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Abstract

Session-based recommendation systems have
attracted growing interest for their ability to
provide personalized recommendations based
on users’ in-session behaviors. While ID-based
methods have shown strong performance, they
often struggle with long-tail items and over-
look valuable textual information. To incorpo-
rate text information, various approaches have
been proposed, generally employing a naive fu-
sion framework. Interestingly, this approach of-
ten fails to outperform the best single-modality
baseline. Further exploration indicates a poten-
tial imbalance issue in the naive fusion method,
where the ID tends to dominate the training and
the text is undertrained. This issue indicates
that the naive fusion method might not be as
effective in combining ID and text as once be-
lieved. To address this, we propose AlterRec,
an alternative training framework that separates
the optimization of ID and text to avoid the im-
balance issue. AlterRec also designs an effec-
tive strategy to enhance the interaction between
the two modalities, facilitating mutual interac-
tion and more effective text integration. Exten-
sive experiments demonstrate the effectiveness
of AlterRec in session-based recommendation.

1 Introduction

In recent years, predicting the next item in user-
item interaction sequences, such as clicks or pur-
chases, has gained increasing attention (Wu et al.,
2019b; Li et al., 2017; Pang et al., 2022; Hou et al.,
2022a; Yang et al., 2023). These sequences, com-
mon in e-commerce, search engines, and media
platforms, reflect user preferences that are dynamic
and and evolve over time (Tahmasbi et al., 2021).
Moreover, in many systems, only the user’s behav-
ior history during an ongoing session is accessible.
Therefore, analyzing interactions in active sessions
becomes essential for real-time recommendations.
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Figure 1: An illustration of a naive fusion framework.

This need has spurred the development of session-
based recommendations (Wu et al., 2019b; Hou
et al., 2022a), which utilizes the sequential patterns
in a session to understand and predict the latest user
preferences.

In this domain, ID-based methods (Kang
and McAuley, 2018; Sun et al.,, 2019; Wu
et al., 2019b) have become the predominant ap-
proach, significantly influencing the recommenda-
tion paradigm (Yuan et al., 2023; Li et al., 2023).
These methods involve assigning unique ID indexes
to users and items, transforming them into vector
representations. Their popularity stems from their
simplicity and effectiveness across various applica-
tions (Li et al., 2023). Despite their proven effec-
tiveness, these methods still have limitations. One
drawback is their heavy reliance on the ID-based
information and often ignore valuable information
such as textual information, leading to less infor-
mative representations. It can be problematic in
scenarios with limited interactions between users
and items. However, most items experience sparse
interactions, known as long-tail items (Park and
Tuzhilin, 2008), which presents a significant chal-
lenge for these methods.

Recognizing these limitations, there has been
a shift (Liu et al., 2025) towards integrating text
data for recommendations. The surging volume of
text data emphasizes the crucial role of text in vari-
ous domains like news and e-commerce (Li et al.,
2022; Wu et al., 2019a; Jin et al., 2023). These sys-
tems increasingly leverage user reviews, product
descriptions, and articles to better capture user pref-
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erences. Recent trends indicate an increasing re-
liance on language models (Kenton and Toutanova,
2019; Brown et al., 2020; Wei et al., 2023; Harte
et al., 2023) for extracting semantic information
due to their exceptional ability to encode text ef-
fectively. This progress has sparked considerable
interest in enhancing recommendation beyond tra-
ditional user-item interaction data.

The prevailing approach in current literature for
combining ID and text typically employs a naive
fusion framework (Hou et al., 2022b; Zhang et al.,
2019; Wei et al., 2023; Chen et al., 2025), which
merges embeddings from ID and text encoders for
joint training (see Figure 1). However, our pre-
liminary study in section 3.2 reveals that the naive
fusion may not be as effective as previously be-
lieved. 1) Notably, training on ID information
alone can achieve comparable or even better per-
formance than naive fusion. It indicates that fusion
may not always enhance and could potentially de-
grade results. This finding aligns with the studies
in multi-modal learning (Huang et al., 2022; Wang
et al., 2020; Du et al., 2023a), which indicates that
the fusion of multiple modalities doesn’t always
outperform the best single modality. 2) We fur-
ther explore one naive fusion implementation as
an example to have a deeper understanding of this
finding. It reveals a potential imbalance issue: the
model over-relies on ID component while under-
training text. This imbalance implies that the unex-
pected finding might be a result of the naive fusion
framework’s inability to balance the contributions
of the two types of information effectively, thereby
hindering optimal overall performance.

The imbalance issue identified in the naive fu-
sion significantly hinders the accurate integration
of textual data. Despite increased efforts to in-
tegrate textual data, these methods often fail to
effectively capture essential semantic information,
resulting in a considerable loss of valuable informa-
tion. This realization shifts our focus towards inde-
pendent training, which does not exhibit this issue.
However, independent training overlooks the po-
tential for ID and text to provide complementary in-
formation that could benefit each other. To address
these limitations, we propose a Alternative train-
ing strategy for session-based Recommendation
(AlterRec). AlterRec separates the training of ID
and text to mitigate imbalance while introducing
implicit interactions between the two modalities.
This design enables each to inform and learn from
each other, and thus further enhance the perfor-

mance. We conduct comprehensive experiments to
validate the superior effectiveness of AlterRec over
a variety of baselines in real-world datasets.

2 Related Work

ID-based Methods. These methods (Hidasi et al.,
2016) convert each user or item into a vector
representation using unique ID indices. More
recent advancements have seen the adoption of
sophisticated architectures as encoders. For in-
stance, SASRec (Kang and McAuley, 2018) and
BERT4Rec (Sun et al., 2019) employ the Trans-
former architecture to delineate user preferences
within sequences. SR-GNN (Wu et al., 2019b)
and HG-GNN (Pang et al., 2022) construct graphs
from the user-item interaction data to capture com-
plex patterns across multiple sessions. However,
these methods overlook additional valuable text in-
formation, potentially leading to less informative
representations.

Text-Integrated Methods. These methods com-
bine the text information to perform recommen-
dations. For instance, FDSA (Zhang et al., 2019)
leverages concatenation and S3-Rec (Zhou et al.,
2020) uses self-supervised tasks to combining tex-
tual information. UniSRec (Hou et al., 2022b) em-
ploys the BERT model, EAGER (Wang et al., 2024)
uses the Sentence-T5 and LLM2BERT4Rec (Harte
et al., 2023) uses the text feature from by the large
language model (LLMs) as initialization. RLM-
Rec (Ren et al., 2023) and LLMRec (Wei et al.,
2023) both use LLMs for generating user/item pro-
files. Among the methods discussed, the majority
follows the naive fusion framework (Zhang et al.,
2019; Hou et al., 2022b; Wei et al., 2023), which
may not effectively incorporate text as identified in
the section 3.2.

3 Preliminaries

3.1 Session-based Recommendation

Consider a set of users I/ and items V, with user-
item interaction sequences (sessions) denoted by S.
Each session s = {s1, 59, ..., 8,} € S represents
a sequence of item interactions by a user, where
s; € V and n is the number of interactions. Each
item ¢ is associated with textual information, such
as product descriptions or titles, represented as t; =
{w1,ws, ..., w.}, where w; is a word from a shared
vocabulary and c is the truncated text length. The
goal of session-based recommendation is to predict
the next item in a session by generating a ranked
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combing ID and text against models trained independently on either ID or text information alone.

score list for candidate items: ys = [ys 1, -+, Us,||];
where each ys ; indicates the likelihood of item 4
being the next interaction.

The Naive Fusion Framework. In session-based
recommendation, combining ID-based and text-
based information has the potential to improve per-
formance. Most existing methods adopt a naive fu-
sion strategy with joint training (Hou et al., 2022b;
Zhang et al., 2019; Wei et al., 2023), as shown in
Figure 1. This involves generating embeddings
XIP and Xt ysing ID and text encoders, then
merging them into a unified embedding Z via meth-
ods such as summation or concatenation. This final
embedding is used to compute relevance scores be-
tween the session and candidate items, estimating
the likelihood of the next interaction. We refer to
this framework as naive fusion. Notably, exist-
ing methods such as UniSRec (Hou et al., 2022b),
FDSA (Zhang et al., 2019), and LLMRec (Wei
et al., 2023) follow this approach. We implemented
a naive fusion method which is named NFRec and
more details are in section A in the Appendix.

3.2 Preliminary Study

In this subsection, motivated by multi-modal learn-
ing (Wang et al., 2020; Huang et al., 2022; Peng
et al., 2022), we conduct a preliminary study to in-
vestigate potential challenges in combining ID and
text for session-based recommendation, aiming to
inspire more effective integration strategies.

In the naive fusion, ID and text are treated as dis-
tinct modalities intended to complement each other.
However, prior works (Wang et al., 2020; Du et al.,
2023a; Huang et al., 2022) have revealed a con-
sistent phenomenon: fusing two modalities does
not usually outperform the best single modal-
ity trained independently. Namely, combining
modalities may not enhance, and could potentially
reduce, overall performance. Various multi-modal
learning studies have focused on this phenomenon,
offering analysis from different perspectives (Wu

et al., 2022; Huang et al., 2022; Du et al., 2023b).
To effectively merge ID and text for session rec-
ommendations, we conduct an investigation to first
verify the presence of this phenomenon and then
explore its underlying causes.

3.2.1 Naive Fusion vs. Independent Training

To verify whether the above phenomenon exists
in session-based recommendation, we compare
the performance of naive fusion models including
our implementation NFRec, UniSRec (Hou et al.,
2022b) and FDSA (Zhang et al., 2019) against their
corresponding two single modality models (ID and
text) that are trained independently. For a fair com-
parison, we employ same ID/text encoder, scoring
and loss function across both naive fusions and in-
dependent training frameworks. More details are
given in Section A of the Appendix.

The results on the Amazon-French dataset (see
Section 5.1) are shown in Figure 2, where “ID only”
and “text only” refer to respective ID and text mod-
els trained independently, and “sum” and “concat”
represent NFRec using summation and concatena-
tion respectively. We employ two widely used met-
rics Hits@20 and NDCG @20, where higher scores
indicate better performance. We have the following
observations (similar phenomenon is observed on
the HD dataset in Figure 8 in the Appendix):

Observation 1 The ID-only models often perform
comparably to or better than naive fusion models,
highlighting the ineffectiveness of naive fusion for
combining ID and text.

Observation 2 The text-only model generally
achieves the worst performance, often exhibiting a
large gap compared to the ID-only approach.

The first observation aligns with findings in
multi-modal learning (Peng et al., 2022; Huang
et al., 2022), suggesting that naive fusion is less
effective than expected in session-based recommen-
dation. To gain a more comprehensive understand-
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Figure 3: Test performance (a) and training loss (b).

ing, we further explore this issue through an in-
depth analysis of NFRec in the next subsection.

3.2.2 Exploration of NFRec

In our exploration, we aim to understand how ID
and text components perform in NFRec, shedding
light on why a naive fusion framework may not
yield the expected improvement. To this end, we
take NFRec applying concatenation as one exam-
ple. It can be conceptually divided into two seg-
ments: the ID and text components (details in sec-
tion B in the Appendix). Test performance and
training loss on the Amazon-French dataset are
shown in Figure 3, with the components labeled
as “ID in NFRec" and “text in NFRec." Similar
phenomenon is also observed on the HD dataset
(Figure 9 in the Appendix).

Figure 3 highlights a clear imbalance issue in
NFRec: the ID component’s performance and loss
nearly overlap with those of NFRec, indicating a
strong reliance on ID. The ID dominates the overall
training while the text component contributes little.
This suggests that naive fusion appears incapable
of balancing the modalities to achieve optimal over-
all performance. It tends to overly depend on the
stronger ID modality (as noted in the Observation
2). Supporting this hypothesis is from various stud-
ies (Peng et al., 2022; Huang et al., 2022; Wang
et al., 2020; Wu et al., 2022) in multi-modal learn-
ing which offer empirical and theoretical insights.
Further investigation into the underlying causes is
left for future work.

4 Framework

Having identified the potential imbalance issue in
naive fusion, we explore to combine ID and text
by training them separately. However, simply train-
ing them independently may not fully exploit their
potential to provide complementary strength. To
address these challenges, we introduce AlterRec,
an alternative training method illustrated in Fig-
ure 4. AlterRec consists of two uni-modal networks
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Figure 4: Overview of AlterRec. (a), (b): the ID and
text uni-modal networks. (¢): Two networks are trained
alternately, learning from each other through predictions
generated by the other network.

for ID and text. We employ the predictions from
one network as training signals for the other, fa-
cilitating interaction and mutual learning through
these predictions. AlterRec separates the training
of ID and text, effectively avoiding the imbalance
issue. Moreover, it goes beyond independent train-
ing by facilitating interaction between ID and text,
enabling them to learn mutually beneficial informa-
tion and incorporate the text more effectively.

4.1 1ID and Text Uni-modal Networks

The ID and text unimodal networks share similar ar-
chitectures, each using its own encoder to generate
embeddings. Then a scoring function is adopted to
calculate the relevance between a given session and
candidate items. We first introduce the encoders
and then show how to define the scoring function.

4.1.1 1ID and Text Encoder

The ID encoder is designed to create a unique
embedding for each item based on its ID index.
This is achieved using an ID embedding matrix
X € RIVIX? where d is the size of the embedding.
Each row, X, corresponds to the ID embedding of
item ¢. Notably, this matrix is a learnable parameter
and updated during the optimization.

The text encoder is designed to extract seman-
tic information from item text. Leveraging the
advanced language modeling capabilities, we uti-
lize the Sentence-BERT (Reimers and Gurevych,
2019) in this work. Given an item ¢ with text
t; = {wy, wa, ..., w.}, Sentence-BERT generates a
sentence-level embedding, which is then projected
into a d-dimensional space via an MLP (Delashmit
et al., 2005):

H, = MLP(SBERT (wy, w2, ...,w.)), (1)
where H € RIVI*4 and each row H;; corresponds to
the text embedding of item ¢. Considering practical

188



constraints, we fix the language model which isn’t
updated during the optimization process due to the
high training cost.

4.1.2 Scoring Function

In session-based recommendation, the goal is to
predict the next item in session s = {s1, 52, ..., Sn }.
For each candidate item j, we compute a prediction
score ¥s j, used to rank candidates. The top-ranked
item is predicted as the next item. This begins
by generating a session embedding qs € R? that
captures user behavior. Then relevance between
the session embedding and each item embedding
is used as the score for ranking.

Session&Item Relevance. The session embedding
is computed from the embeddings of items in the
session—either ID or text embeddings. Using ID
embeddings as an example (the process is similar
for text), we define a function g to generate the ses-
sion embedding: qs = ¢(Xs,, Xsys -y X, )- A
simple yet effective choice is the mean function,
which averages item embeddings. Alternatively, a
Transformer (Vaswani et al., 2017) can be used
to capture item-item transitions patterns, where the
last item’s output serves as the session embedding.
The session embedding can be derived using either
of these functions based on their empirical perfor-
mance. Relevance scores are then computed via dot
product: y!? = X7 qs for ID, and ¢/ = H gs
for text, with s = g(Hs,, ..., Hs,, ).

4.2 Alternative Training

The ID and text data offer different types of in-
formation. Our goal is to facilitate their interac-
tion, enabling mutual learning and thereby enhanc-
ing overall performance. To this end, we propose
an alternative training strategy to use predictions
from one uni-modal network to train the other net-
work. These predictions encode information of one
modality, allowing one network to learn informa-
tion from the other. We leverage the predictions
from one modality to the other in two aspects. 1)
First, we select top-ranked items as augmented pos-
itive training samples. These items with top scores
are likely very relevant to the current session from
the perspective of one modality that could provide
more training signals for the other modality espe-
cially for items with fewer interactions. 2) Second,
we choose other high-scored items as negative sam-
ples. These items are ranked higher but not the
most relevant ones for one modality and we aim to
force the other modality to distinguish them from

positive samples. Such negative samples are much
harder to be distinguished compared to those from
traditional random sampling (Rendle et al., 2012).
Thus, we refer to them as hard negative samples in
this work.

Hard Negative Samples. As an example, we il-
lustrate how predictions from the ID uni-modal
network guide the training of the text uni-modal
network. For a session s, we first generate predic-
tion scores from the ID network and rank them in
descendmg order: 7IP = argsort(y! ? , . ,ysf ﬁ}‘)

where 1P gives the sequence of ID indices corre-
sponding to the sorted scores. Items ranked from
k1 to ko, denoted as rP[k; : ko], are selected as
hard negatives for training the text network. This
encourages the text network to learn from patterns
captured by the ID network. These hard negatives
are used in a cross-entropy loss function, following
prior work (Hou et al., 2022b; Wu et al., 2019b;
Pang et al., 2022), where s; is the target item:

Lte:pt

= “log(f(yeh) )

seS

where f is the Softmax function applied over the
target item s; and the hard negatives 7/ ” [k; : ko].
Similarly, we can derive hard negatives ri*[k; :
k2] from the text uni-modal network by sorting its
prediction scores: rg*" = argsort(yL, .. ,yée‘“ﬁ)
These are then used to define the loss for training
the ID uni-modal network:

Z log(f

seS

(Yerer) €)

where the Softmax is applied over the target item
s¢ and the negative samples in rL[k; : ko).
Positive Sample Augmentation. Besides hard
negatives, we can select top-ranked items as aug-
mented positive samples to further improve both
uni-modal networks. For the text network, rP[1 :
p] serves as additional positive targets; similarly,
rl€1 : p] is used as supplementary positive sam-
ples for training the ID network. We typically set
p < ki. The corresponding loss functions in Eq. (2)
and (3) are modified accordingly for this variation:

et = -3 <log(f(y§e§f))+

seS

B >

sp€riP(1p]

1og(f(ygeg;)>> 4)
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log(f(yi,’ik))) (5)

Here, 3 is a parameter to adjust the importance
of the augmented samples. Note that within each
network, these augmented samples are paired with
the same corresponding hard negative samples as
the target item s;.

Training Algorithm. This algorithm focuses on
facilitating the interaction between two networks,
and we use the Figure 4(c) as a more straightfor-
ward illustration. The training process consists of
two stages. 1) Initially, due to the lower quality
of the learned embeddings, we don’t employ in-
teraction between two networks. Thus, we apply
random negative samples during the first M, qndom
epochs. This involves replacing the hard negatives
in Eq. (2) and Eq. (3) with randomly selected nega-
tives with equal number. 2) Subsequently, we shift
to training with hard negatives. We start by train-
ing the ID uni-modal network using hard negatives
derived from the text uni-modal network. After
Mgap €pochs, the training focus shifts to the text
uni-modal network, which is trained using hard
negatives from the ID uni-modal network. Follow-
ing another m g, epochs, we resume training the
ID uni-modal network and repeat this alternating
process. This approach ensures that each network
continually learns from the other, thereby poten-
tially improving overall performance. Pseudo-code
of the training process is given in section C in the
Appendix.

After both networks converge, we compute the
final relevance score by combining their scores with
weighted contributions. This score is used during
the inference stage and is defined as:

Y = ax ylP 4+ (1 — a) * ylot ©6)

Here, ys ; 1s the final score for the candidate item ¢
given session s, and « is a pre-defined parameter.

5 Experiment

In this section, we conduct comprehensive exper-
iments to validate the performance of AlterRec.
Model performance is evaluated using Hits@K and
NDCG@K, with K set to 10 and 20. Higher scores
indicate better performance. More implementation
details are given in the section F in the Appendix.

5.1 Experimental Settings

Datasets. We adopt two real-world session recom-
mendation datasets including textual data. HD: It
is from an e-commerce company that is derived
from user purchase logs on its website. Amazon-
M2 (Jin et al., 2023): It’s a multilingual dataset.
For the purpose of this study, which does not fo-
cus on multilingual data, we extracted unilingual
sessions to create individual datasets for three lan-
guages: Spanish, French, and Italian. They are
denoted as Amazon-Spanish, Amazon-French,
and Amazon-Italian, respectively. More details
are given in section E in the Appendix.

Baselines. In our study, we refer to the model
without augmentation as AlterRec and the aug-
mented version as AlterRec_aug. We include sev-
eral baseline methods: BSARec (Shin et al., 2024),
CORE (Hou et al., 2022a), SASRec (Kang and
McAuley, 2018), BERT4Rec (Sun et al., 2019),
SR-GNN (Wu et al., 2019b), and HG-GNN (Pang
et al., 2022) as ID-based methods. Text-integrated
methods include LLM2BERT4Rec (Harte et al.,
2023),UniSRec (Hou et al., 2022b), FDSA (Zhang
et al., 2019), and S3-Rec (Zhou et al., 2020). No-
tably, UniSRec (FHCKM) refers to the model pre-
trained on the FHCKM dataset (Hou et al., 2022b),
while UniSRec in this work denotes the model
pretrained on our datasets (HD and Amazon-M2).
LLM2BERT4Rec uses BERT4Rec as a backbone
model, and we also test LLM2SASRec, which uses
SASRec. To ensure fairness, each baseline method
uses the same input features as AlterRec, except
for UniSRec (FHCKM), which is pretrained with
fixed dimension sizes.

5.2 Performance Comparison

The comparison results are presented in Table 1.
Since the Amazon-M2 dataset lacks user informa-
tion, it is not feasible to obtain results for HG-
GNN (Pang et al., 2022), which are denoted as
“N/A”. Our observations are as follows: 1) Al-
ter_aug consistently outperforms other baseline
models across a range of datasets, with AlterRec
often achieving the second-best performance, high-
tlighting the effectiveness of our alternative train-
ing strategy. Moreover, it demonstrates that in-
tegrating augmentation data can further enhance
performance. Although UniSRec and FDSA ex-
hibit strong performance in some cases, they do
not consistently excel across all metrics. In con-
trast, AlterRec maintains a balanced and superior

190



Table 1: Performance Comparison (%) results which are mean and standard deviation over three seeds. The best
results are highlighted in bold, and the second-best results are underlined.

HD Amazon-Spanish
Hits@10 Hits@20 NDCG@10 NDCG@20 Hits@10 Hits@20 NDCG@10 NDCG@20
SASRec 33.58 £0.27 4093+0.14 18.23+0.06 20.09+0.06 | 70.95+0.32 80.46+0.32 44.88+0.33 47.29+0.34
BERT4Rec 26.06+£0.26 31.85+045 1561+03 17.08+0.35| 64.6+0.13 740+033 44.6+0.16 4698+0.18
BSARec 35.02+£0.21 42.08+0.08 19.65+0.03 21.44+0.07 | 71.69 +£0.09 80.89£0.05 48.16+0.77 50.5+0.76
SRGNN 30.09+0.07 36.0+0.19 1531+0.13 15.73+£0.13 | 67.02+0.29 76.37+0.12 46.75+0.33 49.12+0.26
HG-GNN 33.17+£0.13 40.72+0.20 18.27+0.49 20.19+0.51 N/A N/A N/A N/A

CORE 37.04 £0.11 44.73+£0.06 19.86+0.14 21.81+£0.14 | 71.83+£0.15 81.14+£0.17 41.05+£0.06 43.41+£0.08

UnisRec (FHCM) | 36.03 £0.12 43.67+0.06 20.14+0.79 22.08+0.77 | 72.15+£0.01 81.3+0.02 44.87+0.1 472+0.1
UnisRec 3456 £0.23 42.19+£0.16 19.01 £0.08 20.92+0.08 | 72.33 +0.06 81.42+0.16 4551+£0.05 47.82+0.06
FDSA 32.1+£034 39.11+£02 2044+0.1 2221+0.06 | 70.55+0.24 79.84+0.08 49.83+0.15 52.18+0.13

S3-Rec 26.69+0.1 33.04+0.34 16.01+£0.14 17.62+0.11 | 69.61 +04 7885+0.62 4725+045 49.6+04
LLM2SASRec 34.12+0.29 42.13+0.18 18.69+0.26 20.72+0.22 | 71.55+0.06 80.68 +0.12 48.45+0.15 50.77+0.17
LLM2BERT4Rec | 29.51 £0.35 37.3+0.33 16.25+0.3 1822+0.3 | 6647+0.2 7695+0.27 40.29+0.32 42.95+0.35
AlterRec 38.25+0.14 4631+0.11 20.72+0.06 22.76+0.06 | 72.41 +0.17 81.49+0.09 50.59 +0.14 52.9+0.12
AlterRec_aug 3846 +0.1 46.37+0.08 20.74+0.05 22.75+0.03 | 72.47 £0.19 81.45+0.04 50.58 +£0.02 52.86+0.05

Amazon-French Amazon-Italian

Hits@10 Hits@20 NDCG@10 NDCG@20 Hits@10 Hits@20 NDCG@10 NDCG@20
SASRec 69.2 +0.15 78.4 £ 0.1 4489+043 47.23+044 | 68.25+0.08 78.37+0.06 43.24+0.18 4581+0.18
BERT4Rec 63.01 £0.11 7247+£0.15 43.84+£0.04 46.24+0.07 | 62.24+0.26 7238+0.13 4242+0.15 4499+0.11
BSARec 69.90 £0.13 79.04+0.12 47.36+0.36 49.69+0.35 | 69.45+0.04 79.27+0.06 4579+0.43 48.28+0.45
SRGNN 65.61 £0.09 7493+0.09 4627+0.1 48.64+£0.08 | 65.62+0.26 752+0.15 4485+0.17 47.28+0.15
CORE 69.93£0.02 79.32+0.1 39.4+0.05 41.79+0.07 | 69.42+0.12 79.4+0.1 39.27+0.05 41.8+0.05
UniSRec (FHCM) | 70.35+0.04 79.73+£0.13 4399+0.12 4637+0.1 | 69.95+0.06 79.84+0.07 4297+0.18 4548+0.2
UniSRec 70.54+£0.09 79.74+0.03 445+0.06 46.84+0.06 | 69.99+0.07 79.63+0.03 4342+0.08 45.87+0.06
FDSA 68.94 £0.29 78.16+0.13 48.62+0.11 50.96+0.08 | 67.88+0.07 77.97+0.11 47.04+0.11 49.6+0.12
S3-Rec 62.82+1.78 72.85+1.01 40.84+£2.57 4339+237 | 60.6+£292 71.67+2.19 37.88+3.42 40.69+3.22
LLM2SASRec 70.01 £0.1 79.15+0.08 48.13+0.08 5045+0.11 | 69.2+0.14 79.11 £0.06 46.22+0.39 48.73+04
LLM2BERT4Rec | 6548 £0.02 7591+0.08 39.8+0.16 4245+0.15| 64.88+0.44 759+0.14 31.23+0.26 32.0+0.24
AlterRec 70.61 £0.03 79.75+0.07 49.53+0.02 51.86+0.01 | 69.98 £0.01 79.75+0.05 47.87+0.14 50.35+0.14
AlterRec_aug 70.82+0.09 79.84+0.1 49.56+0.06 51.86+0.07 | 70.13+0.03 79.86+0.11 47.87 +0.13 50.34 +0.15

performance in both Hits@N and NDCG@N. For
instance, AlterRec shows about a 10% relative im-
provement over UniSRec based on NDCG@10 and
NDCG@20 on Amazon-M2 datasets. Addition-
ally, it achieves approximately 19% and 2% rela-
tive improvements over FDSA based on Hits@10
and Hits@20 on the HD and Amazon-M2 datasets.
2) Models incorporating text data, like AlterRec,
UniSRec, and FDSA, generally outperform ID-
based models, indicating that text information of-
fers complementary benefits and enhances overall
performance.

Table 2: Ablation study on key components. Reported
results are mean value over three seeds.

HD Amazon-French

Methods Hits@10 Hits@20 | Hits@10 Hits@20
AlterRec 38.25 46.31 70.61 79.75
AlterRec_random 37.41 4541 70.46 79.64
AlterRec_w/o_text 35.64 42.95 68.26 77.23
AlterRec_w/o_ID 30.05 38.73 66.96 76.85

5.3 Ablation Study

In this subsection, we evaluate the effectiveness
of key components in our model: hard negative

samples and the ID and text uni-modal networks.
Table 2 presents the ablation study results for the
following model variants: “AlterRec_random" for
training with random negative samples, “Alter-
Rec_w/o_text" for the model without the text uni-
modal network, and “AlterRec_w/o_ID" for the
model excluding the ID uni-modal network. Alter-
Rec_w/o_text and AlterRec_w/o_ID are trained on
a single modality.

The results in Table 2 show that using random
negative samples hurts performance, as it behave
likes independent training and lacks interaction be-
tween the two modalities. This underscores the
effectiveness of AlterRec over independent train-
ing, which benefits from hard negative samples
to enhance learning between the two uni-modal
networks. Furthermore, AlterRec significantly out-
performs model variants that rely only on ID in-
formation, i.e., AlterRec_w/o_text. For instance,
AlterRec achieves relative improvements of 7.82%
and 3.26% in terms of Hits@20 on the HD and
Amazon-French datasets, respectively. These find-
ings highlight AlterRec’s superior ability to inte-
grate text information over naive fusion methods.
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Figure 5: Test results during the alternative training.
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Figure 6: Performance comparison w.r.t. long-tail items.
The bar graph depicts the proportion of sessions in the
test data for each group. The line chart illustrates the
improvement ratios for Hits@20 and NDCG @20 rela-
tive to BERT4Rec.

Additionally, we present the performance of Al-
terRec in Figure 5, including the individual per-
formance of the ID and text components within
AlterRec across epochs. These components are de-
noted as "ID in AlterRec" and "text in AlterRec",
respectively. The overall performance of AlterRec
is based on the score ys; in Eq. (6). The perfor-
mance of "ID in AlterRec" and "text in AlterRec"
are derived from the scores y!? and /%" within
Ys,i- Figure 5 demonstrates that both ID and text
components are effectively trained in our model,
and crucially, AlterRec does not exhibit the imbal-
ance issue commonly associated with naive fusion.

5.4 Performance on Long-tail Items

Textual data offers valuable semantic information
that can be used to enhance long-tail items in
session-based recommendation. To validate this,
we divide the test data into groups based on the
popularity of the ground-truth item in the training
data. We then compare the performance of various
methods in each group against the ID-based method
BERT4Rec. The comparative result is presented
in Figure 6, where we also show the proportion of
each group. This figure reveals that a majority of
items have sparse interactions (long-tail items). In
most cases, AlterRec outperforms other baselines
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Figure 7: Performance by varying « and k.

particularly on long-tail items. For instance, Al-
terRec achieves the best performance in the [0,30]
group on the HD and Amazon-French. It indicates
that AlterRec effectively captures textual informa-
tion, enhancing its performance on long-tail items.

5.5 Parameter Analysis

In this subsection, we analyze the sensitivity of
two key hyper-parameters: the parameter o which
adjusts the contribution of ID and text scores in
Eq. (6), and the end index k3 used for selecting
hard negative samples as discussed in Section 4.2.
More parameter analysis (k1, p, and 3) are reported
in section G in the Appendix which show stable im-
pact on the performance. The results for Hits @20
and NDCG@20 on HD and Amazon-French are
presented in Figure 7. Regarding «, an increase in
performance is observed as « rises from 0.1 to 0.5,
followed by a decrease when « is increased from
0.5 to 0.9. This suggests that an a value of 0.5 typ-
ically yields the best performance, indicating equal
contributions from ID and text. For ks, there is an
increasing trend in NDCG @20 on Amazon-French
and a decreasing trend in Hits@20 on HD as ks
increases. This indicates that the Amazon-French
may benefit from relatively more hard negatives,
whereas HD does not require as many.

6 Conclusion

In this work, we propose AlterRec, an effective
approach for combining ID and text information in
session-based recommendation. We first identify
an imbalance issue in the commonly used naive
fusion framework, which limits the integration of
textual information. To overcome this challenge,
AlterRec trains ID and text component indepen-
dently and uses an alternative training strategy that
enables implicit interactions between them. By
leveraging hard negatives and augmented positives
from one network to train the other, AlterRec mit-
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igates the imbalance issue and facilitates mutual
learning to enhance overall performance. Exten-
sive experiments on multiple datasets confirm its
effectiveness against state-of-the-art baselines. In
future work, we aim to explore more advanced text
encoders, such as LLaMA, within this framework.

7 Limitations

Our investigation builds upon the naive fusion
method to combine ID and text information, with-
out exploring other fusion strategies. Moreover,
due to resource constraints, we did not conduct an
extensive investigation into different text encoders,
which could be important to integrate the text in-
formation.

8 Acknowledgements

This work is supported by the National Sci-

ence Foundation (NSF) under grant num-
bers CNS2321416, 11S2212032, 11S2212144,
IIS 2504089, DUE2234015, CNS2246050,

DRL2405483 and 10S2035472, the Michigan
Department of Agriculture and Rural Development,
US Dept of Commerce, Amazon Faculty Award,
Meta, NVIDIA, Microsoft, SNAP and The Home
Depot.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Lei Chen, Chen Gao, Xiaoyi Du, Hengliang Luo, De-
peng Jin, Yong Li, and Meng Wang. 2025. Enhanc-
ing id-based recommendation with large language
models. ACM Transactions on Information Systems,
43(5):1-30.

Walter H Delashmit, Michael T Manry, and 1 others.
2005. Recent developments in multilayer percep-
tron neural networks. In Proceedings of the seventh

annual memphis area engineering and science con-
ference, MAESC, pages 1-15.

Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu,
Tianyuan Yuan, Yue Wang, Yang Yuan, and Hang
Zhao. 2023a. On uni-modal feature learning in su-
pervised multi-modal learning. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
8632-8656. PMLR.

193

Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu,
Tianyuan Yuan, Yue Wang, Yang Yuan, and Hang
Zhao. 2023b. On uni-modal feature learning in
supervised multi-modal learning. arXiv preprint
arXiv:2305.01233.

Jesse Harte, Wouter Zorgdrager, Panos Louridas, As-
terios Katsifodimos, Dietmar Jannach, and Marios
Fragkoulis. 2023. Leveraging large language models
for sequential recommendation. In Proceedings of
the 17th ACM Conference on Recommender Systems,
pages 1096-1102.

Baldzs Hidasi, Alexandros Karatzoglou, Linas Bal-
trunas, and Domonkos Tikk. 2016. Session-based
recommendations with recurrent neural networks. In
4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings.

Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and
Wayne Xin Zhao. 2022a. Core: simple and effec-
tive session-based recommendation within consistent
representation space. In Proceedings of the 45th in-
ternational ACM SIGIR conference on research and
development in information retrieval, pages 1796—
1801.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang
Li, Bolin Ding, and Ji-Rong Wen. 2022b. Towards
universal sequence representation learning for recom-
mender systems. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 585-593.

Yu Huang, Junyang Lin, Chang Zhou, Hongxia Yang,
and Longbo Huang. 2022. Modality competition:
What makes joint training of multi-modal network
fail in deep learning?(provably). In International
Conference on Machine Learning, pages 9226-9259.
PMLR.

Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang,
Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing Lu,
Zhengyang Wang, Ruirui Li, and 1 others. 2023.
Amazon-m2: A multilingual multi-locale shopping
session dataset for recommendation and text genera-
tion. arXiv preprint arXiv:2307.09688.

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197-206. IEEE.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2.

Jian Li, Jieming Zhu, Qiwei Bi, Guohao Cai, Lifeng
Shang, Zhenhua Dong, Xin Jiang, and Qun Liu. 2022.
Miner: multi-interest matching network for news
recommendation. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 343—
352.



Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao
Lian, and Jun Ma. 2017. Neural attentive session-
based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge
Management, pages 1419—1428.

Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi
Zhang, and Fajie Yuan. 2023. Exploring the upper
limits of text-based collaborative filtering using large
language models: Discoveries and insights. arXiv
preprint arXiv:2305.11700.

Qidong Liu, Jiaxi Hu, Yutian Xiao, Xiangyu Zhao, Jing-
tong Gao, Wanyu Wang, Qing Li, and Jiliang Tang.
2025. Multimodal recommender systems: A survey.
ACM Comput. Surv.

Yitong Pang, Lingfei Wu, Qi Shen, Yiming Zhang, Zhi-
hua Wei, Fangli Xu, Ethan Chang, Bo Long, and
Jian Pei. 2022. Heterogeneous global graph neural
networks for personalized session-based recommen-
dation. In Proceedings of the fifteenth ACM inter-
national conference on web search and data mining,

pages 775-783.

Yoon-Joo Park and Alexander Tuzhilin. 2008. The long
tail of recommender systems and how to leverage
it. In Proceedings of the 2008 ACM conference on
Recommender systems, pages 11-18.

Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang,
and Di Hu. 2022. Balanced multimodal learning via
on-the-fly gradient modulation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8238-8247.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Xubin Ren, Wei Wei, Lianghao Xia, Lixin Su, Suqi
Cheng, Junfeng Wang, Dawei Yin, and Chao Huang.
2023. Representation learning with large lan-
guage models for recommendation. arXiv preprint
arXiv:2310.15950.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2012. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618.

Yehjin Shin, Jeongwhan Choi, Hyowon Wi, and
Noseong Park. 2024. An attentive inductive bias for
sequential recommendation beyond the self-attention.
In Proceedings of the AAAI conference on artificial
intelligence, volume 38, pages 8984—-8992.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bertdrec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441-1450.

Hamidreza Tahmasbi, Mehrdad Jalali, and Hassan Shak-
eri. 2021. Modeling user preference dynamics with
coupled tensor factorization for social media recom-
mendation. Journal of Ambient Intelligence and Hu-
manized Computing, 12:9693-9712.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Weiyao Wang, Du Tran, and Matt Feiszli. 2020. What
makes training multi-modal classification networks
hard? In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
12695-12705.

Ye Wang, Jiahao Xun, Minjie Hong, Jieming Zhu, Tao
Jin, Wang Lin, Haoyuan Li, Linjun Li, Yan Xia, Zhou
Zhao, and 1 others. 2024. Eager: Two-stream gen-
erative recommender with behavior-semantic collab-
oration. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 3245-3254.

Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin
Su, Suqi Cheng, Junfeng Wang, Dawei Yin, and
Chao Huang. 2023. Llmrec: Large language models
with graph augmentation for recommendation. arXiv
preprint arXiv:2311.00423.

Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng
Huang, and Xing Xie. 2019a. Neural news recom-
mendation with multi-head self-attention. In Pro-
ceedings of the 2019 conference on empirical meth-
ods in natural language processing and the 9th inter-
national joint conference on natural language pro-
cessing (EMNLP-1JCNLP), pages 6389-6394.

Nan Wu, Stanislaw Jastrzebski, Kyunghyun Cho, and
Krzysztof J Geras. 2022. Characterizing and over-
coming the greedy nature of learning in multi-modal
deep neural networks. In International Conference
on Machine Learning, pages 24043-24055. PMLR.

Shu Wu, Yuyuan Tang, Yanqgiao Zhu, Liang Wang, Xing
Xie, and Tieniu Tan. 2019b. Session-based recom-
mendation with graph neural networks. In Proceed-
ings of the AAAI conference on artificial intelligence,

volume 33, pages 346-353.

Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang,
Yancheng Yuan, and Xiangnan He. 2023. Generate
what you prefer: Reshaping sequential recommen-
dation via guided diffusion. Advances in Neural
Information Processing Systems, 36:24247-24261.

Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen
Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023.
Where to go next for recommender systems? id-
vs. modality-based recommender models revisited.
arXiv preprint arXiv:2303.13835.

194



Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S
Sheng, Jiajie Xu, Deqing Wang, Guanfeng Liu, Xiao-
fang Zhou, and 1 others. 2019. Feature-level deeper
self-attention network for sequential recommenda-
tion. In IJCAI, pages 4320—4326.

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu,
Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and
Ji-Rong Wen. 2020. S3-rec: Self-supervised learning
for sequential recommendation with mutual informa-
tion maximization. In Proceedings of the 29th ACM
international conference on information & knowl-
edge management, pages 1893—-1902.

195



A Implementation of Naive Fusion

In this section, we give more details of the naive
fusion methods in section 3.2.1. We explore three
approaches: our own implementation NFRec, Unis-
Rec (Hou et al., 2022b), and FDSA (Zhang et al.,
2019), with detains provided in the following.

* NFRec: It consists of several key components.
We give more details of these components.
ID and text encoder: We employ the same
ID and text encoder as AlterRec which is in-
troduced in section 4.1.1 and section 4.1.1,
respectively. Through these two encoders, we
obtain the item-level ID embedding X and
text embeddings H. Fusion operation: We
fuse the ID and text item embeddings to form
a final embedding Z via summation or con-
catenation to as mentioned in section 3.2.1.
Scoring function: For a given session s, we
apply the mean function based on the fused
item embedding to get the session embedding
ds = g(s, Z), and then we use the vector mul-
tiplication between session embedding and the
candidate item’s fused embedding to get the
score Ys ; = Ziqu. Loss function: We use
the cross entropy as the loss function, which
follows similar form with Eq. (3).

UniSRec (Hou et al., 2022b): The model em-
ploys the same ID encoder as NFRec, which
utilizes a learnable embedding for the ID rep-
resentation. For text encoder, it leverages a
language model enhanced by the proposed
adaptor to extract textual information. Af-
ter pretraining the adaptor using two con-
trastive loss functions, it merges the ID and
text embeddings through summation. UniS-
Rec adopts the same cross-entropy loss func-
tion as used in NFRec. We use the official
code of UnisRec ! as the implementation.

* FDSA (Zhang et al., 2019): The ID encoder
generates ID embeddings using learnable em-
beddings. The text encoder employs a MLP
and an attention mechanism to produce text
embeddings. The Transformer is applied to
items within a session to create ID and text ses-
sion embeddings, which are then concatenated
to form the final session embedding. Simi-
lar with NFRec and UniSRec, FDSA utilizes

"https://github.com/RUCAIBox/UniSRec/tree/master

cross-entropy as the loss function. For the im-
plementation of FDSA, we utilize code from
the UniSRec’s repository, which includes the
implementation details for FDSA.

B More Details when exploring NFRec

In this section, we give more details for the explo-
ration conducted in section 3.2.2. We elucidate the
process of dividing the NFRec into its ID and text
components, and describe how we evaluate the per-
formance and obtain the loss of "ID in NFRec" and
"text in NFRec." Details on the implementation of
the NFRec are provided in the Appendix A.

For any given item ¢, we derive the ID embed-
ding X; and text embedding H; from the cor-
responding ID and text encoders. These two
embeddings are then concatenated to form a fi-
nal embedding Z; = [X;,H;]. For a session
s = {s1,82,...,5n}, the session embedding is
obtained by applying the mean function to the
final embeddings of the items within session s:
ds = Ymean(S, Z). This session embedding is rep-
resented as a concatenation of two parts derived
from the ID and text embeddings, respectively:

as = [P, gl
1 1
=®ZﬁmHZmJ (7
S; €S S; €S

The relevance score between a session and an item
is then decomposed into two parts:

Ysi = Zqus
— [Xz‘; Hi]T[qu, qtext]

S

=X/ q.” + Hj "

S

= Ysd + Ui (8)

Thus, the relevance score in NFRec can be de-
composed as the summation of the ID and text
scores. Accordingly, we evaluate the performance
and obtain the loss of “NFRec”, “ID in NFRec”
and “text in NFRec” based on y, ;, yI? and %"
in Eq. (8), respectively. For the loss function, the
cross-entropy is employed.

C Alternative training algorithm

We present the pseudo code of the alternative train-
ing algorithm in Algorithm 1. The parameters
within the ID and text uni-modal networks are de-
noted as #/” and °*!, respectively. Initially, as
indicated in line 1, both networks are randomly
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Figure 8: Session recommendation results (%) on the HD dataset. We compare the models combing ID and text
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Algorithm 1 Alternative Training

Require: User-item interaction set S, epoch num-

Ensure: Converged models 677, gtezt

ber using random negatives Mmyqndom, Maxi-
mum epoch number My,q2, gap epoch number

Mgap

1: Random initialize two uni-modal networks

—
4

11:
12:
13:
14:
15:
16:

R A o

GID, Qtext

cfori=1,2, ..., Mprandom do

end for
cfori=1,2,..., Myandom dO

end for

Compute loss in Eq. (3)

else
Compute loss in Eq. (2)

end if
end for

Train #/? using random negatives

Train 6'*! using random negatives

s fori=0,1,..., mmaer — 2 * Myandom do
if i mod (2 * mgep) < Mmgqp then

Update 67 : 9'P «+ ¢'P — oV ILIP
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Figure 9: Test performance in terms of Hits@20 (%)
and training loss comparison on the HD dataset.

initialized. In the early stages of training, both net-
works are trained with random negative samples,
as indicated in line 2-7. It’s because the embedding
learned in the early stage are of lower quality and
might not be able to provide useful information.
As training progresses, we shift towards employing
hard negative samples. At first, the ID unimodal
network is trained using predictions from the text
unimodal network, as described in lines 9 to 11.
After mgyq, epochs, training shifts to the text uni-
modal network, utilizing predictions from the ID
unimodal network, as indicated in lines 12 to 15.
Subsequently, training alternates back to the ID
network. This cycle continues until convergence
is achieved for both networks. Notably, for Alter-
Rec_aug, we replace the loss function in line 10
and 13 as Eq. (5) and Eq. (4) respectively.

D Additional Results in Preliminary
Study

Additional results on the HD dataset for inves-
tigations in sections 3.2.1 are displayed in Fig-
ure 8 and Figure 9, respectively. These figures
indicate a trend similar to that observed with the
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Amazon-French dataset. Specifically, Figure 8 re-
veals that models trained independently on ID data
can achieve performance comparable to, or even
surpassing, that of naive fusion methods. Further-
more, models relying solely on text information
tend to perform the worst. In Figure 9, it is ob-
served that the ID component dominates the per-
formance and loss. These findings are consistent
with observations made with the Amazon-French
dataset, suggesting that the phenomenon identified
in observations 1 and 2 in section 3.2.1, as well as
the imbalance issue in NFRec, may be prevalent
across various datasets.

Table 3: Data statistic of the session datasets. The
Amazon-M2 datasets don’t involve users. #Train, #Val,
and #Test denote the number of sessions in the train,
validation, and test.

Dataset #User #ltem  #Train #Val #Test

HD 145,750 39,114 182,575 2,947 5,989
Amazon-Spanish - 38,888 75,098 7,900 6,237
Amazon-French - 40,258 96,245 10,507 8,981
Amazon-Italian - 45,559 102,923 11,102 10,158

E Datasets

We provide the data statistics in Table 3. The HD
dataset is a sampled dataset of purchase logs from
the an e-commerce company’s website. We include
sessions where all items have textual data, i.e., ti-
tles, descriptions, and taxonomy. Items in each
session is interacted by the same user, who may
have engaged in several sessions at distinct times-
tamps. For the purposes of validation and testing,
we select the most recent sessions from different
users. Specifically, 10% of these sessions are des-
ignated for validation and 20% for testing, with the
remainder allocated to training sessions. Typically,
the sessions in validation appear after those in the
training set, and the sessions for testing appear after
those in the validation set. For the three Amazon-
M2 datasets, since there is no original validation
set, we use about 10% of the training set to create
a validation set.

The Amazon-M2 dataset is publicly available 2.
However, due to strict company regulations, we are
unable to release the HD dataset. It’s protected by
confidentiality agreements and data protection poli-
cies designed to preserve sensitive business infor-
mation and customer privacy. Although the insights

Zhttps://www.aicrowd.com/challenges/amazon-kdd-cup-
23-multilingual-recommendation-challenge

gained from this data are crucial to our research,
we must comply with these restrictions to meet
legal and ethical standards for data usage and shar-
ing. Therefore, we can only present summaries and
aggregated findings instead of providing the raw
datasets.

F Experimental Settings

Empirically, for the HD dataset, we use the mean
function for ID session embedding and Trans-
former for text session embedding. For Amazon-
M2, Transformer is used for both ID and text ses-
sion embeddings. We set the parameters as follows:
Mrandom = 2, Mgap = 2, Mmaze = 30, a = 0.5,
B = 0.5, p = 5. Additionally, for HD, we set
ki1 = 6, ks = 2000, and for the Amazon-M2
datasets, k1 = 20, ko = 20000 are used.

In our experimental setup, we search the learning
rate in {0.01,0.001} and dropout in {0.1,0.3,0.5},
and we set hidden dimension as 300, and number
of Transformer layer to be 2, for all models. The
test results we report are based on the model that
achieves the best performance during the validation
phase. For text feature extraction in the HD dataset,
we utilize Sentence-BERT with the all-MiniLM-
L6-v2 model®. In contrast, for the three Amazon-
M2 datasets, we employ Sentence-BERT with the
distiluse-base-multilingual-cased-v1 model*, due
to its proficiency in handling multiple languages in-
cluding Spanish, French, and Italian. For each item
in the HD dataset, we use title, description, and
taxonomy as the textual data. For the Amazon-M?2
datasets, we use the title and description as textual
data. All baseline methods employ the cross en-
tropy as loss function and are implemented based
on the RecBole . All the experiments are con-
ducted on the NVIDIA L4 GPUs with 24Gb.

We adopt two metrics Hits@K and NDCG@K
which are widely used in recommendation systems
to evaluate both the quality and relevance of the top-
k recommendations. They are defined as follows:

* Hits@K. It measures whether the true pos-
itive is within the top K predictions or not:
Hits@K = %Ef\il 1(rank; < K). rank; is
the rank of the ¢-th sample. The indicator
function 1 is 1 if rank; < K, and O otherwise.

3https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2

*https://huggingface.co/sentence-transformers/distiluse-
base-multilingual-cased-v1

>https://recbole.io/index.html
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Figure 10: Performance of AlterRec by varying k1, p and  on the HD dataset.
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Figure 11: Performance of AlterRec by varying k1, p and 3 on the Amazon-French dataset.

NDCG@K. It considers both the pres-
ence and the position of relevant items
in the candida(te list.) NDCG@K =
1 N 1 (rank; <K T

N Zi:l log, (rank; 1 (rank; <K)+1) * The indica-
tor function 1 is 1 if rank; < K, and 0 other-

wise.

G Additional Parameter Analysis

In this section, we present the impact of three pa-
rameters: ki, the parameter determining the start-
ing index for selecting hard negative samples; p,
the end index for augmented positive samples; and
B, the weight assigned to the loss of augmented
positive samples in Eq. (4) and Eq. (5). The results
in terms of Hits@20 are presented in Figure 10
and Figure 11. Generally, the performance of Al-
terRec tends to decline as k1 and (3 increase, sug-
gesting that larger values may introduce additional
noise. In addition, the performance remains rela-
tively stable across different values of p, indicating
that the model can achieve promising results with
lightweight parameter tuning.
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