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Abstract
We present Large Temporal Model, a Large
Language Model (LLM) that excels in Tem-
poral Relation Classification (TRC). We show
how a carefully designed fine-tuning strategy,
using a novel two-step fine-tuning approach,
can adapt LLMs for TRC. Our approach is fo-
cused on global TRC, enabling simultaneous
classification of all temporal relations within
a document. Unlike traditional pairwise meth-
ods, our approach performs global inference
in a single step, improving both efficiency and
consistency. Evaluations on the MATRES and
OmniTemp benchmarks demonstrate that, for
the first time, an LLM achieves state-of-the-art
performance, outperforming previous pairwise
and global TRC methods. Results show that
our global approach produces more consistent
and accurate temporal graphs. Ablation studies
further validate the effectiveness of our two-
step fine-tuning strategy, while analyses reveal
why our approach succeeds in increasing per-
formance and reducing inconsistencies.

1 Introduction

Temporal Relation Classification (TRC), also re-
ferred to as Temporal Relation Extraction (TRE),
is the task of identifying and classifying the tem-
poral ordering between events mentioned in a
text. Given a document annotated with a set of
events—typically verbs—the goal is to predict the
temporal relations (e.g., before, after, simultane-
ous) between all pairs of events, thereby construct-
ing a directed graph that captures the event chronol-
ogy. A practical application of TRC is the auto-
matic construction of event timelines, which are
valuable for various downstream tasks across do-
mains such as historical analysis, news summariza-
tion, and clinical narratives (e.g., (Bakker et al.,
2024; Sezgin et al., 2023)).

We distinguish between two operational modes
of TRC: (1) pairwise TRC, where each event pair
is classified independently, and (2) global TRC,

where the model classifies all event pairs jointly
in a single inference step. Pairwise TRC has been
the predominant approach for many years and can
be viewed as a conventional classification task ap-
plied repeatedly across event pairs. However, this
approach often suffers from consistency issues, as
it does not enforce logical coherence across the
predictions—such as transitivity or temporal logic
constraints. For instance, predicting that event
A occurs before event B, and event B occurs be-
fore event C, should imply that event A occurs
before event C, a constraint that pairwise models
frequently violate.

In contrast, global TRC requires models capable
of generating an entire temporal relation graph in
one step. Large Language Models (LLMs), with
their strong generative capabilities, are well-suited
for this mode. Recent work (Eirew et al., 2025) has
demonstrated the potential of LLMs in global TRC,
even in zero-shot settings without fine-tuning.

Furthermore, a notable trend in recent studies
involves augmenting models with external knowl-
edge sources, a strategy shown to enhance model
capabilities and yield superior performance. For
instance, the integration of the ATOMIC-2020 com-
monsense knowledge graph (Hwang et al., 2021)
in a previous work (Tan et al., 2023) has proven
effective in infusing models with broad temporal
understanding across diverse events, demonstrably
leading to performance gains over models trained
without such external knowledge.

Despite their potential, LLMs have not yet
shown superior capabilities compared to modern
methods in TRC. Prior research (Roccabruna et al.,
2024; Yuan et al., 2023; Eirew et al., 2025) indi-
cates that LLMs perform worse than current ap-
proaches, which typically use smaller encoder-only
models, when classifying temporal relations. This
performance gap has been observed in both zero-
shot and fine-tuning settings.

Our work aims to fill this gap by investigating
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the effectiveness of fine-tuning LLMs. In this work,
we demonstrate for the first time that a carefully
designed fine-tuning strategy for TRC substantially
boosts LLMs performance, outperforming current
approaches in both pairwise and global settings.

We introduce a two-step fine-tuning strategy.
In the first step, we inject a mixture of relevant
datasets containing temporal information to build a
general temporal understanding within the model.
In the second step, we fine-tune the model specif-
ically on the global TRC task using a parameter-
efficient adaptation technique, which enables better
control over the fine-tuning impact and preserves
the general temporal reasoning acquired in the first
phase.

We evaluate our approach on two benchmark
datasets. The first, MATRES, includes annotations
only between event pairs that occur within a two-
sentence window, thus reflecting local temporal rea-
soning. The second, OmniTemp, is a more recent
and comprehensive dataset that provides annota-
tions for all possible event pairs within a document,
enabling evaluation of truly global temporal rea-
soning. Our experiments show that our fine-tuned
models outperform existing state-of-the-art meth-
ods on both datasets, highlighting the effectiveness
of our approach in enhancing LLMs’ capacity for
TRC.

In our work, we make the following three contri-
butions:

• We show, for the first time, how to fine-tune
LLMs to achieve superior capabilities on TRC,
by applying the two-step fine-tuning approach.
We demonstrate that this approach achieves
new state-of-the-art performance on standard
benchmarks for both pairwise and global TRC
approaches.

• We perform ablation studies and qualitative
analyses to understand why incorporating di-
verse external temporal knowledge, as op-
posed to using core TRC data only, can miti-
gate the inferior LLM performance on TRC,
particularly for the complex global TRC task.

• We provide quantitative evidence that when
performing global TRC, our model produce
more coherent graph, compared to the pair-
wise approach. This highlights the value of a
holistic, document-level prediction strategy.

Figure 1: Our 2 step approach. In the first step, we
perform a full fine-tuning with data from 3 sources -
MATRES (pairwise), ATOMIC-2020 and TGQA-TGR.
In the second step, we perform a LoRA fine-tuning with
data from MATRES (global).

2 Related work

TRC is a well-established and active research
area within the global natural language process-
ing (NLP) field. Over the past decade, many efforts
have been dedicated to developing robust methods
for this task.

Recent approaches (e.g. (Tan et al., 2023; Wu
et al., 2025; Ning et al., 2024; Cohen and Bar, 2023;
Zhang et al., 2022; Tan et al., 2021)) have lever-
aged neural architectures, mainly encoder-based
models like BERT (Devlin et al., 2019) and its
variants. These models are typically fine-tuned on
TRC-specific datasets, learning to classify the re-
lationship between pairs of marked events or time
expressions within a given context.

Some studies (Tan et al., 2023; Zhuang et al.,
2023) have explored enhancing these models by
incorporating external knowledge sources during
training. Notable examples include leveraging com-
monsense knowledge graphs like ATOMIC-2020
(Hwang et al., 2021), which contains relevant event-
centric temporal relations, or utilizing datasets de-
signed for related temporal tasks, such as TGQA-
TGR (Xiong et al., 2024), originally created for
temporal graph reasoning.

Much of the research has focused on a pair-
wise TRC approach, where each event pair is
classified independently. The most commonly
used benchmarks for this paradigm are MATRES
(Ning et al., 2018) and TBDense (Cassidy et al.,
2014). While both contain annotated news arti-
cles, they differ in scale and relation granularity.
MATRES offers a larger corpus (275 documents)
and uses a set of four relations (BEFORE, AFTER,
EQUAL, VAGUE). TBDense, though smaller (36
documents), includes two additional relations (IN-
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CLUDES, IS_INCLUDED). The standard evalua-
tion metric is typically the micro-averaged F1 score,
although protocols can vary. Most contemporary
work follows the practice established by Ning et al.
(2019), where VAGUE relation is excluded during
evaluation but is used during training. However, al-
ternative protocols exist, such as removing VAGUE
instances entirely (Alsayyahi and Batista-Navarro,
2023).

The emergence of LLMs has introduced new op-
portunities for advancing TRC. Initial explorations
have investigated zero-shot or few-shot capabili-
ties. For instance, Yuan et al. (2023) proposed a
chain-of-thought prompting strategy to elicit tem-
poral relations from LLMs without task-specific
training.

Fine-tuning LLMs specifically for TRC is still
emerging. One study (Roccabruna et al., 2024) ap-
plied LoRA (Hu et al., 2022) to fine-tune LLMs
for pairwise TRC, finding that this approach did
not surpass fine-tuned encoder models under their
experimental setup. We note that while direct com-
parison to this study is not possible due to a differ-
ent protocol used, where VAGUE label is removed
entirely, it demonstrated subpar LLMs capabilities
compared to encoder-based models in TRC when
using a standard training approach.

Concurrently, while traditional approaches to
TRC often focus on pairwise classification of adja-
cent events, their limitations, particularly in gener-
ating globally inconsistent temporal graphs, have
spurred interest in building more robust and con-
sistent temporal structures. Several studies (Wang
et al., 2020; Mathur et al., 2021; Yao et al., 2024)
have addressed these issues and proposed mitiga-
tion strategies. For example, Niu et al. 2024 pro-
posed a method to increase the model’s understand-
ing of temporal relations by focusing on their sym-
metric or antisymmetric properties.

A recent work (Eirew et al., 2025) highlighted
the benefits of a global approach to TRC, which
aims to predict the entire set of relations within a
document simultaneously and helps in reducing in-
consistencies within a temporal graph. It also intro-
duced the OmniTemp dataset, which features com-
prehensive document-level annotations suitable for
this paradigm. A similar effort is NarrativeTime
(Rogers et al., 2024), a comprehensive annotation
of the TB-Dense corpus, covering all possible event
pairs.

3 Methodology

We develop a “Large Temporal Model” (LTM),
which is an LLM capable of performing TRC. We
propose a two-step fine-tuning approach designed
to effectively adapt LLMs for the task of TRC, as
demonstrated in Figure 1.

3.1 Step 1: Temporal Domain Adaptation Full
Fine-tuning

The primary objective of this initial step is to instill
broad temporal reasoning capabilities within the
LLM. We achieve this through comprehensive full
fine-tuning on a diverse corpus aggregated from
multiple datasets relevant to temporal understand-
ing. This initial full fine-tuning step equips the
model with foundational concepts necessary for
the downstream task-specific adaptation. The ag-
gregated corpus for this stage comprises approxi-
mately 18,000 instances, each contains instructions
of a specific task, the input text, and the expected
output. Examples of the instructions given to the
model are presented in Table 1. The instances are
constructed from the following three sources:

MATRES (Ning et al., 2018). We utilize a por-
tion of the widely used MATRES dataset to intro-
duce the model to the core concepts and the format
of the TRC task. This dataset contains 275 news ar-
ticles (compiled from TimeBank, AQUAINT, and
PLATINUM) annotated with events. Each pair of
events has a temporal relation—BEFORE, AFTER,
EQUAL, or VAGUE—indicating the temporal or-
dering between them. Following standard practice,
the PLATINUM section, which contains 20 arti-
cles, serves as the test set. Of the 255 remaining
articles compiled from TimeBank and AQUAINT,
we allocate 100 articles for training and 20 articles
for validation which we use for this full fine-tuning
step, reserving the remaining 135 articles for the
second step. From these 120 articles, we extract all
annotated event pairs, treating each pair as a sepa-
rate instance. This yields 5,946 training instances
and 586 validation instances, each containing the
original article text annotated with event markers
on all events (e.g., “He <sold(ei391)> the property
to five buyers and <said(ei392)> he...”) and the la-
bel of a single event pair. The prompt for the model
includes the instructions for the task, followed by
the marked article and the pair to be labeled. The
model is required to output the correct temporal
relation between the two events. An example is
provided in Figure 3 in Appendix E.
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ATOMIC-2020 (Hwang et al., 2021). To im-
prove the model’s understanding of basic temporal
ordering, we incorporate data from the ATOMIC-
2020 common sense knowledge dataset. We specif-
ically select instances corresponding to the event-
centered isBefore and isAfter relations. These in-
stances consist of two sentences, each provided
with a single label indicating their temporal rela-
tion: isBefore, meaning the event described in the
first sentence occurs before the second, and isAfter,
meaning the event in the first sentence occurs after
the one in the second. For example, “PersonX calls
the cable company isAfter PersonX can’t watch
TV.” For consistency with the MATRES dataset, we
convert the isBefore and isAfter labels to BEFORE
and AFTER, respectively. Of the 33,579 available
instances for these relations, we use 30,000 for
training and 3,575 for validation. To encourage
the model to handle multiple temporal questions
concurrently, we structure the training data by con-
solidating every five original ATOMIC instances
into a single instance. This results in 6,000 compos-
ite training instances and 715 validation instances,
where the model must predict five independent re-
lations per instance. The prompt for the model
includes the instructions for the task, followed by
the five pairs of sentences. The model is required
to output the correct five temporal relations. An
example is provided in Figure 4 in Appendix E.

TGQA-TGR (Xiong et al., 2024). To expose the
model to more complex temporal reasoning scenar-
ios, we include the TGQA-TGR dataset, a synthetic
corpus originally developed for temporal graph rea-
soning. Each sample presents a narrative alongside
temporal queries about events in it (e.g., “When
did the event X start?”, “Given the following five
events, which event is the second one in chronologi-
cal order?”) and their answers in natural language.
We use the original training and test splits com-
bined as our training data (6,110 instances) and the
original validation split (698 instances) for valida-
tion during this stage. The prompt for the model
contains the instructions for the task, followed by
the narrative and a single question. The model is re-
quired to output the answer for the question asked.
An example is provided in Figure 5 in Appendix E.

3.2 Step 2: Downstream-task Fine-tuning
(TRC)

The second step focuses on adapting the model
from Step 1 specifically to the target task of global

Dataset Prompt

MATRES Given the text below where events are
marked with <eventName(identifier)>, for
the specified pair of events below, determine
the temporal relationships (BEFORE,
AFTER, EQUAL, VAGUE) between them.

ATOMIC Given the pairs of sentences below, for each
pair determine if the first sentence happened
BEFORE or AFTER the second sentence.

TGQA-TGR You are given the following text. Answer
the question below.

Table 1: Examples of instructions given to the model on
each dataset used in training.

TRC, where the goal is to predict the temporal
relationships between all relevant event pairs within
a given document simultaneously.

For this adaptation, we employ the parameter-
efficient Low-Rank Adaptation (LoRA) fine-tuning
technique (Hu et al., 2022). LoRA substantially
reduces the number of trainable parameters and
minimizes computational overhead by introducing
low-rank decomposition matrices into the model
layers.

The training set for this step consists of the re-
maining 135 training articles from the MATRES
dataset that were not used in Step 1 (validation set
is the same). In contrast to Step 1 and aligning
with the global TRC task formulation, each train-
ing instance in this phase consists of the full article
text with marked events, accompanied by the com-
plete set of originally annotated event pairs. The
model is expected to generate the full set of event
pairs along with their correct labels in a single in-
ference step. An example is provided in Figure 6
in Appendix E.

4 Experimental Setup

4.1 Models
Our experiments utilize two instruction-tuned,
open-source LLMs: Meta’s Llama 3.1 8B
(Grattafiori et al., 2024) and Google’s Gemma 3
12B (Team et al., 2025). We specifically use these
open-source models because they are widely used
and offer strong performance while remaining com-
pact enough to run on a single GPU, substantially
reducing training and serving costs. These models
were trained using the Together AI1 framework.

Additional details on the hyperparameters used
during training and evaluation are provided in Ap-

1https://www.together.ai/
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pendix A. Information on the total cost of training
and evaluation is provided in Appendix B.

4.2 Datasets

We evaluate our proposed method on two publicly
available benchmark test sets used for TRC. We
provide additional information in Appendix C.

MATRES (Ning et al., 2018). While MATRES
is used for training, we also include the MATRES
dataset in our evaluation by utilizing articles from
its original test set, known as the PLATINUM cor-
pus. Notably, MATRES annotations are restricted
to event pairs occurring in consecutive or nearby
sentences, reflecting local temporal reasoning and
leaving many other event pairs in the text unanno-
tated.

OmniTemp (Eirew et al., 2025). This relatively
new dataset builds upon the foundational structure
of the MATRES dataset and employing the same
core relations (i.e. BEFORE, AFTER, EQUAL,
and VAGUE). Unlike MATRES, OmniTemp aims
to annotate all valid event pairs within a document,
irrespective of sentence distance. This denser,
document-level annotation potentially introduces
greater complexity, especially for global TRC ap-
proaches that consider all pairs simultaneously.
Furthermore, given the model was not trained on
such long distance relations poses additional com-
plexity.

We note our initial attempt to utilize the official
OmniTemp training set for the Step 2 task-specific
fine-tuning of our global TRC model. However,
this attempt proved unsuccessful, as the limited
dataset size (20 documents only) was insufficient
for the model to effectively learn the task-specific
nuances.

4.3 Evaluation Metrics

Micro-Averaged F1 Score. Following standard
practice in TRC evaluation (Ning et al., 2019),
we use the micro-averaged F1 score as the pri-
mary measure of label classification performance.
This metric is calculated only over the instances
where the ground truth label is BEFORE, AF-
TER, or EQUAL, thereby excluding the ambiguous
VAGUE category. We compare our results directly
against previous works that adopt the same evalua-
tion protocol.

For evaluating the model’s performance on
global TRC, we employ an inference strategy

where the model processes each document com-
prehensively in a single call. The input to the
model for each inference includes the full docu-
ment text with annotated event mentions and a
complete list of potential event pairs within that
document. The model is expected to output a cor-
responding list enumerating each input pair along
with its predicted temporal relation. This approach
requires one inference call per document in the test
set, resulting in a total of N inferences, where N
is the number of documents.

In contrast, the evaluation of pairwise TRC in-
volves assessing the model’s ability to classify the
temporal relation for individual event pairs inde-
pendently. For each potential pair of events within
a document, the model is invoked separately. The
input for each inference consists of the document
text containing the marked event mentions and the
specific event pair under consideration. The model
is required to output the temporal relation solely for
the given pair. This fine-grained evaluation strategy
leads to a significantly higher number of inference
calls, roughly N × P inferences, where N is the
number of documents and P is the average number
of event pairs per document.

Transitive Inconsistencies. To assess the struc-
tural coherence and logical consistency of the tem-
poral predictions, we also measure the number of
transitive inconsistencies in the temporal graphs im-
plicitly generated by our models predictions on the
test sets. A transitive inconsistency occurs when
predicted relations violate logical constraints (e.g.,
predicting A BEFORE B, B BEFORE C, and C BE-
FORE A). We compare this metric on both global
and pairwise TRC.

To quantify the level of inconsistency within the
predicted temporal relations, we adopt the method-
ology for calculating transitive inconsistencies as
described in (Eirew et al., 2025). Specifically,
for each document, we consider the complete set
of temporal relations output by the model, either
from the single inference pass in the global TRC
approach or by aggregating the results from all
pairwise inference calls in the pairwise TRC ap-
proach. We then iterate through all possible triplets
of events (ei, ej , ek) within that document. For
each triplet, we check for transitive inconsistencies
among the predicted relations for the pairs (ei, ej),
(ej , ek) and (ei, ek), if these relations exist in the
model’s output for that document.

The number of such inconsistencies is counted
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Model MATRES OmniTemp

ZSL-GlobalConsistency 63.0 74.5
Gemma-3-12B - standard training 66.0 52.9

LTM - LLama-3.1-8B (ours) 83.6 72.4
LTM - Gemma-3-12B (ours) 83.7 78.5

Table 2: Comparing micro-average F1 scores on MATRES and OmniTemp for global TRC.

Model MATRES OmniTemp

Bayesian-Trans (Tan et al., 2023) 82.7 -
Unified-Framework (Huang et al., 2023) 82.6 -
OntoEnhance (Zhuang et al., 2023) 82.6 -
TCT (Ning et al., 2024) 82.9 -
GenTRE (Wu et al., 2025) 83.5 -
Bayesian + constraints (Tan et al., 2023) * 79.2 80.7
CoT (Yuan et al., 2023) * 56.6 67.2

LTM - Llama-3.1-8B (ours) 84.8 81.3
LTM - Gemma-3-12B (ours) 85.0 82.9

Table 3: Comparing micro-average F1 scores on MATRES and OmniTemp for pairwise TRC. Models marked with
(*) have their scores adapted from (Eirew et al., 2025).

for each document. The total number of transitive
inconsistencies across the entire test set is then
calculated by summing the inconsistency counts
from all individual documents.

5 Results

5.1 Classification Performance

Global Methods. Table 2 compares our global
TRC approach against a prior study that utilized
larger LLMs for global TRC without fine-tuning
(Eirew et al., 2025). To the best of our knowledge,
this is the only modern study that uses global TRC.
We directly compare our approach against the best-
performing reported method, and our fine-tuned
models substantially outperform this approach. For
an additional comparison, we performed a standard
training baseline with removing Step 1 and only
applying LoRA while using the full set of available
MATRES training examples. Our approach yields
substantial gains of +17.7 F1 points on MATRES
and +4 F1 points on OmniTemp, highlighting the
critical role of our proposed domain adaptation and
task-specific fine-tuning stages for achieving high
performance in global TRC with LLMs.

Pairwise Methods. Table 3 presents the perfor-
mance of our fine-tuned models compared to pre-
vious state-of-the-art (SOTA) methods that use a
pairwise classification approach. Both our models—
the fine-tuned Llama 3.1 8B and Gemma 3 12B—
establish new SOTA results on both datasets. Our

best-performing model achieves an improvement
of +1.5 F1 points over the previous pairwise
SOTA on MATRES and +2.2 F1 points on Om-
niTemp, demonstrating the effectiveness of leverag-
ing LLMs with our fine-tuning strategy even when
compared against expert pairwise models. We note
that comparison with several recent studies (Roc-
cabruna et al., 2024; Xu et al., 2025; Hu et al.,
2025) is challenging due to different or unreported
evaluation protocols used, which often differ in the
way the VAGUE relation is treated during training
and evaluation. These variations can substantially
influence the final scores.

Interestingly, results on MATRES for the global
method outperforms all pairwise methods, further
emphasizing the performance of our solution.

5.2 Temporal Graph Consistency

We analyze the logical coherence of the temporal
graphs produced by our models. We quantify the
total number of transitive inconsistencies across
all predictions generated for each test set. Table 4
summarizes these inconsistency counts. Consistent
with its denser annotation structure, OmniTemp ex-
hibits a higher absolute number of inconsistencies
compared to MATRES across different methods.

However, a key finding is that our global TRC
approach on our best performing model, trained
on Gemma 3 12B, substantially reduces the oc-
currence of such inconsistencies, lowering the total
count by more than 50% on both datasets compared

2161



Model Method MATRES OmniTemp

LTM - Gemma-3-12B pairwise 3 61
global 1 22

LTM - Llama-3.1-8B pairwise 13 54
global 2 54

Table 4: The total number of inconsistencies of our fine-tuned models across MATRES and OmniTemp test sets,
evaluating performance in both pairwise and global approaches.

to results from the pairwise approach. Further anal-
ysis reveals that our global approach yields at least
one inconsistency in only 3 documents, whereas
the pairwise approach exhibits inconsistencies in 7
documents.

While the Llama 3.1 8B model also demon-
strated the anticipated reduction in inconsistencies
with the global approach on the MATRES test set,
an initial anomaly was observed on the OmniTemp
test set. Here, the total inconsistency counts were
similar for both the pairwise and global methods.
Further analysis revealed that a single outlier docu-
ment accounted for an unusually high 35 inconsis-
tencies in the global method. These were primarily
due to the model struggling to classify two specific
events within that document, leading to numerous
incorrect relations. Excluding this document, the
global method achieved 19 inconsistencies com-
pared to 42 for the pairwise approach, aligning
with the trend of improved graph consistency.

This shows that adopting a global perspective
allows the model to generate more reliable and
internally consistent temporal graphs.

6 Ablation Studies

6.1 Global Method

To assess the individual contributions of the com-
ponents within our proposed two-step training
methodology, particularly the temporal domain
adaptation full fine-tuning (Step 1), we conducted
a systematic ablation study on our best performing
model (Gemma 3 12B). We assess how omitting or
simplifying the Step 1 datasets before applying the
standard Step 2 LoRA fine-tuning affects the final
performance on the global TRC task.

First, we remove Step 1 entirely. The base
instruction-tuned LLM undergoes only the down-
stream task LoRA fine-tuning in Step 2, completely
omitting the Step 1 domain adaptation pre-training.
We note that the omission of Step 1 allows us to use
all 235 news articles from the MATRES training
set during LoRA fine-tuning in Step 2.

Configuration F1-score

No Step 1 66.0
MATRES only 75.9
MATRES + ATOMIC 78.8
MATRES + TGQA-TGR 82.7
MATRES + ATOMIC + TGQA-TGR 83.7

Table 5: Ablation study for global approach on MA-
TRES. Configurations are described in Section 6.1.

For ablation, we tested various combinations of
the Step 1 datasets. We included the MATRES
training set in all configurations for Step 1 to en-
sure the model was initially trained on core TRC
concepts before incorporating additional datasets.
Therefore, we perform Step 1 with the following
configurations: (1) MATRES only, (2) MATRES +
ATOMIC, and (3) MATRES + TGQA-TGR.

Table 5 presents the performance of all possi-
ble configurations on the MATRES test set for the
global TRC task. The results yield several key in-
sights, which are also supported in the analysis
presented in Section 7.

The Need of Domain Knowledge. The No Step
1 configuration exhibits substantially lower perfor-
mance compared to all configurations incorporat-
ing Step 1 full fine-tuning. This finding strongly
suggests that the initial domain adaptation phase
is crucial for instilling foundational temporal con-
cepts and reasoning abilities in the LLM, which
are necessary precursors for effective task-specific
fine-tuning.

Benefit of Diverse Full Fine-Tuning Data. We
observe a clear trend of performance improvement
as the diversity and complexity of the dataset used
in Step 1 increase. This confirms the value of incor-
porating varied temporal datasets during full fine-
tuning; the commonsense precedence knowledge
from ATOMIC and the complex reasoning scenar-
ios from TGQA-TGR demonstrably contribute to
enhancing the model’s capabilities beyond what is
learned from the TRC examples in MATRES alone.
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6.2 Pairwise Method

We further experiment with Step 1 using MATRES
pairwise dataset only to verify the impact to the
model’s performance of adding additional datasets.

The results demonstrate comparable perfor-
mance, with 85 F1 score in both configurations.
This finding suggests that, for the task of pairwise
TRC, the inclusion of the additional datasets did
not yield an adverse impact on model performance.

7 Qualitative Analysis

Dataset Configuration. We conduct an analysis
of the different dataset configurations presented in
Section 6.1. Specifically, we examine their perfor-
mance on individual labels — BEFORE, AFTER,
and EQUAL — on the MATRES datasets using the
global TRC approach.

A significant observation is the model’s inabil-
ity to output the EQUAL label. This is likely at-
tributable to the sparse representation of EQUAL
relations in the MATRES training set, where only
3% of pairs are labeled as such, so learning such
classification is challenging. This is further ex-
plained by the frequent annotation errors within the
EQUAL labels of the MATRES dataset, as noted
by Niu et al. 2024.

Figure 2 illustrates the percentage of correct clas-
sifications for the BEFORE and AFTER labels. It
is clear that the model not trained with Step 1 ex-
hibits a substantial number of errors on both labels.
While incorporating the MATRES dataset alone
helps mitigate some of these errors, the improve-
ment is not sufficient.

A key insight from this analysis is that
adding TGQA-TGR, a complex temporal reasoning
dataset, substantially helps the model to learn tem-
poral concepts and boosts performance on the BE-
FORE label. Specifically, training with the TGQA-
TGR dataset significantly improved performance
by reducing the number of errors where BEFORE
was incorrectly classified as AFTER by over 50%
compared to the model trained solely on MATRES.

At the same time, this boost comes at the cost
of a slight decrease in performance on the AFTER
label. This behavior might stem from the construc-
tion of the TGQA-TGR training set, which often
requires the model to place events within a time-
line or asks the model to focus on the start time of
the events. Such tasks could potentially emphasize
prior events, leading to improved classification of
the BEFORE relation.

Figure 2: Comparing performance on BEFORE and
AFTER labels on different models. Values are the per-
centage of correct classification.

Interestingly, the ATOMIC dataset only
marginally improves performance, primarily on
the AFTER label. This suggests that ATOMIC
may not introduce many novel temporal concepts
to the model, and its primary contribution might be
to slightly balance the classification performance
between the BEFORE and AFTER labels.

Combined, these datasets achieve what MA-
TRES alone cannot: a notable improvement in tem-
poral understanding and superior performance on
the TRC task. This suggests that LLMs may in-
herently lack robust temporal understanding, and
the MATRES dataset by itself is insufficient to in-
still the necessary temporal concepts for successful
temporal relation classification.

Transitive Inconsistencies. We conducted a
deeper analysis of the results presented in Section
5.2, specifically examining the performance of our
Gemma-3-12B model on the OmniTemp dataset.
This investigation yielded two key insights.

First, we found that over 90% of inconsistencies
are attributable to errors on long-distance event
pairs, defined as pairs with more than 50 tokens
separating them. This observation strongly sup-
ports our assertion that global TRC is the preferred
method for constructing temporal graphs involving
long-distance events.

Second, our analysis revealed that inconsisten-
cies often stem from a small number of specific
events for which the model struggles to accurately
classify related pairs. This is a significant finding,
as it implies that the temporal graphs generated
by our model, particularly in global settings, are
largely consistent, with inconsistencies localized
to a limited subset of nodes and their associated
relations.
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8 Conclusion

In this work, we proposed and evaluated a two-step
fine-tuning methodology specifically designed to
utilize the capabilities of LLMs for TRC.

Our models achieved new state-of-the-art results,
substantially surpassing both previous best pair-
wise and global methods. Evidently, it offers a
versatile approach applicable to both approaches.
Furthermore, our analysis revealed that the global
TRC models trained with our methodology pro-
duce substantially more logically consistent tempo-
ral graphs, mitigating a common issue in pairwise
prediction schemes. Ablation studies and qual-
itative analyses confirmed the critical role of the
initial domain adaptation stage and the benefit of di-
verse external knowledge data. The results strongly
indicate that appropriately structured fine-tuning
strategies can effectively unlock the latent tempo-
ral reasoning capabilities within large pre-trained
models.

It is also important to note that the quality of
the training data limits achievable performance, as
MATRES is known to contain many annotation
errors, as reported in (Niu et al., 2024). Future
work should continue exploring the utility of LLMs
in the temporal domain and leverage alternative,
higher-quality datasets, such as OmniTemp.

This work not only advances the state-of-the-art
in TRC but also provides a validated methodol-
ogy for adapting LLMs to complex, knowledge-
intensive NLP tasks. While the multi-step strategy
presented in this paper was designed to address the
unique data challenges inherent to the TRC task,
future work can investigate how to apply a similar
approach to address challenges in other domains.

Limitations

There are three main limitations to this work. First,
fine-tuning techniques often require large datasets
for training. In our case, global TRC, we need
many annotated documents since each is translated
into a single training instance. Unfortunately, most
of the datasets used for TRC are relatively small in
terms of number of documents, leaving only MA-
TRES as a potential training set for the two steps
with its 275 documents. Other datasets, such as
TBDense or OmniTemp, contain only 20-25 docu-
ments that can be used for training, making it chal-
lenging to train with them only. Second, we were
limited in this study to medium size open source
LLMs due to limited resources and the lack of fine

tuning options offered by closed source models.
Third, the diversity in evaluation protocols across
different studies poses a significant challenge for
comprehensive comparisons. Consequently, our
comparative analysis is limited to studies employ-
ing the most common evaluation protocol.

Information on the the usage of AI assistants in
this work is provided in Appendix D.
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A Hyperparameters Configuration

Training Configuration. Hyperparameter values
were chosen based on the performance of the vali-
dation set. For Step 1, we used the full fine-tuning
configuration option in Together AI, with a learn-
ing rate of 1e-5 and a batch size of 16 instances,
and ran over all training instances during a single
epoch. For Step 2, we used the LoRA configura-
tion, with rank = 64 and alpha = 64, learning rate
of 1e-4 and a batch size of 8 instances, and ran over
all training instances during 3 epochs.

Evaluation Configuration. We ran inference us-
ing the trained models on the Together AI frame-
work. We experimented with different temperature
values, where we conducted 3 runs for each value
and calculated the average score. We found out the
temperature = 0 results in the best overall score and
yields the most consistent and accurate results.

B Training and Model Usage Cost

As discussed in Section 4.1, we used two open
source models for applying our two-step approach
and run our experiments - Gemma 3 12B and Llama
3.1 8B. We used the API of the Together AI frame-
work for training and running the models. We now
estimate the total cost of our experiments.

The fine-tuning price depends on the type (full
fine-tuning or LoRA fine-tuning), the size of the
model, and the total number of tokens used. In
our experiments, a single run of Step 1 in our ap-
proach costs approximately $15-20, and Step 2
costs around $5.

The price of running the model depends on the
duration in which the model endpoint is online and
costs approximately $0.2 per minute. We only used
endpoints when running experiments on the test
sets.

Following the above analysis, we estimate that
the total cost of our experiments is around $200.

C Artifacts Information and Licenses

In this paper, we use the following common pub-
lic artifacts - MATRES (Ning et al., 2018), pro-
vided without a license, OmniTemp (Eirew et al.,
2025) uses summaries from the Multi-News cor-
pus (Fabbri et al., 2019), which is distributed under
a custom license that permits free academic use,
ATOMIC-2020 (Hwang et al., 2021) provided un-
der the CC-BY license, TGQA-TGR (Xiong et al.,
2024) provided under the MIT license, Gemma
3 (Team et al., 2025) provided under the CC-BY
4.0 license and Llama 3.1 (Grattafiori et al., 2024)
provided under Llama 3.1 Community License.

All datasets presented in this paper were used
according to their original design and intended use.
Their data is written in English only. We did not
find any content in these datasets that required any
further steps to protect or anonymize it. Specif-
ically, data in MATRES or OmniTemp is public
news articles, data in ATOMIC-2020 is common
sentences that do not contain any offensive or prob-
lematic content, and data in TGQA-TGR was gen-

2166

https://arxiv.org/abs/2503.19786
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.3390/e27030284
https://doi.org/10.3390/e27030284
https://doi.org/10.3390/e27030284
https://doi.org/10.18653/v1/2024.acl-long.563
https://doi.org/10.18653/v1/2024.acl-long.563
https://doi.org/10.1145/3701716.3715457
https://doi.org/10.1145/3701716.3715457
https://doi.org/10.1145/3627673.3679520
https://doi.org/10.1145/3627673.3679520
https://doi.org/10.1145/3627673.3679520
https://doi.org/10.18653/v1/2023.bionlp-1.7
https://doi.org/10.18653/v1/2023.bionlp-1.7
https://doi.org/10.18653/v1/2022.findings-naacl.29
https://doi.org/10.18653/v1/2022.findings-naacl.29
https://doi.org/10.1016/j.inffus.2023.101919
https://doi.org/10.1016/j.inffus.2023.101919
https://doi.org/10.1016/j.inffus.2023.101919


erated by LLM and does not contain any harmful
content.

D Use of AI Assistants

During the preparation of this paper, AI-powered
language tools were utilized to assist with curating
the text. This assistance was limited to improving
phrasing, style, clarity, and grammatical correct-
ness. The core research, conceptualization of ideas,
experimental design, data analysis, and interpre-
tation of results were conducted entirely by the
human authors.

E Training Instances

Below are examples of the training instances used
during the two-step training presented in this paper.
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Given the text below where events are marked with <eventName(identifier)>, for the specified pair
of events below, determine the temporal relationships (BEFORE, AFTER, EQUAL, VAGUE)
between them.

Text -

Major job cuts at AT and T. The long distance giant <slashing(ei255)> up to eighteen thousand
jobs, freezing executive salaries and <shaking(ei257)> up management. The <changes(ei258)> are
part of a one point six billion dollar cost cutting initiative to <revitalize(ei261)> its position in the
telecommunications business. Earlier AT and T also <announced(ei262)> an eighteen percent
<drop(ei263)> in profits for the fourth quarter. The company’s sales force <applauded(ei265)> the
shake up.

It’s not something we’re not <used(ei288)> to in the industry. But I <think(ei268)> right
now, for AT and T and the people here, it’s fairly <intense(ei269)> as you might w- well imagine.

I mean look at the stock. You know, since he’s been here the stock <skyrocketed(ei274)> so, Yeah
I <think(ei275)> he’s <doing(ei276)> the right thing.

I <think(ei277)> it’s a good thing that they’re finally going to be <downsizing(ei279)>
you know some management because there is a whole lot of waste.

Good news for AT and T today. I <think(ei282)> it’s <excellent(ei283)> for the com-
pany.

But investors are <approaching(ei284)> the <changes(ei285)> with caution shares of AT
and T down nearly four at sixty-one and a half.

Pair -

announced(ei262) – applauded(ei265)

Answer -

announced(ei262) BEFORE applauded(ei265)

Figure 3: An example of Step 1 MATRES training instance’s input and output. Text after the dotted line is the
expected model response.
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Given the pairs of sentences below, for each pair determine if the first sentence happened BEFORE
or AFTER the second sentence.

Sentences -
PersonX forms PersonY army – PersonX puts up recruitment posters
PersonX takes pictures of it – PersonX posts the photo online to help find the owner
PersonX takes it out of the oven – PersonX mixes a cake mix
PersonX asks PersonY’s help – PersonX slips on the ice
PersonX watches sports – PersonX turned on the tv

Answer -

PersonX forms PersonY army AFTER PersonX puts up recruitment posters
PersonX takes pictures of it BEFORE PersonX posts the photo online to help find the owner
PersonX takes it out of the oven AFTER PersonX mixes a cake mix
PersonX asks PersonY’s help AFTER PersonX slips on the ice
PersonX watches sports AFTER PersonX turned on the tv

Figure 4: An example of Step 1 ATOMIC training instance’s input and output. Text after the dotted line is the
expected model response.
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You are given the following text. Answer the question below.

Text -

Once upon a time in Austin, Texas, a young boy named Liam Davis was born in 1972.
From a very early age, Liam showed a natural talent for soccer. He joined the local youth team,
the Phoenix Eagles, in 1988, where his skills quickly caught the attention of coaches and scouts.
In 1989, Liam had the opportunity to play for the Seattle Warriors under-17 football team. His
performance at this level was outstanding, and he was also selected to represent the Cheshire
national under-16 football team. Liam’s passion for the game grew stronger with each passing
day. However, Liam’s time with the Phoenix Eagles came to an end in 1990 as he wanted to
explore new horizons. In 1991, he joined R.W. Eastbridge, a team that provided him with more
challenging competition. Liam later briefly reunited with his former team, R.T. Wolverhampton,
before finally bidding farewell to R.W. Eastbridge in 1992. In 1993, Liam embarked on a new
journey by joining Oceanside United FC. This move proved to be pivotal in his career as he honed
his skills and became a formidable player. A year later, in 1994, Liam’s exceptional abilities drew
the attention of Chelsea United FC, and he joined their ranks. He spent a year with the team,
showcasing his talent and contributing to their success. However, Liam couldn’t seem to settle
down, and in 1995 he left Chelsea United FC. He took a break from competitive soccer for a few
years to reassess his goals and ambitions. But Liam’s love for the game never faded, and in 1998
he joined Dallas City FC. His return to the field was celebrated, and he played with unmatched
passion until 1999 marked the end of his time with Dallas City FC. Although Liam Davis’s soccer
journey had its ups and downs, his perseverance and talent were undeniable. He left an indelible
mark on every team he played for, inspiring his teammates and leaving a lasting impression on
coaches and fans alike. Liam’s story serves as a reminder that passion, determination, and love for
the sport drive us to overcome obstacles and achieve greatness.

Question -

When did the event (Liam Davis was born in Austin) start?

Answer -

1972

Figure 5: An example of Step 1 TGQA-TGR training instance’s input and output. Text after the dotted line is the
expected model response.
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Given the text below where events are marked with <eventName(identifier)>, for each pair of
events below, determine the temporal relationships (BEFORE, AFTER, EQUAL, VAGUE)
between them.

Text -

Philip Morris Cos., New York, <adopted(ei55)> a defense measure <designed(ei56)> to
<make(ei57)> a hostile <takeover(ei58)> prohibitively expensive.

The giant foods, tobacco and brewing company <said(ei59)> it will <issue(ei60)> common-share
purchase rights to shareholders of record Nov. 8. Under certain circumstances, the rights would
<entitle(ei62)> Philip Morris holders to <buy(ei63)> shares of either the company or its acquirer
for half price.board isn’t <aware(ei64)> of any <attempts(ei65)> to <take(ei66)> over Philip
Morris, the company <said(ei67)>. As of Sept. 30, Philip Morris <had(ei68)> 926 million
shares outstanding. In composite trading on the New York Stock Exchange, Philip Morris shares
<closed(ei69)> yesterday at $43.50 each, down $1.

Pairs -

adopted(ei55) – designed(ei56)
adopted(ei55) – said(ei59)
designed(ei56) – said(ei59)
said(ei67) – had(ei68)
had(ei68) – closed(ei69)

Answer -

adopted(ei55) AFTER designed(ei56)
adopted(ei55) BEFORE said(ei59)
designed(ei56) BEFORE said(ei59)
said(ei67) AFTER had(ei68)
had(ei68) BEFORE closed(ei69)

Figure 6: An example of Step 2 training instance’s input and output. Text after the dotted line is the expected model
response.
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