
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics, pages 2246–2266

December 20-24, 2025 ©2025 Association for Computational Linguistics

VideoChain: A Transformer-Based Framework for Multi-hop Video
Question Generation

Arpan Phukan, Anupam Pandey, Deepjyoti Bodo and Asif Ekbal
Department of Computer Science and Engineering, IIT Patna

arpan_2121cs33@iitp.ac.in/iitpainlpmlresourcerequest@gmail.com,
anupam_2311cs31@iitp.ac.in, deepjyoti_2311ai65@iitp.ac.in, asif@iitp.ac.in

Abstract

Multi-hop Question Generation (QG) effec-
tively evaluates reasoning but remains confined
to text; Video Question Generation (VideoQG)
is limited to zero-hop questions over single
segments. To address this, we introduce
VideoChain, a novel Multi-hop Video Ques-
tion Generation (MVQG) framework designed
to generate questions that require reasoning
across multiple, temporally separated video
segments. VideoChain features a modular ar-
chitecture built on a modified BART back-
bone enhanced with video embeddings, cap-
turing textual and visual dependencies. Us-
ing the TVQA+ dataset, we automatically con-
struct the large-scale MVQ-60 dataset by merg-
ing zero-hop QA pairs, ensuring scalability
and diversity. Evaluations show VideoChain
strong performance across standard genera-
tion metrics: ROUGE-L (0.6454), ROUGE-
1 (0.6854), BLEU-1 (0.6711), BERTScore-
F1 (0.7967), and semantic similarity (0.8110).
These results highlight the model’s ability to
generate coherent, contextually grounded, and
reasoning-intensive questions. To facilitate fu-
ture research, we publicly release our code and
dataset1.

1 Introduction

The field of Question Generation (QG) has gar-
nered substantial attention for its potential to cre-
ate interactive and informative learning environ-
ments, educational tools, and intelligent systems.
Traditionally, QG systems focused on generating
questions based on textual passages, with applica-
tions spanning from educational quizzes (Krishna
et al., 2015) to interview questions and clarifica-
tion prompts (Kumar and Black, 2020). However,
the exploration of QG in video-based content re-
mains significantly underdeveloped compared to
its text-based counterpart.

1https://github.com/AnupamPandey199949/
VideoChain

Video Question Generation (VideoQG) involves
generating questions based on the visual and textual
information available in video content. This task
is particularly important for assessing a model’s
ability to understand and reason over dynamic and
temporal data, as videos often present information
across multiple frames, segments, and visual cues.
Despite its potential, existing VideoQG research
has mostly focused on generating zero-hop ques-
tions from transcripts or basic visual elements in
videos, limiting the scope of reasoning required
from the model. In contrast to zero-hop questions,
multi-hop question generation requires reasoning
across multiple, often non-contiguous, segments of
data. Although this has been extensively explored
in the text domain through datasets like HotpotQA
(Yang et al., 2018b), it remains relatively under-
explored in video-based tasks. Multi-hop ques-
tions challenge the model to synthesize information
across several frames or segments in a video, thus
requiring a more in-depth understanding of both
visual and textual modalities.

To address this gap in the literature, we introduce
the task of Multi-hop Video Question Generation
(MVQG), where the goal is to generate questions
that require reasoning over multiple, temporally-
separated segments of a video. To facilitate this
task, we construct a new MVQG dataset (MVQ-60)
by merging zero-hop questions from the TVQA+
dataset (Lei et al., 2020a). Inspired by the MusiQue
paper (Trivedi et al., 2022), which demonstrated
the effectiveness of merging simple questions to
create multi-hop questions in the text domain, we
extend this concept to videos. This dataset is de-
signed to challenge models to process and integrate
information from different parts of a video, com-
bining both visual frames and textual transcripts.
Additionally, we fine-tune the BART (Lewis et al.,
2020), enhanced with video embeddings, to gen-
erate coherent, contextually rich multi-hop ques-
tions that span multiple video segments. The fine-
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tuned models developed in this work demonstrate
a significant improvement in generating complex,
multi-hop video-based questions both in terms of
automatic evaluation metrics and human judgment.

We summarize the contributions of our work as:
(1) We contribute the first MVQG system by fine-
tuning a customized BART architecture, incorporat-
ing text and video embeddings, to generate multi-
hop questions requiring reasoning across video seg-
ments. (2) We introduce MVQ-60, the first dataset,
specifically designed for MVQG, created by merg-
ing zero-hop questions from the TVQA+ dataset,
enabling complex reasoning over multiple video
segments.

2 Related Work

2.1 Text-based Question Generation

Question Generation (QG) in text has been ex-
tensively studied, with works focusing on vari-
ous levels of textual granularity. These include
document-level QG (Pan et al., 2020a), paragraph-
level QG (Zhang et al., 2017), sentence-level QG
(Ali et al., 2010), and keyword-based QG (Pan
et al., 2020b). Early works employed rule-based
approaches, but recent advancements leverage deep
learning models, particularly sequence-to-sequence
architectures and pre-trained transformers (Pan
et al., 2019). Techniques, such as semantic pars-
ing and reinforcement learning have further en-
hanced the quality of generated questions (Chatter-
jee et al., 2020). While text-based QG has matured
significantly, the shift towards multimodal domains
presents new challenges, particularly in reasoning
over both visual and temporal modalities.

2.2 Visual Question Generation

Visual Question Generation (VQG), introduced by
(Mostafazadeh et al., 2016), generates questions
from images and encompasses three types: Visu-
ally Grounded (answerable from the image (Antol
et al., 2015)), Commonsense-Based (requiring ex-
ternal knowledge (Wang et al., 2017)), and World
Knowledge-Based (integrating factual knowledge
bases (Shah et al., 2019)). Proposed methods in-
clude encoder-decoder (Mostafazadeh et al., 2016),
compositional (Liu et al., 2018), and generative
models (Jain et al., 2017), enhanced by reinforce-
ment learning (Yang et al., 2018a) and bilinear
pooling (Fukui et al., 2016). Domain-specific ap-
plications (e.g., medical imaging, education (Mehta
et al., 2024)) exist, but challenges persist in visual

grounding, multi-object reasoning, and extending
these challenges to video.

2.3 Video Question Generation

VideoQG is inherently more challenging than text
or visual QG due to the temporal structure and mul-
timodal nature of videos. Early works (Yang et al.,
2021) primarily focused on generating questions
based on video transcripts or static object and at-
tribute descriptions (Gupta and Gupta, 2022), but
fell short of addressing more complex reasoning
requirements. Multi-hop reasoning in video QG
presents unique challenges: Contextual Integration:
Generating self-contained questions that require
linking temporally distant events in a video. Entity-
Action Mapping: Associating visual entities with
their respective actions or interactions in a coherent
manner. Multimodal Fusion: Effectively leverag-
ing signals from various modalities (e.g., video
frames, audio, and textual subtitles) to generate
questions that reflect comprehensive reasoning. Ex-
isting VideoQG datasets (Gupta and Gupta, 2022;
Acharya et al., 2019) target zero-hop question gen-
eration, lacking support for reasoning across multi-
ple video segments. While recent video-language
models like Flamingo (Alayrac et al., 2022) and
Vid2Seq (Yang et al., 2023) advance video under-
standing, they remain limited for multi-hop ques-
tion generation evaluation.

Our work addresses these gaps by introducing
a novel dataset MVQ-60 and developing method
specifically designed for multi-hop reasoning over
videos (see table 3).

3 Datasets

VideoQA progress stems from datasets with dis-
tinct challenges. Existing datasets, such as MSR-
VTT (Xu et al., 2016b) (open-domain video cap-
tioning), HowTo100M (Miech et al., 2019b) (in-
structional videos), TVQA+ (Lei et al., 2020a)
(narrative comprehension), ActivityNet-QA (Yu
et al., 2019b)(grasping complex videos), and oth-
ers have been useful in evaluating the performance
of VideoQA models. While existing datasets fo-
cus on zero-hop questions (answerable from single
events), multi-hop reasoning across video segments
remains underexplored.

3.1 Dataset Creation

Recognizing the lack of multi-hop VideoQA
datasets, we opted to create a new dataset. Given
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the scalability and reproducibility challenges of
manual annotation, we pursued the development of
an automated process to generate multi-hop ques-
tions by using existing datasets. This decision
was inspired by the MUSIQUE dataset (Trivedi
et al., 2022), which successfully generated tex-
tual multi-hop questions through automated merg-
ing techniques. Our methodology involved merg-
ing two zero-hop video questions to form a multi-
hop video question. Among the 40 datasets re-
viewed, TVQA+ (Lei et al., 2020a) consisting of
152,545 QA pairs from 21,793 clips, spanning
over 460 hours of videos based on 6 popular TV
shows(The Big Bang Theory, How I Met Your
Mother, Friends, House M.D., Grey’s Anatomy,
and Castle), emerged as the optimal base for dataset
construction. Its advantages include:

High Annotation Quality: Questions and an-
swers are manually crafted, ensuring accuracy and
relevance. Contextual Richness: Includes subti-
tles, video frames, and metadata (e.g., episodes,
seasons). Widespread Use: Recognized as a
benchmark in VideoQA research, ensuring broad
compatibility with existing methods. the TVQA+’s
extensive coverage of temporally rich, real-world
scenarios provided an ideal foundation for our
multi-hop dataset.

3.2 Automated multi-hop Question
Generation

To generate multi-hop questions, we developed
a rule-based merging algorithm inspired by the
MUSIQUE dataset’s textual question generation
strategy (Trivedi et al., 2022), that combines pairs
of zero-hop questions into coherent multi-hop ques-
tions. The key steps in the algorithm are:

Question Filtering: Short questions with con-
cise answers were prioritized to maintain readabil-
ity and prevent excessive length in merged multi-
hop questions. Based on the empirical distribution
of the TVQA+ dataset and experimental valida-
tion, we set the length thresholds to 15 words for
questions and 3 words for answers. These thresh-
olds ensured broad coverage of the dataset while
avoiding verbosity, and led to the most effective
generation of coherent multi-hop questions.

Temporal and Contextual Matching: The
questions were grouped based on the shared
metadata, specifically the episode. Let,M =
{m1,m2, . . . ,mk} represent the metadata at-
tributes, where m includes the episode (e) and seg-
ment (s). Two questions qi and qj are considered

Figure 1: Example: Merged Multi-hop Question

Temporally and contextually aligned if they share
the same episode but have different segments:

Match(qi, qj) =

{
1, if ei = ej and si ̸= sj

0, otherwise

This ensures that only questions referring to the
same episode but different segments are considered
for merging.

Overlap Detection: Overlap between two ques-
tions is defined as instances where the answer to
one question forms a semantic part of another ques-
tion. Let q1 and q2 be two questions with answers
a1 and a2, respectively. Overlap is defined as:

Overlap(q1, a2) =

{
1, if a2 ∈ q1

0, otherwise

Question Pairing and Merging: Pairs of over-
lapping questions were merged to create multi-hop
questions by replacing the overlap in first question
q1 and second answer a2 with the second question
q2. The merged question qmerged is defined as:

qmerged = q1 \ a2 + q2

where q1 \ a2 denotes the replacement of a2 in q1
with q2’s context. An example of this process is
shown in Figure 1.

3.3 Quality Evaluation Metrics
To assess the quality of the generated questions, we
evaluate them using a range of metrics: Fluency:
Grammatical correctness and natural language qual-
ity. Multi-Hop Reasoning: Complexity of reason-
ing required to answer the question. Video Rele-
vance: Degree of relevance to one or both videos.
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Engagingness: How captivating and interesting
the question is. Factual Correctness: Logical
and factual accuracy of the question-answer pairs.
Inclusiveness: How well the questions covered
diverse aspects of the video content. Each metric
was scored on a scale of 0 to 3, where 3 indicated
the highest quality. For example:

Fluency: “What is Chandler’s wife cooking?”
→ Score: 3 (Excellent) Relevance: “Compare the
styles of dance by people in both videos.” → Score:
3 (Highly Relevant)

For scalability, we conducted evaluation on a ran-
dom sample of 200 questions. According to statisti-
cal sampling theory, such a subset can provide reli-
able estimates of overall dataset characteristics. To
further validate the dataset’s quality and ensure its
appropriateness for multi-hop video QA tasks, we
performed manual human evaluation on the sam-
pled set. Annotators scored each question across
the above six criteria using predefined rubrics. The
average scores were: Fluency(2.92), Multi-hop
Reasoning(3.00), Engagingness(2.80), Factual Cor-
rectness(3.00). The high scores, particularly in
reasoning and factual correctness, are attributed in
part to the use of high-quality human annotated
TVQA base questions, which were merged to con-
struct MVQ-60. All annotations were done by three
trained annotators following strict rubrics which
ensured high objectivity and achieved an inter-rater
agreement (Cohen’s κ) of 0.72. These results rein-
force the validity and challenge-level of MVQ-60
for future multi-hop video reasoning research. Fi-
nally, we introduce MVQ60, the first large-scale
dataset of multi-hop (two-hop) video questions,
consisting of over 60,000 questions based on six
popular TV shows (Friends, The Big Bang The-
ory, How I Met Your Mother, House M.D., Grey’s
Anatomy, Castle), with an average question length
of 27 words.

4 Methodology

Video Embedding Generation: A key aspect of
our methodology was the generation of expres-
sive video embeddings to encode spatio-temporal
dynamics. We used VideoMAE, a masked au-
toencoder for self-supervised video representation
learning (Wang et al., 2023). VideoMAE embed-
dings effectively capture both motion and appear-
ance features while maintaining computational ef-
ficiency. These embeddings served as the founda-
tional representation for all the subsequent experi-

ments and models.
Initial Exploration with Video-Based Models:
We began by finetuning state-of-the-art video-
based models, pretrained on tasks, such as video
captioning and VideoQA, to adapt them for MVQG.
These models were trained using VideoMAE em-
beddings and textual inputs (e.g., video transcripts).
This approach was inspired by works like (Lei
et al., 2020a), which emphasized the use of spatio-
temporal features for question answering, and (Yu
et al., 2019b), which demonstrated the benefits of
video pretraining for understanding complex nar-
ratives. While these models showed promise in
zero-hop reasoning tasks, they struggled with multi-
hop questions. Their large sizes and monolithic
architectures resulted in slow processing times and
difficulty scaling to higher-hop reasoning. These
limitations prompted us to explore lightweight, text-
based alternatives.
Transition to Text-Based Models: Inspired by
(Phukan et al., 2024) that text-based models can
generate high-quality video questions with video
embeddings, we explored using T5 (Raffel et al.,
2020), BART (Lewis et al., 2020), and similar
models. We modified these text-based models to
accept VideoMAE embeddings as additional in-
put alongside textual data. During finetuning, the
models were provided with both embeddings and
transcripts. While this setup improved efficiency,
the generated questions occasionally failed to in-
tegrate information across video segments coher-
ently. These challenges, highlighted the need for
explicit architectural modifications to handle multi-
hop reasoning. Modular Two-Component Archi-
tecture: To address the observed limitations, we
develop a model with two-component architecture
tailored for multi-hop question generation. This
modular design was inspired by the principles of
(Andreas et al., 2016), which demonstrated the ben-
efits of task decomposition for reasoning tasks, and
(Trivedi et al., 2022), which emphasized modu-
lar frameworks for multistep reasoning. The first
component generates zero-hop questions from in-
dividual video segments. It accepts as input the
VideoMAE embedding of a video clip, its corre-
sponding transcript, and a prompt that guides the
question generation process. The model outputs a
concise, contextually grounded question. For ex-
ample, given a clip where Monica is cooking, this
component generates the question “What is Monica
cooking?”. This step isolates relevant information
from each video segment, forming a foundation for
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multi-hop reasoning. The second component inte-
grates information from multiple video segments
to generate multi-hop questions. It accepts as in-
put the zero-hop question produced by the first
component, along with the VideoMAE embedding
and transcript of a second video segment. The
model refines and expands the question, producing
a multi-hop question, such as “What is Chandler’s
wife cooking?”. This process can be repeated itera-
tively, allowing the model to generate higher-hop
questions (e.g., three-hop or four-hop questions)
by forwarding the output question to subsequent
iterations with new inputs.
Two-Component Approach: The modular nature
of the two-component architecture offers several
key benefits. By decoupling zero-hop and multi-
hop reasoning, the system scales efficiently to
higher-hop questions without overwhelming model
capacity. Each component specializes in a spe-
cific task, improving both precision and contextual
grounding.

5 Model Architecture

The proposed architecture for MVQG (figure 2)
centers around VideoChain, a version of the BART-
large CNN model (Lewis et al., 2020) we modified
to process both video and textual inputs as distinct
modalities. It integrates the spatio-temporal dynam-
ics of video content through VideoMAE embed-
dings (Wang et al., 2023) while preserving BART’s
generative capabilities for text-based reasoning.
VideoChain processes two primary input types:
video embeddings and text embeddings. Video
embeddings are generated using VideoMAE, a self-
supervised video representation learning model
that encodes video segments into R1568×1024 di-
mensional feature vectors. These embeddings cap-
ture both motion and appearance features, provid-
ing a compact representation of the video’s spatio-
temporal content. Text embeddings are derived
from video transcripts and prompts. Notably, the
prompts differ between components; the first com-
ponent uses prompts to generate zero-hop ques-
tions (e.g., “Generate a question about this clip”),
while the second component uses prompts to guide
the generation of multi-hop questions (e.g., “Gen-
erate a multi-hop question based on the previous
question and this clip”). The architecture builds
upon BART-large CNN by introducing modifica-
tions that enable it to handle multimodal inputs ef-
fectively. First, the encoder is extended to include

dual input streams for video and text embeddings.
The video embeddings are processed through dedi-
cated multi-head attention and feedforward layers
designed for spatio-temporal data, while the text
embeddings are processed through the standard
BART encoder layers. A cross-modal attention
mechanism is introduced to fuse the outputs of the
video and text streams, enabling VideoChain to
reason jointly over both modalities. The decoder
attends to the fused multimodal representation, gen-
erating the output question token by token. We use
this VideoChain in both modules of our architec-
ture.
Module 1:Zero-hop Question Generation: The
zero-hop question generation component consti-
tutes the first stage of the architecture. This com-
ponent generates a concise question based on the
content of a single video segment. The video em-
beddings, transcripts, and prompts are processed
independently through their respective streams in
VideoChain’s encoder. The cross-modal attention
mechanism aligns the visual and textual represen-
tations, producing a unified multimodal encoding
that informs the decoder’s generation process. For
example, given a video clip where Monica is cook-
ing, the model generates the question “What is
Monica cooking?”. The training process for this
component employs cross-entropy loss. By focus-
ing on zero-hop reasoning, this component ensures
that VideoChain can effectively extract and repre-
sent information from individual video segments.
Module 2:Multi-hop Question Composition:
The second stage of the architecture, the composi-
tion of multi-hop questions, extends the zero-hop
question by incorporating additional information
from subsequent video segments. This component
takes as input the zero-hop question generated by
the first component, along with the video embed-
ding, transcript, and a multi-hop-specific prompt
corresponding to the second video segment. The
encoder processes these inputs in their respective
streams, and the cross-modal attention mechanism
aligns the zero-hop question with the visual and
textual context of the second segment. The decoder
refines and expands the zero-hop question into a
multi-hop question. For instance, if the zero-hop
question is “What is Monica cooking?” and the
second segment provides context about Monica’s
relationship with Chandler, Module-2 generates the
multi-hop question “What is Chandler’s wife cook-
ing?”. This iterative design enables the architecture
to handle reasoning tasks of arbitrary complexity
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Figure 2: Proposed Model Architecture

by recursively invoking the second component with
new inputs.

Training Strategy: Our model is trained in two
stages to optimize its performance for zero-hop and
multi-hop tasks. The zero-hop Question Genera-
tion component is trained on zero-hop question-
answer pairs using cross-entropy loss, while the
multi-hop Question Composition component is
trained on multi-hop question-answer pairs, with
ground-truth intermediate questions provided dur-
ing training. A composite loss function is used for
the second component, combining cross-entropy
loss with alignment loss to ensure effective multi-
modal fusion. During inference, our model uses
beam search to enhance the fluency and coherence
of the generated questions, particularly for higher-
hop reasoning tasks where maintaining logical con-
sistency is critical. Scalability and Adaptabil-
ity: Our model’s modularity ensures scalability by
isolating reasoning subtasks into distinct compo-
nents. The recursive nature of the multi-hop com-
ponent allows the system to handle increasingly
complex tasks without requiring additional archi-
tectural changes. VideoChain’s flexibility allows it
to integrate with other pre-trained generative mod-
els. While BART-large CNN serves as the base in
this implementation, the modifications applied to
handle video and text inputs can be extended to
models, such as T5 (Raffel et al., 2020) or mBART
(Liu et al., 2020), enabling the framework to adapt
to a wide range of datasets and applications. This
adaptability is crucial for advancing multimodal
reasoning in VideoQA (Zellers et al., 2019).

6 Experiments, Results and Analysis

6.1 Experiment Setup

For our experiments, we used the MVQ-60 dataset,
which comprises 60,000 multi-hop questions paired
with video segments and corresponding transcripts.
The dataset was split into 80% training, 10% val-
idation, and 10% test, ensuring no episode level
overlap between these splits to prevent data leak-
age and overfitting. During the fine-tuning step, we
used the input IDs and attention masks of the in-
puts, which consisted of concatenated prompts and
transcripts representing the questions, and passed
the video embeddings as a separate entity into our
model. The model was trained on 2 Tesla T4 GPUs
on kaggle for a total of 8 hours. Hyperparameters:
a learning rate of 3e-5, a batch size (4)suitable
for the available hardware, and gradient accumu-
lation steps set to 4. Training was conducted for
50 epochs. We used a mixed precision training
approach with FP16 enabled for compatibility with
CUDA, and we monitored performance using the
evaluation strategy set to run every 100 steps. The
maximum gradient norm was clipped to 1.0 to en-
sure stable training, while unnecessary columns
were removed to optimize memory usage. De-
spite being a compact architecture ( 406M parame-
ters, using BART-large), our model delivers strong
multi-hop reasoning performance with significantly
lower training time and resource requirements com-
pared to large-scale vision-language models. For
example, Qwen2-VL-2B requires approximately
28 hours of training on similar data, whereas our
VideoChain-based model achieves competitive re-
sults with just 8 hours of training, highlighting the
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efficiency and scalability of our approach.

6.2 Experiments

As VideoChain represents the first dedicated archi-
tecture for MVQG, there are no prior models ex-
plicitly trained for this task. To establish meaning-
ful baselines, we conducted zero-shot evaluations
using recent general-purpose multimodal mod-
els: Qwen2-VL-2B-Instruct, SmolVLM, MGM-
2B, and PaliGemma. These models were selected
for their ability to process video and language
inputs without task-specific fine-tuning. In addi-
tion, to assess the adaptability of existing VideoQA
models, we finetuned the ECIS model (Phukan
et al., 2024) on our MVQ-60 dataset. This pro-
vides a strong baseline from the VideoQA domain.
This evaluation highlights the limitations of generic
vision-language models and repurposed QA mod-
els in generating coherent, compositional video-
grounded questions.

6.3 Evaluation Setup

For Human Evaluation: To ensure a robust and di-
verse evaluation, we recruited human annotators
from various demographic backgrounds. Our an-
notators consisted of individuals proficient in En-
glish, with a mix of undergraduate and graduate
students. Each evaluator was tasked with assessing
a randomly sampled subset of multi-hop questions
based on predefined quality metrics. To maintain
fairness and ethical considerations, all the anno-
tators were compensated at a competitive rate in
accordance with the standard research compensa-
tion guidelines.

For zero-shot evaluation, we provided each
model with pairs of video segments, corresponding
transcripts, and prompts designed to elicit multi-
hop reasoning. The prompts were standardized
across models to ensure fair comparison. For exam-
ple: “Based on the two video segments and their
transcripts, generate a question that requires inte-
grating information from both videos.” The mod-
els’ outputs were evaluated on both automated and
human evaluation metrics, including fluency, rel-
evance, multi-hop reasoning, factual correctness,
engagingness and inclusiveness.

6.4 Results Analysis

As summarized in Tables 1 and 2, our proposed
VideoChain model consistently outperforms re-
cent multimodal baselines across both human and

automatic evaluation metrics. In human evalu-
ation, while all models demonstrate strong flu-
ency and engagingness due to their pretrained lan-
guage modeling capabilities,VideoChain achieves
the highest scores in relevance (2.91), multi-hop
reasoning (2.81), and factual correctness (2.92).
The fine-tuned ECIS model also shows strong per-
formance, particularly in fluency (2.90) and cor-
rectness (2.84), but falls slightly short in relevance
and multi-hop depth. The relatively low factual
correctness scores of models, such as Qwen2-VL
(2.56), PaliGemma (2.20), and SmolVLM (1.98)
suggest hallucination and external knowledge leak-
age, likely caused by exposure to the same TV
shows during pretraining. In contrast, VideoChain
is explicitly trained on grounded supervision, en-
couraging content-aligned generation. The inclu-
siveness metric further highlights the strength of
our architecture. As most baselines treat both
video segments jointly, they often produce ques-
tions grounded in only one clip. VideoChain’s
modular dual-stage design processes each clip in
separate stages, enabling more inclusive question
generation (2.78 compared to 2.05 for Qwen2-VL
and 2.14 for PaliGemma). For multi-hop reason-
ing, baseline models frequently concatenate mul-
tiple independent zero-hop questions rather than
forming a coherent multi-hop question. Our model,
trained with explicit multi-hop supervision, demon-
strates better temporal and semantic integration
across clips. In automatic evaluation, VideoChain
leads across all metrics, BERTScore F1 (0.7967),
semantic similarity (0.8110), ROUGE-1 (0.6854),
ROUGE-L (0.6454), BLEU-1 (0.6711), Distinct-
1 (0.7911), and Distinct-2 (0.9850). These gains
show that VideoChain generates fluent, diverse, and
semantically aligned multi-hop questions. ECIS
also shows competitive performance, especially
in fluency-aligned metrics, confirming the bene-
fits of fine-tuning on MVQ-60. while the other
Baseline models often generate overly long ques-
tions (e.g., PaliGemma: 82.6 tokens, SmolVLM:
78.1), which negatively impacts lexical and seman-
tic alignment, the stricter length-controlled finetun-
ing of VideoChain and ECIS, helped them produce
more concise and accurate questions.

6.5 Discussion

The zero-shot evaluation highlights the limita-
tions of current pre-trained models in addressing
multi-hop VideoQA tasks without specialized train-
ing. While models like Qwen2-VL-2B-Instruct
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Table 1: Results on Human Evaluation

Model Fluency Relevance Multi-Hop Reasoning Engagingness Factual Correctness Inclusiveness
VideoChain (Ours) 2.89 2.91 2.81 2.75 2.92 2.78
ECIS (Finetuned) 2.90 2.85 2.72 2.63 2.84 2.65
Qwen2-VL-2B-Instruct 2.71 2.32 1.54 2.25 2.56 2.05
SmolVLM 2.51 2.09 1.24 1.82 1.98 2.24
MGM-2B 2.80 2.54 1.64 2.21 2.24 1.97
PaliGemma 2.95 2.60 1.77 2.41 2.18 2.14

Table 2: Results on Automatic Evaluation

Model Bert score F1 Generation length Semantic similarity Rouge-1 Rouge-L Bleu-1 Distinct-1 Distinct-2
VideoChain (Ours) 0.7967 53.2 0.8110 0.6854 0.6454 0.6711 0.7911 0.9850
ECIS (Finetuned) 0.6253 47.5 0.5291 0.4006 0.3174 0.4203 0.7430 0.9553
Qwen2-VL-2B-Instruct 0.5120 75.3 0.4547 0.2746 0.2451 0.3712 0.7230 0.9370
SmolVLM 0.4881 78.1 0.5154 0.2819 0.2482 0.3574 0.7115 0.9260
MGM-2B 0.5046 70.7 0.5627 0.3004 0.2627 0.3861 0.7250 0.9410
PaliGemma 0.5287 82.6 0.4987 0.2912 0.2519 0.4021 0.7340 0.9505

and PaliGemma show promise in handling gen-
eral vision-language tasks, their performance on
multi-hop reasoning remains suboptimal compared
to our fine-tuned model. This suggests that while
general-purpose multimodal models offer flexibil-
ity, task-specific architectures like VideoChain are
essential to achieve state-of-the-art performance in
complex reasoning tasks, such as MVQG.

6.6 Ablation Study
We assess the contribution of VideoChain’s core
components through two ablations: (1) Text-only
variant: Removing video embeddings to isolate
text reliance caused significant performance drops,
particularly in video relevance (2.91 to 2.09) and
multi-hop reasoning (2.85 to 1.54). This confirms
visual grounding is essential for contextually rich
question generation. (2) Single-component vari-
ant: Replacing the modular pipeline with direct
multi-hop generation severely degraded reasoning
capability (multi-hop: 1.24 vs. 2.85) and factual
correctness (1.98 vs. 2.97), often yielding shallow
or concatenated questions. Both variants showed
substantial overall performance degradation (0.69
text-only; 0.76 single-component) versus the full
model. These results validate the necessity of mul-
timodal inputs for visual grounding and modular
decomposition for complex reasoning. Detailed
metrics and analysis are provided in the appendix
section D.1.

6.7 Error Analysis
To better illustrate the strengths and limitations of
our MVQG model, we present qualitative exam-
ples across the six TVQA+ shows in Table 6. Each
row provides one example from a distinct TV show,
categorized into four groups: (1) Correct Gener-
ations, (2) Multi-Hop Reasoning Failures, (3)

External Knowledge Leakage, and (4) Halluci-
nation. Detailed Error Analysis is discussed in the
Appendix section E

7 Conclusion and Future Work

We introduced VideoChain, the first modular archi-
tecture for MVQG. We created MVQ-60, a large-
scale multihop video question dataset spanning six
TV shows. VideoChain’s modular design ensures
scalability for complex reasoning. Evaluations
demonstrated its strong performance in generat-
ing fluent, relevant, and coherent video-grounded
multihop questions, validating our approach. We
evaluated the intrinsic quality of the generated ques-
tions (using automatic metrics and human judge-
ments), but we did not perform an extrinsic evalu-
ation, e.g., using the questions for a downstream
task like training a VideoQA model or testing a
model’s reasoning capabilities. Future work in-
cludes expanding to diverse domains (e.g., edu-
cation, surveillance), developing domain-specific
MVQG systems, enabling multilingual generation,
and integrating emerging vision-language models
for enhanced reasoning and nuance.

8 Limitations

Despite the advancements demonstrated in this
work, several limitations warrant further investi-
gation. Expanding to diverse video domains (e.g.,
educational, surveillance) requires tackling distinct
features and QA demands, likely needing domain-
specific adaptations. Second, our system gener-
ates questions only in English. Enabling multi-
lingual question generation is crucial for broader
accessibility but involves complex cross-lingual
understanding and generation. Third, the modu-
lar pipeline risks error propagation; factual errors
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from Module-1 often persist despite Module-2’s
mitigation of grammatical/semantic issues mitiga-
tion. While not significantly impacting overall
quality, explicit error correction or joint optimiza-
tion could help. Finally, rapidly evolving vision-
language models offer potential for more powerful
representations, reasoning, and nuanced question
generation. Future work should integrate these to
achieve deeper video understanding. Furthermore,
since our work does not explicitly leverage raw au-
dio signals or audio features (beyond what is indi-
rectly available through dialogue text), future work
could include tri-modal input (video, text, audio)
for better grounding. Additionally, explicit error
correction or a joint optimization of both modules
could be explored to mitigate the propagation of
factual errors from Module-1 to Module-2.
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A Appendix

B Automated MVQ-60 Dataset
Generation

We propose a rule-based algorithm for generating
multi-hop questions by merging zero-hop question-
answer pairs, inspired by MUSIQUE (Trivedi et al.,
2022):

The algorithm processes filtered QA pairs (len(q)
≤15, len(a) ≤3) grouped by episode. For valid
pairs from different segments where a2 appears in
q1, it replaces a2 in q1 with q2 to form multi-hop
questions requiring cross-segment reasoning.

C Models Evaluated

We evaluate the following pretrained models for
MVQG:

Qwen2-VL-2B-Instruct (Wang et al., 2024): A
vision-language model optimized for instruction-
following tasks, capable of integrating visual inputs
with complex text prompts. It was tested using raw
video frames and associated transcripts.
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Algorithm 1 MVQ-60 Generation

Require: Set of zero-hop QA pairs {(qi, ai,mi)}
with metadata mi = (ei, si)

Ensure: Set of multi-hop questions Qmulti
1: Filter QA pairs: Qfiltered ← {(q, a) | len(q) ≤

15, len(a) ≤ 3}
2: for each episode e do
3: Group pairs: Ge ← {(qi, ai, si) | ei = e}
4: for each pair (q1, a1, s1), (q2, a2, s2) ∈

Ge × Ge do
5: if s1 ̸= s2 and a2 is substring of q1 then
6: qmerged ← replace(q1, a2, q2)
7: Qmulti ← Qmulti ∪ {qmerged}
8: end if
9: end for

10: end for

Table 3: Comparison of Different Approaches

Approach Text Video Multihop Reasoning Video Rel-
evance

Text QG ✓ × ✓ ×
Video QG ✓ ✓ × ✓
Zeroshot ✓ ✓ ✓ ×

Our Approach ✓ ✓ ✓ ✓

SmolVLM (Marafioti et al., 2025): A
lightweight multimodal large language model de-
signed for efficient inference on vision-language
tasks. Despite its compact size, SmolVLM demon-
strated strong performance on zero-hop VQA tasks,
but its ability to handle multi-hop reasoning re-
mained untested prior to our evaluation.

MGM-2B (Li et al., 2023b): A 2-billion pa-
rameter multimodal generative model designed for
cross-modal understanding and generation tasks. It
processes video frame embeddings and textual data
simultaneously, offering a comprehensive baseline
for multimodal reasoning.

PaliGemma (Beyer et al., 2024): A recent mul-
timodal model designed by Google DeepMind for
VQA and vision-language reasoning tasks. Al-
though It excels in vision-language alignment, its
capacity for multi-hop reasoning with video con-
tent was tested in our experiments.

ECIS-VQG (Phukan et al., 2024): A VideoQG
model, which was designed to produce entity-
centric, information-seeking questions grounded
in video content. Originally proposed for Zero-hop
VideoQA tasks, we include ECIS-VQG to evalu-
ate its capacity for generalizing to the multi-hop
setting when finetuned on our MVQ-60 dataset.

D Datasets Explored

To contextualize the need for a dedicated multi-
hop video question answering (MVQG) dataset
and to inform our design choices, we conducted a
comprehensive survey of existing video question
answering (VideoQA) datasets. This exploration
encompassed approximately 40 publicly available
datasets, each with varying characteristics in terms
of scale, domain, question type, and associated an-
notations. A summary of these datasets, including
their approximate size, primary focus, and question
types, is provided in Table 10.

While these datasets have significantly advanced
the field of VideoQA, they primarily focus on zero-
hop questions that can be answered by directly
attending to specific segments or elements within a
single video clip. As highlighted in Table 10, these
datasets cover a diverse range of domains.

Our analysis of these existing resources revealed
a critical gap: the absence of datasets specifically
designed to evaluate and drive research in multihop
video question answering. As detailed in the main
body, multihop questions require reasoning across
multiple temporal segments or understanding the
relationships between different events or entities
within and potentially across video clips. The exist-
ing datasets, while valuable for zero-hop VideoQA,
do not adequately support the investigation of these
more complex reasoning capabilities.

To address this limitation and facilitate research
into MVQG, we undertook the creation of a novel
dataset, leveraging the TVQA+ dataset as a foun-
dation, as described in Section:dataset-creation in
main paper. Our approach to automatically gener-
ating multihop questions aimed to create a scalable
resource for evaluating models capable of perform-
ing temporal and relational reasoning across video
content.

Dataset Evaluation

We prompted GPT5 to evaluate the dataset question
quality. Due to cost considerations, we evaluated
the same 200-question sample with 300 additional
questions.
Prompt: You are an evaluator. Your task is to
assess a generated question based on the context
and the following criteria:

Fluency: Evaluates the grammatical correctness
and naturalness of the generated question. 0: Poor
(Grammatical errors and awkward phrasing). Ex-
ample: “What doing is Chandler wife cooking?”
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1: Fair (Some grammatical errors, but understand-
able). Example: “What Chandler wife cooking?” 2:
Good (Grammatically correct). Example: “What is
the wife of Chandler cooking?” 3: Excellent (Flu-
ent and natural language with no errors). Example:
“What is Chandler’s wife cooking?”

Relevance: Assesses the extent to which the
generated question pertains to the content of the
provided video clips. 0: Irrelevant (Does not relate
to the video). Example: “What is the capital of
France?” 1: Slightly relevant (Partially relates to
the video). Example: “Are there any people in the
video?” 2: Mostly relevant (Mostly relates to the
Videos). Example: “Are there people dancing in
these videos?” 3: Highly relevant (Directly relates
to the images). Example: “What is the connection
between the people dancing in these Videos?”

Multi-Hop Reasoning: Evaluates the complex-
ity of reasoning required to answer the generated
question based on the provided video clips. 0:
Single-hop (Only needs one Video for the answer).
Example: “Is Monica dancing in the first video?”
1: Simple multi-hop (Requires basic information
from both videos). Example: “Are People dancing
in both Videos?” 2: Intermediate multi-hop (Re-
quires more complex connections between images).
Example: “Are the same people dancing in both
videos?” 3: Advanced multi-hop (Involves detailed
reasoning using both images). Example: “what is
the relation between the common people dancing
in both videos?”

Engagingness: Evaluates how interesting and
captivating the generated question is to a human
observer. 0: Not engaging (Boring or uninterest-
ing). Example: “Are there hats in the videos?”
1: Slightly engaging (Mildly interesting). Exam-
ple: “What colours are the hats in the videos?” 2:
Moderately engaging (Interesting and engaging).
Example: “How do the styles of hats in the videos
differ?” 3: Highly engaging (Very interesting and
captivating). Example: “What do the hats in the
videos reveal about the event going on and time
period of the scenes depicted?”

Factual Correctness: Evaluates whether the
generated question contains any factual inaccura-
cies. 0: Incorrect (factually incorrect). Example:
“Why does Chandler want to leave after hanging out
with the group, which includes Amy and Emma?”
(Emma and Amy both are wrong). 1: Mostly In-
correct (contains major factual errors, though a
small part of the content may be accurate). Ex-
ample: “Why does Chandler want to leave after

hanging out with the group, which includes Joey
and Amy?” (Joey is correct, Amy is wrong). 2:
Partially Correct (factually accurate in the main
aspect but contains a minor mistake or omission).
Example: “Why does Chandler want to leave after
hanging out with the group, which includes Joey?”
3: Factually correct. Example: “Why does Chan-
dler want to leave after hanging out with the group,
which includes Joey and Monica?”

Inclusiveness: Evaluates whether the generated
question is inclusive and avoids any potentially bi-
ased or discriminatory language. 0: Not inclusive
(The question contains biased or discriminatory
language or assumptions). Example: “Why are
the women in the video acting emotionally?” 1:
Slightly inclusive (The question is mostly neutral
but could be phrased more inclusively). Exam-
ple: “What are the people in the video doing?” (If
the context strongly implies a specific gender) 2:
Moderately inclusive (The question attempts to use
neutral language but might still have some under-
lying assumptions). Example: “What is the role
of each person in the scene?” 3: Highly inclusive
(The question uses neutral and respectful language,
avoiding any biased or discriminatory assumptions
about gender, race, age, etc.). Example: “What ac-
tions are the individuals performing in the video?”

**Question** **Context** Output Structure:
Fluency: value, Relevance: value, Multi-Hop Rea-
soning: value, Engagingness: value, Factual Cor-
rectness: value, Inclusiveness: value,

Human Evaluation Metrics

To assess the quality of the generated multihop
video questions, we employed a comprehensive
human evaluation protocol using the following set
of metrics. Each metric was evaluated on a 4-point
scale(0 to 3), with higher scores indicating better
quality according to the specific criterion.

Fluency: Evaluates the grammatical correctness
and naturalness of the generated question.

• 0: Poor (Grammatical errors and awkward
phrasing). Example: “What doing is Chan-
dler wife cooking?”

• 1: Fair (Some grammatical errors but under-
standable). Example: “What Chandler wife
cooking?”

• 2: Good (Grammatically correct). Example:
“What is the wife of Chandler cooking?”
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Table 4: Human and GPT Evaluation the Dataset, MVQ-60

Method Fluency Relevance Multi-Hop Reasoning Engagingness Factual Correctness Inclusiveness
Human Eval 2.92 3 3 2.8 3 3
gpt-5-nano-2025-08-07 2.88 3 2.82 2.66 2.74 2.96

• 3: Excellent (Fluent and natural language with
no errors). Example: “What is Chandler’s
wife cooking?”

Relevance: Assesses the extent to which the
generated question pertains to the content of the
provided video clips.

• 0: Irrelevant (Does not relate to the video).
Example: “What is the capital of France?”

• 1: Slightly relevant (Partially relates to the
video). Example: “Are there any people in
the video?”

• 2: Mostly relevant (Mostly relates to the
Videos). Example: “Are there people dancing
in these videos?”

• 3: Highly relevant (Directly relates to the im-
ages). Example: “What is the connection
between the people dancing in these Videos?”

Multi-Hop Reasoning: Evaluates the complex-
ity of reasoning required to answer the generated
question based on the provided video clips.

• 0: Single-hop (Only needs one Video for the
answer). Example: “Is Monica dancing in the
first video?”

• 1: Simple multi-hop (Requires basic informa-
tion from both videos). Example: “Are People
dancing in both Videos?”

• 2: Intermediate multi-hop (Requires more
complex connections between images). Ex-
ample: “Are the same people dancing in both
videos?”

• 3: Advanced multi-hop (Involves detailed rea-
soning using both images). Example: “what
is the relation between the common people
dancing in both videos?”

Engagingness: Evaluates how interesting and
captivating the generated question is to a human
observer.

• 0: Not engaging (Boring or uninteresting).
Example: “Are there hats in the videos?”

• 1: Slightly engaging (Mildly interesting). Ex-
ample: “What colours are the hats in the
videos?”

• 2: Moderately engaging (Interesting and en-
gaging). Example: “How do the styles of hats
in the videos differ?”

• 3: Highly engaging (Very interesting and cap-
tivating). Example: “What do the hats in the
videos reveal about the event going on and
time period of the scenes depicted?”

Factual Correctness: Evaluates whether the
generated question contains any factual inaccura-
cies.

• 0: Incorrect (factually incorrect). Example:
“Why does Chandler want to leave after hang-
ing out with the group, which includes Amy
and Emma?”

• 3: Factually correct. Example: “Why does
Chandler want to leave after hanging out with
the group, which includes joey and monica?”

Inclusiveness: Evaluates whether the generated
question is inclusive and avoids any potentially
biased or discriminatory language.

• 0: Not inclusive (The question contains biased
or discriminatory language or assumptions).
Example: “Why are the women in the video
acting emotionally?”

• 1: Slightly inclusive (The question is mostly
neutral but could be phrased more inclusively).
Example: “What are the people in the video
doing?” (If the context strongly implies a
specific gender)

• 2: Moderately inclusive (The question at-
tempts to use neutral language but might still
have some underlying assumptions). Exam-
ple: “What is the role of each person in the
scene?”

• 3: Highly inclusive (The question uses neutral
and respectful language, avoiding any biased
or discriminatory assumptions about gender,
race, age, etc.). Example: “What actions are
the individuals performing in the video?”
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Examples from Our Multihop Video
Question Generation Dataset

To illustrate the characteristics of the multihop
questions within our newly created dataset MVQ-
60, we present a selection of examples in Table 5.
Each row includes the constituent questions, their
respective answers, the involved video clip names,
and the resulting initial multihop question. It is
important to note that these are the initial multihop
(merged) questions generated by our system, after
paraphrasing they often exhibit improved fluency
and naturalness.

Note: Due to space constraints, we have pre-
sented a subset of the generated multihop questions.
The full dataset contains a diverse range of ques-
tions requiring various forms of temporal and re-
lational reasoning across different video segments
from the TV show “Friends”. The structure of these
examples demonstrates how our dataset links in-
formation across potentially non-contiguous video
clips through the composition of simpler questions

D.1 Ablation Study

To better understand the contributions of various
components in VideoChain, we conducted an abla-
tion study by modifying the model in two key ways:
(1) removing the video embeddings to evaluate the
reliance on textual information, and (2) simplifying
the architecture into a single-component system to
directly generate multi-hop questions. These exper-
iments highlight the significance of both the multi-
modal input and the modular design in enhancing
the model’s performance on multi-hop question
generation tasks. The results are shown in Table 8
Text-Only Model: In this configuration, we re-
moved video embeddings and trained the model
using only textual data—transcripts and prompts.
This setup was designed to assess how much the
model relies on visual information versus language
alone when generating coherent and contextually
grounded multi-hop questions. Compared to the
full model, the text-only version showed a drop
across all metrics. Most notably, video relevance
fell from 2.91 → 2.09, and multi-hop reasoning
dropped from 2.85 → 1.54. While fluency re-
mained relatively high (2.81 → 2.66), the absence
of visual grounding led to decreased factual cor-
rectness (2.97 → 2.36) and overall inclusiveness
(2.78 → 2.05). This suggests that visual informa-
tion plays a critical role in enabling richer, more
contextually grounded question generation.

Single-Component Multi-Hop Generation (Di-
rect Multihop Generation): In this variant, we
removed the modular design and trained the model
to generate multi-hop questions in a single stage, di-
rectly from paired video segments and transcripts.
While this setting retained multimodal inputs, it
lacked the iterative structure of the full model. As
shown in Table 8, this led to a sharp drop in perfor-
mance, particularly in multi-hop reasoning (1.24
vs. 2.85) and factual correctness (1.98 vs. 2.97).
The model often produced concatenated or shallow
questions, failing to perform genuine multi-step
reasoning. This highlights the importance of struc-
tured decomposition for handling complex, compo-
sitional question generation.
Evaluation and Comparative Metrics: Both abla-
tion settings were evaluated using the same metrics
as the full model: fluency, relevance, multi-hop
reasoning complexity, and factual correctness. Let
Sfull, Stext-only, and Sdirect-mh denote the average
scores for the full model, the text-only model, and
the single-component model, respectively. The rel-
ative performance drop ∆S for each ablation is
computed as:

∆Stext-only = Sfull − Stext-only (1)

∆Sdirect-mh = Sfull − Sdirect-mh. (2)

We observe δSdirect-mh to be 0.76 and δStext-only
to be 0.69, the significant performance degradation
in the text-only model, is due to tasks requiring
visual grounding. Similarly, the single-component
model is observed to underperform on tasks re-
quiring complex multi-hop reasoning due to the
absence of iterative refinement. The results of abla-
tion study shown in table 8, underscores the critical
role of video embeddings in grounding questions
in visual context and highlights the effectiveness of
our model’s modular design in handling multi-hop
reasoning.

E Qualitative Examples of MVQG Error
Types

We conducted a detailed error analysis to under-
stand the common failure modes in our MVQG
framework. Table 9 summarizes the frequency of
each error category before and after applying miti-
gation strategies. Below, we elaborate on the nature
of each error, provide examples, and describe how
each was addressed.

Multi-Hop Reasoning Failures: The model
often concatenated two zero-hop questions using
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Table 5: Examples from Our Multihop Video Question Generation Dataset

Question 1 Answer
1

Video Clip 1 Question 2 Answer 2 Video Clip 2 Merged Question

Who was talking
on the phone before
Joey picked up the
phone the first time?

Ross friends,
s02e01,
seg02, clip,
07

Who was Joey talk-
ing with when Ross
went inside?

Joey was talk-
ing with his
dad

friends, s02e01, seg02,
clip, 21

Who was Joey talking with
when , the person Who was talk-
ing on the phone before Joey
picked up the phone the first
time?, went inside?

Who was talking
on the phone before
Joey picked up the
phone the first time?

Ross friends,
s02e01,
seg02, clip,
07

Where did Ross
went after the
conversation with
Rachel?

Ross went in-
side the house

friends, s02e01, seg02,
clip, 21

Where did , the person Who was
talking on the phone before Joey
picked up the phone the first
time?, went after the conversa-
tion with Rachel?

Who does Charlie
disagree knows art
when Ross mentions
him/her?

Joey friends,
s09e21,
seg02, clip,
18

Why does Joey joke
with Ross after he
gives suggestions for
his date?

Joey jokes
becasue Ross
has detailed
ideas specific
to Joey’s date’s
preferences.

friends, s09e21, seg02,
clip, 08

Why does , the person Who
does Charlie disagree knows art
when Ross mentions him/her?,
joke with Ross after he gives
suggestions for his date?

Who does Charlie
disagree knows art
when Ross mentions
him/her?

Joey friends,
s09e21,
seg02, clip,
18

Why doesn’t Joey
know what he just
said after getting
asked by Ross?

His brain is
thinking about
monster trucks

friends, s09e21, seg02,
clip, 12

Why doesn’t , the person Who
does Charlie disagree knows art
when Ross mentions him/her?,
know what he just said after get-
ting asked by Ross?

Who came to the
room when Castle
was talking?

Ryan castle,
s06e21,
seg02, clip,
16

Who comes looking
for Ryan after he
hangs up the phone?

Esposito comes
looking for
Ryan.

castle, s06e21, seg02,
clip, 11

Who comes looking for , the
person Who came to the room
when Castle was talking?, after
he hangs up the phone?

Who came to the
room when Castle
was talking?

Ryan castle,
s06e21,
seg02, clip,
16

What is Lanie wav-
ing around in her
hand when she is fac-
ing Ryan and Espos-
ito?

A pen. castle, s06e21, seg02,
clip, 18

What is Lanie waving around in
her hand when she is facing , the
person Who came to the room
when Castle was talking?, and
Esposito?

Who follows beck-
ett out of mont-
gomerys office af-
ter she leaves mont-
gomerys office?

Castle castle,
s03e22,
seg02, clip,
03

What type of cup
does Castle sit by
when he clasps his
hands?

Wine glass. castle, s03e22, seg02,
clip, 15

What type of cup does , the per-
son Who follows beckett out
of montgomerys office after she
leaves montgomerys office?, sit
by when he clasps his hands?

Who follows beck-
ett out of mont-
gomerys office af-
ter she leaves mont-
gomerys office?

Castle castle,
s03e22,
seg02, clip,
03

Who started jump-
ing onto Beckett af-
ter Castle opened the
door?

Seeger castle, s03e22, seg02,
clip, 22

Who started jumping onto Beck-
ett after , the person Who
follows beckett out of mont-
gomerys office after she leaves
montgomerys office?, opened
the door?

“and” instead of forming a meaningful reasoning
chain.
Incorrect: “What was Amy holding when she is
talking to Penny and who was with Sheldon in the
car?”
Expected: “What was Amy holding when she is
talking to the girl who was in the car with Shel-
don?”
We mitigated this by refining training prompts with
clearer examples and post-processing rules, reduc-
ing the error rate from 24% to 6%.

Factual Inaccuracy: Some questions in-
troduced incorrect or unsupported claims not
grounded in the video.Example: “What did Rachel
say when she got the job offer in Paris?” (scene not
present).
We applied negative sampling and semantic filters
to reduce such cases from 12% to 7%.

Semantic Drift: The model occasionally pro-

duced abstract or off-topic questions. Example:
“How do characters reflect on their past experi-
ences?”
Prompt refinement and focused sampling during
fine-tuning reduced this issue from 11% to 5%.

Grammatical Errors: Syntax or fluency issues
such as tense mismatch or fragmented clauses. Ex-
ample: “What do Monica was cooking when Ross
came in?”
Due to consistent training and BART’s language
generation strength, these errors decreased from
5% to 3%.

Redundancy: Some questions repeated the
same concepts across hops. Example: “Who was
with Rachel and who was talking to Rachel in the
kitchen?”
We filtered such patterns post-merging, reducing
redundancy from 9% to 4%.

Ambiguity or Vagueness: Questions lacked
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Table 6: Qualitative examples of MVQG generations.

Series Correct Generation Multi-Hop Failure External Knowledge Leakage Hallucination
BBT What did , the person who wishes

Sheldon a happy Valentines Day
after he opens the door?, do after
Sheldon told her he was being
selfish?

What does the person who is eat-
ing with Sheldon say and who
knocks on the door when Shel-
don is talking?

What does , the person who is
talking to Amy about moving
in together after returning from
Princeton?, say when they dis-
cuss their living arrangements?

What does , the person who gives
Sheldon a Star Wars gift during
his birthday party?, say when he
opens the present?

Friends What is , the person who came
into the apartment when Leonard
was on the phone?, holding when
she is talking to Leonard?

What is the person who is sitting
next to Monica doing and what
does Rachel say when she enters
the room?

What does , the person who is
talking to Rachel when she says
she got off the plane?, do after
hearing her decision?

What does , the person who
is cooking Thanksgiving dinner
with Monica?, do when Joey ac-
cidentally drops the turkey?

HIMYM What does , the person who is in
charge when Howard and Shel-
don work together?, do when he
is talking to Howard and Raj?

What does the person who gives
Ted a drink say and who walks
into the apartment when Barney
is talking?

What does , the person who is
sitting in front of Ted when he
starts telling the story about how
he met their mother?, say when
he gives them something?

What does , the person who
plays the guitar during Robin’s
farewell party?, say when Ted of-
fers a toast?

Grey’s
Anatomy

What did , the person who is play-
ing the piano when everyone is
singing to Bernadette?, say when
he was talking to Raj?

What does the patient who is ly-
ing on the bed do and who enters
the room when Meredith is look-
ing at the monitor?

What does , the person who
is talking to Meredith before
Derek’s accident?, say when she
expresses her concern?

What does , the person who ar-
gues with Cristina about the heart
surgery?, do when the patient flat-
lines?

Castle What did , the person who is
wearing a brown trench coat
when Beckett enters the alley?,
say when she finds the second
clue?

What is the person who found
the evidence doing and what does
Beckett say when she enters the
office?

What does , the person who is
confronting Castle when he finds
out who killed his mother?, do
when Castle reacts?

What does , the person who
brings evidence to Beckett dur-
ing the rooftop chase?, say when
she finds the clue?

House What does , the person who
walks into the patient’s room af-
ter House finishes speaking with
the nurse?, do when he notices
the charts are missing?

What does the nurse who checks
the IV bag say and what is House
doing when he talks to Wilson?

What does , the person who is
inside the house when House
crashes his car into it?, say when
House approaches?

What does , the person who chal-
lenges House’s diagnosis in the
operating room?, do when the pa-
tient wakes up?

clarity or contained poorly grounded references.
Example: “What did he do after she left?”
This was addressed through coreference-aware
sampling, reducing such errors from 14% to 6%.

External Knowledge Leakage: The model oc-
casionally used memorized facts beyond input
scope. Examples:
“What does Sheldon say to Leonard before they
move to their new apartment?”, “How does Ross
react when Rachel leaves for Paris?”
By constraining context and refining prompts, hal-
lucination was reduced from 20% to 8%, and leak-
age from 32% to 8%.

Correct generations demonstrate well-formed
multi-hop questions that refer to grounded visual-
textual content and follow the long-form template
described in Section 6.4. Multi-hop reasoning fail-
ures typically involve the incorrect use of conjunc-
tions (e.g., “and”) instead of forming compositional
reasoning chains. External knowledge leakage re-
veals the model’s tendency to rely on memorized
facts from the broader TV series rather than the
provided scene. Hallucination refers to entirely
fabricated content not grounded in the input video
or known series lore.

These examples highlight the diversity of errors
our model encounters and the necessity for strong
grounding and compositional reasoning mecha-
nisms in MVQG systems.

E.1 Prompt Variants and Failure Cases
As part of our baseline prompt engineering study,
we investigated the impact of structured prompt-
ing strategies inspired by chain-of-thought reason-
ing. While such approaches have proven effective
in text-based reasoning tasks, we found that they
were not beneficial in our setting due to the combi-
nation of a smaller base model (BART-large) and
the inherent complexity of the MVQG task.

Despite our initial expectations, prompts de-
signed to simulate step-by-step reasoning often re-
sulted in incoherent, vague, or incomplete outputs.
Table 7 shows representative examples highlighting
these failure cases.

These findings informed our final choice of us-
ing clear and direct prompts, such as: “Based on
the two video segments and their transcripts, gener-
ate a question that requires integrating information
from both videos.” This prompt yielded more sta-
ble and contextually grounded outputs, particularly
when paired with a well-trained zero-hop module.
We include these prompt examples and results in
the supplementary material for transparency and
reproducibility.
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Table 7: Examples of structured prompts and their outputs. These structured prompts often confused the model or
led to verbose, incoherent generation.

Prompt Generated Output
“Think step by step. First, look
at the first video. Then, look
at the second. Now generate a
question that connects both.”

“Okay. First video: Sheldon is holding something. Sec-
ond video: Raj is cooking. What is happening in both?”
(Fails to form a coherent multi-hop link)

“Understand what happens in
the first clip, then the second,
and finally write a question
that links them.”

“In the first clip, someone is talking. In the second, there
is a kitchen. Can you describe both?”
(Vague; no reasoning or question structure)

“Let’s think carefully. Break
down the events and create a
multi-hop question based on
them.”

“Hmm. First event: someone holding sword. Second
event: Raj in kitchen. What’s the question here?”
(Fails to produce a question; stays in meta-mode)

Table 8: Performance Comparison of Ablations

Model Fluency Video Relevance Multi-Hop Reasoning Engagingness Factual Correctness Inclusiveness
Full Model 2.81 2.91 2.85 2.75 2.92 2.78
Without Video 2.66 2.09 1.54 2.25 2.36 2.05
Single Component 2.31 2.39 1.24 2.32 1.98 2.24

Table 9: Improvements in Error categories

Error Category Error before Error After
improvement (%) improvement (%)

Multihop Reasoning failure 24 6
Factual Inaccuracy 12 7
Semantic Drift 11 5
Grammatical Errors 5 3
Redundancy 9 4
Ambiguity or Vagueness 14 6
External Knowledge Leakage 32 8
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Table 10: Summary of Explored Video Question Answering Datasets

No. Dataset Name Primary Focus Short Description
1 MSR-VTT (Xu

et al., 2016a)
Open Domain Captioning A large-scale dataset primarily for video captioning, containing 10,000 videos with 20 human-

annotated captions per video. It’s also used as a base for VQA tasks.
2 HowTo100M (Miech

et al., 2019a)
Instructional Videos A massive dataset of over 1 million narrated instructional videos, focusing on explaining how

to perform various tasks.
3 TVQA (Lei et al.,

2018)
TV Shows (6) A large-scale VideoQA dataset built upon 6 popular English-language TV shows, featuring

multiple-choice questions and answers, along with subtitles and video frames.
4 ActivityNet-QA (Yu

et al., 2019a)
Activity Understanding Contains human-annotated question-answer pairs on videos from the ActivityNet dataset,

designed to test models’ long-term spatio-temporal reasoning abilities.
5 NExT-QA (Xiao

et al., 2021)
Explanation of Video A VideoQA benchmark specifically created to evaluate the explanation of video content,

requiring models to reason about causal and temporal relationships between actions and
objects.

6 TGIF-QA (Jang
et al., 2017)

Animated GIFs Features question-answer pairs for animated GIFs from the TGIF dataset, suitable for evalu-
ating video-based Visual Question Answering techniques on short, dynamic visual content.

7 MovieQA (Tapaswi
et al., 2016)

Movies A dataset for question answering about movies, evaluating story comprehension from both
video and textual sources like plot synopses and subtitles, with multiple-choice answers.

8 MVBench (Li et al.,
2024)

Temporal Understanding A comprehensive benchmark designed to evaluate the temporal understanding capabilities of
multimodal large language models (MLLMs) across 20 diverse dynamic video tasks.

9 MSRVTT-QA (Xu
et al., 2017)

VQA on MSR-VTT A benchmark for Visual Question Answering created based on the MSR-VTT video caption-
ing dataset, evaluating the ability to answer questions grounded in video content described by
captions.

10 MSVD-QA (Xu
et al., 2017)

VQA from MSVD A VideoQA dataset generated from the descriptive sentences in the MSVD dataset, providing a
large set of question-answer pairs based on short video snippets and their textual descriptions.

11 TVQA+ (Lei et al.,
2021)

Visual Grounding in TVQA An extension of the TVQA dataset that includes detailed bounding box annotations, explicitly
linking depicted objects to visual concepts mentioned in the questions and answers for
enhanced visual grounding.

12 TGIF (Tumblr
GIF) (Li et al.,
2016)

GIF Descriptions A dataset of 100,000 animated GIFs collected from Tumblr, each accompanied by several
descriptive sentences provided by humans.

13 VideoInstruct (Maaz
et al., 2024b)

Video Instruction Following A dataset comprising high-quality video and instruction pairs, used to train models like
Video-ChatGPT to follow instructions presented in video format.

14 AGQA (Grunde-
McLaughlin et al.,
2021)

Spatio-Temporal Reasoning A benchmark designed to evaluate compositional spatio-temporal reasoning in videos, focus-
ing on understanding actions, their attributes, and their relationships within a scene.

15 VALUE (Li et al.,
2021)

General V&L Understanding A benchmark created to test the generalizability of video-and-language understanding models
across a wide range of tasks, domains, and existing datasets.

16 How2QA (Li et al.,
2020)

QA on HowTo100M A VideoQA dataset collected on the same videos as the HowTo100M dataset, featuring
multiple-choice questions and answers related to the instructional content of the videos.

17 iVQA (Liu et al.,
2018)

Instructional Video QA An open-ended VideoQA benchmark specifically for instructional videos, featuring multiple
correct answer annotations for each question and requiring detailed video understanding.

18 IntentQA (Li et al.,
2023a)

Social Activity Intents A dataset focusing on the diverse intents behind actions observed in daily social activities,
designed to evaluate models’ ability to understand the underlying motivations in videos.

19 SUTD-
TrafficQA (Xu
et al., 2021)

Traffic Video QA A dataset specifically focused on question answering related to traffic scenarios, requiring
understanding of various events, objects, and their interactions within traffic videos.

20 STAR Bench-
mark (Wu et al.,
2024)

Situated Reasoning A benchmark aimed at evaluating how well models can capture and utilize present knowledge
directly from the surrounding visual situations depicted in videos.

21 MSRVTT-MC (Yu
et al., 2018)

Multiple Choice VQA on
MSR-VTT

A multiple-choice video question-answering dataset created based on the MSR-VTT dataset,
offering a different evaluation format compared to open-ended QA.

22 TVBench (Cores
et al., 2024)

Temporal Understanding in
VQA

A benchmark specifically created to evaluate the temporal understanding capabilities of
VideoQA models, focusing on questions that require reasoning over time within the video.

23 Neptune (Nagrani
et al., 2024)

Long Video QA A dataset consisting of challenging question-answer-decoy sets for long-form videos (up to
15 minutes), pushing the limits of models’ ability to understand and reason over extended
video durations.

24 DramaQA (Choi
et al., 2021)

Dialogue and Narrative Under-
standing

A dataset focused on two key aspects of video understanding: comprehending character
dialogue and understanding the broader narrative flow in movies and TV series.

25 EgoTaskQA (Jia
et al., 2022)

Egocentric Video QA A benchmark containing balanced question-answer pairs for egocentric (first-person per-
spective) videos, primarily focusing on understanding the actions performed by the camera
wearer.

26 Perception Test (Pa-
traucean et al., 2023)

Perception and Reasoning A benchmark designed to evaluate the fundamental perception and reasoning skills of multi-
modal models when processing video content.

27 VLEP (Lei et al.,
2020b)

Video-and-Language Event
Prediction

Contains examples of future event prediction in videos along with their textual rationales,
testing the ability to anticipate what will happen next based on the observed context.

28 KnowIT VQA (Gar-
cia et al., 2020)

QA on The Big Bang Theory A video dataset with human-generated question-answer pairs specifically centered around
the content and characters of the popular TV show “The Big Bang Theory,” focusing on
domain-specific knowledge.

29 MovieFIB (Maharaj
et al., 2017)

Movie Fill-in-the-Blank A benchmark featuring fill-in-the-blank style questions based on detailed descriptive video
annotations created for the visually impaired, testing fine-grained visual understanding.
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Table 11: Some More Video Question Answering Datasets

No. Dataset Name Primary Focus Short Description
1 HowToVQA69M (Yang

et al., 2021)
Large-Scale HowTo VQA A very large-scale VideoQA dataset built upon the HowTo100M video dataset, containing

approximately 69 million question-answer pairs.
2 TutorialVQA (Colas

et al., 2019)
Answer Spans in Tutorials A dataset designed for the task of finding specific answer spans within the transcripts of

tutorial videos, with questions and manually collected answer spans.
32 Video Localized

Narratives (Voigt-
laender et al., 2023)

Vision and Language Connec-
tion

A dataset that explicitly connects vision and language by providing detailed, localized
narratives describing objects and actions within specific regions of video frames.

3 CRIPP-VQA (Patel
et al., 2022)

Counterfactual Reasoning A dataset designed to evaluate counterfactual reasoning about implicit physical properties
through video question answering, requiring models to understand “what if” scenarios.

4 CausalChaos! (Par-
mar et al., 2024)

Causal Video QA A dataset specifically created for evaluating causal reasoning in video question answering, us-
ing animated content from Tom and Jerry cartoons to focus on cause-and-effect relationships.

5 CinePile (Rawal
et al., 2024)

Long Video QA (Movies) A question-answering-based dataset focused on the understanding of long-form video content,
specifically utilizing movie data.

6 RoadTextVQA (Tom
et al., 2023)

Text Understanding in Driving
Videos

A dataset focused on the task of understanding text and signs present in videos captured from
driving scenarios, crucial for applications in autonomous driving.

7 Social-IQ
2.0 (Zadeh et al.,
2019)

Social Intelligence in Video A dataset designed to evaluate the social intelligence of AI models in understanding videos,
focusing on social interactions, nonverbal cues, and human behavior.

8 VCG+112K (Maaz
et al., 2024a)

Video Instruction Following Another large-scale dataset for video instruction following, containing over 112,000 video-
instruction pairs for training models to execute tasks based on video instructions.

9 WildQA (Castro
et al., 2022)

VQA in Outside Settings A video understanding dataset comprising videos recorded in unconstrained, real-world
outside environments, designed to evaluate the robustness of models in more natural settings.

10 Vript (Yang et al.,
2024)

Fine-Grained Video-Text A fine-grained video-text dataset featuring high-resolution videos and detailed, rich anno-
tations, aiming for a deeper understanding of the relationship between visual and textual
information in videos.
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