6 0.4 0.2 Fulldesc Nodesc 0.8 0.6 0.4 0.2 Full desc
Sentence Block Masking Ratio Sentence Block Masking Ratio

Sentence Block Masking Ratio

Models

Qwen-Qwen2.5-Coder-1.5B-Instruct Qwen-Qwen2.5-Coder-3B-Instruct

—a— Qwen-Qwen2.5-Coder-7B-Instruct -4+ Qwen-Qwen2.5-Coder-14B-Instruct
PO-HumanEval

PO-ParEval-Serial PO-ParEval-OMP
1.04
— —
© ©
@ @
& &
No desc 50 100 150 200 ... Fulldesc Nodesc 50 100 150 200 ... Fulldesc Nodesc 50 100 150 200 ... Full desc
LLM Summary Word Limit LLM Summary Word Limit LLM Summary Word Limit
—
©
a
©
<
No desc 0.2 0.4 0.6 0.8 Fulldesc Nodesc 0.2 0.4 0.6 0.8 Fulldesc Nodesc 0.2 0.4 0.6 0.8 Full desc
Paragraph Sampling Ratio Paragraph Sampling Ratio Paragraph Sampling Ratio
1.04
— —
© ©
@ b7
& &
No desc 0.8 0.6 0.4 0.2 Fulldesc Nodesc 0.8 0.6 0.4 0.2 Fulldesc Nodesc 0.8 0.6 0.4 0.2 Full desc
Sentence Block Masking Ratio Sentence Block Masking Ratio Sentence Block Masking Ratio
Models
meta-llama-Llama-3.2-1B-Instruct ~ —e— meta-llama-Llama-3.2-3B-Instruct —=— meta-llama-Llama-3.1-8B-Instruct 4

meta-llama-Llama-3.3-70B-Instruct

Figure 6: Complete Result of select Qwen2.5-Coder and Meta-Llama3 series models on all source dataset and
augmentations. Each row represents one augmentation and each column represents one source dataset. The x axis

stand for the prompt detail (with the right hand side means more details), and y axis is pass@1 score for the model
at the detail.

2401

1. Functional Specification
1.1 Task Goal

1.5 Core Behavio)

1.2 Scope &
P

Assumptions

100%

/

/an%/ sn%/ 80;
/)
/)

+ 10 words

1. 1.3 Input

- 25words specification Specification

= 50 words
— 75 words
— = 100 words
—— 150 words
—— 200 words

3. Solution Structure & Design Guidance
3.1 Specifying
Algorithmic
Strategy

3.6 Role or Persona 3.2 Specifying Data
Framing Structure

100%

3.5 Commol
Implementation
Patterns

3.3 Forbidden
Techniques

—-= 50 words

— 75 words 3.4 Implementation
— - 100 words Sketch or Step
— 150 words Breakdown
—— 200 words

2. Constraints & Robustness
2.1 Complexity
Targets

2.5 Data Invaria 2.2 Environment

Constraints

100%

10 words
25 words
=-= 50 words
— 75 words
— = 100 words
—— 150 words
—— 200 words

4 Error Handling Z.BHEaigde‘swc‘:gase

4. Verification & Integration
4.1 Sample /0

=-= 50 words

20bmit Tests
racle Check

10 words
25 words

— 75 words

— = 100 words
—— 150 words

4.3 Integration
Context

—— 200 words

Figure 7: Radar Chats of all LLM Summary taxonomy themes, with one plot per category.

2402

