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Abstract

We introduce a set of resampling-based meth-
ods for quantifying uncertainty and statistical
precision of evaluation metrics in multilingual
and/or multitask NLP benchmarks. We show
how experimental variation in performance
scores arises from both model and data-related
sources, and that accounting for both of them
is necessary to avoid substantially underesti-
mating the overall variability over hypothetical
replications. Using multilingual question an-
swering, machine translation, and named entity
recognition as example tasks, we also demon-
strate how resampling methods are useful for
quantifying the replication uncertainty of var-
ious quantities used in leaderboards such as
model rankings and pairwise differences be-
tween models.

1 Introduction

Over the last several years, multilingual research
has undergone exponential growth within NLP,
both in terms of model capabilities as well as eval-
uation datasets. Since no paper can evaluate on all
languages, it is important to determine to what ex-
tent research findings generalize from one language
and from one task to another. This is particularly
true in recent years with the proliferation of large
language models (LLMs), where the goal often is
to draw conclusions about the models that are not
task or language-dependent.

Evaluation paradigms Despite this need, eval-
uation setups in multilingual NLP research tend
to focus on within-language evaluation and fall
into two broad categories. In the first category, the
same experiments are repeated across several lan-
guages and the results analyzed separately. The
inferences are typically reported as one collection,
e.g. “Model A significantly outperforms model B
on English–Finnish and English–Turkish but not
English–German” or “Model A outperforms model
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Figure 1: Left: Notional diagram of a M × L leader-
board consisting of M models tested on L languages
and replicated R times each, yielding individual obser-
vations x(m)

lr . Middle: Aggregation over L languages
into a single scalar per model and estimating between-
language variance ν2m. Right: Aggregation over replica-
tions to estimate within-language uncertainty ηml.

B on 13 out of 43 language pairs.” The second
variant, depicted in Figure 1, is the “leaderboard-
type” scenario in which performance is evaluated
on each of the L languages after which the numbers
are distilled into a single performance measure us-
ing a pre-specified aggregation function such as the
arithmetic mean. Given the aggregate scores, the
main interest may then be to rank the M models
based on the single score or to compare differences
between observed scores.

Statistical significance and effect sizes The
most interesting questions to practitioners often
revolve around whether a given model “truly” out-
performs another model or whether an observed
performance difference was simply “random noise”
that could be expected to occur under replication
when comparing two equally performing models.
From a statistical perspective, estimating this “con-
sistency with random noise” is intimately linked to
testing for statistical significance. Under conven-
tional null hypothesis significance testing the typi-
cal “p ≤ 0.05” threshold is achieved when an esti-
mate θ̂ lies at least 1.96 (≈ 2) standard errors from
a hypothesized null value θ0, often zero. Following
Gelman (2018) we refer to the ratio |θ̂/se(θ̂)| as
effect size and use it to judge statistical significance
based on whether it exceeds a threshold of 2.
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To estimate such effect sizes requires specifying
the source(s) of random variation in our experi-
ments. Typically, this variation has been treated as
arising from one of two sources: data-side variabil-
ity and model-side variability which we describe
below.

Data-side variability The former quantifies how
differently each model would perform if a slightly
different test set were used for a given task. In
practice this is typically done using resampled ver-
sions of the original test set, for example using the
bootstrap resampling algorithm (Efron, 1979).

From a sampling perspective, data-side variabil-
ity can be interpreted as sampling error associated
with the process of constructing a test set for a
given task by sampling data from a larger set of all
possible test sets. Another source of data-related
variability that appears in leaderboards and other
multi-task evaluations is the choice of evaluation
tasks. When ranking is performed based on ag-
gregated quantities, the overall performance and
rankings of models will vary as a function of which
tasks are chosen. This can be understood as the
sampling error associated with creating an evalua-
tion benchmark out of the larger population of all
possible ones that could have been constructed.

Model-side variability There is also model-side
variability that will be present even if the data set is
held constant. With LLMs, decoding often involves
random sampling of tokens, especially with gen-
erative tasks like question answering. By drawing
multiple responses for each question, the perfor-
mance will fluctuate randomly around some aver-
age. Even if the inference algorithm is determin-
istic (e.g. beam search), any potential finetuning
will likely be nondeterministic due to, for exam-
ple, random shuffling of minibatches and weight
initialization. This will yield slightly different pa-
rameters from run to run, which will potentially
yield different responses and different values of the
performance metric. From a sampling perspective,
model-side uncertainty can be seen as drawing sam-
ples from the probability distribution over possible
responses defined by the model.

Summary In this paper, we provide a new per-
spective on how resampling-based methods can be
useful in analysis of experimental results in multi-
lingual and multitask NLP.

Through connections to statistics, we show how
experimental variance can be decomposed into be-

tween and within-task components (ν and ηl) and
how the latter further decomposes into model and
data-based components (σl, τl) which arise natu-
rally from the structure of the experimental data.

Using question answering (QA), machine trans-
lation (MT), and named entity recognition (NER)
as case studies, our results demonstrate that none
of these sources of variation are negligible. This
suggests that only analyzing one source of error
may underestimate the total variation and expose
researchers to the risk of drawing incorrect conclu-
sions about the relative merits of models.

We show how resampling and estimates of be-
tween and within-language variance components
can be used to derive uncertainty-aware estimates
of more complex quantities such as relative rank-
ings of models and approximate distributions of
pairwise performance differences between them.

All of our methods run in seconds to minutes
and present no major computational bottlenecks on
top of the overall inference time complexity. We
provide an implementation of our approach in a
toolkit which we make freely available at https:
//github.com/j0ma/reuben.1

2 Related work

Significance testing in ML and NLP Within
ML, statistical significance and hypothesis testing
have been prevalent since at least the 1990s (e.g.
Dietterich, 1998; Dror et al., 2018; Demšar, 2006),
though the emphasis has often been on “finding the
right test” instead of fully modeling the available
data. Within NLP, significance testing is often done
using permutation tests and bootstrap-based hy-
pothesis tests (Noreen, 1989; Koehn, 2004), which
have become the de-facto standard featured in state-
of-the-art evaluation toolkits (e.g. Post, 2018). Sig-
nificance testing based on resampling is also of-
ten used when evaluating task-specific MT metrics
against human judgments in order to gauge what
difference magnitudes correspond to real differ-
ences as perceived by humans(e.g. Lo et al., 2023;
Kocmi et al., 2021).

In contrast, Ulmer et al. (2022) advocate for un-
derstanding model performance variation based on
multiple model training runs instead of resampling,
and using this model-side variation to assess sta-
tistical significance. There is no clear consensus
though, and others (e.g. Bethard, 2022) expressly

1The name reuben is an acronym for “REsampling-based
Uncertainty Bounds for Evaluating NLP.
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Figure 2: Tree diagram showing the multilevel structure of the experimental data containing R replications of
L languages for a single model. Between-language variance ν2m is computed across the averages µ(m)

l whereas
within-language variance η2ml corresponds to the variance among the leaf nodes x(m)

lr of each subtree.

warn against using random seeds to provide esti-
mates of score distributions based on the argument
that random seeds should be optimized like other
hyperparameters. Some work in NLP has also eval-
uated different sources of variation in evaluation of
MT metrics (Xiang et al., 2022).

Evaluation practices in NLP There has also
been a healthy debate regarding best practices in
test set construction and more generally of evalua-
tion using held-out datasets. Gorman and Bedrick
(2019) and others (e.g. Kodner et al., 2023; Liu
and Dorr, 2024) argue that we should randomize
our splits and evaluate on several versions of our
test sets to reduce the chance of false positives. Sø-
gaard et al. (2021) instead favor using approaches
based on adversarial splitting, arguing that naive
randomization will underestimate the variation.

Benchmarks have received much attention in the
general machine learning community. An excellent
survey is Dehghani et al. (2021) where the authors
discuss the lifecycle of overall ML benchmarks,
how they become stale as well as what is random
when models are evaluated. The question of what
aggregation function to use in leaderboards is also
explored by Tatiana and Valentin (2021) where the
authors explore using both the arithmetic, geomet-
ric and harmonic means. In particular, they show
that results may be wildly different depending on
what aggregation measure is used. Longjohn et al.
(2025) also survey and develop resampling-based
and Bayesian methods for popular computer vision
benchmarks for LLMs.

Related ideas in statistics While the original
bootstrap algorithm (Efron, 1979) was intended as
a frequentist estimation device, a Bayesian inter-

pretation was provided by Rubin (1981), allowing
the resulting estimates (empirical distributions, in-
tervals etc.) to be interpreted as posterior quantities.
Uncertainty quantification (i.e. standard error esti-
mation) using bootstrap and other nonparametric
methods is thoroughly reviewed by Efron (1981).
On the importance of understanding variation, Gel-
man (2005) provides an excellent argument for the
importance of understanding variance components
in statistical analysis more generally. For a more
specific application to linguistic research, see Va-
sishth and Gelman (2021). The multilevel structure
we use is also related to the technique of random-
effects meta-analysis, see Higgins et al. (2008).

Uncertainty quantification in NLP There exists
a substantial literature (e.g. Nikitin et al., 2024; Da
et al., 2025; Chen et al., 2024, 2025; Yang et al.,
2025; Ye et al., 2024; Wagner et al., 2024; Black-
well et al., 2025) on a task referred to as uncertainty
quantification in NLP, where the task is to estimate
some properties of an LLM’s distribution over con-
tinuations, p(x|xprompt), that predicts whether the
model is able to produce the correct answer to this
question. While this task quantifies per-example
uncertainty, our efforts instead focus on experimen-
tal variation. i.e. estimating the noise we would
expect to see under repeated experiments and hy-
pothetical evaluation suites.

3 Statistical background

We begin by formalizing the analysis of multilin-
gual experimental results as a statistical inference
problem related to a hierarchically structured popu-
lation of experimental results.
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Observations Our experimental data consists of
scores generated by separately evaluating M mod-
els on L languages. Individual model-level obser-
vations are represented as L-vectors of scores:

x(m) = (x
(m)
1 , . . . , x

(m)
L )⊤ ∈ RL

The entire table of experimental results is then an
M -by-L matrix where each row corresponds to a
model x(m), as shown in Figure 1. Hierarchically,
our data can be seen as arising from a three-level
population µ̄(m) 7→ µ

(m)
l 7→ x

(m)
lr . This struc-

ture is depicted in Figure 2 in the Appendix. At
the topmost level, each model is associated with a
population-level average performance (µ̄(m)), and
individual languages are seen as subsets of this
larger population, each with their own averages
(µ(m)

l ). At the lowest level, we have the observed
scores (x(m)

lr ) which represent replications of an
experiment on a given subpopulation. Leaderboard-
style evaluation with aggregate performance mea-
sures can then be seen as estimating µ̄(m) by using
an aggregation function as the estimator.

Sources of uncertainty Under infinite replica-
tions, our observed values x

(m)
l values will cen-

ter around some mean value and exhibit a de-
gree of fluctuation around it, representing mea-
surement error arising from both model-side ran-
domness (e.g. nondeterministic decoding) as well
as sampling error of the test set. We can repre-
sent this as x

(m)
lr = µ

(m)
l + ε

repl
lr where ε

repl
lr rep-

resents the deviation of observed scores from the
language-specific mean µ

(m)
l . In addition to this

“within-language” variation arising from replica-
tion, there is also “between-language” variability
related to what tasks are included in the leader-
board. Concretely, each µ

(m)
l also differs from the

global mean performance across all tasks by some
amount, i.e. µ

(m)
l = µ̄(m) + ε

lang
l . This lets us

decompose the overall observations into x
(m)
lr =

µ̄(m) + ε
lang
l + ε

repl
lr . Taking the variance of both

sides, we obtain a first-principles variance decom-
position into between and within-language compo-
nents V[x(m)

lr ] = V[εlang
l ] + V[εrepl

lr ] = ν2m + η2lm
where ν2m and η2lm refer to between and within-
language variation of model m, respectively.

Replication For a given task, two orthogonal
sources of replication noise are apparent. Model-
side randomness that arises from nondeterminism
in decoding/text generation. Additional model-

side randomness may arise from random parts of
any training/finetuning runs, related to random-
ized weight initialization and batching. While less
common in inference-only LLM evaluation, this is
still a relevant source of variability for older non-
pretrained models such as LSTMs (e.g. Reimers
and Gurevych, 2017) and older pretrained mod-
els such as BERT and XLM-R. Another com-
mon source of score variability is sampling error
when constructing each test set Dl (e.g. Koehn,
2004; Dehghani et al., 2021). Since we tend
not to have access to true sampling distribution
p(Dl), this variability is typically estimated by
resampling with replacement from the original
data and computing an empirical variance esti-
mate. This is the approach taken by many eval-
uation libraries such as sacrebleu (Post, 2018)
and lm-evaluation-harness (Gao et al., 2024).

From a sampling perspective, these sources of
variability can be viewed as parts of the data collec-
tion process: first, given a model m and a random
seed s, we sample random responses to all exam-
ples in our test set, i.e. xls ∼ p(xl). Finetuning
can be seen as sampling θ

(m)
ls ∼ p(θ

(m)
l ) from the

distribution of all model parameters that could be
obtained. On the dataset side, we sample a set of
languages to evaluate on and, for each language,
a test set from a larger hypothetical population of
similar data in language l, Dlb ∼ p(Dl). This de-
composes the total variance further as

V[x(m)
lr ] = ν2m︸︷︷︸

lang

+ σ2
ml︸︷︷︸

seed

+ τ2ml︸︷︷︸
boot

In our analysis, we use both seed and bootstrap-
based resampling to yield a total of R = SB
replications per language. While the B resam-
ples may be much cheaper to obtain than the S
model re-instantiations in terms of time cost, we
feel that using both is helpful to properly estimate
the decomposition as well as to understand whether
the sources contribute equally to the total within-
language variance for each language.

Why care about variance components? Most
immediately, estimates of ηl (total within-language
variability), σl (model-side variability), and τl (test
data variability) provide the researcher with esti-
mates of what is driving the variation in their data.
High values of σ2

l (model-side variability) suggest
that the learned distribution over responses may
have high entropy or, in the case of finetuning, that
the architecture may be highly sensitive to random

2307



shuffling of batches due to e.g. small amounts of
training data. On the other hand, high values of τ2l
(test data variability) and ν2m (between-language
variance) indicate that a model’s performance is
particularly sensitive to the exact composition of
a test set or benchmark and may suggest lower
ability to generalize due to overfitting. Variance
components are also tied to statistical significance:
we can, roughly speaking, judge an estimate as be-
ing statistically significant if it lies more than two
standard errors from zero (e.g. Gelman, 2018).

Estimating model and data-side SD Using the
predictions of S replications on the original test
data (i.e. no bootstrapping), we estimate σl using
the sample standard deviation formula. Since we
have observations of each of the seeds on all B
datasets, we also compute an estimate of the stan-
dard error ŝe(σ̂l) using the sample standard devia-
tion formula computed over the bootstrap datasets.

To estimate the boot-to-boot variability τl, we
first compute the F1 score variance over the B boot-
strap datasets separately for each of the S seeds.

We then construct the average estimator τ̄l =∑S
s=1 τ̂ls/S. The standard error of τ̂l is estimated

using the usual sample standard deviation formula
over seeds. This gives us the plug-in estimate of the
standard error of the averaged estimator ŝe(τ̄l) =
ŝe(τ̂ls)/

√
S.

Aggregate scores and their standard errors In
most leaderboard-style scenarios, aggregated scalar
performance measures such as the arithmetic mean
x̄
(m)
1:L =

∑
l x

(m)
l /L tend to be used instead of the

full score vectors. Its popularity of the arithmetic
mean can be explained by how simple it is to com-
pute, as well as the closed-form expression for its
standard deviation sd(x(m)

1 , . . . , x(m)L)/
√
L using

only the between-language SD νm and the within-
language SDs ηml. Other aggregation functions,
such as the geometric mean, or median may also
be used, although they may not be as well-behaved
in terms of standard error. For such aggregation
functions, the SD typically does not exist in closed
form and must be estimated using resampling.

4 Task 1: Question answering with LLMs

As our first case study, we focus on multilin-
gual question answering and evaluate four LLMs
on all subsets of XQuAD (Artetxe et al., 2020).
Specifically, we use aya-expanse-8B (Dang
et al., 2024), TowerInstruct-Mistral-7B-v0.2

(Alves et al., 2024), Google’s gemma2-9b and
finally Clarus-7B-v0.3. We evaluate us-
ing token-level F1 score, using the standard
lm-evaluation-harness implementation. De-
tails of the corpus, experimental settings and hard-
ware used are in Section B.1 in the Appendix.

4.1 Variance components

The lm-evaluation-harness library we use to
run our experiments automatically computes boot-
strapped standard errors for F1. In addition to the
bootstrap SE, we incorporate model-side uncer-
tainty by sampling 5 answers for each question
from each model. The summarized variance com-
ponents are displayed in Table 1. The full decom-
position is available in Table 10 in the Appendix.

Model Mean SD Min Max

Between-language (ν)

Clarus 7B 8.92 - - -
TowerInstruct 7B 11.03 - - -
Aya Expanse 8B 12.01 - - -
Gemma 2 9B 5.05 - - -

Total within-language (ηml)

Clarus 7B 0.89 0.41 0.40 1.67
TowerInstruct 7B 0.73 0.32 0.19 1.21
Aya Expanse 8B 1.47 0.18 1.18 1.73
Gemma 2 9B 1.21 0.16 0.93 1.51

Boot-to-boot (τml)

Clarus 7B 0.70 0.29 0.24 1.27
TowerInstruct 7B 0.59 0.28 0.15 1.05
Aya Expanse 8B 1.24 0.11 1.06 1.42
Gemma 2 9B 0.95 0.10 0.80 1.18

Seed-to-seed (σml)

Clarus 7B 0.53 0.33 0.16 1.25
TowerInstruct 7B 0.41 0.18 0.12 0.74
Aya Expanse 8B 0.76 0.30 0.25 1.23
Gemma 2 9B 0.74 0.20 0.48 1.09

Table 1: Summary of variance components for QA ex-
periments.

4.2 Resampling for model comparison

We seek to quantify the uncertainty in the XQuAD
F1 scores in each language as well as aggregated
across languages. Specifically, we compute pair-
wise model differences on each language as well
as between aggregate scores computed using the
arithmetic mean, geometric mean and median. We
also compute rankings as point estimates.

We estimate the difference between models us-
ing the following parametric bootstrap resampling
procedure. Given a language, we first take an esti-
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Clarus 7B TowerInstruct 7B Aya Exp. 8B

TowerInstruct 7B Aya Exp. 8B Gemma 2 9B Aya Exp. 8B Gemma 2 9B Gemma 2 9B

Arabic 8.75 ± 1.13 -24.27 ± 1.34 -0.11 ± 1.50* -33.02 ± 1.39 -8.86 ± 1.53 24.16 ± 1.71
Chinese -3.96 ± 1.50 -22.80 ± 1.66 -6.34 ± 1.47 -18.83 ± 1.84 -2.38 ± 1.67* 16.45 ± 1.82
English 5.21 ± 1.67 -33.30 ± 1.86 8.79 ± 1.95 -38.50 ± 1.67 3.58 ± 1.75 42.09 ± 1.95
German -6.43 ± 1.41 -32.16 ± 1.44 -9.04 ± 1.46 -25.73 ± 1.72 -2.61 ± 1.74* 23.12 ± 1.77
Greek 16.45 ± 1.12 -20.77 ± 1.69 1.02 ± 1.58* -37.22 ± 1.59 -15.43 ± 1.47 21.79 ± 1.94
Hindi 20.43 ± 0.94 -26.75 ± 1.51 1.26 ± 1.46* -47.18 ± 1.34 -19.17 ± 1.27 28.01 ± 1.76
Romanian 2.36 ± 1.45* -30.14 ± 1.55 -3.32 ± 1.81* -32.50 ± 1.69 -5.69 ± 1.95 26.81 ± 2.01
Russian -6.20 ± 1.59 -20.23 ± 1.65 5.36 ± 1.91 -14.02 ± 1.65 11.57 ± 1.92 25.59 ± 1.96
Spanish 8.01 ± 2.05 -17.36 ± 1.98 12.55 ± 2.23 -25.37 ± 1.70 4.54 ± 1.99 29.91 ± 1.92
Thai 21.01 ± 1.23 -3.83 ± 1.83 6.42 ± 1.69 -24.84 ± 1.52 -14.60 ± 1.35 10.25 ± 1.90
Turkish 7.06 ± 0.90 -25.13 ± 1.50 -7.01 ± 1.38 -32.19 ± 1.53 -14.07 ± 1.40 18.12 ± 1.85
Vietnamese 3.23 ± 1.06 -29.35 ± 1.41 -5.82 ± 1.44 -32.59 ± 1.39 -9.05 ± 1.41 23.53 ± 1.68

Table 2: Pairwise differences between models on XQuAD. Non-significant differences are indicated with an asterisk.

mate of each model’s average performance on it by
averaging the S = 5 observed values. We then use
the estimate of the within-language SD, ηml, to get
a randomly resampled performance score for each
model.

We estimate ηml by first computing the stan-
dard deviation of scores across seeds and then use
the average bootstrap SD τml across the S = 5
values computed by lm-evaluation-harness to
form an aggregate SD estimate of ηml. We then
sample a noise term using a random draw from
ε ∼ N (0, η2ml) yielding a resampled score x + ε
with variance η2ml = σ2

ml + τ2ml. While the score
itself may not be Gaussian, we believe that mod-
eling the noise terms as such is reasonable, as we
observe mostly small score deviations across both
seeds and bootstrap resamples.

We repeat this process R = 1000 times. For
each replication, we compute a performance dif-
ference on each language, and an aggregated score
of performance scores across languages, using the
arithmetic mean, geometric mean and median. We
also rank the models based on the randomly repli-
cated performance scores. The results of this pro-
cedure are summarized in several tables below.

Table 2 summarizes pairwise differences be-
tween models and their associated SDs. Table 3
gives the rank distribution of each model using
each of the summary statistics. While Aya Expanse
8B and TowerInstruct 7B reliably place first and
last regardless of metric, the rank distributions of
Clarus 7B and Gemma 2 9B can vary significantly
depending on which aggregation function is used.

5 Task 2: Machine translation with LLMs

As a second case study, we seek to compare the
performance of three translation-oriented LLMs on

Arithmetic mean

Aya 8B Clarus 7B Gemma 2 9B TI 7B

1 100.00 - - -
2 - 24.50 75.50 -
3 - 75.50 24.50 -
4 - - - 100.00

Median

1 100.00 - - -
2 - 35.30 64.70 -
3 - 64.70 35.30 -
4 - - - 100.00

Geometric mean

1 100.00 - - -
2 - 94.90 5.10 -
3 - 5.10 94.90 -
4 - - - 100.00

Table 3: Distribution of model ranks on XQuAD using
different aggregators. Simulation computed over 1,000
randomly sampled performance scores.

the devtest split of the multilingual FLORES-200
translation benchmark (NLLB Team et al., 2024).
Specifically, we use aya-expanse-8B (Dang
et al., 2024), TowerInstruct-Mistral-7B-v0.2
(Alves et al., 2024) (both derived from Mistral
7B), and Clarus 7B. Our reasoning for choosing
these models despite the small parameter count of
∼7B is twofold. First, these models are some of
the few that are either evaluated on or specifically
engineered for translation. Second, our computa-
tional resources limit the size of models we can
run without quantization. Ideally, we would also
test on all languages covered by FLORES-200, but
the language support of the LLMs restricts us to
Dutch, English, French, German, Italian, Korean,
Portuguese, Russian, and Spanish. For each lan-
guage we create two language pairs: XX→EN and
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EN→XX. We evaluate using BLEU (Papineni et al.,
2002), ChrF++ (Popović, 2015) and COMET (Rei
et al., 2020).

5.1 Variance components
The lm-evaluation-harness library we use to
run our experiments automatically computes boot-
strapped standard errors for BLEU, ChrF++ and
COMET. In addition to the bootstrap SE, we incor-
porate model-side uncertainty by sampling 5 trans-
lation hypotheses for each source sentence from
each model. The summarized results are shown
in Table 8 in the Appendix. A detailed variance
decomposition of the within-language variation
is shown in Table 11 in the Appendix. As with
XQuAD, the between-language variability (ν) is
much larger than either the model-side or bootstrap
uncertainty. Most variance components are also
less than 1.0 BLEU or ChrF++ points.

5.2 Resampling for model comparison
As with XQuAD, we also wish to quantify the un-
certainty in the performance differences between
the two models on each language. Given observed
BLEU/ChrF++/COMET scores for each language,
we can easily compute a point estimate by subtrac-
tion. We quantify the uncertainty in this point esti-
mate by resampling as with XQuAD. The estimated
differences are displayed in Table 7. The most
obvious observation is that Clarus 7B clearly un-
derperforms relative to Aya Expanse 8B and Tow-
erInstruct 7B. The latter two models perform more
similarly to each other and significant differences
were found in 6 out of 16 translation using BLEU.
Out of the 6 significant differences, TowerInstruct
7B beat Aya Expanse 8B 4 out of 6 times. When
using ChrF++, significant differences were found
in 10 out of 16 translation tasks, with TowerInstruct
7B leading all of them.

6 Task 3: NER

As a third task, we show how resampling can be
used for model comparison in multilingual NER
when finetuning pretrained language models. Our
analysis is based on the OpenNER 1.0 multilingual
NER benchmark (Palen-Michel et al., 2025) which
consists of 61 unique datasets covering a total of
51 languages. Since we reanalyze the results of the
original paper, we use the same models: mBERT
and XLM-R. For each model architecture, we vary
the training data according to two conditions on
each language-dataset pair: (i) individual, where

Finetuning data

Model Individual Concatenated

Glot500 8.27 6.30
ν mBERT 9.95 14.38

XLM-R 7.13 6.31

Glot500 1.59(2.51) 0.61(0.39)
σl mBERT 1.15(2.55) 0.81(0.45)

XLM-R 1.24(3.53) 0.64(0.42)

Glot500 1.27(0.95) 1.17(0.79)
τl mBERT 1.36(0.86) 1.47(0.91)

XLM-R 1.23(0.84) 1.18(0.79)

Table 4: Summary of variance components for NER.
The three groups of rows, ν, σ and τ correspond to
between-language, seed, and bootstrap SDs. Subscripts
indicate standard deviations across languages.

each model is finetuned with data from only a given
training set and (ii) concatenated, where each
model is finetuned with a concatenated and down-
sampled version of all the training data included in
OpenNER. In addition to the original results, we
construct B = 100 bootstrap replicated data sets
and reuse the same predictions from the original
test set. This gives us a total of R = SB = 1000
replicated scores for each of the 61 datasets.

6.1 Variance components via resampling
Like with QA and MT, we investigate how
resampling-based inference can be used to better
make sense of experimental variation by estimating
the variance components due to model and data-
side uncertainty for each of the 61 languages pairs
that comprise the overall benchmark. A concise
display of inferences for ν, σ and τ are shown
in Table 4. A more detailed table of estimates is
shown in the Appendix in Table 12.

Looking at Table 4, we see that both model and
data-side variability tend to lie in the 0.6–1.6 F1
range. When we compare models in the individ-
ual versus the concatenated conditions, the mod-
els in the concatenated condition exhibit distinctly
lower model-side variability. This suggests that lan-
guages with less training data benefit from larger,
multilingual finetuning, even if no positive transfer
learning is taking place, possibly due to a reduction
in gradient instability.

Model-side variability, on the other hand, re-
mains relatively constant across individual and con-
catenated conditions which suggests that the size
of finetuning sets may not help much in terms of
dataset-to-dataset generalization. This observation
also highlights how the model and data-side vari-
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ance components measure fundamentally different
aspects of performance variability and how both
are needed for thorough performance assessment.

6.2 Resampling for model comparison

As with QA and NMT, we also estimate quan-
tities other than variance components. To esti-
mate uncertainties for model rankings and pair-
wise differences between models, we resample the
R = SB = 1000 replications within each lan-
guage. Unlike our QA and MT experiments, we do
this entirely nonparametrically by sampling a seed
and replication index at random. We also show how
the between-language score variability (ν) can be
incorporated into the analysis by also resampling
what languages are considered when estimating
overall performance.

Pairwise differences To obtain estimates of the
pairwise differences of average performance be-
tween models, ∆mn = µ̂

(m)
arith − µ̂

(n)
arith, we compute

a pairwise difference matrix for each replication r.
Given the M ×M ×R-dimensional array of pair-
wise differences, we average over the R-dimension
to obtain a single M ×M table of average differ-
ences. This is displayed as the top table in Table 5.

To account for uncertainty, we also compute
a standard deviation of each pairwise difference
across the R-dimension. We then divide the es-
timated mean difference by the SD to obtain an
estimate of the effect size which allows us to as-
sess the statistical significance of the observed dif-
ferences. These effect sizes are displayed in the
second part of Table 5. Except for the differences
between XLM-R (ind.) and Glot500 (ind.), as well
as XLM-R (conc.) and XLM-R (ind.), all estimates
appear to be significantly different from zero.

We also conduct another simulation where we
subsample 10 datasets without replacement and
otherwise estimate effect sizes as above. The moti-
vation for this is to incorporate between-language
variability into the estimation of overall perfor-
mance. Intuitively, this also corresponds to a simu-
lating the effect of downstream usage of the tested
models on smaller sets of tasks. These results are
shown in the bottom part of Table 5. Overall, the
effect size estimates are much smaller, with many
shrinking below magnitude 2 due to the increased
standard error. This suggests that using fixed bench-
marks may understate the differences between two
models . While the chosen threshold for signifi-
cance is arbitrary, the pattern of effect size shrink-

age due to the increased variability is robust.

Ranks To estimate a distribution for model rank-
ings, we recompute the model ranks using the arith-
metic mean across languages for each replication.
This yields an empirical distribution estimate of
model ranks which is displayed in Table 6. The
bolded elements indicate the ranks observed using
the original data. Overall, it seems like the ranks
are stable for most models, except for Glot500
(ind.) and XLM-R (ind.) which compete for the 3rd
place. We also repeated the simulation with fixed
languages but observed that the ranks remained
constant. This is in line with the observation from
Section 6.1 that the between-language variation
comprises by far the largest variance component.
We suspect that under the “subsampling” condition,
the ranks would display a lot more variability but
leave this for future work.

7 Conclusion

In this paper, we have shown how replication
and resampling can be helpful tools in the eval-
uation of multilingual NLP models. Through ex-
periments on question answering, machine transla-
tion, and named entity recognition, we showed how
resampling-based inference can be used to estimate
different variance components which describe how
robust model performance may be to model-related
randomness as well as test set composition and
between-language variation. We also showed that
the between-language component may dominate
the standard error of estimators such as the arith-
metic mean in leaderboard-style evaluation settings
that involve multiple languages/tasks.

In addition to variance components, we also
showed how resampling can be used to estimate
the distributions and standard errors of quantities
with no closed form expressions, such as pairwise
differences between models and rank distributions.
We also explained how standard errors relate to
statistical significance and showed that underesti-
mated SEs may lead to overly optimistic results
that ultimately fail to replicate.

We also wish to stress stress that the techniques
introduced in this paper need not translate to signif-
icant additional computational overhead. In partic-
ular, between-language/task variance can be com-
puted without any resampling and within-test set
bootstrap resampling procedures can be run in sec-
onds on a modern consumer CPU. While model-
side variance may require comparatively more re-
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Mean: ∆̄

Model Glot500 (i) mBERT (c) mBERT (i) XLM-R (c) XLM-R (i)

Glot500 (c) 2.01 12.24 8.63 0.79 2.00
Glot500 (i) 10.23 6.63 -1.22 -0.01
mBERT (c) -3.60 -11.45 -10.24
mBERT (i) -7.84 -6.63
XLM-R (c) 1.21

Effect size: ∆̄/se(∆̄)

Original Glot500 (i) mBERT (c) mBERT (i) XLM-R (c) XLM-R (i)

Glot500 (c) 3.97 41.70 18.73 2.43 3.07
Glot500 (i) 23.57 10.54 -2.38 -0.17
mBERT (c) -9.99 -38.85 -19.21
mBERT (i) -16.49 -9.61
XLM-R (c) 1.78

Subsampled Glot500 (i) mBERT (c) mBERT (i) XLM-R (c) XLM-R (i)

Glot500 (c) 1.35 3.61 4.14 1.15 1.22
Glot500 (i) 2.52 3.25 -0.82 -0.00
mBERT (c) -0.73 -3.22 -2.42
mBERT (i) -4.05 -3.31
XLM-R (c) 0.81

Table 5: Means and effect sizes of pairwise F1 score differences ∆m = µ̂
(m)
arith − µ̂

(n)
arith.

Glot500 mBERT XLM-R

Conc. Ind. Conc. Ind. Conc. Ind.

1 99% - - - 1% -
2 1% 1% - - 97% 1%
3 - 44% - - 2% 54%
4 - 55% - - - 45%
5 - - 1% 99% - -
6 - - 99% 1% - -

Table 6: Bootstrap-resampled frequency distribution
of ranks for each model using arithmetic mean as an
aggregation function.

sources in some cases, training on multiple seeds
is often only relevant when working with smaller,
non-LLM models. With LLMs, it is sufficient to
sample multiple responses for a given input which
can be done at the fraction of the cost of an entire
retraining run.

It is our hope that this paper can stimulate fur-
ther research into understanding the sources, ex-
tent, and nature of performance variation in em-
pirical NLP research. We conclude with a vision
for uncertainty-aware multilingual/multitask evalu-
ation in NLP research. Researchers should:

1. Thoughtfully consider all relevant sources of
randomness when evaluating and comparing dif-
ferent models against each other. Draw more than
one set of predictions to understand how variable
the performance of a model is, and use bootstrap-
ping to complement model-side uncertainty with

data-side uncertainty estimates.

2. In multilingual/multitask evaluation setups,
strive to understand how observed differences be-
tween models vary from task to task. Incorporate
estimates of between-language variation into statis-
tical comparisons to avoid false positives that may
not be replicable.

3. If model performance or observed differences
are very noisy, communicate this clearly and de-
scribe the differences between tasks. This is prefer-
able to attempting to distill results to a binary judg-
ment about which model is better. If feasible, show
example cases where models agree/disagree.

4. Use resampling with the replications obtained
from the above steps to estimate distributions and
associated uncertainty for downstream quantities
of interest, such as pairwise differences and model
rankings.

Limitations

While the total number of languages we investi-
gate is quite large, the languages are not evenly
distributed across the tasks we study. Due to the
length limit of this venue and the limitations of
existing work, we are only able to present analy-
sis of three tasks in this paper. We have chosen
tasks with 100% human-generated annotation be-
cause we believe the results could be skewed if
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we include datasets generated via system output
(e.g. Pan et al., 2017), including LLM-generated
annotation or automatically translated datasets.

Ethical considerations

As a position paper, this paper argues for more
careful evaluation of NLP experiments, particularly
when multiple languages and models are studied
in parallel. We believe this can be beneficial to the
larger NLP community as it may help practition-
ers avoid drawing poorly supported conclusions
and thus avoid making non-generalizable claims
about research findings. That said, our methods
are slightly more involved than traditional methods
(e.g. hypothesis testing) and may theoretically lead
to more conservative statistical analysis which may
in theory obscure real effects.
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A Experimental settings

A.1 Question answering
We evaluate four LLMs on all XQuAD sub-
sets: aya-expanse-8B (Dang et al., 2024),
TowerInstruct-Mistral-7B-v0.2 (Alves
et al., 2024), Google’s gemma2-9b and finally
Clarus-7B-v0.3. All models are taken from the
Open LLM Leaderboard2 from HuggingFace.

2https://huggingface.co/spaces/
open-llm-leaderboard/open_llm_leaderboard
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Details of the experimental settings are in the
Appendix. All experiments are run using the
lm-evaluation-harness library (Gao et al.,
2024) on A40 40GB GPUs using vLLM as an
inference back-end (Kwon et al., 2023). We evalu-
ate using token-level F1 score, using the standard
lm-evaluation-harness implementation. We
do not consider exact match as it is less robust to
random deviations.

A.2 Machine translation

For each language we create two language
pairs: XX→EN and EN→XX. All of our exper-
iments use use the devtest split of FLORES-
200 which contains approximately 1,000 sentences
per language. All experiments are run using
the lm-evaluation-harness library (Gao et al.,
2024) on A40 40GB GPUs. We evaluate using
BLEU (Papineni et al., 2002), ChrF++ (Popović,
2015) and COMET (Rei et al., 2020).

B Datasets used

B.1 XQuAD

XQuAD (Artetxe et al., 2020) is a multilingual
extension of the SQuAD v1.1 question answer-
ing benchmark (Rajpurkar et al., 2016). XQuAD
includes translations 1,190 questions, originally
in English, into Arabic, German, Greek, Spanish,
Hindi, Romanian, Russian, Thai, Turkish, Viet-
namese, and Mandarin Chinese.

B.2 OpenNER 1.0

Our analysis is based on the OpenNER 1.0 multilin-
gual NER benchmark (Palen-Michel et al., 2025)
which consists of 61 unique datasets covering a
total of 51 languages. The authors experiment with
three pretrained language models (PLM): mBERT
(Devlin et al., 2019), XLM-R (Conneau et al.,
2020), and Glot500-m (Imani et al., 2023). Each
PLM is finetuned using two experimental condi-
tions per language. In the “individual” condition,
each PLM is finetuned separately on the train split
of each of the 61 datasets. In the “concatenated”
setting, the train splits of all 61 datasets are con-
catenated3 together before finetuning each of the
three PLMs on it. The authors run each experiment
10 times using different seeds (values 42–51).

We use model outputs from the original authors
with their permission. In addition to the original

3Due to computational considerations, before concatena-
tion, the highest-resource datasets are downsampled.

results, we construct B = 100 bootstrap replicated
data sets and reuse the same predictions from the
original test set. This gives us a total of R = SB =
1000 replicated scores for each of the 61 datasets.

C Additional Tables and Figures

Additional tables follow.

C.1 Variance components
Summary variance component tables Table 8
shows a detailed summary of variance components
for NMT experimets.

Detailed variance component tables Table 10
shows detailed estimates for variance components
for QA. Table 11 shows detailed estimates for vari-
ance components for MT. Table 12 shows detailed
estimates for variance components for NER.

C.2 Ranks
Table 6 shows the marginal distributions of ranks
for the NER task.
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Aya Expanse 8B TowerInstruct 7B

Task TowerInstruct 7B Clarus 7B Clarus 7B

BLEU

de-en 0.40 ± 1.34 12.31 ± 1.14 11.91 ± 1.46
en-de -1.13 ± 1.13 12.48 ± 0.88 13.61 ± 1.03
en-es -0.35 ± 0.79 8.64 ± 0.76 8.99 ± 0.90
en-fr 1.01 ± 1.18 15.32 ± 1.32 14.30 ± 1.37
en-it 1.17 ± 0.74 11.96 ± 0.81 10.79 ± 0.80
en-ko 1.88 ± 0.49 5.15 ± 0.45 3.27 ± 0.35
en-nl 0.40 ± 0.90 10.05 ± 0.72 9.65 ± 0.80
en-pt -7.16 ± 1.03 12.85 ± 1.32 20.01 ± 1.35
en-ru -0.25 ± 0.94 12.31 ± 0.76 12.56 ± 0.82
es-en -1.29 ± 1.06 9.41 ± 0.93 10.70 ± 0.93
fr-en -1.54 ± 1.33 14.05 ± 1.13 15.59 ± 1.37
it-en 2.47 ± 1.10 11.16 ± 0.98 8.69 ± 1.21
ko-en -4.15 ± 0.96 6.51 ± 0.81 10.66 ± 0.95
nl-en -1.78 ± 1.01 10.14 ± 0.90 11.92 ± 1.09
pt-en -5.67 ± 1.07 18.38 ± 1.26 24.05 ± 1.24
ru-en -2.86 ± 0.95 10.01 ± 1.06 12.86 ± 1.04

ChrF++

de-en -2.08 ± 0.76 6.53 ± 0.94 8.62 ± 0.94
en-de -2.03 ± 0.72 12.35 ± 0.82 14.37 ± 0.80
en-es -0.97 ± 0.61 6.48 ± 0.69 7.45 ± 0.69
en-fr 0.04 ± 0.82 10.40 ± 0.91 10.36 ± 0.91
en-it 0.20 ± 0.55 11.09 ± 0.67 10.89 ± 0.61
en-ko -0.20 ± 0.62 14.27 ± 0.57 14.47 ± 0.53
en-nl -0.44 ± 0.67 11.50 ± 0.74 11.94 ± 0.74
en-pt -6.49 ± 0.71 7.78 ± 0.86 14.28 ± 0.80
en-ru -1.36 ± 0.78 15.33 ± 0.80 16.69 ± 0.78
es-en -3.99 ± 0.79 5.45 ± 0.95 9.43 ± 0.79
fr-en -3.74 ± 0.88 7.09 ± 0.92 10.83 ± 0.93
it-en -0.79 ± 0.76 7.03 ± 0.94 7.82 ± 0.95
ko-en -4.61 ± 0.63 5.52 ± 0.68 10.13 ± 0.70
nl-en -3.74 ± 0.74 5.37 ± 1.03 9.11 ± 1.03
pt-en -6.04 ± 0.73 9.46 ± 1.15 15.50 ± 1.07
ru-en -4.11 ± 0.69 5.46 ± 1.05 9.58 ± 0.99

COMET

de-en 0.92 ± 0.50 6.60 ± 0.79 5.68 ± 0.86
en-de 1.19 ± 0.57 16.89 ± 0.93 15.70 ± 0.89
en-es 1.19 ± 0.59 10.46 ± 0.92 9.27 ± 0.89
en-fr 0.35 ± 0.48 10.86 ± 0.71 10.50 ± 0.73
en-it 0.83 ± 0.45 14.74 ± 0.78 13.90 ± 0.77
en-ko 5.16 ± 0.73 24.62 ± 0.94 19.45 ± 0.89
en-nl 1.26 ± 0.53 19.53 ± 0.78 18.27 ± 0.83
en-pt -1.85 ± 0.47 10.32 ± 0.86 12.17 ± 0.85
en-ru -0.53 ± 0.54 17.45 ± 0.87 17.98 ± 0.85
es-en 0.68 ± 0.62 7.64 ± 0.81 6.97 ± 0.84
fr-en 0.31 ± 0.55 7.79 ± 0.83 7.48 ± 0.84
it-en 2.57 ± 0.72 7.76 ± 0.71 5.19 ± 0.89
ko-en -0.78 ± 0.41 6.51 ± 0.59 7.29 ± 0.61
nl-en -0.68 ± 0.57 7.58 ± 0.89 8.26 ± 0.95
pt-en -1.81 ± 0.40 9.40 ± 1.07 11.21 ± 1.04
ru-en -0.57 ± 0.40 6.33 ± 0.73 6.90 ± 0.70

Table 7: Pairwise differences between models on NMT experiments, with uncertainty quantified using bootstrap
resampling and multiple seeds. The error bar corresponds ± one standard error. Nonsignificant differences are
indicated in boldface.

2317



BLEU

Mean SD Min Max

Between-language total (ν)

Aya Expanse 8B 7.11 - - -
TowerInstruct 7B 8.49 - - -
Clarus 7B 4.50 - - -

Within-language total (ηl)

Aya Expanse 8B 0.64 0.10 0.40 0.80
TowerInstruct 7B 0.77 0.22 0.28 1.15
Clarus 7B 0.70 0.23 0.22 1.12

Seed-to-seed (σl)

Aya Expanse 8B 0.34 0.10 0.15 0.55
TowerInstruct 7B 0.47 0.16 0.13 0.78
Clarus 7B 0.48 0.20 0.14 0.92

Boot-to-boot (τl)

Aya Expanse 8B 0.53 0.08 0.34 0.67
TowerInstruct 7B 0.60 0.17 0.25 0.93
Clarus 7B 0.49 0.13 0.17 0.70

ChrF++

Between-language total (ν)

Aya Expanse 8B 8.05 - - -
TowerInstruct 7B 8.99 - - -
Clarus 7B 9.66 - - -

Within-language total (ηl)

Aya Expanse 8B 0.53 0.06 0.43 0.68
TowerInstruct 7B 0.48 0.08 0.33 0.64
Clarus 7B 0.67 0.16 0.34 0.99

Seed-to-seed (σl)

Aya Expanse 8B 0.28 0.09 0.11 0.46
TowerInstruct 7B 0.25 0.08 0.08 0.42
Clarus 7B 0.43 0.18 0.11 0.82

Boot-to-boot (τl)

Aya Expanse 8B 0.44 0.04 0.35 0.51
TowerInstruct 7B 0.40 0.04 0.32 0.48
Clarus 7B 0.50 0.06 0.32 0.58

COMET

Between-language total (ν)

Aya Expanse 8B 1.21 - - -
TowerInstruct 7B 2.44 - - -
Clarus 7B 5.75 - - -

Within-language total (ηl)

Aya Expanse 8B 0.36 0.07 0.26 0.55
TowerInstruct 7B 0.38 0.10 0.23 0.63
Clarus 7B 0.74 0.12 0.53 1.01

Seed-to-seed (σl)

Aya Expanse 8B 0.20 0.06 0.10 0.34
TowerInstruct 7B 0.22 0.11 0.08 0.52
Clarus 7B 0.50 0.15 0.27 0.87

Boot-to-boot (τl)

Aya Expanse 8B 0.30 0.06 0.22 0.46
TowerInstruct 7B 0.30 0.06 0.21 0.44
Clarus 7B 0.53 0.06 0.41 0.66

Table 8: Summary of variance components for NMT experiments.
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Mean SD Min Max

Between-language total (σ)

Glot500 (concat) 6.30 - - -
Glot500 (ind) 8.27 - - -
mBERT (concat) 14.38 - - -
mBERT (ind) 9.95 - - -
XLM-R (concat) 6.31 - - -
XLM-R (ind) 7.13 - - -

Within-language total (ηl)

Glot500 (concat) 1.33 0.86 0.33 4.88
Glot500 (ind) 2.19 2.56 0.39 13.98
mBERT (concat) 1.70 0.99 0.24 5.42
mBERT (ind) 1.90 2.61 0.14 20.62
XLM-R (concat) 1.36 0.87 0.15 5.08
XLM-R (ind) 1.93 3.54 0.13 28.12

Seed-to-seed (σl)

Glot500 (concat) 0.61 0.39 0.19 2.09
Glot500 (ind) 1.59 2.51 0.16 13.69
mBERT (concat) 0.81 0.45 0.12 2.29
mBERT (ind) 1.15 2.55 0.06 20.35
XLM-R (concat) 0.64 0.42 0.08 2.46
XLM-R (ind) 1.24 3.53 0.04 28.12

Boot-to-boot (τl)

Glot500 (concat) 1.17 0.79 0.13 4.79
Glot500 (ind) 1.27 0.95 0.12 5.31
mBERT (concat) 1.47 0.91 0.21 5.33
mBERT (ind) 1.36 0.86 0.13 5.20
XLM-R (concat) 1.18 0.79 0.13 5.00
XLM-R (ind) 1.23 0.84 0.12 5.22

Table 9: Summary of variance components for NER experiments.

Clarus 7B TowerInstruct 7B Aya Expanse 8B Gemma 2 9B

Language σ τ η σ τ η σ τ η σ τ η

Arabic 0.20 0.52 0.56 0.46 0.43 0.63 0.25 1.15 1.18 0.48 0.80 0.93
Chinese 0.36 0.55 0.66 0.52 0.63 0.82 0.65 1.28 1.43 0.51 0.98 1.10
English 0.93 1.27 1.58 0.60 1.05 1.21 0.96 1.41 1.71 0.95 1.18 1.51
German 0.57 0.54 0.78 0.74 0.81 1.10 0.79 1.31 1.53 0.69 1.05 1.26
Greek 0.36 0.74 0.82 0.17 0.33 0.37 0.71 1.07 1.29 0.97 0.89 1.31
Hindi 0.32 0.77 0.83 0.12 0.15 0.19 0.89 1.34 1.61 0.72 0.96 1.20
Romanian 0.36 0.80 0.88 0.51 0.76 0.91 0.34 1.33 1.37 0.85 1.01 1.32
Russian 0.88 0.79 1.18 0.31 0.95 1.00 0.53 1.21 1.32 0.80 0.84 1.16
Spanish 1.25 1.11 1.67 0.49 0.76 0.91 0.88 1.26 1.54 1.09 0.88 1.40
Thai 0.59 0.70 0.91 0.19 0.30 0.35 0.72 1.06 1.28 0.65 0.92 1.13
Turkish 0.16 0.37 0.40 0.40 0.41 0.57 1.23 1.21 1.73 0.67 1.00 1.20
Vietnamese 0.34 0.24 0.42 0.42 0.52 0.67 1.18 1.19 1.67 0.51 0.89 1.03

Table 10: Detailed estimates of the standard deviations due to model-related σ and bootstrap-related τ uncertainty
in question answering experiments.
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Aya Expanse 8B TowerInstruct 7B Clarus 7B

σ τ σ τ σ τ

BLEU

German - English 0.39 0.57 0.67 0.93 0.58 0.70
English - German 0.45 0.54 0.59 0.65 0.24 0.48
English - Spanish 0.17 0.41 0.48 0.44 0.44 0.44
English - French 0.45 0.66 0.62 0.64 0.82 0.67
English - Italian 0.24 0.47 0.18 0.49 0.46 0.41
English - Korean 0.20 0.34 0.13 0.25 0.14 0.17
English - Dutch 0.37 0.45 0.48 0.49 0.22 0.37
English - Portuguese 0.23 0.67 0.40 0.65 0.92 0.65
English - Russian 0.38 0.52 0.41 0.55 0.15 0.41
Spanish - English 0.55 0.51 0.43 0.61 0.36 0.43
French - English 0.43 0.63 0.78 0.76 0.58 0.57
Italian - English 0.26 0.53 0.65 0.66 0.59 0.51
Korean - English 0.30 0.50 0.51 0.57 0.34 0.47
Dutch - English 0.15 0.55 0.59 0.60 0.52 0.47
Portuguese - English 0.46 0.61 0.32 0.68 0.79 0.59
Russian - English 0.38 0.55 0.25 0.60 0.58 0.57

ChrF++

German - English 0.32 0.43 0.33 0.43 0.51 0.58
English - German 0.30 0.43 0.24 0.42 0.38 0.51
English - Spanish 0.24 0.36 0.29 0.32 0.35 0.41
English - French 0.33 0.47 0.39 0.44 0.47 0.54
English - Italian 0.25 0.35 0.08 0.32 0.31 0.41
English - Korean 0.26 0.38 0.18 0.38 0.11 0.32
English - Dutch 0.28 0.37 0.30 0.37 0.39 0.42
English - Portuguese 0.21 0.50 0.21 0.41 0.39 0.53
English - Russian 0.31 0.45 0.34 0.41 0.19 0.53
Spanish - English 0.46 0.50 0.11 0.40 0.44 0.51
French - English 0.34 0.51 0.42 0.48 0.40 0.56
Italian - English 0.34 0.40 0.34 0.42 0.57 0.53
Korean - English 0.14 0.41 0.20 0.41 0.16 0.50
Dutch - English 0.11 0.51 0.29 0.44 0.72 0.52
Portuguese - English 0.33 0.49 0.11 0.40 0.82 0.56
Russian - English 0.29 0.46 0.17 0.41 0.70 0.54

COMET

German - English 0.14 0.22 0.32 0.28 0.60 0.44
English - German 0.31 0.33 0.13 0.32 0.55 0.61
English - Spanish 0.34 0.28 0.26 0.29 0.55 0.57
English - French 0.14 0.29 0.22 0.29 0.27 0.57
English - Italian 0.10 0.31 0.12 0.28 0.45 0.54
English - Korean 0.31 0.46 0.18 0.44 0.42 0.62
English - Dutch 0.15 0.29 0.24 0.34 0.42 0.57
English - Portuguese 0.19 0.30 0.21 0.23 0.59 0.54
English - Russian 0.25 0.33 0.17 0.30 0.40 0.66
Spanish - English 0.24 0.33 0.25 0.38 0.49 0.50
French - English 0.19 0.31 0.22 0.34 0.55 0.51
Italian - English 0.23 0.25 0.52 0.36 0.39 0.49
Korean - English 0.15 0.22 0.18 0.25 0.34 0.41
Dutch - English 0.11 0.30 0.36 0.30 0.69 0.46
Portuguese - English 0.20 0.26 0.08 0.21 0.87 0.51
Russian - English 0.19 0.25 0.11 0.22 0.48 0.45

Table 11: Detailed estimates of the standard deviations due to model-related σ and bootstrap-related τ uncertainty
in machine translation experiments.
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Glot500 mBERT XLM-R

Concat Individual Concat Individual Concat Individual

σ τ σ τ σ τ σ τ σ τ σ τ

araAQMAR 0.44 2.63 0.71 2.21 1.81 4.37 0.62 3.04 0.83 2.97 1.54 2.50
bamMasakhaNER 2.0 0.64 1.34 2.22 1.41 1.10 1.85 0.74 1.62 0.90 1.48 0.68 1.75
barBarNER 2.52 7.97 7.43 10.91 4.57 13.64 2.34 13.96 1.89 7.94 4.27 10.80
bbjMasakhaNER 2.0 0.66 2.46 1.16 2.73 1.54 2.43 1.45 2.38 1.03 2.66 0.86 3.13
catAnCora 0.06 0.53 0.50 0.53 0.18 0.98 0.16 0.66 0.24 0.52 0.14 0.45
cmnUNER Chinese GSDSIMP 0.70 2.45 0.41 2.60 1.13 9.52 0.27 2.33 0.50 2.47 0.40 2.66
cmnUNER Chinese GSD 0.73 1.99 72.48 2.45 1.25 7.35 0.22 2.04 0.63 2.11 0.28 2.62
danDaNE 1.83 4.02 2.67 4.01 2.53 5.61 1.12 3.96 1.49 4.10 0.49 2.96
deuGermEval 0.04 0.30 0.04 0.23 0.16 0.46 0.10 0.27 0.06 0.28 0.09 0.26
ellelNER 0.10 0.46 0.06 0.39 0.22 0.79 0.15 0.52 0.08 0.41 0.02 0.43
engTweebank 2.66 3.11 61.11 3.53 0.68 3.97 3.46 4.13 2.66 3.23 0.74 2.81
engUNER English EWT 0.87 1.42 0.10 1.31 0.81 1.52 0.40 1.62 0.54 1.39 0.51 1.29
eusEIEC 0.66 2.24 1.00 2.09 0.57 3.75 0.75 2.88 0.78 2.01 0.83 2.19
eweMasakhaNER 2.0 0.19 0.35 0.24 0.45 0.33 0.49 0.19 0.63 0.10 0.37 0.23 0.50
finTurkuNLP 0.68 1.62 1.35 1.82 0.57 2.58 0.73 2.08 0.39 1.89 0.80 1.53
fonMasakhaNER 2.0 0.54 1.39 0.54 1.70 0.88 1.93 1.21 1.90 0.62 1.68 0.24 1.68
glgSLI Galician Corpora 0.58 1.04 0.34 1.18 0.69 1.40 0.43 1.32 0.64 1.00 0.19 1.13
hauMasakhaNER 2.0 0.26 0.42 0.52 0.45 0.46 0.74 1.34 0.95 0.23 0.43 0.42 0.44
hauMasakhaNER 0.07 1.17 0.21 1.04 0.93 1.61 0.31 1.50 0.29 1.17 0.40 0.84
hebNEMO SPMRL 0.33 2.03 1.79 3.48 0.68 4.80 3.01 3.10 0.60 2.05 0.51 2.84
hebNEMO UD 1.45 4.60 2.55 4.69 2.86 7.36 2.30 4.51 2.73 4.42 0.90 3.78
hinHiNER 0.09 0.02 4.34 0.01 0.01 0.04 0.00 0.02 0.01 0.02 0.00 0.01
hrvhr500k 0.11 0.32 0.08 0.28 0.17 0.55 0.15 0.47 0.06 0.32 0.17 0.32
iboMasakhaNER 2.0 0.04 0.19 0.92 0.27 0.39 0.40 0.35 0.62 0.05 0.22 0.81 0.31
iboMasakhaNER 0.45 0.78 2.13 0.91 0.63 1.06 0.66 1.68 0.34 0.87 0.99 0.96
kazKazNERD 0.07 0.38 6.27 0.21 0.36 1.14 0.18 0.25 0.15 0.36 790.74 0.18
kinMasakhaNER 2.0 0.09 0.33 0.25 0.45 0.11 0.52 0.27 0.81 0.07 0.42 0.55 0.51
kinMasakhaNER 0.58 1.73 0.90 2.49 1.23 2.46 4.51 2.86 0.37 1.88 1.71 2.20
lugMasakhaNER 2.0 0.10 0.32 0.06 0.33 0.25 0.44 0.44 0.56 0.20 0.32 0.10 0.42
lugMasakhaNER 0.46 3.47 3.27 4.14 0.51 3.97 1.58 3.32 0.48 3.38 1.82 3.92
luoMasakhaNER 2.0 0.27 0.70 0.39 0.72 0.11 0.90 0.34 0.94 0.20 0.72 0.40 0.85
luoMasakhaNER 0.68 4.71 187.53 7.88 1.72 5.05 4.92 8.33 1.23 4.10 4.90 5.14
marL3Cube MahaNER 0.19 1.13 0.38 1.19 0.51 1.82 0.33 1.35 0.08 1.28 0.25 1.18
mosMasakhaNER 2.0 0.83 2.00 1.91 2.06 0.62 2.83 1.77 2.35 0.33 1.86 1.72 2.16
nepEverestNER 0.07 0.29 0.09 0.32 0.19 1.07 0.15 0.53 0.09 0.31 0.14 0.34
nldCONLL02 0.08 0.33 0.19 0.38 0.95 1.07 0.16 0.51 0.04 0.37 0.14 0.35
nnoNorNE 0.15 1.31 0.30 1.28 1.91 2.74 0.52 2.03 0.22 1.33 0.70 1.29
nobNorNE 0.14 0.92 0.77 1.06 2.95 2.33 1.01 1.73 0.30 0.86 0.55 0.99
nyaMasakhaNER 2.0 0.16 0.22 0.07 0.21 0.25 0.36 0.47 0.42 0.05 0.26 0.12 0.29
pcmMasakhaNER 2.0 0.15 0.45 0.30 0.49 0.45 0.79 0.65 0.67 0.11 0.52 0.09 0.54
pcmMasakhaNER 0.14 0.96 0.75 1.33 0.50 1.59 1.03 2.30 0.44 1.25 3.29 1.77
porUNER Portuguese 0.29 0.90 0.50 0.88 0.28 1.50 0.77 1.17 0.12 0.88 0.40 0.94
qafUNER Arabizi 4.37 9.44 27.94 18.19 1.55 8.86 1.49 6.32 6.06 7.12 1.01 9.57
ronRONEC 0.09 0.27 0.13 0.25 0.17 0.44 0.09 0.29 0.04 0.23 0.04 0.22
slkUNER Slovak SNK 0.56 1.67 2.92 2.71 0.94 3.07 3.14 2.86 0.50 1.61 1.57 2.46
slkWikiGoldSK 0.14 0.54 0.18 0.64 0.34 1.35 0.37 0.80 0.32 0.49 0.22 0.42
slvssj500k 0.82 22.96 1.37 28.19 0.99 28.37 3.54 27.08 0.86 24.95 2.84 27.24
snaMasakhaNER 2.0 0.08 0.16 0.06 0.19 0.17 0.30 0.22 0.46 0.10 0.16 0.22 0.41
spaAnCora 0.11 0.29 0.03 0.22 0.12 0.42 0.07 0.31 0.05 0.28 0.05 0.22
spaCONLL02 0.06 0.47 0.21 0.46 0.09 0.50 0.04 0.49 0.28 0.46 0.16 0.40
swaMasakhaNER 2.0 0.04 0.11 0.04 0.12 0.06 0.20 0.14 0.20 0.02 0.12 0.05 0.14
swaMasakhaNER 0.20 0.83 0.27 1.20 0.23 1.26 0.54 1.51 0.26 0.84 0.26 1.12
sweUNER Swedish Talkbanken 2.10 5.94 102.29 9.49 5.23 9.95 414.24 10.89 1.40 5.85 3.88 6.05
thaThaiNNER 0.07 0.31 0.06 0.27 0.08 0.40 0.06 0.48 0.06 0.31 0.06 0.27
tsnMasakhaNER 2.0 0.35 0.64 0.65 0.76 0.50 0.93 1.74 1.21 0.48 0.76 0.78 0.88
twiMasakhaNER 2.0 0.40 1.84 0.38 2.30 0.93 3.04 0.57 3.29 0.19 2.18 1.39 2.52
wolMasakhaNER 2.0 0.09 0.69 0.39 0.90 0.31 1.06 0.40 1.11 0.20 0.99 1.39 1.13
wolMasakhaNER 0.73 6.40 17.24 7.39 1.60 7.20 1.65 8.22 1.31 6.19 2.26 7.67
xhoMasakhaNER 2.0 0.12 0.37 0.11 0.43 0.20 0.71 0.20 0.90 0.17 0.39 0.44 0.46
yorMasakhaNER 2.0 0.20 0.63 0.83 0.63 0.65 1.05 0.35 0.78 0.51 0.66 0.32 0.68
yorMasakhaNER 0.21 2.65 8.92 2.65 0.27 2.80 0.38 2.21 0.48 2.94 1.29 2.61

Table 12: Detailed estimates of the standard deviations due to model-related σ and bootstrap-related τ uncertainty
in NER experiments.
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