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Abstract

Quotation recommendation is an inherently
asymmetric retrieval task, where the intended
meaning of a quote often diverges from sur-
face expressions, creating significant seman-
tic shifts. Combined with minimal lexical
overlap, this poses a core challenge for clas-
sic dense retrievers, which struggle to cap-
ture non-literal and rhetorical alignments. To
bridge this semantic gap, we propose in-
troducing controllable signals to guide the
model’s attention toward abstract, context-
relevant concepts. We propose CTRLSHIFT,
a framework that leverages a Variational Au-
toencoder (VAE) to capture latent associa-
tions between context and quotation, which
is used to derive context-aware control sig-
nals to modulate semantic focus and support
bidirectional alignment and rhetorical intent
modeling. Experiments show that our method
consistently outperforms baselines on the quo-
tation recommendation task and can be ef-
fectively transfered to the general purposed
benchmark. Further, CtrlShift integrates seam-
lessly with general-purpose generative models
without additional fine-tuning, and provides
satisfactory interpretability by generating tex-
tual explaination to uncover the model’s focus
on abstract, citation-aligned semantics.

1 Introduction

Quotation recommendation, the task of retrieving
classical excerpts to enrich modern literature (Tan
et al., 2015), serves as a powerful tool for enhanc-
ing rhetorical expression. However, this task poses
a significant challenge for standard dense retrieval
(DR) models, revealing fundamental limitations in
their design. As our preliminary experiments in
Appendix Table 7 show, even state-of-the-art em-
bedding models perform poorly, underscoring the
need for a different retrieval paradigm.

This performance gap arises from the intrinsic
properties of the task. Quotation recommenda-
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tion is inherently asymmetric (Liao et al., 2024);
modern contexts and classical quotes differ starkly
in style, abstraction, and vocabulary (Qi et al.,
2022). As illustrated in Figure 1 (right), rele-
vance depends less on lexical overlap and more
on functional alignment. Quotations often rely
on metaphor or imagery, introducing a gap be-
tween surface form and intended meaning—what
we term a semantic shift. Tellingly, interaction-
heavy models like ColBERT (Khattab and Za-
haria, 2020), which rely on fine-grained token
similarity, perform even worse (see Appendix
Table 8), suggesting that over-reliance on sur-
face matching is counterproductive. This need
for functional alignment challenges traditional re-
trieval systems designed for semantic similar-
ity (Thakur et al., 2021).

The reliance of dense retrievers on surface-
level lexical signals is well-documented; they of-
ten fail to capture salient keywords (Karpukhin
et al., 2020; Chen et al., 2021) and tend to pri-
oritize superficial overlaps over factual or func-
tional relevance (Fayyaz et al., 2025). As a re-
sult, they struggle to model the kinds of seman-
tic shifts and abstract alignments required for ef-
fective quotation recommendation. While com-
monly used (Wu and Cao, 2024; Metzler et al.,
2021), pseudo-query generation is unstable and
unreliable in open-ended citation tasks (Abe et al.,
2025).

Importantly, recent embedding models, espe-
cially those based on decoder-only LLMs (Chen
et al., 2024; Muennighoff et al., 2024; Wang et al.,
2024a), exhibit emergent capabilities (Wei et al.,
2022) that arise from scale and representation
learning. These models inherently possess the ca-
pacity to capture abstract reasoning and contextual
nuance, offering a bottom-up mechanism for mod-
eling semantic drift and latent alignment.

We propose a modular soft control mech-
anism to dynamically steer embedding gener-
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Figure 1: An overview of our CTRLSHIFT framework. Left: The main pipeline, featuring a shared encoder and
a two-stage process. An initial embedding is passed through an external prompt generator to produce a dynamic
control vector, which is injected into a frozen language model to yield a refined, context-aware representation.
Right: Illustrative examples demonstrating that effective quotation matching relies on deeper functional alignment

rather than mere surface-level lexical overlap.

ation—shifting focus from surface-level token
overlap to abstract, functional semantics. As
shown in Figure 1 (right), this enables the model to
move beyond superficial matches (e.g., "day and
night") and instead align with contextually rele-
vant concepts (e.g., "selfless dedication"), even in
the absence of lexical overlap.

To this end, we introduce CTRLSHIFT, a
lightweight framework that equips frozen lan-
guage models with dynamic, context-aware em-
bedding capabilities. As illustrated in Figure 1
left, CTRLSHIFT follows a two-stage process: an
initial embedding is produced, then a lightweight
control module—implemented as a VAE—derives
a context-sensitive control vector. This vector is
injected back into the LLM to yield refined em-
beddings aligned with abstract semantics. The en-
tire framework is trained end-to-end with a self-
supervised objective.

We conducted extensive experiments demon-
strating that CTRLSHIFT improves performance
across multiple languages and generalizes well
to MS MARCO. This is significant because di-
rect fine-tuning on this saturated benchmark often
degrades performance by disrupting the model’s
pre-trained knowledge (Pande et al., 2025). Our
method avoids this pitfall by adapting the model
without altering its weights. Furthermore, it en-
ables general-purpose LLMs to produce competi-
tive embeddings without task-specific tuning, and
supports interpretability via decoding of abstract
control signals.

Our contributions are as follows:

* We present CTRLSHIFT, a lightweight con-

trol framework that explores a novel form of
model self-refinement. It enables fine-grained
semantic modulation of frozen language mod-
els by using a VAE to learn latent, context-
aware concepts for functional alignment.

* We demonstrate that CtrlShift achieves con-
sistent and significant performance gains on
the specialized quotation recommendation
task, and generalizes robustly to the general-
purpose MS MARCO benchmark.

* We show that CTRLSHIFT enables effective
retrieval with general-purpose decoder-only
language models, without task-specific fine-
tuning, and inherently supports interpretabil-
ity by decoding control vectors into abstract
citation-related concepts, leveraging the gen-
erative capabilities of LLMs.

2 Related Work

Dense Retrieval Dense retrieval (DR) encodes
136 queries and documents into a shared embed-
ding space to support efficient retrieval beyond
lexical matching. The field has evolved from bi-
encoders using contrastive finetuning with nega-
tive sampling (Karpukhin et al., 2020; Xiong et al.,
2021) to modern models pretrained at scale like
E5 (Wang et al., 2022), GTE (Li et al., 2023), and
BGE (Chen et al., 2024). To overcome bi-encoder
limitations, their capabilities are often enhanced
by distilling knowledge from more powerful but
inefficient cross-encoders (Rosa et al., 2022; Qu
et al., 2021; Ren et al., 2021a; Zhang et al., 2021;
Ren et al., 2021b).

The advent of Large Language Models (LLMs)
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embeddings.

has spurred new embedding models, from
decoder-only architectures (Liu et al., 2024; Wang
et al., 2024b; Lee et al., 2024a,b) to special-
ists created by fine-tuning generative models like
Gemini-embedding (Lee et al., 2025) and Qwen3-
embedding (Zhang et al., 2025) on synthetic
data (Wang et al., 2024a). However, these mod-
els act as static encoders, unable to leverage their
instruction-following ability for dynamic contex-
tual adaptation—a core limitation our work ad-
dresses.

Prompting for Retrieval Prompting improves
dense retrieval in a parameter-efficient way. Most
prior prompting methods in retrieval rely on static
strategies (Peng et al., 2025; Lee et al., 2022; Ma
et al., 2022), including instruction-based prompt-
ing with synthetic data (Dai et al., 2022; Asai
et al., 2022; Su et al., 2022; Wang et al., 2024a).
These global approaches overlook input-specific
semantics. While dynamic prompting has been
explored for reranking (Wu et al., 2024), we in-
troduce the first dynamic control mechanism for
dense retrieval.

Quotation Recommendation  Quotation rec-
ommendation has evolved from a learning-to-rank
task with hand-crafted features (Tan et al., 2015)
to early neural models (LSTMs/CNNs) (Tan et al.,
2016, 2018; Ahn et al., 2016). Research has
since improved semantic alignment using struc-
tured knowledge (Xu et al., 2022; Liu et al., 2021),
established benchmarks (Qi et al., 2022), and ex-
tended the task to dialogue and generation (Lee
et al., 2016; Wang et al., 2021; Xiao et al., 2024).

We are the first to frame this task from a mod-
ern dense retrieval perspective, with CTRLSHIFT

designed to capture deep, context-dependent rele-
vance beyond surface similarity.

3 Approach

As shown in Figure 1 (left), CTRLSHIFT reformu-
lates dense retrieval as a two-stage process: gen-
erating a general-purpose embedding followed by
context-aware refinement. The name CTRLSHIFT
reflects our core idea—using a dynamically gen-
erated control(Ctrl) vector to capture the semantic
shift of text in context. The main pipeline, Con-
trolled Embedding Refinement (Figure 2, left),
is guided by Semantic Shift Modeling (Figure 2,
right), which provides auxiliary supervision for
the control vector.

3.1 Problem Formulation

Let C' be an input context and P =
{P1,P,,...,Py} be a corpus of N source
poems. The objective is to retrieve the specific
poem P; € P that s functionally and semantically
aligned with the context C'.

We formulate this as a dense retrieval task, aim-
ing to learn an embedding function f(-) that maps
both contexts and poems into a shared semantic
space RY. For a given context C, the model is
trained to ensure that its embedding f(C) is closer
to that of the source poem f(P;) than to any non-
source poem f(F;) (i # j), under a similarity
metric sim(-, -). Following the standard dense re-
trieval pipeline, all poems in the corpus P are en-
coded offline via f(-) to construct an embedding
index. At inference time, C is encoded into a
query vector and matched against the index to re-
trieve top-ranked candidates.
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3.2 Controlled Embedding Refinement

Our refinement process enables model self-
adaptation via an external control mechanism. By
generating dynamic control vectors, it steers a
frozen language model toward functional, context-
aware semantics suitable for asymmetric retrieval.
As shown in Figure 2 (left), this process is
parameter-efficient and leaves the base LLM un-
touched.

We begin by generating an initial embedding
einit, which is passed through a lightweight Vari-
ational Autoencoder (VAE) (Kingma et al., 2013)
to produce a latent variable z capturing the abstract
“citation concept.” A Feature-wise Linear Modu-
lation (FiLM) layer (Perez et al., 2018) conditions
einit on z, and a ControlHead transforms z into a
dynamic control vector c:

¢ = (z) © ejnit + ControlHead(z) (1)

where 7(-) and ControlHead(-) are MLPs that
generate scaling and shifting parameters, respec-
tively. This operation preserves the richness of
€init While aligning it with the structured abstrac-
tion in z, enabling precise semantic refinement
without modifying the language model.

3.3 Semantic Shift Modeling

While our end-to-end retrieval objective implic-
itly encourages the model to understand contex-
tual meaning, we introduce Semantic Shift Mod-
eling as an auxiliary objective to make this process
more explicit and robust. This approach is con-
ceptually grounded in the distributional hypothesis
(Firth, 1957) and the additive properties of word
embeddings (Mikolov et al., 2013). Inspired by
relational embedding models that model relations
as translations in vector space (Bordes et al., 2013;
Wang et al., 2014), we explicitly model the seman-
tic shift a poem undergoes.

As shown in Figure 2 (right), the shift vector
€qnift 18 defined as:

€shift = €in_context — €isolated 2)

This vector is intended to capture the contextual
transformation of the poem’s semantics. To guide
this process, we train the control vector c to ap-
proximate the semantic shift vector egyif; using an
auxiliary loss (see Section 3.4). This additional su-
pervision encourages the control module to model

nuanced, context-dependent meaning, which we
hypothesize to be beneficial for achieving better
functional alignment.

3.4 Training Objectives

CTRLSHIFT is trained end-to-end using multiple
objectives that jointly encourage structured latent
representations and controllable, context-sensitive
semantics.

VAE Regularization. To ensure the latent vari-
able z being able to capture rich and generalizable
semantic features, we adopt a variational autoen-
coding setup. A KL-divergence loss encourages
the posterior distribution to remain close to a stan-
dard Gaussian prior:

Lk = Dxr (g4(2 | €init) | MN(0,1))  (3)

Retrieval Loss. To align the learned embed-
dings with downstream retrieval objectives, we
adopt an InfoNCE loss (Oord et al., 2018). Given a
context embedding ep and its corresponding posi-
tive poem embedding ejS, along with a set of neg-
ative poem embeddings e, , the loss is:

Lretrieval = — log p* “)

L ()
T exp (ﬁ%) + 2 g-eN(a) P (@)
&)

where sim(+, -) is cosine similarity and 7 is a tem-
perature hyperparameter. Negatives are sampled
from within the batch.

Semantic Shift Prediction Loss. To further
guide latent learning, we introduce an auxiliary
reconstruction objective that explicitly supervises
semantic transformations. A decoder conditioned
on z predicts a shift vector €gp;f, trained to match
a reference shift embedding egpisy derived from
the context-poem pair:

Lnite = ||snirc — €snite 5 (6)

This loss anchors the latent space to interpretable
transformations, encouraging z to encode control-
lable semantic variations. As shown in our abla-
tions, incorporating this shift supervision leads to
more structured and effective representations.
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Backbone Method | English | Modern Chinese |  Traditional Chinese
‘ MRR nDCG R@I10 ‘ MRR nDCG R@10 ‘ MRR nDCG R@10
BGE-M3 Raw 0.0936  0.1039 16.28 | 0.0950 0.1061 17.11 0.0700  0.0848 13.26
(Encoder-only) Pseudo Query | 0.1088 0.1213 19.05 | 0.1106 0.1251  20.31 0.0805 0.0895 14.42
Data Aug 0.1334 0.1480 22.33 | 0.1178 0.1337 21.62 | 0.1023 0.1148 18.04
CTRLSHIFT 0.4456 0.4655 59.78 | 0.4230 04567 58.59 | 0.3441 0.3752 50.11
P-tuing v2 0.4379 0.4698 59.68 | 0.3286 0.3637 50.13 | 0.3195 0.3529 48.80
Qwen3-E-4B Raw 0.1818 0.2032  30.29 | 0.1362 0.1544 2437 | 0.1451 0.1641 25.63
(Decoder-only) Pseudo Query | 0.1088 0.1213  24.81 0.0626  0.0683 11.06 | 0.0577 0.0633 10.70
Data Aug 0.1587 0.1776  26.82 | 0.1094 0.1227 19.59 | 0.1195 0.1361 21.77
CTRLSHIFT 0.5876 0.6243 75.87 | 04796 0.5232 68.20 | 0.4382 0.4834 65.02
P-tuing v2 0.5416 0.5860 74.74 | 0.3632 0.4066 57.15 | 0.3767 0.4232  60.06
Qwen3-E-0.6B Raw 0.0470  0.0502 8.21 0.0434  0.0467 7.79 0.0375  0.0400 6.62
(Decoder-only) Pseudo Query | 0.0363 0.0394 6.72 0.0346 0.0374 6.55 0.0266  0.0277 4.88
Data Aug 0.0465 0.0506 8.25 0.0401  0.0436 7.50 0.0291 0.0321 5.76
CTRLSHIFT 0.4974 0.5439 67.02 | 04040 0.4434 59.28 | 0.3665 0.4065 56.12
P-tuing v2 0.4742  0.5122  65.74 | 0.3005 0.3299 4530 | 0.3376 03735 51.65

Table 1: Quotation retrieval performance (MRR, nDCG, Recall@10) across diverse backbones and languages.
CTRLSHIFT consistently outperforms both the P-tuning v2 baseline and the "Raw" baseline baselines while being
significantly more efficient (one input token vs. 64 per-layer tokens in P-tuing v2).

Part Train Val Test Total

English 101,171/6,008 12,771/6,108 12,771/6,108  126,713/6,108
mChinese  32,472/2,904  4,185/3,004  4,185/3,004  40,842/3,004
tChinese 93,031/4,338  11,753/4,438  11,753/4,438 116,537/4,438

Table 2: Statistics of the QUOTER dataset. Each en-
try m/n denotes m context—quote pairs involving n
unique quotes.

Overall Loss.
is defined as:

The total training objective Lol

Liotal = M Lrewieval + A2Lia + A3Lghite,  (7)

where A1, Ao, and A3 are hyperparameters that
control the relative importance of each loss com-
ponent.

4 Experiments

We evaluate CTRLSHIFT on the QuoteR bench-
mark (Qi et al., 2022) (Table 2), a large-scale
dataset designed to test retrieval under metaphori-
cal shifts, low lexical overlap, and domain-specific
semantics, providing a robust testbed for our
method.

We treat quote recommendation as a single-
stage dense retrieval task, where the input is a pas-
sage and the goal is to retrieve the most semanti-
cally aligned quote. Models are evaluated using
Recall@10, nDCG, and MRR.

4.1 Computational Resources

All experiments are conducted on a single
NVIDIA A800 80GB GPU using the official Py-

Torch 2.5.1 container. Further implementation de-
tails and the code repository are provided in Sec-
tion A.2.

4.2 Baselines

We compare CTRLSHIFT against two primary
baselines that use a unified dual-encoder architec-
ture with parameter-efficient tuning: (1) a Raw
baseline that directly uses the pooled rep- resen-
tations from the pretrained models, and (2) P-
tuning v2, implemented via DPTDR (Ma et al.,
2022), a strong prompt-based dense retrieval ap-
proach. We also include the results from the origi-
nal QuoteR paper (Qi et al., 2022) as a key histor-
ical benchmark. It is important to note the sig-
nificant methodological differences between our
approach and the QuoteR baseline. The QuoteR
model is an independent dual-encoder that un-
dergoes multi-stage, full fine-tuning. In contrast,
both CTRLSHIFT and P-tuning v2 employ a uni-
fied dual-encoder (i.e., a shared backbone) and
use lightweight prompt tuning, keeping the base
model frozen. Furthermore, the original QuoteR
task assumes a specific insertion point for the
quote, whereas our setup addresses the more gen-
eral task of retrieving a relevant quote for an entire
passage.

4.3 Main Results

We present the main results in Table 1, which
reveals a clear and consistent pattern: CTRL-
SHIFT substantially and consistently improves
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Figure 3: Qualitative analysis of the semantic space. By decoding embeddings, we show that CTRLSHIFT steers
the model’s focus from surface-level keywords (Raw) to abstract, functional concepts for both a modern context

(left) and a classical poem (right).

Model Variant Recall@10 MRR nDCG
Full CTRLSHIFT 56.12 0.4065 0.3665
w/o Shift 52.09 0.3410 0.3628
w/o FiLM 54.75 0.3576  0.371
w/o VAE 8.25 0.0371 0.0825

Table 3: Ablation of key components. Both shift mod-
eling and VAE are critical.

performance across all tested backbones (BGE-
M3, Qwen3 series) and language datasets (En-
glish, Modern Chinese, and Traditional Chinese).
Our framework consistently outperforms both the
unmodified base models and the strong prompt-
based P-tuning v2 baseline. We also experimented
with two auxiliary enhancements—pseudo query
generation (Pseudo Query) and data augmentation
(Data Aug) via document explanation. However,
these enhancements provided only limited and in-
consistent overall benefit across models.

Crucially, our method achieves these gains with
remarkable efficiency. While P-tuning v2 injects
64 virtual tokens per layer, CtrlShift adds only a
single token to the input, making it significantly
more lightweight. Despite this efficiency, our
method achieves performance that is competitive
with the fully fine-tuned QuoteR. This demon-
strates that our parameter-efficient, external con-
trol mechanism can match a much heavier, mul-
tistage, full fine-tuning approach, highlighting the
power and efficiency of our method.

Due to GPU memory limitations, P-tuning v2
required a smaller batch size and gradient accu-
mulation for stable training. The detailed training
and inference efficiency comparison for both mod-
els is provided in Appendix A.3. Furthermore,
P-tuning v2 lacked native support for backbones
utilizing grouped query attention (GQA, Ainslie

et al., 2023), necessitating implementation-level
adjustments for models like Qwen3.

4.4 Ablation Studies

We conduct ablation studies on the Traditional
Chinese dataset using Qwen3-embedding-0.6B as
the backbone to assess the impact of key compo-
nents. As shown in Table 3, each architectural el-
ement contributes meaningfully to overall perfor-
mance.

Removing the semantic shift prediction loss
("w/o Shift") led to a noticeable drop in re-
trieval performance, underscoring the importance
of modeling contextual transformation explicitly.
Disabling the FiLM layer ("w/o FILM") similarly
degraded performance, indicating its role in effec-
tively modulating the control signal. Most notably,
replacing the VAE with a simple two-layer MLP
bottleneck ("w/o VAE") resulted in the most se-
vere performance degradation. This highlights the
limitations of a deterministic bottleneck and con-
firms the VAE’s effectiveness in learning a struc-
tured latent space crucial for dynamic control.

4.5 Qualitative Analysis: Interpreting the
Semantic Space

To analyze the effect of CTRLSHIFT, we decode
the final embedding vectors via the model’s de-
coder head (1m_head), using the top predicted
tokens as proxies for semantic focus.

As illustrated in Figure 3 (with English trans-
lations in Appendix A.4), CTRLSHIFT shifts
representations from surface-level co-occurrences
(e.g., “achievement”, “work’) to more abstract,
meaning-driving concepts (e.g., “creativity”, “dili-
gence”). For classical texts, it redirects outputs

from literal tokens (e.g., “silkworm”, “spring”) to-
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ward deeper thematic concepts such as “selfless”
and “perseverance”. These results suggest that
CTRLSHIFT guides the model toward functional
semantics over lexical overlap. To our knowl-
edge, this is the first work to leverage decoder-
only LLLM-based embeddings for interpretability
in dense retrieval, offering simple yet effective se-
mantic insight.

To substantiate this functional semantic shift,
we performed K-Means clustering (K=50) on
Raw and CTRLSHIFT embeddings, and decoded
the cluster centroids for semantic labeling (Due
to space limitations, the full cluster tables are
available in our code repository (URL in Ap-
pendix A.2).

The analysis reveals a marked contrast: Raw
embeddings often yield opaque or metadata-
centric cluster centroids (e.g., author names or
genre tags), reflecting an organization heavily
influenced by surface co-occurrence. In con-
trast, CTRLSHIFT embeddings consistently pro-
duce centroids that capture higher-level thematic
concepts. Clusters that were previously lexical
now shift towards abstract qualities like "Dili-
gence" or functional roles such as "Literary Cre-
ation."

This analysis demonstrates that CTRLSHIFT ef-
fectively reorganizes the semantic space around
functional roles and abstract themes, yielding
highly interpretable embeddings and better func-
tional alignment.

Effect of Control Target. To examine whether
explicitly modeling semantic shift improves con-
trol effectiveness, we compare our default tar-
get embedding (eghirr) With two alternatives: the
embedding of the full poem within context
(€poem-in-context) and that of the isolated poem
alone (€poem-isolated). As shown in Table 4, egpif
consistently yields the best performance across all
metrics. In contrast, using the full poem or iso-
lated poem as the target leads to substantial drop
in retrieval quality, likely due to semantic ambi-
guity or overfitting to surface features. All mod-
els show consistent gains when integrated with our
framework, suggesting its potential generality and
applicability.

4.6 Analysis of Implementation Choices

We evaluate design choices for pooling and con-
trol vector injection using the Traditional Chinese
dataset and Qwen3-0.6B backbone (Figure 4).

Control Target Recall@10 MRR nDCG
esnife (default) 56.12 0.3665 0.4065
€poem-in-context 53.62 0.3441 0.3752
Cpoem-isolated 54.76 0.3512 0.3809

Table 4: Comparison of control targets. Modeling the
semantic shift vector is most effective.

Table 5: Retrieval performance of a specialized em-
bedding model vs. a general-purpose LLM, with and
without CTRLSHIFT.

Model Method R@10 MRR nDCG
Raw 662 00375 0.0400
Embed-0.6b ¢ py Suirr  56.12 03665 0.4065
Raw 104 00082 0.0073
LLM-06b o pySuirr  53.61 03538 03905

Pooling Strategies As shown in Figure 4a,
While standard approaches like Mean Pooling and
Last Token Pooling are common, they can be sub-
optimal; mean pooling may dilute important se-
mantic signals, while last-token pooling may not
capture the full context of a sequence. Our results
confirm that Latent Attention (Lee et al., 2024a),
which uses a learnable query to perform task-
adaptive aggregation of token-level hidden states,
achieves the best performance. This highlights the
benefit of a more expressive and flexible pooling
mechanism for our task.

Control Vector Injection We also compare four
strategies for injecting the control vector c into the
frozen LLM (Figure 4).b). The simplest method,
Add, which merely perturbs the input embeddings,
yields the poorest results, suggesting a weak con-
ditioning effect. Prepend and Append, which in-
sert ¢ as pseudo-tokens, perform better but are still
significantly outperformed by our main approach.
The Attach strategy proves decisively superior. By
treating c as a virtual token injected directly via
the model’s past_key_values cache, it al-
lows the LLM to strongly and directly condition
its final representation on our control signal with-
out any architectural modifications. This result in-
dicates that direct autoregressive conditioning is a
more effective mechanism for semantic modula-
tion than simple input sequence manipulation.

4.7 Unifying Generative and Embedding
Models

A key motivation for our work is to explore the
potential of using a single, general-purpose gen-
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Figure 4: Ablation study on pooling methods (a) and
control vector injection strategies (b). Results on the
Traditional Chinese dataset with the Qwen3-0.6B back-
bone show that Latent Attention and the Attach strategy
yield the best performance.

erative LLM for both text generation and high-
quality text embedding. To this end, we conducted
an experiment comparing the retrieval perfor-
mance of a specialized embedding model (Qwen3-
embedding-0.6b) with a general-purpose genera-
tive model (Qwen3-0.6b) of a similar scale.

As shown in Table 5, the raw generative model
(Qwen3-0.6b) performs poorly on the retrieval
task, achieving an nDCG of only 0.0073. This
is expected, as it was not trained for discrimina-
tive embedding tasks. However, when augmented
with our CTRLSHIFT framework, its performance
dramatically improves to an nDCG of 0.3905.

Remarkably, this result is nearly identical
to the performance of the specialized Qwen3-
embedding-0.6b model equipped with CTRL-
SHIFT (0.4065 nDCG). This demonstrates that
our lightweight control mechanism can effectively
steer a general-purpose generative model to pro-
duce embeddings that are competitive with state-
of-the-art specialized models, without requiring
any fine-tuning of the base model’s weights. This
finding highlights a promising path toward uni-
fying text generation and representation learning
within a single, versatile architecture.

4.8 Generalization to Other Benchmarks

Table 6: Performance on the MS MARCO passage
ranking dev set. CTRLSHIFT maintains the strong per-
formance of the base models, avoiding the performance
degradation often seen with fine-tuning on this bench-
mark.

Model Recall@10 MRR nDCG
BGE-M3 53.26 0.4668 0.4813
Qwen3-embedding-0.6b 53.47 0.4688 0.4836

To test generalization beyond quotation recom-
mendation, we evaluated CTRLSHIFT on the MS
MARCO passage ranking benchmark (Bajaj et al.,
2016). We report results on the development set
(as the test set is unavailable), restricting retrieval
to the labeled passages due to memory constraints.

As shown in Table 6, applying CTRLSHIFT pre-
serves the high performance of strong base mod-
els like BGE-M3 and Qwen3-embedding-0.6b on
this general-domain task. The two models perform
comparably, as expected given their similar scale.

This result is notable given recent findings
that fine-tuning strong sentence transformers on
MS MARCO can degrade performance by dis-
rupting the semantic structure built during large-
scale pre-training (Pande et al., 2025). In con-
trast, CTRLSHIFT leaves the base model un-
changed, adapting its representations externally
via a lightweight control signal.  This pre-
serves pre-trained knowledge while improving
task-specific alignment—a particularly beneficial
property on saturated benchmarks.

5 Conclusion

We introduce CTRLSHIFT, a lightweight frame-
work that steers a frozen language model via
dynamic control vectors to capture functional,
context-aware semantics for asymmetric retrieval
tasks. Our experiments show this approach sig-
nificantly improves performance on quotation rec-
ommendation and generalizes robustly to standard
benchmarks like MS MARCO, notably avoid-
ing the performance degradation common to fine-
tuning on saturated benchmarks. Furthermore,
by enabling general-purpose generative models to
produce embeddings competitive with specialized
retrieval systems, our work highlights a promising
path toward unifying representation learning and
generation through dynamic semantic control.
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Ethical Considerations

This work focuses on retrieval-based writing as-
sistance, a relatively low-risk application domain.
All evaluations are conducted on publicly avail-
able datasets (e.g., QuoteR), promoting trans-
parency and reproducibility.

However, since our framework builds on large
language models, it may inherit biases or stereo-
typical associations from the underlying models,
potentially leading to inappropriate outputs. We
do not recommend deployment in sensitive con-
texts where such risks could cause harm. While
some interpretability analyzes are included, fur-
ther work is needed to ensure transparency and ro-
bustness. Our method is lightweight in terms of
parameter updates, though we do not quantify its
environmental impact.

Limitations

While our method enables self-refinement by
guiding a frozen model via external control, it re-
lies on supervised context-quote pairs to train the
control mechanism, which may limit applicability
in low-resource settings. Our exploration of this
mechanism is also preliminary; though results are
promising, experiments are limited in scale and
model diversity.

In addition, while we introduce a dataset
with human-verified citation rationales to sup-
port rationale-aware evaluation, its current cover-
age is narrow. Future work should expand this
dataset and further analyze how control vectors re-
shape semantic space and capture transferable la-
tent concepts.
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A Appendix
A.1 Embedding Model Performance

Table 7: Performance of strong embedding models
on classical poetry citation retrieval. Standard models
struggle to capture the required functional and asym-
metric relevance.

Model Recall@10 MRR nDCG
BGE-M3 13.26 0.0700 0.0848
GTE-Qwen2-7B 24.29 0.1284 0.1556
GTE-Qwen2-1.5B 20.68 0.1060 0.1298
E5-large 12.65 0.0651 0.0796

Table 8: ColBERT underperforms on poetic citation
tasks, suggesting that fine-grained token interactions
alone are insufficient for capturing semantic resonance.

Model Recall@10 MRR nDCG
BGE-M3 13.26 0.0700 0.0848
BGE-M3 (ColBERT) 12.41 0.0631 0.0774

A.2 Training Environment

All experiments are conducted on a single
NVIDIA A800 80GB GPU using the official
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PyTorch 2.5.1 container. We employ the Py-
Torch Lightning framework with mixed-precision
training (bfloat16) to improve computational effi-
ciency.

Optimization is performed using AdamW with
default weight decay. The learning rate is dynam-
ically adjusted via a ReduceLROnPlateau sched-
uler, which reduces it by a factor of 0.5 if the val-
idation performance plateaus for more than 3 con-
secutive epochs. Early stopping is applied with a
patience of 5 epochs based on validation retrieval
metrics. These strategies improve convergence
and generalization across model variants. Our
code is available at https://github.com/
sMetase/CtrlShift.

Table 9: Training and model hyperparameters for
CTRLSHIFT.

Table 11: Training Resource Usage

Resource CtriShift  P-tuning v2
Training Time 4.235 hr 3.798 hr
GPU Memory ~20895 MB ~75131 MB
Batch Size 256 128

Hyperparameter Value
vae_latent_dim 128
vae_hidden_dim 512
free_nats 0.8
loss_retrieval_temp 0.035
batch_size 256
accumulate_grad_batches 1
epoch 25
k_recall 10
loss_weight_formulas.loss_kl ~ 0.02 * progress
loss_weights.loss_pred 1.0
loss_weights.loss_retrieval 1.0

Ir 0.002
Ir_decay_factor 0.5
Ir_scheduler_type plateau

Table 9 summarizes the hyperparameters used for
training CTRLSHIFT. For the P-tuning v2 base-
line, we adopt a different tuning configuration bet-
ter suited for prompt-based methods, as detailed in
Table 10.

Table 10: Additional hyperparameters specific to P-

Table 12: Inference Resource Usage

tuning v2. Resource CtriShift P-tuning v2
” Val Inference Batch Size 512 512
yperparameter aue GPU Memory 65362 MB 40125 MB
batch_size 128 . .
accumulate_grad_batches 2 Time Encoding 243 s 224 s
num_virtual_token 64

A.3 Training and Inference Efficiency

A.4 English translation of the qualitative

analysis
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Table 13: English translation of the qualitative analysis.

Input Text

Method

Top Decoded Tokens

"Anyone who has achieved
great things in life did not
get them by waiting in bed,
but through tireless effort.
The great British philosopher
Bacon said:  ’Shakespeare’s
greatness lies in the fact that
he wrote and translated over 6
million words in his lifetime.

by

CTRLSHIFT 1: creativity, 2: diligence, 3: effort, 4: energy, 5:

creativity, 6: work efficiency, 7: effort, 8: talents, 9:
travail, 10: creat, 11: talent, 12: work, 13: creation,
14: inspiration, 15: creative work, 16: working, 17:
diligence, 18: productivity, 19: efficiency, 20: work

Raw

1: achievement, 2: deed, 3: great event, 4: work, 5:
achievement, 6: —, 7: matter, 8: —, 9: notable, 10:
thing, 11: accomplishment, 12: career, 13: grand,
14: form, 15: work of art, 16: effort, 17: is, 18:
work, 19: work, 20: achievement

"The spring silkworm spins un-
til it dies; the candle burns un-
til its tears dry."

CTRLSHIFT 1: exert, 2: silkworm, 3: hardworking, 4: effort, 5:

moth, 6: moth, 7: —, 8: pupa, 9: selfless, 10: cocoon,
11: tenacious, 12: perseverance, 13: all, 14: spiders,
15: unremitting, 16: education, 17: hardship, 18:
transformation, 19: iter, 20: of life

Raw

1: silkworm, 2: spring, 3: silk, 4: candle, 5: fila-
ment, 6: silk, 7: thread, 8: spring, 9: life, 10: dead,
11: die, 12: bow, 13: silk, 14: spring, 15: Tang, 16:
I'love you, 17: verse, 18: spring breeze, 19: die, 20:
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