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Abstract

Large Language Models (LLMs) are increas-
ingly vital tools for academic research. A
core ability for these tools is to identify claims
and validate them against supporting evidence,
and there is yet to be an integrated bench-
mark to evaluate the claim-evidence reason-
ing capabilities. To address this gap, we in-
troduce CLAIM-BENCH!, a new benchmark
designed to jointly evaluate three critical skills
in claim-evidence reasoning: claim extraction,
evidence extraction, and claim-evidence link
validation. CLAIM-BENCH contains over 300
manually annotated claim-evidence pairs from
Al research papers. We evaluate six LLMs
with three prompting strategies using CLAIM-
BENCH. We find that closed-source models
like GPT-4 and Claude consistently outperform
open-source counterparts, though even the best
models reach a peak F1-score of only 0.59 on
claim identification. This difficulty stems pri-
marily from resolving long-range dependen-
cies, as models struggle to connect claims
with evidence dispersed throughout a document.
Consequently, we show that iterative prompting
strategies, which decompose the task, can boost
the number of retrieved claim-evidence pairs
by over 4x compared to the baseline single-
pass prompt, substantially improving recall but
at a significant computational cost. CLAIM-
BENCH establishes a much-needed standard
for assessing deep scientific comprehension in
LLMs, providing both a diagnostic framework
to understand current limitations and a path to-
ward building more reliable, deep-reasoning
systems.

1 Introduction

Large Language Models (LLMs) have become a
pivotal tool in academic research, demonstrating
impressive capabilities such as automating compre-
hensive literature reviews, facilitating innovative

'To facilitate future research and standardize evaluation in

this area, we release CLAIM-BENCH at https://github.
com/shashidharjavaji/CLAIM_BENCH.

idea generation, and aiding experimental design.
These advancements promise significant improve-
ments in research productivity, creativity, and ef-
ficiency, fueling excitement about the transforma-
tive potential of Al-driven methodologies in sci-
ence. Researchers have increasingly assigned crit-
ical tasks to these models—from content summa-
rization (Agarwal et al., 2025) to hypothesis genera-
tion (Zhou et al., 2024) and scientific fact-checking
(Vladika and Matthes, 2023). Recently, agentic
frameworks use LLMs for automated peer review
(Checco et al., 2021; Agarwal et al., 2025; Lu et al.,
2024; Jin et al., 2024; Sun et al., 2024b). Behind
these tasks, a fundamental question emerges: to
what extent do these LLMs truly understand sci-
entific papers beyond surface-level pattern recog-
nition? Despite their widespread use and promis-
ing outcomes, there remains uncertainty about the
depth and accuracy of their reasoning capabilities
in the complex context of scientific papers.

Scientific papers are long documents with in-
tricate relationships. They are structured around
claims and are supported by evidence. The ability
to accurately identify and reason about these claim-
evidence pairs is essential for validating scientific
findings and ensuring research integrity, making
it a critical test of LLMs’ comprehension depth.
Unlike surface-level tasks such as summarization,
question answering, claim-evidence identification
requires global reasoning across paper sections,
synthesis of dispersed information, and a nuanced
understanding of logical dependencies. The ability
to reason about research claims and evidences has
been an active research area.

Existing benchmarks evaluate the fact-checking
capabilities in various settings. For example,
SCIFACT (Wadden et al., 2020) validates expert-
written scientific claims using the abstracts of re-
search papers. We defer to the review of Vladika
and Matthes (2023). More recent works considered
the claim identification and verifications within
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"Experiments on two machine translation tasks show these

models to be superior in quality "

supports
German: +2.0 BLEU French: 41.0 BLEU
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On the WMT 2014 English-to-German translation task, the big transformer
model outperforms the best previously reported models by more than

2.0 BLEU , establishing a new state-of-the-art BLEU score of 28.4.
On the WMT 2014 English-to-French translation task, our big model

achieves a BLEU score of 41.0 , outperforming all previously published
single models, at less than 1/4 the training cost.

Figure 1: Example CLAIM-BENCH annotation from
Vaswani et al. (2017). The highlighted claim (Exper-
iments on two machine translation tasks show these
models to be superior in quality) is linked to two quanti-
tative evidence spans reporting BLEU improvements on
WMT’ 14 En—De and En—Fr. This illustrates the cross-
page, long-range claim—evidence linking behaviour that
CLAIM-BENCH requires models to reproduce.

publications (Lu et al., 2023; Wei et al., 2023), the
check-worthiness of claims (Liu et al., 2025), and
the retrieval of evidence (Deng et al., 2025). While
these benchmarks involve claims and evidences,
they do not measure a finer-grained verification
task: whether the evidence presented in a full scien-
tific paper supports its claims. This claim-evidence
reasoning capability is precisely what we target.

In this paper, we present CLAIM-BENCH. This
benchmark consists of a new dataset with over 300
claim-evidence pairs, expert-annotated from full-
length Al research papers. It is specifically de-
signed to test the challenging task of long-range
scientific argument tracing, where claims must be
validated against evidence dispersed throughout a
document.

By evaluating six state-of-the-art LLMs on
CLAIM-BENCH, we find that larger models (e.g.,
GPT-4-Turbo, Claude 3.5) maintain high recall on
lengthy documents with iterative prompting, while
smaller models (e.g., LLaMA, Ministral) see signif-
icant performance drops under single-pass strate-
gies. These findings highlight crucial areas for
enhancing long-context comprehension and inform
the development of reliable Al tools for scientific
research. CLAIM-BENCH thus sets a new stan-
dard for evaluating deep scientific comprehension
in LLMs.

2 Related Work

Claim Extraction and Verification Prior work
on scientific claim analysis has largely focused on
isolated sub-tasks like citation-reference validation
(Zhang and Abernethy, 2024), rather than end-to-
end claim-evidence reasoning within a full doc-
ument. The influential SCIFACT, SciFact-Open
benchmarks (Wadden et al., 2020, 2022) test the
verification of external claims. Li et al. (2021)
focuses on evidence extraction tied to specific dis-
course elements. Works that engage with full-text
articles often stop short of the complete reason-
ing task. Blake (2010), Achakulvisut et al. (2020),
and Wei et al. (2023) developed methods for claim
identification within publications but didn’t oper-
ationalize the crucial step of linking claims to dis-
persed evidence. Similarly, Claimify (Metropoli-
tansky and Larson, 2025) addresses the generation
of high-quality claims in isolation, without tracing
them back to supporting evidence within a source
document . In contrast, CLAIM-BENCH requires
this full, integrated reasoning process on complete
papers.

Al for Science LLMs have significantly ad-
vanced scientific workflows, facilitating tasks such
as peer review. Building on early work in Al-
assisted peer review (Checco et al., 2021), recent
tools like ReviewerGPT (Liu and Shah, 2023) and
ReviewFlow (Sun et al., 2024a) have streamlined
peer review processes, while AGENTREVIEW (Jin
et al., 2024) simulates collaborative review systems
to improve research evaluation workflows.

Benchmarks Long-context benchmarks, such as
SCBENCH (Li et al., 2025a), MMLongBench-Doc
(Ma et al., 2024), and LongGenBench (Wu et al.,
2025), have assessed LLMs’ ability to process ex-
tended inputs and maintain coherence, focusing on
tasks like document summarization and long-form
generation. Recent works, including Al Scientist
(Lu et al., 2024), LitLLM (Agarwal et al., 2025),
and ChatCite (Li et al., 2025b) benchmarked LLMs
on tasks such as literature review and hypothe-
sis generation, while ScienceAgentBench (Chen
et al., 2025) and SCBENCH (Li et al., 2025a)
probe multi-step reasoning and long-context under-
standing. Specialized benchmarks like U-MATH
(Chernyshev et al., 2025) and Leave No Document
Behind (Godbole et al., 2024) examine domain-
specific reasoning and multi-document synthesis
but address structured and localized relationships.
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The LCFO benchmark (Costa-jussa et al., 2024a)
targets summary expansion with varying granular-
ities of content compression, revealing limits in
semantic retention. The Y-NQ dataset (Costa-jussa
et al., 2024b) exposes disparities in open-book com-
prehension across low- & high-resource languages,
hinting at deeper weaknesses in cross-lingual and
low-resource long-context understanding. Data
Interpreter (Hong et al., 2024) showcases long-
term data analysis workflows with LLM agents,
but primarily focuses on task planning and execu-
tion rather than deep textual reasoning. Work in
neuroscience, for example, shows LLMs surpass-
ing expert predictions of experimental outcomes
(Luo et al., 2025), yet such success doesn’t imply
reasoning comprehension.

Our work focuses on research papers with
more complex and dispersed relationships, such
as claims supported by evidence across multiple
sections. CLAIM-BENCH evaluates how LLMs
synthesize these intricate connections, testing their
global reasoning and coherence, reflecting the
unique demands of scientific texts. This gap is
underscored by research from adjacent domains.
For instance, works calling for crucial ethical con-
siderations, such as the need for transparency and
accountability in Al-driven research (Lissack and
Meagher, 2024), or expanding evaluation to in-
clude multimodal data (Song et al., 2024), also
highlight the absence of a targeted benchmark for
claim-evidence validation across long, complex sci-
entific texts—a gap CLAIM-BENCH aims to fill.

Reasoning Collaborative reasoning frameworks
offer a complementary perspective, with multi-
agent systems like Two Heads Are Better Than One
(Su et al., 2025) and iterative feedback mechanisms
such as CycleResearcher (Weng et al., 2025) show-
ing promise in enhancing reasoning. While these
approaches address some limitations of single-pass
systems, their primary focus remains on generating
content, not validating complex logical relation-
ships. Similarly, tools for hypothesis testing like
AIGS (Liu et al., 2024b) and LLM-Assisted Hy-
pothesis Generation (Vladika and Matthes, 2023),
and graph-based methods for structured creativity
(Leng et al., 2024), fall short of validating inter-
linked arguments at scale.

3 Methodology
3.1 Dataset

Dataset Curation The dataset for this study was
curated by 4 PhD students with research experience.
Each annotator had at least one first-author confer-
ence publication, ensuring familiarity with scien-
tific writing standards. Following specific guide-
lines (Appendix B.1), annotators selected papers
and identified their core scientific claims. The se-
lection criteria for papers were designed to focus
the benchmark on text-based reasoning: we chose
recent (2024), non-math-intensive articles under
20 pages to ensure a diverse set of current AI/ML
topics while avoiding model memorization and bot-
tlenecks from symbolic reasoning.

Statistic Value
Dataset Overview

Total Annotations 346
Unique Papers 100
Unique Claims 331
Unique Evidence Passages 335
Duplicate Claims 15
Per-Paper Statistics

Claims per Paper (Avg/Med/Range) 3.33/3/1-8
Evidence per Paper (Avg/Med/Range) 3.67/3/1-9
Content Length (Words)

Claim Length (Avg/Med/Range) 22/20/8-43

Evidence Length (Avg/Med/Range) 28/25/10-40

Table 1: Dataset Summary Statistics

Annotation Tool To facilitate easier annotations,
we developed a PDF annotation tool, it lets users
load a paper, drag a pointer over any sentence(s)
to mark it as a claim, then click-add evidence ad-
ditional spans as linked evidence for that claim;
each claim—evidence pair is stored in a one-to-many
structure and exported as JSON (Appendix B.4).

Annotation Quality Check After compiling the
initial annotations (100 papers), these were set
aside before evaluating the models to ensure an
unbiased assessment of their capabilities. To en-
hance the reliability of our dataset as ground truth,
we conducted a validation phase where a different
set of annotators re-annotated a subset of 30 papers
and found moderate to substantial inter-annotator
agreement (details in Appendix B.3), confirming
that CLAIM-BENCH is a reliable benchmark.

3.2 Evaluation Metrics

We employ four metrics to evaluate the LLM perfor-
mance: three established metrics in information re-
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Figure 2: Three methods to prompt LLMs to analyze the papers. Single-Pass: Full paper processing with one
prompt. Three-Pass: Sequential claim — evidence — conclusion extraction. One-by-One Pass: Individual

evidence retrieval per claim.

trieval, precision, recall, F1-score, and a novel met-
ric, sentence_gap, to evaluate LLM performance in
claim-evidence retrieval tasks and the effectiveness
of the prompting techniques.

Precision measures the accuracy of the model’s
predictions, reflecting its ability to avoid generat-
ing spurious claims or evidence from the scientific
texts. Recall quantifies the model’s ability to iden-
tify all relevant spans from the human-annotated
ground truth, measuring its comprehensiveness in
response to our prompts. The F1-score, as the har-
monic mean of precision and recall, provides a sin-
gle, balanced metric to compare the overall efficacy
of the different LLMs and prompting strategies we
test. The sentence_gap metric measures the av-
erage sentence-level distance between a retrieved
claim and each of its associated retrieved evidence.

> Jsp) - s(9)],

(p,g)EM

1
sentence_gap = —— Q)

M|
where M is the set of matched evidence pairs (us-
ing Intersection over Union matching rule). s(-)
returns the sentence index of a span inside the
document. While precision, recall, and F1 tell us

whether the correct evidence spans are retrieved,
sentence_gap measures how many sentences away
those spans are from the claim. Small gaps mean
the model mostly relies on nearby, local evidence;
larger gaps mean it is linking to evidence that is
farther away in the paper. This lets us see whether
models are restricted to local cues or can reliably
connect claims to more distant supporting content.

Additionally, we consider secondary metrics that
focus on operational aspects of model performance:
the time to generate outputs and how each model’s
recall changes as input length (token count) in-
creases. These metrics are crucial for understand-
ing efficiency and scalability. They help compare
how models manage computational resources and
handle large input sizes under varying conditions.

4 Experimental Setup

We evaluate six state-of-the-art LLMs, chosen
to span both licensing regimes and architec-
tural families while sharing a >128K-token con-
text window. Open-source include Ministral-8B
(Mistral Al, 2024), Phi-3.5-MoE (Abdin et al.,
2024), and LLaMA-70B (Wang et al., 2025) and
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Closed-source includes GPT-4 (OpenAl, 2024),
Gemini-Exp_1114 (Gemini Team, 2024), and
Claude 3.5 Sonnet (Anthropic, 2025).

All evaluations are run under a unified proto-
col to ensure comparability across models and
prompting strategies. For API-based models (GPT-
4-Turbo, Claude 3.5 Sonnet, Gemini-Exp_1114),
we use the official endpoints with deterministic and
a maximum context of >128K tokens, following
provider recommendations. For open-source mod-
els (LLaMA-70B, Ministral-8B, Phi-3.5-MoE), we
use their instruction-tuned checkpoints with an
identical maximum context window and determin-
isitic decoding. The same prompt templates, out-
put schema, and matching rules are applied for all
models, and we parse outputs into structured JSON
before scoring.

4.1 Analysis Methods

Figure 2 shows three distinct prompting methods to
assess and enhance model performance on claim-
evidence identification tasks.

Single-Pass As a baseline, we present the models
with a research paper, instructing (Appendix A.1)
them to identify claims, evidences, and conclusions
in a single comprehensive prompt.

B

Three-Pass Building on the “divide & conquer’
strategy from prior research (Zhang et al., 2024),
we then deconstruct the task into sequential stages.
In the first stage, the model identifies claims using
a dedicated prompt, these claims are supplied to
the next stage, where separate prompts elicit corre-
sponding evidences. Finally, we combine the iden-
tified claims & evidences, using another prompt to
extract conclusions (Appendix A.2).

One-by-One Pass We adopt a more granular ap-
proach where each claim is processed individually
to retrieve evidence. This means for n claims, the
model runs n times to gather evidence for each, and
similarly for conclusions. Although this approach
provides detailed analysis, it significantly increases
the demand on computational resources and time
(Appendix A.3). These methods combine care-
ful prompting with our annotated claim—evidence
dataset, allowing us to benchmark each model’s ex-
traction accuracy and probe how different prompt
strategies improve performance.

5 Results

The following section details the experimental re-
sults, highlighting comparative model performance
and strategic impacts.

5.1 Precision vs Recall

As shown in Figure 3, models exhibit a clear
precision-recall trade-off: settings that achieve
higher recall often incur reduced precision. For in-
stance, Claude and LLaMA achieve high recall but
at the cost of extracting numerous false positives,
which is evident from their large maximum linking
distances (Figure 8), exceeding 2,200 sentences in
some cases. Although valuable, such long-range
links raise the risk of false claim—evidence pairs.
Conversely, models like GPT prioritize precision,
maintaining moderate linking distances (around
658—708 sentences) with fewer spurious matches,
though this approach slightly limits recall. Minis-
tral offers a balanced precision-recall profile, char-
acterized by consistent, shorter linking distances.

Comparing the precision-recall tradeoff trends
between open- and closed-source models, we see
that closed-source models balance precision and
recall better. Overall, GPT often balances high pre-
cision and moderate recall; Claude achieves higher
recall rates but exhibits noticeable trade-offs in pre-
cision. Gemini remains stable across strategies.
Among open-source models, LLaMA came close
to matching closed-source recall but with some out-
liers, also shows variability in precision; Ministral
is moderate in both coverage & precision; Phi ex-
hibits the widest swings, at times matching larger
models but also dropping in accuracy.

5.2 Smaller vs Larger Models

Larger models, such as GPT-4-Turbo, Claude,
Gemini, and LLaMA, generally exhibit strong
recall in identifying claims, with GPT-4-Turbo
achieving high precision (0.68) and recall (0.81),
demonstrating effective balance at different strate-
gies. Claude also shows strong recall (0.83), al-
beit with a moderate precision drop (0.61). Also,
LLaMA achieves similar recall (0.76) but compara-
tive precision (0.60), indicating a tendency to iden-
tify extensive and highly precise connections, con-
sidering the best cases of each model.

Smaller models, such as Ministral and Phi, typi-
cally exhibit lower recall and precision. Ministral
shows modest recall (0.60) with precision around
0.38, reflecting a conservative approach to claim-
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(leftmost). LLMs, especially with iterative strategies, link over longer distances than humans, showing capability

but potential noise.

evidence linking. Phi demonstrates similar preci-
sion (approximately 0.39) but notably higher recall
(around 0.7) in the best cases. These observations
highlight a clear trade-off: larger models generally

identify broader and more nuanced claim—evidence
relationships but often at the cost of precision,
whereas smaller models maintain more consistent
precision with significantly reduced recall. Similar

2360



pattern holds in evidence extraction as well.

5.3 Claims vs Evidence Extraction

Best C Performances  Best E Performances

Model

F1 P R F1 P R
GPT-4-Turbo 056 066 057 047 034  0.69
Claude 3.5 059 062 060 042 033 0.66
Gemini-Exp_1114  0.54 048 0.64 040 0.30 0.52
LLaMA-70B 058 060 056 045 042 049
Ministral-8B 048 039  0.61 039 0.31 0.52
Phi-3.5-MoE 050 040 072 035 025 0.63

Table 2: The highest performance (across all strategies)
for Claim (C) and Evidence (E) extraction. Metrics
reported are F1, Precision (P), and Recall (R).

Analyzing claim versus evidence extraction sep-
arately reveals distinct performances among LLMs
(see Table 2). Across all models, precision is con-
sistently higher for claims than for evidence, in-
dicating the models more readily detect explicit
claims compared to the contextually dispersed evi-
dence. Also, the evidence extraction of all models
yields higher recall than precision. In addition to
the common trends, the models exhibit distinct
patterns. For instance, Claude and LLaMA demon-
strate high recall in evidence extraction but with
substantial variability in linking distances (Claude:
mean 119.4 sentences, SD = 183.5; LLaMA: mean
95.1 sentences, SD = 184.9), suggesting increased
noise and inconsistent performance. Conversely,
Ministral maintains lower linking distances (mean
75.9 sentences, SD = 89.4), signifying a more cau-
tious and controlled approach.

5.4 Impact of Prompting Strategy

The Single-pass strategy is highly efficient but has
limited coverage, e.g., GPT-4 produces 152 pairs
with a 98.5 average sentence_gap, while Ministral
generates 166 pairs (average gap: 64.2). Mean-
while, the Three-pass strategy enhances recall and
coverage at moderate computational cost. Claude
yields 174 pairs (average gap: 122.2), and Phi cap-
tures 279 pairs, albeit with a significant SD (107.2)
in sentence_gap. Finally, the One-by-One strategy
maximizes recall but increases computational de-
mand significantly. Claude and LLaMA produce
the highest counts (639 and 659 pairs, respectively),
with substantial gaps (Claude: 119.4, LLaMA:
95.1) and high SD (Claude: 183.5, LLaMA: 185.0).
Phi also achieves substantial coverage (347 pairs)
with a notable SD (114.8).

5.5 Impact of Token Length on Recall

We observed how the documents’ token length af-
fected the models’ recall performances. In long
documents, we expected performance drops, but
these observed drops are tied to the prompting strat-
egy. With the Single-pass strategy, the recall perfor-
mances dropped as the document length increased.
With the iterative prompting strategies (Three-pass
or One-by-One), the performance drops are less
significant, indicating that the iterative prompting
imposes less “processing load” onto the LLMs. Ad-
ditionally, the recall drops differ by the sizes of
the models. Relatively smaller models (LLaMA
70B and Ministral 8B) showed more notable de-
clines, especially with Single-pass, whereas the
larger models (Claude and GPT-4) maintained rel-
atively high recalls, underlining the advantage of
their long context capabilities (Appendix C).

Claude and LLaMA frequently produce the high-
est pair counts (up to 639 and 659), reflecting broad
coverage. This can coincide with their large context
window sizes—helpful for capturing distant rela-
tionships—yet also introduces potential noise. GPT
and Gemini keep moderate distances, suggesting
they discovered fewer links. Ministral remains con-
servative with fewer pairs with shorter distances,
while Phi’s extreme variance indicates inconsistent
linking across long contexts. We include the details
in Figure 8 (in Appendix C).

5.6 Types of Claims and Evidences

To further understand the nature of the claim-
evidence reasoning task and the models’ behav-
ior, we categorize the claims and the evidences
identified by both humans and LLMs. The catego-
rization, developed by synthesizing and extending
established types from the scientific validation lit-
erature, provides a qualitative lens for our analysis.
Full descriptions are in Appendix C.1, and the re-
sults are in Table 3 and Table 5.

Many models exhibited a strong bias for “com-
parative” content over other types. For example,
Claude identified 37.3% of claims as comparative,
exceeding the human baseline of 23.6%. Rather
than being “surface-level”, we believe this occurs
because comparative claims contain explicit key-
words (e.g., “outperforms”) that are easy for mod-
els to detect. This suggests that iterative prompting
strategies, which break the task down, are crucial
for calibrating models to look beyond these lexical
signals and identify a more balanced set of claims.
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Meth Emp Comp Theo  Caus Meth Emp Comp Theo  Caus
Human 42.1(1) 2422) 236@3) 754 25(05)
Claude Llama
1 197(3) 3452) 37.3(1) 25(0G) 6041 355(1) 2642) 2642) 784 39(5)
3 186 (3) 375(1) 345Q2) 504 44(0)3 289(2) 30.7(1) 265@3B) 804 59(5)
(0] 209(3) 338(Q2) 342(1) 48(@6B) 6240 252(3) 334(1) 2068(2) 864 6.0(05)
GPT Ministral
1 324(1) 2413) 30612) 370G) 9341 33.2(1) 247@3) 284@2) 1204 1.7(5
3 314() 304(2) 241(3) 98@) 43(0)3 31.0(1) 26512) 195@3B) 1564 7505
(0] 205(1) 287(R2) 259@3) 175(06B) 84O 33.0(1) 262@3) 267(2) 1204 22(5)
Gemini Phi
1 335(1) 293(R2) 2513) 854 3601 306(2) 31.2(1) 2733) 734 3.6(5
3 306(1) 295(R2) 2903) 824 27(B)3 333((2) 342(1) 1633) 10.84) 5.5(5)
(6] 372(1) 31.1Q) 1743) 1234 19(5)O0 36.7(1) 17.1(3) 359Q2) 654 39(5)

Table 3: Distribution of claim types selected by humans and by each model-strategy pair. Each cell shows the
percentage of claims in that category, with the rank among the five categories in parentheses (1 = most frequent,
5 = least frequent within that row). Categories: Meth=Methodological, Emp=Empirical, Comp=Comparative,
Theo=Theoretical, Caus=Causal. Strategies: 1=single pass, 3=3-pass, O=one-by-one.

Models had different priorities than humans
when identifying important claims. GPT and Gem-
ini aligned with humans by prioritizing method-
ological claims (e.g., GPT: 32.4% vs. human:
42.1%). In contrast, Claude and LLaMA favored
claims about empirical results and comparisons.

Models consistently struggled with claims re-
quiring abstract or deep reasoning. They under-
represented theoretical claims (e.g., Claude: 2.5%
vs. human: 7.5%) significantly undervalued expert
evidence (we define expert evidence as the authors’
synthesis or interpretation). Models identified the
“expert evidences” less than 3% of the time (vs.
13.9% for humans), suggesting they can extract
isolated facts but fail at the higher-order task of
connecting data to an author’s conclusions, a core
component of deep scientific comprehension.

6 Discussion

The insights from CLAIM-BENCH emphasize crit-
ical directions for future research and practical
applications leveraging the capabilities of LLMs
in scientific claim-evidence reasoning. Improv-
ing LLMs’ ability to accurately validate claim-
evidence pairs could enhance their practical use
in designing experiments and generating scientif-
ically valid hypotheses. Furthermore, improved
claim identification and validation methods provide
a foundation for developing sophisticated claim
quality scoring tools that can greatly enhance peer-
review processes. The capability to systemati-
cally link and integrate evidence across multiple
scientific papers could lead to powerful retrieval-

augmented laboratory assistants and cross-paper
evidence graphs, accelerating knowledge discovery.
These advancements would not only strengthen
the robustness of scientific validations but also fa-
cilitate the creation of more sophisticated scien-
tific QA systems, thus laying foundational bench-
marks for future scientific text generation and eval-
uation methods. This research thus serves as a
pivotal foundation for transformative applications
in scientific inquiry and discourse. A closer look
at the models’ errors reveals two primary failure
modes. The first is over-generation of plausible
but incorrect links, prevalent in high-recall mod-
els like LLLaMA and Claude. These models often
identify claim-like and evidence-like sentences in
isolation but fail to validate the precise logical con-
nection between them, resulting in low precision.
The second failure mode is missed context due to
long-range dependencies. This is evident when a
claim made in the introduction is supported by a
specific result in a table within the results section.
Models, especially smaller ones like Ministral or
any model using a single-pass prompt, frequently
fail to bridge this large sentence_gap, leading to
false negatives. These failures underscore that the
primary challenge is not just text extraction, but
robust, long-distance logical reasoning.

7 Conclusion

Motivated by the limited evaluation in prior litera-
ture of LLMSs’ abilities in scientific reasoning, we
introduced CLAIM-BENCH, a novel benchmark
specifically designed to evaluate LLLMs’ capabili-
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ties in identifying and validating claim-evidence
relationships within scientific texts. We system-
atically explored diverse LLM architectures and
prompting strategies. Our results demonstrate
significant limitations in LLMs’ comprehension,
specifically in their precision and recall balance
when processing complex scientific documents.
Notably, models showed higher precision in extract-
ing explicit claims, whereas extracting dispersed
evidence proved challenging, yielding higher recall
but lower precision and increased sentence gaps.
Our qualitative analysis further reveals systematic
biases and error patterns in current LLM capabili-
ties, underscoring CLAIM-BENCH’s critical role
in advancing rigorous scientific validation tasks.
Moreover, our comparative analysis across three
strategies revealed substantial trade-offs between
computational efficiency, precision, and coverage.
Closed-source models generally displayed more
stable performances, while open-source models
offered broad yet inconsistent coverage. CLAIM-
BENCH provides a framework for the assessment
of LLMs in complex scientific contexts, and our
study provides useful material and insights for con-
tinuing the advancement in LLMs’ high-level com-
prehension and scientific reasoning capabilities.

8 Limitations

While CLAIM-BENCH provides comprehensive
insights into the capabilities of LLMs in scientific
claim-evidence reasoning. Despite these insights,
CLAIM-BENCH has several limitations worth not-
ing. First, the benchmark primarily focuses on
recent papers from select domains, which are after
the LLMs’ knowledge cutoff but might limit the
generalizability. Second, the evaluation relies on
existing LLM architectures. While we leave the
exploration of the impact of model architecture de-
velopment to future works, CLAIM-BENCH could
be a useful material that supports future projects
that develop novel LLM architectures that have
enhanced long-context language understanding ca-
pabilities and scientific reasoning capabilities.
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A.1 Single-Pass Prompt

Comprehensive Evaluation Prompt

Analyze the research paper and provide a comprehensive evaluation following these guide-
lines:

1. Identify ALL claims in the paper where each claim:

» Makes a specific, verifiable assertion

* Is supported by concrete evidence

» Represents findings, contributions, or methodological advantages
* Can be from any section except abstract

2. For each identified claim:

 Extract ALL supporting or contradicting evidence (experimental results, data, or method-

ology)
 Evaluate the evidence strength and limitations

* Assess how well conclusions align with evidence

Return ONLY the following JSON structure:
{

"analysis”: [
{
"claim_id": number,
"claim": {
"text": "statement of the claim”,
"type": "methodology/result/contribution/performance”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text from paper”
}’
"evidence"”: [
{
"evidence_text"”: "specific experimental result/data”,
"strength”: "strong/moderate/weak”,
"limitations”: "specific limitations”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text from paper”
}
]y
"evaluation”: {
"conclusion_justified”: true/false,
"robustness”: "high/medium/low",
"justification”: "explanation of evidence-conclusion alignment”,
"key_limitations”: "critical limitations affecting validity”,
"confidence_level”: "high/medium/low”

}

Ensure:
* ALL substantive claims are captured
 Evaluations are objective and well-reasoned
* All locations and quotes are precise

» Multiple pieces of evidence per claim are included when present
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A.2 Three-Pass Prompt

Claims Extraction Prompt

Paper text: {text}
Task: Identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.
2. Represents a novel finding, improvement, or advancement.
3. Presents a clear position or conclusion.
Requirements:
¢ Include both major and minor claims.
* Don’t miss any claims.
* Present each claim as a separate item.

Return ONLY the following JSON structure:

{
"claims": [
{
"claim_id": 1,
"claim_text"”: "statement of the claim”,
"location”: "section/paragraph where this claim appears”,
"claim_type"”: "Nature of the claim”,
"exact_quote”: "complete verbatim text containing the claim”
}
1
}

Evidence Identification Prompt

Paper text: {text}
For these claims: {claims_text}
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or concrete examples.
3. Can be traced to specific methods, results, or discussion sections.
4. Is not from the abstract or introduction.

Return ONLY the following JSON:
{

"evidence_sets": [

"claim_id": number,
"evidence"”: [
{

"evidence_id": number,
"evidence_text": "specific evidence”,
"strength”: "strong/moderate/weak”,
"limitations”: "key limitations”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text”
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Conclusion Evaluation Prompt

Analyze these claims and their evidence: {analysis_text}
For each claim-evidence pair, evaluate:

1. Whether the evidence justifies the claim.
2. The overall strength of support.
3. Any important limitations.

Return ONLY the following JSON:

{
"conclusions”: [
{
"claim_id": number,
"conclusion_justified”: true/false,
"robustness”: "high/medium/low”,
"key_limitations"”: "specific limitations”,
"confidence_level”: "high/medium/low”
}
]
}

A.3 One-by-One Prompt

Claims Extraction Prompt

Analyze this research paper and extract ALL possible claims made by the authors. Paper text:
{text}
Your task is to identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.
2. Represents a novel finding, improvement, or advancement.
3. Presents a clear position or conclusion.
Make sure to:
* Include both major and minor claims.
* Don’t miss any claims.
* Present each claim as a separate item.

Return ONLY the following JSON structure:
{

"claims": [

{
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"claim_id": 1,

"claim_text"”: "statement of the claim”,

"location”: "section/paragraph where this claim appears”,
"claim_type"”: "Nature of the claim”,

"exact_quote”: "complete verbatim text containing the claim”

Evidence Analysis Prompt

Paper text: {text}
For the following claim from the paper: "{claim[’claim_text’]1}"
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or methodology.

3. Can be traced to specific methods, results, or discussion sections.
4. Is not from the abstract or introduction.

If NO evidence is found for the given Claim, return:

{
"claim_id": {claim['claim_id']},
"evidence": [],
"no_evidence_reason”: "Explain why no evidence was found (e.g., 'Claim is unsupported', '
< Claim is theoretical without empirical evidence', etc.)"
}

ELSE: Return ONLY the following JSON structure:

{
"claim_id": {claim['claim_id']},
"evidence": [
{
"evidence_id": 1,
"evidence_text": "specific experimental result/data point”,
"evidence_type": "primary/secondary”,
"strength”: "strong/moderate/weak”,
"limitations”: "stated limitations or assumptions”,
"location”: "specific section & paragraph”,
"exact_quote”: "verbatim text from paper”
}
]
}

Conclusion Analysis Prompt

Paper text: {text}
Analyze the following claim and its supporting evidence: {single_claim_analysis}
Provide a comprehensive conclusion analysis following these guidelines:

1. Evidence Assessment:

 Evaluate the strength and quality of ALL evidence presented.
* Consider both supporting and contradicting evidence.
* Assess the methodology and reliability of evidence.
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2. Conclusion Analysis:

* Determine what the authors concluded about this specific claim.
* Evaluate if the conclusion is justified by the evidence.
 Consider the relationship between evidence quality and conclusion strength.

3. Robustness Evaluation:

* Assess how well the evidence supports the conclusion.
* Consider methodological strengths and weaknesses.
* Evaluate the consistency of evidence.

4. Limitations Analysis:

* Identify specific limitations in both evidence and conclusion.
* Consider gaps in methodology or data.
* Note any potential biases or confounding factors.

Return ONLY the following JSON structure:

{
"conclusions”: [
{
"claim_id": {claim_id},
"author_conclusion”: "detailed description of authors' conclusion based on evidence
(—> ”}
"conclusion_justified”: true/false,
"justification_explanation”: "detailed explanation of why conclusion is/isn't
— justified"”,
"robustness_analysis”: "comprehensive analysis of evidence strength and reliability
(_> "Y
"limitations”: "specific limitations and caveats”,
"location”: "section/paragraph where conclusion appears”,
"evidence_alignment”: "analysis of how well evidence aligns with conclusion”,
"confidence_level”: "high/medium/low based on evidence quality”
}
]
}
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B Additional Details on Annotation

B.1 Paper Selection

* Select one recent research paper in the field of artificial intelligence or machine learning.
* Prioritize papers published in 2024 to ensure relevance to current developments.

* When possible, select a paper with fewer than 20 pages to facilitate thorough annotation.
* Avoid papers with heavily mathematical content to ensure accessibility.

* Complete all annotation tasks independently, without employing large language models for assistance
at any stage of the process.

B.2 Annotator Guidelines

Task Description
Your task is to identify all statements in the text that qualify as claims under the following criteria:

1. Specificity: The statement makes a specific, testable assertion about results, methods, or contribu-
tions.

2. Novelty: The statement represents a novel finding, improvement, or advancement.
3. Clarity: The statement presents a clear position or conclusion.

Requirements

* Include both major and minor claims.

* Ensure no claim is overlooked.

* Present each claim as a separate item.

Evidence Identification
For each identified claim, find and document relevant evidence that:

1. Relevance: Directly supports or contradicts the claim’s specific assertion.
2. Concrete Support: Is presented with experimental results, data, or concrete examples.
3. Traceability: Can be traced to specific methods, results, or discussion sections in the text.

4. Exclusions: Evidence must not be derived from the abstract or introduction sections of the text.

Conclusion Analysis

* Justification: Evaluate whether the conclusions drawn in the text are justified by the evidence

provided.

Annotators followed explicit guidelines for identifying claims and evidence. Claims were annotated
based on being novel, specific, and clearly stated scientific assertions, while evidence included supporting
sentences explicitly linked to these claims. Annotators were instructed to select the minimal text span that
fully conveyed the claim or evidence, avoiding unnecessary contextual sentences.
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B.3 Inter-Annotator Agreement Methodology

To evaluate CLAIM-BENCH annotation reliability, we calculated Inter-Annotator Agreement on a subset
of 30 papers, each annotated by two different annotators. For claims and evidence, we computed the
F1-score treating each annotator alternately as ground truth to ensure symmetry. F1-score was chosen for
its relevance to information extraction tasks, balancing precision and recall.

Additionally, we automated Cohen’s x computation using an LLM assistant (Gemini 2.5) on the
30-paper subset. For each paper, the LLM assistant performed four steps clearly defined below: (i)
Extracted raw annotation files, (ii) Built binary vectors indicating claim/evidence presence per sentence (1
for presence, 0 otherwise), (iii) Populated the 2x2 contingency table (elements a, b, ¢, d) where:

* a: sentences marked by both annotators,
* b: sentences marked only by annotator 1,
* c: sentences marked only by annotator 2,
* d: sentences not marked by either annotator,

(iv) Computed Cohen’s & as:

P_a+d P_(a+b)(a+c)+(c+d)(b+d) H_Po—Pe
o N ) e N2 i - 1—P€

The automated procedure was validated manually on a sample of 10 papers, confirming arithmetic
accuracy. The results yielded x = 0.66 (substantial agreement) for claims and x = 0.30 (fair agreement)
for evidence. The lower agreement for evidence was anticipated, given sparse and dispersed evidence
sentences (<0.3% of total text). Minor boundary discrepancies or multiple valid evidence spans legitimately
lowered agreement. Nonetheless, these scores affirm CLAIM-BENCH’s robustness as a challenging yet
reliable benchmark.

Cohen’s x Agreement Prompt

Paper filename: {pdf_name} Total sentences in paper: {total_sentences?}

You are given two raw annotation lists for claim identification—one from Annotator 1 and one
from Annotator 2. Follow the steps below exactly to compute Cohen’s k:

1. Vector Construction Build two binary vectors of length N = {total_sentences}:

* 1 if the sentence was marked as a claim by the annotator.
* 0 if the sentence was not marked as a claim.

2. Contingency Table Using the two vectors, populate the 2 x 2 table:

[Amn2=1 Am2=0

Anmml =1 a b
Annl =0 c d
3. Compute
a+d
P, =
N
B (a+b)(a+c> n <c+d><b+d>
°\N N N N
P, - P
S )
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4. Return only the JSON below:

{
"kappa_claims”: 0.00

}

Raw Annotations — Annotator 1: {raw_annotations1}

Raw Annotations — Annotator 2: {raw_annotations2}

Example Output: Cohen’s x Calculation

We compute Cohen’s « for claim identification on a paper with NV = 667 sentences.
Annotation statistics

* Annotator 1 marked 5 sentences as claims.

* Annotator 2 marked 6 sentences as claims.

* Overlap (both claim = 1): 4 sentences.

Contingency table
Amn2 =1 Ann2 =0 | Row Tot.
Aml=1 4 1 5
Annl =0 2 660 662
Col. Tot. 6 661 667
Calculations
a + d 4 + 660
P == = ~ .
667 0.9955,
_(a—i—b)( ) (c—i—d)(b—i—d)
AN N JUN
_ (.5 6 662 (661 ~
= (52) (s%) + (22) (%4) ~ 0.98375,
P, — Pe 0.99550 — 0.98375
- = .7231.
"T1-R [—oosars 0T
Result JSON
{

"kappa_claim”: 0.7231
3
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B.4 Annotation Tool

ad PDF - + Fit
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The Transformer uses multi-head attention in three different ways:

+ In "encoder-decoder attention” layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical der-decoder attention i in seq 1 models such as
[38.2,9].

* The encoder contains self-attention layers. In a self-attention layer all of the keys. values
and queries come from the same place, in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

Similarly, self-attention layers in the decoder allow each position in the decoder to attend to
all positions in the decoder up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the auto-regressive property. We implement this
inside of scaled dot-product attention by masking out (seiting to —oo) all values in the input
of the softmax which correspond to illegal connections. See Figure 2.

33 Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between

FFN(x) = max(0, 2 Wy + by )W + bz @
While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with kemnel size 1.
The dimensionality of input and output is dmoser = 512, and the inner-layer has dimensionality
dyp = 2048,

ff

34 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert the input
tokens and output tokens to vectors of dimension dy,g. We also use the usual learned linear transfor-
‘mation and softmax function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two embedding layers and the pre-softmax
linear transformation, similar to [30). In the embedding layers. we multiply those weights DY v/@rmodel.

.

_Evidence added successfully

PDF Annotation Tool

‘Current Selection:

- Selected: In addition to attention sub-layers, each of the layers in our
encoder and decoder contains a fully connected feed-forward network,
which s applied to each position separately and identically. This c...

Clear Selection Preview Edit

‘Add as Evidence

Claims and Evidence:

The two most cemmonly used attention functions are additive
attention [2], and dot-product (multi- plicative) attention. Dot-
product attention is identical to our algorithm, except for the
scaling factor of 1 /dk . Additive attention computes the
compatibility function using a feed-forward network with a single
hidden layer. While the two are similar in theoretical complexity,
dot-product attention is much faster and more space-efficient in
practice, since it can be implemented using highly optimized matrix
multiplication code

Evidence:

The two most commonly used attention functions are additive attention [2

In addition to attention sub-layers, each of the layers in our encoder and ¢

Claim:

The two most cemmonly used attention functions are additive
attention [2], and dot-product (multi- plicative) attention. Dot-
product attention is identical to our algorithm, except for the
craline fartnr nf 1 [l Adritie attantinn rammnitac the

Select Claim for New Evidence:

The two most commenly used attention functions are additive attention [2], j

. = Save Annotations

Figure 5: The custom annotation tool interface used for CLAIM-BENCH dataset creation, enabling direct PDF text
selection and structured labeling (e.g., “Add as Claim” button) of claim-evidence pairs.

B.5 Dataset Statistics

Table 4: Detailed Summary Statistics for the Dataset

Statistic Value

Statistic Value

Overall Dataset Statistics

346
100
331

335
15

Total Annotations
Unique Papers
Unique Claims

Unique Evidence Passages
Duplicate Claims (Total)

Avg Claims per Paper 3.33
Median Claims per Paper

Min / Max Claims per Paper 1/8

Avg Evidence per Paper 3.67
Median Evidence per Paper

Min / Max Evidence per Paper 1/9

Content Characteristics (Length in Words)

22
20
8/43

Avg Claim Length
Median Claim Length
Min / Max Claim Length

28
25
10/40

Avg Evidence Length
Median Evidence Length
Min / Max Evidence Length
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Figure 6: Mean recall by document size groups (small, medium, large) for different models and prompting strategies,
illustrating performance trends across increasing token counts.

C Impact of Documents’ Token Length

Figure 6 plots mean recall for three prompting strategies—Three-Pass, One-by-One, and Single-Pass—
across three document-length buckets (< 15 k, 15-20 k, > 20 k tokens). A closer reading of the bars
yields three key observations:

1. Performance drops are tied to the strategy more than the model size.

* For every model, the Single-Pass run shows the steepest decline as documents grow.

* Example: LLaMA’s recall plunges from about 0.60 in small papers to roughly 0.40 in >20
k-token papers under Single-Pass.

2. Once an iterative strategy is used, the size-related gap all but disappears.
* Iterative prompting (Three-Pass or One-by-One) largely neutralises length effects—even for the
smaller models.

* LLaMA 70B: In One-by-One mode the large-document group matches or exceeds the small-
document group (= 0.78 vs == 0.76).

* Ministral 8B: Three-Pass recall stays virtually flat (~ 0.72-0.75) across all three size buckets;
the length penalty only appears in Single-Pass.

3. Larger models still benefit, but their advantage is greatest with fine-grained prompts.
¢ Claude 3.5 Sonnet: Recall rises with document size under Three-Pass (=~ 0.72 — 0.85), and
remains > (.75 in One-by-One.

* GPT-4-Turbo: One-by-One keeps recall at or above 0.80 for medium- and large-size papers; the
drop to ~ 0.66 for large papers occurs only in Three-Pass, not in Single-Pass.
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The figure 6 shows that prompt granularity is the dominant lever for long-context recall. Single-pass
prompting amplifies context-window limits—especially in smaller models—but iterative, claim-level
prompting (Three-Pass and One-by-One) recovers performance, sometimes even improving it as the text
grows. Larger models are naturally more stable, yet they, too, realise their full potential only when given
finer-grained, multi-step instructions.

C.1 Qualitative Analysis Metrics Selection

We selected our claim and evidence categories based on synthesizing and extending established types
from prominent scientific validation literature.” This categorization draws on prior works, notably Clini-
Fact (Zhang et al., 2025), CliVER (Liu et al., 2024a), SCITAB (Lu et al., 2023), and SciClaimHunt (Kumar
et al., 2025), ensuring comprehensive coverage and alignment with established standards in scientific
claim and evidence categorization. The chosen categories reflect prevalent argumentative structures and
evidential forms across multiple domains, enhancing the applicability and robustness of CLAIM-BENCH.
Methodological claims highlight innovation and technique advancements, while empirical claims cover
observational and experimental findings central to scientific research. Comparative claims are integral to
evaluating methodological or result-oriented superiority, whereas theoretical and causal claims capture
conceptual advancements and explanatory relationships, respectively.

For evidence, we included experimental and observational evidence to reflect controlled and real-world
conditions prevalent in scientific studies. Comparative evidence provides direct performance or outcome
comparisons, essential for validation. Statistical evidence captures rigorous quantitative analysis, crucial
for establishing scientific credibility, and expert evidence incorporates authoritative insights, emphasizing
domain expertise.

Claim Categories:

Methodological claims highlight innovation in techniques or frameworks.
Example: "We propose a novel attention mechanism, sparse-attention, which reduces computa-
tional complexity.”

Empirical claims cover observational and experimental findings central to scientific research.
Example: "Our study of 1,000 patients revealed that Drug X lowers blood pressure by an average of
10 mmHg."

Comparative claims are integral to evaluating methodological or result-oriented superiority.
Example: "The BERT-large model achieves a 5% higher accuracy on the SQuAD 2.0 dataset
compared to RoBERTa-large."”

Theoretical and Causal claims capture conceptual advancements and explanatory relationships, respec-
tively.
Example: "Increased screen time before bed directly causes a measurable delay in sleep onset in
adolescents."

Evidence Categories:

Experimental evidence is derived from controlled studies where researchers actively manipulate variables
to test a hypothesis.
Example: "The treatment group showed a 95% reduction in infection rates compared to the placebo
group under controlled lab conditions."

Observational evidence comes from studies where subjects are observed in their natural setting without
researcher intervention.
te Example: "A cohort study of 5,000 individuals found a positive correlation between high-fiber
diets and reduced risk of heart disease."

The categorization of the outputs themselves was automated using the claude-3-5-sonnet-20241022 model to ensure
consistency.
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Comparative evidence provides direct performance or outcome comparisons, essential for validation.
Example: "Table 3 shows our algorithm processed the dataset in 5.2 seconds, while the baseline took
11.8 seconds."

Statistical evidence captures rigorous quantitative analysis crucial for establishing scientific credibility.
Example: "A p-value of < 0.001 indicates that the observed difference in crop yield is statistically
significant.”

Expert evidence incorporates authoritative insights or the authors’ synthesis of findings.
Example: "Based on these findings, we conclude that the geological formations are consistent with
those found in other volcanic regions.”

C.2 Evidence Qualitative Analysis

Table 5: Evidence Categorization: Percentage (and Rank) across Models and Strategies

Model and Strategy Experimental Observational Comparative Statistical Expert

Human Annotations 23.7 (2) 16.3 (4) 20.8 (3) 253 (1) 13.9(5)
Claude Models

Claude Single Pass 20.3 (3) 10.9 4) 342 (1) 321 (12) 25(5)

Claude 3-Pass 26.8 (2) 13.0(4) 354 (1) 23.6(3) 1.2(5

Claude One-by-One Pass 33.9 (1) 11.4 4) 29.4 (2) 223(3) 3.1(5)
GPT Models

GPT 3-Pass 27.5(2) 21.5(3) 28.6 (1) 18.1(4) 4.4(5)

GPT All at Once 23.7 (3) 12.2 (4) 33.2 (1) 276 (2) 3.3(5

GPT One-by-One Pass 39.1 (1) 11.7 (4) 27.7 (2) 177 (3) 3.9(5)
Gemini Models

Gemini 3-Pass 23.7 (2) 17.3 (4) 31.0 (1) 194 (3) 8.6(5)

Gemini One-by-One Pass 28.3 (1) 273 (2) 219 (3) 160(4) 6.5(5)

Gemini Single Pass 27.1 (2) 14.7 (4) 29.1 (1) 222 3) 7.0(5)
Llama Models

Llama 3-Pass 26.3 (2) 16.8 (4) 29.9 (1) 223 (3) 4.8(5)

Llama One-by-One Pass 31.3 (1) 16.0 (4) 25.7 (2) 20.7(3) 6.2(5)

Llama Single Pass 27.7 (2) 12.1 (4) 28.5 (1) 274 (3) 4.2(5)
Ministral Models

Ministral 3-Pass 229 (2) 31.1 (1) 19.7 (3) 142 4) 12.2(5)

Ministral One-by-One Pass 13.8 (3) 13.0 (4) 32.5(2) 344(1) 6.2(5

Ministral Single Pass 21.5(3) 22.9(2) 21.34) 23.1(1) 11.3(5
Phi Models

Phi 3-Pass 32.1 (1) 21.7 (3) 23.8 (2) 141 4) 82(5)

Phi One-by-One Pass 27.6 (2) 15.8 (4) 30.0 (1) 20.7(3) 5.9(5)

Phi Single Pass 272 (2) 17.8 (4) 30.8 (1) 21.2(3) 3.0(5
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C.3 Execution Time Analysis
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Figure 7: Execution time comparison (box plots): Single-Pass (M) is fastest, One-by-One (M) is slowest. Models
vary greatly in speed (e.g., Claude consistently fast; LLaMA/Phi often requiring >1000s).

Execution times differ across models and strategies. GPT is highly efficient in the Single-Pass (under
200s) and moderate in one-by-one approaches (~500s). Gemini exhibits intermediate execution times
across all strategies, notably higher for the three-pass (~600s). Claude consistently achieves the fastest
execution, staying under 200 seconds. LLaMA shows extensive variability, especially with one-by-one
strategies frequently exceeding 1,200 seconds, reflecting significant computational demands. Ministral
shows relatively balanced execution times, with three-pass and one-by-one strategies averaging around
600-900 seconds. Phi demonstrates the highest computational intensity, especially in one-by-one strate-
gies, often surpassing 1,200 seconds, highlighting the considerable resource investment required for
thorough analyses. The execution times recorded for Gemini exhibit some variability, which may partially
stem from fluctuations in API response latency during our experiments, combined with the necessary
sleep() intervals implemented for rate limiting.
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C.4 Sentence Distance Detailed Analysis

3-pass ‘ 1-pass ‘ 1-by-1

Count Max Mean Var ‘ Count Max Mean Var ‘ Count Max Mean Var
GPT 203 696 93.8 10640.4 ‘ 152 658 98.5 14738.0 ‘ 396 708 90.2 9798.3
CLAUDE 174 2226 12222 39147.4 ‘ 250 2222 90.7 331223 ‘ 639 2230 194 33673.9

GEMINI 84 720 107.4 23584.2 ‘ 194 710 72.8 180175 ‘ NIA N/A NA N/A
LLAMA 183 2226 98.1 359741 ‘ 145 2228 109.1 718575 ‘ 659 2228 95.1 34207.0

MISTRAL 38 357 75.9 8030.5 ‘ 166 632 64.2 8316.9 ‘ NA N/A NA N/A
PHI 279 2282 130.6 114904.2 ‘ 294 2232 121.4 56085.7 ‘ 347 579 105.9 13188.2

Figure 8: Aggregated statistics of the sentence_gap metric Count, Max, Mean, and Variance (Var)—for each model
under the three prompting strategies (Three-Pass, One-pass, and One-by-One). Larger counts and wider gaps (e.g.,
Claude and LLaMA exceeding 2,200-sentence links in One-by-One) reflect broader retrieval, whereas smaller
models such as Ministral keep distances short and variance low. “N/A” indicates the model-strategy combination
was not executed.
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